A brief overview of
quantum computing
or,

Can we compute faster in a

Mmultiverse?

Tom Carter

http://cogs.csustan.edu/”™ tom/quantum

May, 1999


http://cogs.csustan.edu/~tom/quantum

Our general topics: <«

© Hilbert space and quantum mechanics
© Tensor products

© Quantum bits (qubits)

© Entangled quantum states

© Quantum computing

© Simple quantum gates

@ Tractability of computation

© Factoring

Notes on factoring

Quantum algorithms for satisfiability
Possibilities for physical implementation
Decoherence and error correction
Prospects

References

On-line references

© © ©© @ © o ©



The quotes

© Twelve men
© Magic

© Shocking

© Finis

To top «—



Twelve men “

"There was a time when the newspapers said
that only 12 men understood the theory of
relativity. I do not believe there ever was such
a time. There might have been a time when
only 1 man did, because he was the only guy
who caught on, before he wrote his paper.
But after people read the paper a lot of
people understood the theory of relativity in
some way or other, certainly more than 12.
On the other hand, I think I can safely say
that nobody understands quantum
mechanics”

-Richard Feynman



Hilbert space and
quantum mechanics <«

e A Hilbert space H is a complete normed
vector space over C :

1. H is a vector space over C

2. There is an inner product
-]y : Hx H—C
which is conjugate linear:
(vjw) = (wlv)
(av|w) = a(v|jw) for a € C
(v 4+ wlz) = (v]z) + (w]z)
(vlv) > 0 and (v|v) =0 iff v =20

3. From the inner product, as usual, we
define the norm of a vector:
[v]|? = (v|v)

4. H is complete with respect to the
norm.



e We will typically use the bra/ket notation:
lv) is a vector in H, and
(v| is the covector which is the conjugate
transpose of v.

e T his notation also allows us to represent
the outer product of a vector and
covector as |v){w|, which, for example,
acts on a vector |z) as |v){(wl|z). For
example, if {v1,v2} is an orthonormal basis
for a two-dimensional Hilbert space,
lv1)(vp]| is the transformation that maps
lvs) to |v1) and |v1) to (0,0)7 since

[v1) (va|va) = |v1)(va|va) = |v1)

[v1)(v2l|v1) = |v1)(v2lv1) = Olvy) = < 8 > :

Equivalently, |v1){vo| can be written in
matrix form where |v1) = (1,0)7,

(v1] = (1,0), |v2) = (0,1)%, and

(vo] = (0,1). Then

el = (g J o0 = (9 §).




A unitary operator U : H — H is a linear
mapping whose conjugate transpose is its
inverse: Ul =pU~1

Unitary operators are norm preserving:
|Uv[|2 = (|UTU|v) = (v]v) = ||v]|?

We will think of a quantum state as a
(normalized) vector |v) € H. For math
folks, we are in effect working in Complex
projective space, normalizing to 1 so that
the probabilities make sense.

The dynamical evolution of a quantum
system is expressed as a unitary operator
acting on the quantum state.

Eigenvalues of a unitary matrix are of the
form e’ where w is a real-valued angle. A
unitary operator is in effect a rotation.



e Just for reference, a typical expression of
Schrodinger’s equation looks like

h2

2Mme

2 +V(z,y, z)] v = iﬁ%llf

with general solution

0 —i1 Bt
W,y zt) =Y cnwn<x,y,z>exp( ; )

n=0
where W, (x,vy,2) is an eigenfunction
solution of the time independent
Schrodinger equation with E, the
corresponding eigenvalue. The inner
product, giving a time dependent
probability, looks like

P(t) = / T Wdv.

e Another way to think of this is that we
have to find the Hamiltonian H which
generates evolution according to:

. B
iho [W(0) = HW ().



In our context, we will have to solve for H
given a desired U.:

W) = exp (— [ Hat) [Wo) = Uwo)

A solution for 'H always exists, as long as
the linear operator U is unitary.

A measurement consists of applying an
operator O to a quantum state v. To
correspond to a classical observable, O
must be Hermitian, Of = O, so that all its
eigenvalues are real. If one of its
eigenvalues X is associated with a single
eigenvector u), then we observe the value
A with probability |(v|uy)|? (i.e., the square
of the length of the projection along w)).



e In general, if there is more than one
eigenvector u), associated with the
eigenvalue A, we let P, be the projection
operator onto the subspace spanned by
the eigenvectors, and the probability of
observing A when the system is in state v
IS HPXuHQ.

e Most projection operators do not
commute with each other, and are not
invertible. Therefore, we can expect that
the order in which we do measurements
will matter, and that doing a
measurement will irreversibly change the
state of the quantum system.
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Tensor products <«

e \We can form tensor products of a wide
variety of objects. For example:

1. The tensor product of an n dimensional
vector v and an m dimensional vector v
IS an nm dimensional vector u ® v.

2. If A and B are operators on n and m
dimensional vectors, respectively, then
A® B is an operator on nm
dimensional vectors.

3. if H1 and H» are Hilbert spaces, then
Hq ® H> is also a Hilbert space. If Hy
and H, are finite dimensional with
bases {uq1,up,...un}t and {vi,vo,...vm}
respectively, then H{ ® H> has
dimension nm with basis
{u; ®@vj|1 <i<n,1 <5< mj.

11



e Tensor products obey a number of nice
rules. For matrices A, B, C, D, U, vectors
w, v, w, and scalars a, b, ¢, d the following
hold:

(AR B)(C® D) = AC® BD

(AR B)(u®v) = Au® Bv
(ut+v)Qw = uQw+vRuw
uR@vtw) = uR UVt uRQw

au @bv = ablu @ v)

Thus for matrices,

A B\ ,_(A®U BaU
C D —\Cc®U DoU |’

which specializes for scalars to

a b [ aU bU
(c d>®U_<cU dU>'

12



e [ he conjugate transpose distributes over
tensor products:

(A B) = Al @ BT.

e [ he tensor product of several matrices is
unitary if and only if each one of the
matrices is unitary up to a constant. Let
U=A1®...9 Ap. Then U is unitary if
ATA; = k;T and [[;k; = 1.

UTu

Al®...® A)(A1®...® Ap)
A§A1®...®A;&An
1

13



e Note that (u ® v|lw ® z) = (u|lw)(v|z). This
implies that (0 ® 4|0 ® u) = 0, and
therefore O ® u must be the zero vector of
the tensor product Hilbert space.

This in turn implies (reminds us?) that
the tensor product space is actually the
equivalence classes in a quotient space.

In particular, if A and B are vector spaces,
F' is the free abelian group on A x B, and
K is the subgroup of F' generated by all
elements of the following forms (where
a,a1,a> € A, b,b1,bo € B, a scalar):

1. (a1 + a2,b) — (a1,b) — (a2,b)
2. (CL, bl + b2) — (a7 bl) — (CL, b2>
3. (aa,b) — (a, ab)

then A ® B is the quotient space F/K.

14



Quantum bits (qubits) «

e A quantum bit, or qubit, is a unit vector
in a two dimensional complex vector
space for which a particular orthonormal
basis, denoted by {|0),|1)}, has been
fixed. It is important to notice that the
basis vector |0) is NOT the zero vector of
the vector space.

e For example, the basis |0) and |1) may
correspond to the |T) and |—)
polarizations of a photon respectively, or
to the polarizations | /) and |[\)). Or |0)
and |1) could correspond to the spin-up
and spin-down states (|T) and ||)) of an
electron.

15



e For the purposes of quantum computing,
the basis states |0) and |1) are taken to
encode the classical bit values O and 1
respectively. Unlike classical bits however,
qubits can be in a superposition of |0) and
|1) such as a|O) + b|1) where a and b are
complex numbers such that |a|? + |p]? = 1.
If such a superposition is measured with
respect to the basis {|0),|1)}, the
probability that the measured value is |0)
is |a|? and the probability that the
measured value is |1) is |b|2.

16



e Key properties of quantum bits:

1. A qubit can be in a superposition state
of O and 1.

2. Measurement of a qubit in a
superposition state will yield
probabilistic results.

3. Measurement of a qubit changes the
state to the one measured.

4. There is no transformation which
exactly copies all qubits. This is known
as the ‘no cloning’ principle.
Interestingly, it is nonetheless possible
to ‘teleport’ a quantum state, but in
the process, the original quantum state
IS destroyed . ..

17



Magic “

"The Universe is full of magical things
patiently waiting for our wits to grow
sharper.”

-Eden Phillpotts

" Any sufficiently advanced technology is
indistinguishable from magic.”

-Arthur C. Clarke
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Entangled quantum states
«—

e If we have available more than one
(physical) qubit, we may be able to
entangle them. The tensor product of the
Hilbert spaces for the individual qubits is
the appropriate model for these entangled
systems.

e For example, if we have two qubits with

bases {|0)1,[1)1} and {[0)2,[1)2}
respectively, the tensor product space has

the basis

{10)1®]0)2,[0)1®[1)2,|1)1®|0)2,[1)1®[1)2}.

We can (conveniently) denote this basis
as

1/00),01),[10),[11)}.

19



e More generally, if we have n qubits to
which we can apply common
measurements, we will be working in the
2"-dimensional Hilbert space with basis

{|00...00),|00...01),...,]11...10),|11...11)}

e A typical quantum state for an n-qubit
system is
2n—1

> aili)

i=0
where a; € C, Y |a;|2 = 1, and {|i)} is the
basis, with (in our notation) i written as
an n-bit binary number.

20



e A classical (macroscopic) physical object
broken into pieces can be described and
measured as separate components. An
n-particle quantum system cannot always
be described in terms of the states of its
component pieces. For instance, the state
|00) 4 |[11) cannot be decomposed into
separate states of each of the two qubits
in the form

(a1]0) + b1[1)) ® (a2|0) + bo|1)).

This is because
(a1]0) +b1|1)) ® (a2|0) + b2|1)) =

a1a2|00) 4+ a1b2]01) + b1ap[10) + b1bo|11)

and a1bo = 0 implies that either ajar, = 0
or bibo = 0. States which cannot be
decomposed in this way are called
entangled states. These are states that
don’'t have classical counterparts, and for
which our intuition is likely to fail.

21



e Particles are entangled if a measurement
of one affects a measurement of the
other. For example, the state
%(|OO> 4+ |11)) is entangled since the

probability of measuring the first bit as |0)
is 1/2 if the second bit has not been
measured. However, if the second bit has
been measured, the probability that the
first bit is measured as |0) is either 1 or O,
depending on whether the second bit was
measured as |0) or |1), respectively. On
the other hand, the state %(|OO) + [01))
. . 2

IS not entangled. Since

75(100) +[01)) = |0) ® 5(|0) + |1)), any
measurement of the first bit will yield |0)
regardless of measurements of the second
bit. Similarly, the second bit has a
fifty-fifty chance of being measured as |0)
regardless of measurements of the first
bit. Note that entanglement in terms of
particle measurement dependence is
equivalent to the definition of entangled
states as states that cannot be written as
a tensor product of individual states.

22



Shocking “

“Anyone who is not shocked by quantum
theory has not understood it.”

—Neils Bohr

“One is led to a new notion of unbroken
wholeness which denies the classical
analyzability of the world into separately and
independently existing parts. The inseparable
quantum interconnectedness of the whole
universe is the fundamental reality.”

—David Bohm

“I don't like it, and I'm sorry I ever had
anything to do with it.”

—Erwin Schrodinger

23



Quantum computing <«

e T his exponential growth in number of
states, together with the ability to subject
the entire space to transformations
(either unitary dynamical evolution of the
system, or a measurement projection into
an eigenvector subspace), provides the
foundation for quantum computing.

e An interesting (apparent) dilemma is the
energetic costs/irreversability of classical
computing. Since unitary transformations
are invertible, quantum computations
(except measurements) will all be
reversible. Most classical boolean
operations such as by A by, b1 V by, and
b1A by are irreversible, and therefore
cannot directly be used as basic
operations for quantum computers.

24



e The logical nand-gate (byA by) is
sufficient to generate all the traditional
boolean functions (e.g., ~b=b A b). We
are likely to end up looking for simple
quantum gates that are similarly generic
for quantum operations.

e In general, if we had enough time, we
could simulate any quantum computation
with a classical computer. The real
potential value of quantum computers lies
in speeding up computations. The critical
questions are:

1. How much can we speed up particular
computations?

2. Can we develop a practical
implementation of a particular
quantum computation?

3. Can we build a physical implementation
of a quantum computer?
25



4. Does the implementation allow us to
carry out useful computations before
decoherence interactions with the
environment disturb the system too
much?

5. Given the “no cloning” principle, can
we develop quantum error
detection/correction systems? In
particular, we can't just take
measurements for error control since

measurements have irreversible effects

on quantum systems.

26



Simple quantum gates «

e [ hese are some examples of useful

single-qubit quantum state

transformations. Because of linearity, the
transformations are fully specified by their
effect on the basis vectors. The
associated matrix is also shown.

I : |0) — |0)

1) — [1)
or: |0) — |1)
1) — [0)
oy: |0) — |1)
1) — —[0)
oz : |0) — |0)
1) — —[1)

1
O
O
1
0
1
1

O

I is the identity transformation, o, is
negation, o, is a phase shift operation,
and oy = 0,0 IS @ combination of both.
All these gates are unitary. For example

Y 1

JyJT:<O —1

)

1
-1 0

)=1

27



e Another important single-bit
transformation is the Hadamard
transformation defined by

H: o) — 1(0)+ 1))
1) — L(0) - ).

Applied to n bits each in the |0) state, the
transformation generates a superposition
of all 2™ possible states.

(HRH®---® H)|00...0)

1
@((|o> + (1) ® - (|0) +|1)))

1 2"-1
= —= > =)
2n =0
The transformation acting on n bits is

called the Walsh or Walsh-Hadamard
transformation W.

28



e An important example of a two qubit gate
is the controlled-not gate, C,ot, Which
complements the second bit if the first bit
iIs 1 and leaves the bit unchanged
otherwise.

Chot . |00) — |00) 1 000
01) — [01) [0 1 0 O
10) — |11) | 0 0 0 1
11) — |10) \0 0 1 0

The transformation C,,,¢ IS unitary since
gate cannot be decomposed into a tensor
product of two single-bit transformations.

e It is useful to have graphical
representations of quantum state
transformations, especially when several
transformations are combined. The
controlled-not gate (), is typically
represented by a circuit of the form

—

+
29



The open circle indicates the control bit,
and the x indicates the conditional
negation of the subject bit. In general
there can be multiple control bits. Some
authors use a solid circle to indicate
negative control, in which the subject bit
IS toggled when the control bit is O.

Similarly, the controlled-controlled-not,
which negates the last bit of three if and
only if the first two are both 1, has the
following graphical representation.

—
—

+

Single bit operations are graphically
represented by appropriately labelled
boxes as shown.

N

30



e The bra/ket notation is useful in defining
other unitary operations. Given two
arbitrary unitary transformations U7 and
Us>, the ‘conditional” transformation
|0)(0| ® U1 4+ |1)(1| ® U is also unitary. For
example, the controlled-not gate can
defined by

Chot = [0Y(0] @ T + [1){1] ® X.

31



e [ he three-bit controlled-controlled-not
gate or Toffoli gate is also an instance of
this conditional definition:

T =[0)0|®I® I+ |11 ® Chot

T : |000) — |000)
001) — |001)
010) — |010)
011) — |011)
100) — |100)
101) — |101)
110) — |111)
111) — |110)

T can be used to construct a complete
set of the classical boolean connectives
and thus general combinatory circuits
since it can be used to construct the not
and and operators in the following way:

T|1,1,x)
T|z,y,0)

11,1, ~ x)
1z, y,z A y)

32



Tractability of
computation —

e \We can generally categorize
computational algorithms according to
how the resources needed for execution of
the algorithm increase as we increase the
size of the input. Typical resources are
time and (storage) space. In different
contexts, we may be interested in
WOrst-case or average-case performance
of the algorithm. For theoretical
purposes, we will typically be interested in
large input sets . ..

e T he hope of quantum computing is that
problems that are difficult or impossible
for classical computers to solve can be
handled by quantum computers.

33



e A standard mechanism for comparing the
growth of functions with domain N is
“big-Oh.” One way of defining this
notion is to associate each function with
a set of functions. We can then compare
algorithms by looking at their “big-Oh”
categories.

e Given a function f, we define O(f) by:

g€ O(f) —

there exist ¢ > 0 and N > 0 such that
lg(n)| < ¢|f(n)| for all n > N.

e We further define 0(f) by:
gel(f) iff g€ O(f) and f € O(yg).

34



e In general we will consider the run-time of
algorithms in terms of the growth of the
number of elementary computer
operations as a function of the number of
bits in the (encoded) input. Some
important categories — an algorithm’s
run-time f is:

1.

2.

Logarithmic if f € 8(log(n)).

Linear if f € 6(n).

. Quadratic if f € 0(n?).

. Polynomial if f € 6(P(n)) for some

polynomial P(n).

. Exponential if f € 6(b™) for some

constant b > 1.

. Factorial if f € 0(n!).

35



e Typically we say that a problem is
tractable if (we know) there exists an
algorithm whose run-time is (at worst)
polynomial that solves the problem.
Otherwise, we call the problem
intractable.

e [ here are many problems which have the
interesting property that if someone (an
oracle?) provides you with a solution to
the problem, you can tell in polynomial
time whether what they provided you
actually is a solution. Problems with this
property are called Non-deterministically
Polynomial, or NP, problems. One way to
think about this property is to imagine
that we have arbitrarily many machines
available. We let each machine work on
one possible solution, and whichever
machine finds the (a) solution lets us
Know.

36



e [ here are some even more interesting NP
problems which are universal for the class
of NP problems. These are called
NP-complete problems. A problem S is
NP-complete if S is NP and, there exists
a polynomial time algorithm that allows
us to translate any NP problem into an
instance of S. If we could find a
polynomial time algorithm to solve a
single NP-complete problem, we would
then have a polynomial time solution for
each NP problem.

37



e Some examples:

1. Factoring a number is NP. First, we
recognize that if M is the number we
want to factor, then the input size m is
approximately log(M) (that is, the
input size is the number of digits in the
number). The elementary school
algorithm (try dividing by each number
less than v/M) has run-time
approximately 10%, which is
exponential in the number of digits.
On the other hand, if someone hands
you two numbers they claim are
factors of M, you can check by
multiplying, which takes on the order
of m? operations.

It is worth noting that there is a
polynomial time algorithm to
determine whether or not a number is
prime, but for composite numbers, this

algorithm does not provide a
38



factorization. Factoring is a
particularly important example because
various encryption algorithms such as
RSA (used in the PGP software)
depend for their security on the
difficulty of factoring numbers with
several hundred digits.

39



2. Satisfiability of a boolean expression is

NP-complete. Suppose we have n
boolean variables {b1,b5,...,b,} (each
with the possible values 0 and 1). We
can form a general boolean expression
from these variables and their
negations:

f(b1,b2,...,00) = NC\/ (bi,~ b))
k 1,7<n

A solution to such a problem is an
assignment of values O or 1 to each of
the b, such that f(b1,bo,...,bn) =1.
There are 2™ possible assignments of
values. We can check an individual
possible solution in polynomial time,
but there are exponentially many
possibilities to check. If we could
develop a feasible quantum
computation for this problem, we
would in some sense resolve the
traditional P==NP problem . . .

40



3. The discrete Fourier transform of a
sequence a = (aj>;1;%) is the sequence

—\

A= <Ak>z;% where

1 971 orijk
Ak _ — Z a,je q
\/ajzo

One way to think about this is that
A = F'a where the linear
transformation F' is given by:

1 27ijk
[Flj=—e ¢
q
Note that the inverse of F is FT — that
IS,
1 2nijk
[F_l]k,j = —qe g

Suggestively, this says that the discrete
Fourier transform is a unitary
operation.

The action of this transformation on a
vector of dimension g looks as though

it would take the g2 operations of
41



matrix multiplication, but there is
enough structure that the classical fast
Fourier transform algorithm can be
done in glog(q) operations.

The corresponding quantum Fourier
transform Ugpr with base 2" is defined

by

1 2"—1 2mice

Ugrr : |2) — = CZ 23|y,

=0
We will see that this can be
accomplished in approximately n2
operations rather than n2™. This is an
exponential speed-up of the process.

42



Factoring

I

e [ he quantum algorithm which has
probably done the most for popularizing
quantum computation is Shor’s factoring
algorithm. As noted above, a fast
algorithm for factoring numbers with
several hundred digits would invalidate
some of the most widely used encryption
systems. Shor’'s algorithm provides
theoretical evidence for such an
algorithm, waiting only for a practical
physical realization.

e [ he general approach used by Shor is
based on a classical probabilistic method
for factoring. The classical algorithm is
exponential in the number of digits —
Shor’s is (quantum) polynomial.

43



e QOutline of Shor's algorithm for factoring a
number M:

1. Choose an integer 1 <y< M
arbitrarily. If y is not relatively prime to
M, we've found a factor of M.
Otherwise apply the rest of the
algorithm.

2. Let n be such that M2 < 2" < 2M2.
We begin with n qubits, each in state
|0). We now apply the Walsh
transformation W to superpose all
states:

1 2'-1

on_1
W
az::() |O>' \/Q—n Z |

3. Apply a transformation which
implements raising to powers

(mod M):
1 2"-1 1 2"-1

where f(a) = y% (mod M).
44



. Measure to find a state whose

amplitude has the same period as f.

. Apply a quantum Fourier transform to
invert the frequency.

. Extract the period, which we expect to
be the order of y (mod M).

. Find a factor of M.

When our estimate for the period, gq, is
even, we use the Euclidean algorithm
to efficiently check whether either

y4/2 4+ 1 or y%/2 — 1 has a non-trivial
common factor with M.

. Repeat the algorithm, if necessary.

45



e Here's another version of the outline of
Shor's algorithm for factoring

We begin with 2 n-qubit registers. Apply
the Walsh transformation on the first to
give a uniform superposition of states:

0)®0) = Z|l®|o

Apply a transformation vvhich computes
yl mod N

1 @1

\/_ Z 1) ® |y'modN)
Measure the second register:
Q-1

S )@ yloy =

l:O‘yl:le

-

ﬂ|

Z 5 + 1) ® |y'0)
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Apply the quantum Fourier transform
over ZQ on the first register:

1 Ql( 1 A-1

75 D o D 627T’i(jr—l-lo)k/@> k) ® |y0)
k=0 =0

Measure the first register. Let k1 be the
outcome. Approximate the fraction % by
a fraction with denominator smaller than
N. If the denominator d doesn’t satisfy

v =1 mod N, throw it away, else call the
denominator rj.

Repeat all previous steps poly(log(N))
times to get rq, o, ...

Output the minimal r.

47



Notes on factoring <«

e To factor a number M, we choose a
number y < M with ged(y, M) = 1. We
then find r, the order of y in the
multiplicative group (mod M). If r is
even, then (y"/2 4+ 1)(y"/2 - 1) =
(y"—1)=0 (mod M). Then
ged(y™ — 1, M) is a non-trivial factor of M
except when r is odd or y"/2 = —1
(mod M). This procedure produces a
non-trivial factor of M with probability at
least 1 —1/2%~1 where k is the number of
distinct odd prime factors of M. If we
don’t get a factor, we can choose a new y
and repeat the process. By repeating the
process, we can make our likelihood of
success as close to one as we like. Note
that if M is even, finding a factor is easy;
if M is a power of a prime, there are other
fast classical methods of factoring which
we can use on M before we start this
process.
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e We want to find the period of the
function f(a) = y* (mod M). We do that
by measuring to find a state whose
amplitude has the same period as f.

We measure the qubits of the state
obtained from encoding f(a). A random
value u is obtained. We don’t actually use
the value u; only the effect the
measurement has on our set of
superpositions is of interest. This
measurement projects the state space
onto the subspace compatible with the
measured value, so the state after
measurement is

C> g(a)|a,u),
a
for some scale factor C where

g(a):{ 1 if f(a) =u

O otherwise
Note that the a's that actually appear in
the sum, those with g(a) # 0, differ from
49



each other by multiples of the period, and
thus g(a) is the function we are looking
for. If we could just measure two
successive a's in the sum, we would have
the period. Unfortunately the quantum
world permits only one measurement.

Shor’'s method uses a quantum version of
the Fourier transform to find the period
of the function y¢ (mod M). We apply
the quantum Fourier transform to the
state obtained by the measurement.

S g(a)la) ©2 S G(e)e)

Standard Fourier analysis tells us that
when the period r of g(a) is a power of
two, the result of the quantum Fourier
transform is

/ 20
C ij|37>
J
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where |p;| = 1. When the period r does
not divide 2™, the transform approximates
the exact case so most of the amplitude
IS attached to integers close to multiples
of 27”’

In order for Shor’'s factoring algorithm to
be a polynomial algorithm, the quantum
Fourier transform must be efficiently
computable. Shor developed a quantum
Fourier transform construction with base
2™ using only ”(”T"H) gates. The
construction makes use of two types of
gates. One is a gate to perform the
Hadamard transformation H. We will
denote by H; the Hadamard
transformation applied to the jth bit. The
other type of gate performs
transformations of the form

[1 00 O )
~lo10 o0
Sik=1 001 0
\OOOeZG’f—j)
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where 6;_; = w/2%7J, which acts on the
kth element, depending on the value of
the jth element. Think of this as acting
on the basis {|00),|01),|10),|11)} ...

The quantum Fourier transform is given
by

HoS()’l . SO,n—lHl e

Hy_35,-3n-25,—3n-1Hn—2S,—2on—1Hp_1.

T his actually produces the reverse of the

Fourier transform, so it typically will be
followed by a bit reversal transformation
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e [ here is a second piece of Shor's
algorithm which must be accomplished in
polynomial time. We need to extract
(using the QFT) the period of the
function a — (y%) (mod M). We must
transform as:

271 1 2'-1

\/Q_n Z la) — VTl Z la, y*(modM))

We want to develop a transformation
which computes the function f, ps(a) = y¢
(mod M). First, we write y® as

y¢ = y20a0 : y21a1 . .yzm_lam—l, where m is
the number of digits in the binary
expansion of M. Then, modular
exponentiation can be computed by
initializing the result register to |1), and
successively effecting m multiplications by
y2" (mod M), depending on the value of

the qubit |a;).
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If a; = 1, we want the operation

0 —1 .
|y2 ag+...2" a@_170> s

20q04..207 g, 1 . 20ag4..207 g, 4 2i>

|y

to be performed; otherwise, when a; =0
we just require

» Y "y

0 —1 .
|y2 ag+...2" az_170> L

20q0+..207 g, 4 20a0+...2i_1ai_1>‘

y

Note that in both cases the result can be
written as |y20ao—|—...27'_1ai_1,yQOaO—I—...Qzai)_

Y
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e TO extract the period, we measure the
state in the standard basis for quantum
computation, and call the result v. In the
case where the period happens to be a
power of 2 so that the quantum Fourier
transform gives exactly multiples of the
scaled frequency, the period is easy to
extract. In this case, v = j% for some j.
Most of the time 3 and r will be relatively
prime, in which case reducing the fraction
% to its lowest terms will yield a fraction
whose denominator q is the period r. The
fact that in general the quantum Fourier
transform only gives approximately
multiples of the scaled frequency
complicates the extraction of the period
from the measurement. When the period
is not a power of 2, a good guess for the
period can be obtained using the
continued fraction expansion of %

e Various things could have gone wrong so
that this process does not yield a factor
of M:
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1. The value v was not close enough to a
multiple of QT—n

2. The period r and the multiplier 3 could
have had a common factor so that the
denominator ¢ was actually a factor of
the period, rather than the period
itself.

3. We find M as M'’s factor.

4. The period of f(a) = y* (mod M) is
odd.

A few repetitions of this algorithm yields
a factor of M with high probability.
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Quantum algorithms for
satisfiability —

e Various approaches have been developed
which provide hope that the NP-complete
boolean satisfiability problem can be
solved in polynomial time. It is not clear
that any of the published techniques will
be effective. Some of the methods seem
to require either exponential
space/hardware (e.g., bulk spin resonance
via NMR) or exponential measurement
precision. This is a very active area of
current research.

One algorithm which has been well
analyzed is Grover’s search algorithm. It
gives quadratic speedup of solving
satisfiability, but in its general form can
do no better than that, and hence does
not give the exponential speedup needed
to get P = NP.
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e Following is an outline of Grover’s general
search algorithm. If P(x) is a boolean
function for 0 < x < N, classical search
algorithms take on the order of %
operations to find an item xzg for which
P(xg) = 1. Grover's algorithm takes on
the order of /N operations. Grover's
algorithm has been shown to be optimal
for the general search problem. This is
not an exponential speedup, but it is an
improvement over the classical
algorithms. However, problems such as
satisfiability have additional structure
which can make them easier to solve.

e Grover's algorithm consists of the
following steps:

1. Let n be such that 2" > N, and
prepare a register containing a
superposition of all z; € [0...2" — 1].
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2. Apply a unitary transformation that
computes P(azi) on this register:

For any zg such that P(:z;o) is true,
lxg, 1) will be part of the resulting
superposition, but since its amplitude
. 1 -

IS NGTE the probability that a

measurement produces xg is only 27",

3. Change amplitude aj to —a; for all T
such that P(z;) = 1.

4. Apply inversion about the average to
increase amplitude of z; with P(z;) =1
and decrease other amplitudes.

5. Repeat steps 2 through 4 %\/271 times.

6. Measure the last qubit of the quantum
state, representing P(x). Because of

the amplitude change, there is a high
59



probability that the result will be 1. If
this is the case, the measurement has
projected the state onto the subspace
#Zgﬁ:l lz;, 1) where k is the number
of solutions. Further measurement of
the remaining bits will provide one of
these solutions.

e An interesting feature of this algorithm is
that repeating steps 2 through 4 a total
of Z/2" times is optimal. In particular, if
the process is repeated more times, the
probability of a successful measurement
decreases back toward zero ...
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e An alternative approach builds the unitary
transformation for the boolean expression,
applies the transformation to molecules in
solution, then uses bulk spin resonance
analysis via NMR to measure the
expected values of the spins, and thus
solves the satisfiability problem. However,
realistic implementations seem to require
an exponentially large NMR sample.

e T he general estimate is that if n is the
number of qubits, and M is the number
of molecules in the sample, then
n2" < M. For a typical sample,

M =~ 1023 2 27% and so n < 70. For an
upper limit, a reasonable estimate of the
number of elementary particles in the
accessible universe is ~ 1080 ~ 2265 \which
corresponds with ~ 256 qubits . ..
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Possibilities for physical
Implementation —

e Implementations of quantum computers
will be a difficult experimental challenge.
Quantum computer equipment must
satisfy a variety of constraints: (1) the
qubits must interact very weakly with
their environment to minimize
decoherence and preserve their
superpositions, (2) the qubits must
interact very strongly with one another
for the logic gates and information
transfer to be effective, and (3) the
initialization and readout of states must
be efficient. Not many known physical
systems can satisfy these requirements,
although there are some possibilities.



e A collection of charged ions held in an
electromagnetic trap is one possibility.
Each atom stores a qubit of information
in @ pair of internal electron levels. Each
atom’s levels are protected from
environmental influences. Scaling to
larger numbers of qubits should be able to
be done by adding more atoms to the
collection. When appropriate laser
radiation is applied to the atoms, only one
of the two internal states fluoresces. This
allows detection of the state of each
qubit. The atoms are coupled by virtue of
their mutual Coulomb repulsion.
Experimental development of trapped ion
quantum computation is at the level of
single-ion and two-ion qubit systems.
Extensions to larger numbers of trapped
ions has been difficult, but there do not
seem to be impossible theoretical limits to
scaling.
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e Another system which could be developed
into a quantum computer is a single
molecule, in which nuclear spins of
individual atoms represent qubits. This is
the basis of the NMR technique
mentioned above. The spins can be
manipulated, initialized, and measured.
For example, the carbon and hydrogen
nuclei in a chloroform molecule can be
used to represent two qubits. Applying a
radio-frequency pulse to the hydrogen
nucleus addresses that qubit and causes it
to rotate from a |0) state to a
superposition %QO) + |1)) state.
Interactions through chemical bonds allow
multiple-qubit logic to be performed.
However, it is difficult to find molecules
with more than 10 spins in them and with
a large coupling constant between every
pair of spins . ..
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Decoherence and error
correction —

Decoherence in general arises from
interactions with the environment, which
typically has the effect of measuring the
system and thus collapsing a quantum
computation. In addition, we have to be
careful about leaving temporary qubits
floating around. We can expect them to
be entangled with the rest of the system,
and thus an observation of the “dust” left
behind by intermediate computations
could effect a measurement of the
system, invalidating later stages. Thus,
one emphasis in research on quantum
computation has been on how to
efficiently avoid leaving any garbage
floating about.
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e As noted above, error
detection/correction is difficult in the
quantum environment since we cannot
reliably clone an arbitrary qubit. Further,
any intermediate measurement of the
system for error control is likely to
invalidate our computation. There are,
however, approaches using polarization
encoding schemes for error control.
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Prospects —

e T he history of quantum mechanical
algorithms is very brief. There are two
main approaches that have resulted in
descriptions of efficient quantum
computational algorithms: the first is
estimates of periodicity that resulted in
the factorization algorithm, and the
second is amplitude amplification that has
led to Grover's quantum search and
related algorithms.

e Over the past 70 or 80 years, physicists
have observed various quantum
mechanical phenomena that lead to
puzzling and even apparently paradoxical
results. Most of these still remain to be
investigated from a quantum computing
perspective.
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e One interesting question is how slight

difference in the laws of quantum
mechanics might affect these issues.
Some interesting work by Abrams et al.
shows that if there was even the slightest
amount of nonlinearity in quantum
mechanics, it would be possible to modify
the amplitude amplification scheme of
Grover’s quantum search algorithm to
obtain an efficient algorithm solving the
NP-complete satisfiability problem.
However, most people believe that such
nonlinearity probably does not exist
because it would also lead to
faster-than-light communication,
noncausality, and other violations of
fundamental physical principles . ..
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Finis “

“Nature uses only the longest threads to
weave her patterns, so that each small piece
of her fabric reveals the organization of the
entire tapestry.”

— Richard Feynman
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