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Abstract- This paper documents the discovery of a new,
better-than-classical quantum algorithm for the depth-
two AND/OR tree problem. We describe the genetic pro-
gramming system that was constructed specifically for
this work, the quantum computer simulator that is used to
evaluate the fitness of evolving quantum algorithms, and
the newly discovered algorithm.

1 Introduction

Quantum computers use the dynamics of atomic-scale objects
to store and manipulate information. The behavior of atomic-
scale objects is governed by quantum mechanics rather than
by classical physics, and the quantum mechanical proper-
ties of these systems can be harnessed to compute certain
functions more efficiently than is possible on any classical
computer [1]. For example, Shor’s quantum factoring algo-
rithm finds the prime factors of an n-digit number in time
O(n?log(n)loglog(n)) [2], while the best known classical
1 2
factoring algorithms require time O(2"* °8(")*) and many
researchers doubt the existence of polynomial-time classical
factoring algorithms [3, 4]. An unambiguous case of the su-
periority of quantum computation was provided by Grover,
who showed how a quantum computer could find an item in
an unsorted list of n items in O(y/n) steps, while classical
algorithms require O(n) [5].

Only a few, small-scale quantum computers have been
built to date, and it is not yet clear how larger, more prac-
tical quantum computers will be constructed, or if it will even
be possible to do so [6]. Nonetheless, the predicted efficien-
cies of quantum computing are so significant that the study of
quantum algorithms has attracted widespread interest. For
those new to quantum computing Steane provides a good
overview [7], Braunstein provides an accessible on-line tu-
torial [8], Williams and Clearwater provide a text with a CD
ROM containing Mathematica code for simulating quantum

Howard Barnum
School of Natural Science
Institute for Science and Interdisciplinary Studies (ISIS)
Hampshire College
Ambherst, MA 01002, USA
hbarnum@hampshire.edu

Nikhil Swamy
Box 1026
Hampshire College
Ambherst, MA 01002, USA
nikhil_swamy@hampshire.edu

computers [9], and Milburn provides an introduction for the
general reader [10].

The widespread application of quantum computation pre-
supposes the existence of both quantum computer hardware
and quantum software that solves practical problems. But the
development of quantum algorithms is not trivial. Williams
and Clearwater note:

Of course, computer scientists would like to de-
velop a repertoire of quantum algorithms that
can, in principle, solve significant computational
problems faster than any classical algorithm.
Unfortunately, the discovery of Shor’s algorithm
for factoring large composite integers was not
followed by a wave of new quantum algorithms
for lots of other problems. To date, there are only
about seven quantum algorithms known. [9, p.
42]

One approach to this problem is to use automatic program-
ming techniques such as genetic programming to automati-
cally generate new quantum algorithms. The resulting algo-
rithms may be useful in their own right and they may also
provide new insights to human quantum programmers.

Genetic programming is an automatic programming tech-
nique that evolves programs by mimicking natural selection
[11, 12, 13, 14, 15]. In the simplest version, a set of pro-
grams undergoes processes such as “mutation” (small ran-
dom changes) and “crossover” (exchanging a segment of one
program with a segment of another). Selection for desired
properties—such as computing a certain function with low
error probability, doing it quickly, with the smallest number
of calls to a particular subroutine, or with a minimum amount
of code—is then applied, by running the programs on a sam-
ple of the possible input data (called fitness cases), and scor-
ing them on how close they are to the desired characteristics.
Higher-scoring programs participate with higher probability
in the process of reproduction involving crossover, etc., and
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the procedure is iterated on the resulting new generation of
programs.

In this paper we describe work on the production of quan-
tum algorithms by genetic programming. We start with an
overview of our methods, including a description of a new
genetic programming system that we have developed specif-
ically for this work. We then present a brief synopsis of
prior results and describe a new, evolved better-than-classical
quantum algorithm for the depth-two AND/OR tree problem.
We conclude with a discussion of the potential significance of
efficient algorithms for AND/OR problems.

2 Methods

2.1 Quantum Computer Simulation

Because practical quantum computer hardware is not yet
available, we must test the fitness of evolved quantum al-
gorithms using a quantum computer simulator that runs on
conventional computer hardware. This entails an exponential
slowdown, so we must be content to simulate relatively small
systems.

The basic unit of information in a quantum computer is a
qubit, which is like a classical bif except that a qubit can exist
in a superposition of states and can become entangled with
other qubits—that is, its value can be linked to the values of
other qubits in non-classical ways.

Our simulator follows the common practice of represent-
ing the state of the an n-qubit quantum computer as a vec-
tor of 2" complex numbers, for which we use the notation
[, a1, gy . . ., o _1]. Each of these complex numbers is a
probability amplitude corresponding to one of the 2™ classi-
cal states (often called the computational basis states) of an
n-bit classical computer. Following the tradition in the quan-
tum computation literature we label the computational basis
states using “ket vector” notation, as |b, 16,2 . .. bj... bo),
where each b; is either O or 1. The state labels can be ab-
breviated by interpreting them as binary numerals and chang-
ing to decimal notation; that is, we can write |k) in place of
|bn,1bn,2...bj...b0> where k = bo + 2b1 +4b2 + ...+
2"~1p,, ;. For example we can write |14) in place of [1110).

Our quantum algorithms always begin in the computa-
tional basis state [0). When the state of quantum computer
is read (measured) in the computational basis at the end of
a computation, the probability of finding it in the computa-
tional basis state |k) is |ax|2. If one is interested in the prob-
ability of finding some subset of the system’s qubits to have
a particular pattern then one can sum the squared moduli of
the amplitudes for all states with labels containing the pat-
tern. For example, the probability of reading the right-most
2 qubits of a 4-qubit quantum computer as “01” (that is, the
probability of reading a state with label |7701)) is the sum
of the squared moduli of the amplitudes for |0001), [0101),
|1001), and [1101), or |a1]? + |as|? + |ag)? + |13 |*

Computations on the simulated quantum computer are
modeled as sequences of linear transformations applied to

the vector of probability amplitudes. These transformations,
which are often called quantum gates and which can be repre-
sented as matrices, correspond to the physical manipulations
possible on quantum mechanical systems. Some of these
transformations act like classical logic gates, moving prob-
ability from one computational basis state to another, while
others produce the non-classical effects of superposition and
interference that are responsible for the unique efficiencies of
quantum computation. Over the course of our work we have
used several different sets of quantum gates. Our current sys-
tem uses the following gates which can be presented in simple
matrix form, along with ORACLE and MEASUREMENT gates
that are described below. Parameters listed in square brackets
(“[17) are qubit references with higher-order qubits listed first,
and parameters listed in parentheses (“()”) are real numbers:
e The HADAMARD gate, H|[q]:

111
AR
e Simple rotation, Up[q](0):

{ cos(6)

— sin(f) i }

cos(6)
e Generalized rotation, U2[q](c, 0, ¢, ¥):

] y [ cos(0)

sin(6) o }

cos(6)

« e~ 0 « el 0
0 e 0 e

e Controlled NOT, C NOT [control, target]:

oS oo
oo = O
_ o O O
o = o o

e Conditional phase, C PH ASE[control, target](a)':

1 0 0 O
01 0 0
CPHASE = 00 1 o0
0 0 0 e

Note that a matrix must be of size m x m to be applied
directly to an m-element column vector, and that the above
matrices can therefore not in general be directly applied to the
2"-element amplitude vectors that characterize the states of
an n-qubit quantum computer. A detailed description of how
these gates are applied to multi-qubit systems can be found in
[17].

Note that this is a different form of CPHASE than was used in our previ-
ous work [16, 17].
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An ORACLE gate is a permutation matrix that computes
a Boolean function that may change from instance to in-
stance of a given problem. This is useful because many exist-
ing quantum algorithms solve tasks that involve determining
properties of unknown “black box™ functions. For example,
we might be given a function of m binary inputs and wish to
know what combination of inputs causes the function to out-
put “1”. This, with the proviso that exactly one input combi-
nation will produce an output of “1”, is the database search
problem solved by Grover’s quantum algorithm. The ORA-
CLE gate implements this sort of “black box” function, and a
satisfactory algorithm must produce the proper outputs for all
appropriate instances of the ORACLE.

We implement an ORACLE gate for an m-input Boolean
function as an (m + 1)-qubit gate that inverts its output qubit
wherever the Boolean function of the input qubits yields “1”.
The output qubit is inverted by swapping the amplitudes be-
tween all states differing only with respect to the output bit.
For example the OR function of two inputs, which outputs “1”
for all combinations of inputs except “00”, is implemented as
follows:

OO OO OO O
N eNeNeoNeoNelN =
(el eBell =R el
oo oo+~ OO
SO OO O oo
SO OO R OO OO
O OO oo oo
o OO oo oo

The latest revision of our quantum computer simulator
also supports the simulation of intermediate one-qubit MEA-
SUREMENT gates for use in decision problems (that is, prob-
lems with yes/no answers). The measurement gates disrupt
the state of the simulated quantum computer, just as inter-
mediate physical measurements necessarily disrupt the state
of real quantum computers, but they may also yield useful in-
formation that can be used to improve the overall efficiency of
certain quantum algorithms by decreasing the expected num-
ber of oracle calls that must be made before measuring the
correct answer with sufficient probability.

We implement one-qubit measurement gates by making
the following additions to our quantum computer simulator:

e We add an oracle-call counter OC and a measurement
database MDB.

e Whenever the oracle is called, we increment OC.

e We add a MEASURE-0 gate of one argument Q which
adds (0, P(Q,0), OC) to MDB, where P(Q,0)
is the probability of reading qubit Q as O at the time
MEASURE-O0 is called. MEASURE-0 also sets the am-
plitudes of all states with Q = 0 to 0.

e We add a MEASURE-1 gate of one argument Q which
adds (1, P(Q,1), OC) toMDB, where P(Q,1) is
the probability of reading Q as 1 at the time MEASURE -

1is called. MEASURE-1 then sets the amplitudes of all
states with Q = 1 to 0.

e We ensure that every simulated quantum algorithm
ends with a MEASURE-0 immediately followed by a
MEASURE-1 on the same qubit.

e We add an ERROR-PROBABILITY function of one
argument ANSWER which should be O or 1. (Recall that
this implementation only supports intermediate mea-
surements for decision problems.) If ANSWER is O then
ERROR-PROBABILITY returns the sum of the P val-
ues for all entries in MDB that start with 1. If ANSWER
is 1 it returns the sum of the P values for all entries
in MDB that start with 0.

e We add an EXPECTED-QUERIES function of no ar-
guments that returns the sum of (P value x OC value)
for all elements in MDB.

MEASURE-0 and MEASURE-1 are new quantum gate
functions that can be called within quantum algorithms.
ERROR-PROBABILITY and EXPECTED-QUERIES are
new utility functions to be called at the end of a simulated run
to determine the error probability and the expected number of
oracle queries. ERROR-PROBABILITY and EXPECTED-
QUERIES are to be used in place of the standard measure-
ment function whenever intermediate measurements are in-
cluded in the simulated quantum algorithm.

2.2 Linear Genome Steady-State Genetic Programming

In previous work we described the evolution of quantum al-
gorithms by means of standard, tree-based genetic program-
ming, by means of stack-based linear genome genetic pro-
gramming, and by means of stackless linear genome genetic
programming [16, 17]. We started with the most conven-
tional genetic programming framework and modified our ap-
proach incrementally in response to perceived demands of
the quantum computing application area. While we do not
have strong statistical evidence in favor of the modifications
(which would be expensive to obtain because of the high cost
of the many embedded simulations), the continual improve-
ment of our results gives us confidence that our methods have
become better adapted to the quantum computing domain.
Our latest work is based on a re-implemented stackless linear
genome genetic programming system. In contrast to our pre-
vious system the new system is steady-state rather than gen-
erational, it supports true variable-length genomes and lex-
icographic fitness comparisons [18], and it is well-suited to
hybrid genetic/local-search methods and to distributed opera-
tion across a cluster of workstations.

An individual in the system is a pair consisting of a fit-
ness value and a quantum algorithm. The quantum algo-
rithm is a list of quantum gates, and the fitness value is either
the special symbol NO-COMPUTED-FITNESS (indicating a
new individual that has not yet been evaluated) or a list of
fitness component values. Fitness components currently im-
plemented include MISSES, EXPECTED-QUERIES, MAX-
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ERROR, and NUM-GATES. For all fitness components lower
numbers are interpreted as being better. MISSES is the num-
ber of fitness cases on which the algorithm performs un-
acceptably,> EXPECTED-QUERIES is the number of ora-
cle queries that one expects to make to get the answer (see
above), averaged over all fitness cases,” MAX-ERROR is the
maximum, over fitness cases, of the probability of getting the
wrong answer for the case, and NUM-GATES is the number
of quantum gates in the algorithm. Fitness comparisons are
lexicographic, meaning that individuals with better values for
the first component will be judged as better than individuals
with worse values for the first component, regardless of the
values of the other fitness components. When the values of
the first components are equivalent the comparison depends
on the values of the second components, and so on. One
can optionally set a threshold below which differences be-
tween fitness component values are ignored; this can help to
avoid preference for algorithms that appear better only be-
cause of minuscule round-off errors. In the run that produced
the new AND/OR algorithm presented below, we used fit-
ness values of the form: (maxz(EXPECTED-QUERIES, 1),
MISSES, MAX-ERROR, NUM-GATES).

Our system begins execution by creating population of
(usually 1000) individuals with random quantum algorithms.
In each time-step our system chooses a random genetic op-
erator and executes it, possibly changing one individual in
the population. Most operators work with copies of individ-
uals in the population, selected by choosing a small number
(3 for the run producing the algorithm described below) of
individuals and conducting a selection tournament. If one or
more individuals in the selection tournament group has NO-
COMPUTED-FITNESS then one of these (chosen randomly)
will be designated as the winner and will be returned from
the selection process; otherwise the individual with the best
lexicographic fitness will be returned. Each execution of a
genetic operator produces a possibly new individual which
the system will then attempt to insert back into the popula-
tion. The system does this by choosing a random individual in
the population and conducting a two-individual replacement
tournament. In a replacement tournament any individual with
NO-COMPUTED-FITNESS is first evaluated for fitness. The
individual with better lexicographic fitness is retained in the
population, and the other individual is discarded. We also
provide a system parameter PERCENT-LOSERS-WIN that
allows one to specify that some small percentage of the time
(10% in the run that produced the new algorithm described in
Section 4) the individual with worse fitness will be retained
and the individual with the better fitness will be discarded;

2We say that an algorithm’s performance on a particular case is “accept-
able” for the sake of MISSES if its probability of producing the correct an-
swer is at least 0.52. This is far enough from 0.5 to be confident that it is not
due to a simulator round-off error. MISSES provides only a weak test of “ac-
ceptability,” and we rely on the MAX-ERROR fitness component to encourage
the evolution of low-error algorithms.

3In many cases one will want to use the maximum rather than the average
here; for the results described in this paper this is not material.

this can sometimes help to maintain diversity in the popula-
tion.* The system maintains a record of the best individual
that it has seen throughout the run, and reports this individual
and its fitness upon termination. The run terminates when a
pre-specified fitness value is achieved, or when the user man-
ually triggers termination.

The following are the genetic operators currently included
in the system:

e REPRODUCTION: Produces a new copy of an individ-

ual selected from the population, unchanged.

e CROSSOVER: Produces a new individual constructed
from a random initial segment of one individual ap-
pended to a random tail segment from a possibly dif-
ferent individual.

e MUTATION: Produces a new individual by substituting
one randomly generated instruction for one instruction
in an individual selected from the population.

e INSERTION: Produces a new individual by sandwich-
ing a random middle segment of one individual be-
tween random initial and tail segments of a possi-
bly different individual. The initial and tail segments
might overlap or fail to include all instructions from
the ‘outer’ individual.

e MUTANT-INSERTION: Produces a new individual by
inserting a new random program within the program of
an individual selected from the population.

e DELETION: Produces a new individual by removing
some middle segment of an individual selected from
the population.

e ANGLE-MUTATION: Produces a new individual by se-
lecting an individual from the population and one gate
in that individual, and by randomly changing one of the
angles in that gate (if it contains an angle).

e MINIMIZATION: Produces a new individual by re-
moving gates from an individual selected from the pop-
ulation. Each gate is examined for removal, starting
from the beginning, and the removal is accepted if it
results in an equal or better lexicographic fitness. Note
that this is an expensive operator, as it requires as many
fitness tests as there are gates in the selected algorithm.

e PATR-MINIMIZATION: Like MINIMIZATION but
examines every pair of gates for possible removal. This
is even more expensive, requiring O(n?) fitness tests
where n is the number of gates in the selected algo-
rithm.

e MULTIPLE-ANGLE-PERTURBATION: Produces a
new individual by selecting an individual from the pop-
ulation and adding small constants to some small num-
ber of its angles (randomly chosen).

Note that the minimization operators perform a sort of “lo-

#We also stipulate that when a new individual, created by a genetic oper-
ator, has the best fitness seen so far in the current run, then it will always win
the replacement tournament.
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cal” hill-climbing search that is integrated into the genetic
search process. A natural extension is to add additional oper-
ators that perform more intensive local search (optimization)
procedures, for example by systematically varying all of the
angles in the gates of the selected quantum algorithm.

Another natural extension allows for effortless distribution

of runs across a cluster of workstations. One must only add
the following additional operators:

e EMIGRATION: Selects an individual from the popula-
tion and sends a copy of that individual to a different,
randomly chosen workstation. The receiving worksta-
tion stores the individual in a queue for possible use by
an IMMIGRATION operator.

e IMMIGRATION: If the immigration queue is empty
then this does nothing. Otherwise it returns the first
individual in the queue for possible insertion into the
population (via replacement tournament).

A distributed run is conducted by starting an independent
run on each workstation and by informing each copy of the
system of the available EMIGRATION targets. Because there
is no global coordination one must examine the results on all
workstations and select the best result as the output from the
distributed computation.

3 Prior Results

We reported previous results in [16, 17]. By sometimes
evolving not just quantum algorithms, but classical pro-
grams which take problem size as a parameter and produce
a quantum algorithm for each problem size, we have at-
tempted to find scalable quantum algorithms with interesting
complexity-theoretic implications. The bottleneck in genetic
programming is the simulation of the quantum algorithm,
which has potentially exponential slowdown; this has made
it difficult to apply selection pressure for good performance
on larger problem sizes. So far, the only scalable algorithms
we have evolved are quantum simulations of simple classical
randomized algorithms.

We have obtained more interesting results for particular
instances of small problem size. These include instances of
the Deutsch-Jozsa early promise problem, a database search
problem, and the AND/OR problem. For the four-item
database search problem our system evolved a solution that
is essentially equivalent to the version of Grover’s algorithm
described in [19].

The AND/OR tree problem is the evaluation of a Boolean-
valued property of a Boolean black-box (oracle) function;
the quantum complexity of such problems has been studied,
for example, in [20], [21]. For Boolean functions of binary
strings of length n, the AND/OR property is a binary tree,
having AND at the root and n (including the root) alternating
layers of Boolean OR and AND as nodes, with an n+1st layer
of 2" leaves consisting of the values of the black-box func-
tion ordered by their input string (viewed as a binary integer).

U u)
2 o=z H () @:7%—'* H — out
Il — H [ im C
F
0 ——— H [ ino ()
Figure 1: Simplified and hand-tuned version an evolved

AND/OR algorithm. “F” = oracle function, final & = CNOT.

We applied genetic programming to the depth-two case, for
which the problem is to evaluate:

(£(00) v f(O1) A (£(10) v f(11)) -

Genetic programming (in a scheme without MEASURE
gates) yielded an algorithm which uses only a single black-
box function call and has error probability less than 0.41 for
all black-box functions of two bits. We simplified and im-
proved the algorithm by hand, producing that of Figure 1.

Both the hand-tuned algorithm and the evolved algorithm
had better worst-case error probabilities than the simple clas-
sical probabilistic algorithm which consists of calling the
black box function with a randomly chosen input, and re-
turning the function value. The latter has worst-case error
probability % for six of the sixteen possible two-bit black box
functions.

The hand-tuned algorithm has error O for the all-zero
black-box function, % for all other cases for which the cor-
rect answer is 0, and % when the correct answer is 1. Unfor-
tunately, this is not better than the best classical randomized
algorithm, on the worst-case error criterion. The best clas-
sical Las Vegas algorithm (Las Vegas here means stochastic
runtime, but guaranteed to give the correct answer) is quite
simple, and Saks and Wigderson [22] showed it was the op-
timal algorithm for any depth tree. Santha [23] showed, for
read-once Boolean functions, that no classical Monte Carlo
algorithm with all error probabilities below p can take fewer
than (1 — zp)@ queries, where () is the time taken by the
optimal Las Vegas algorithm, and x = 1,2 as the error is
one- or two-sided. (This is just the “trivial” speedup obtained
by flipping a biased coin to decide whether to do the optimal
Las Vegas algorithm or output a random bit (two-sided) or
a zero (one-sided), choosing the bias to achieve the desired
error probability.) Thus a g-query quantum algorithm would
have to have error probabilities p < 1 (1 — &) to be better-
than-classical. The best Las Vegas algorithm has worst-case
expected queries 3 for the depth-two AND/OR tree, so a one-
query quantum algorithm would need p < 1/3 two-sided,
p < 2/3 one-sided to be better than classical, while a two-
query algorithm would need p < 1/6 two-sided or p < 1/3
one-sided. Unfortunately, our one-query algorithm has two-
sided error .375 > 1/3, and so does not beat the best classical
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U-THETA [0]
HADAMARD [1]
U2 [0] (-4pi 3pi/l4 -pi/14 -12pi/13)
ORACLE [0 (in high) 1 (in low) 2 (out)]
HADAMARD [1]

MEASURE-1 [1]

HADAMARD [0]

U2 [0] (0 0 -pi/5 -2pi)

HADAMARD [2]
U-THETA [2]
U-THETA [0] (3pi/4)
U-THETA [0] (4pi/15)
MEASURE-0 [0]
MEASURE-0 [2]
MEASURE-1 [2]

(5pi/11)

(11pi/9)

Figure 2: New evolved algorithm for AND/OR

Function | Error Prob. || Function | Error Prob.
0000 0.0075.. 1000 0.2922..
0001 0.2751.. 1001 0.2936..
0010 0.2751.. 1010 0.2936..
0011 0.2059.. 1011 0.2163..
0100 0.2922.. 1100 0.2067..
0101 0.2936.. 1101 0.2326..
0110 0.2936.. 1110 0.2326..
0111 0.2163.. 1111 0.0088..

Table 1: Error probabilities for the new evolved AND/OR
algorithm

Monte Carlo algorithm on the worst-case error criterion. It is
unclear whether its performance profile on all inputs could
be achieved by classical means; the algorithms obtained by
trivial speedup of classical Las Vegas cannot achieve or dom-
inate it, since they have the same error probabilities for all
inputs. The quantum algorithm essentially operates by apply-
ing a quantum routine to the lower order bit, with a value for
the high-order input bit chosen randomly via “quantum dice”;
the restriction of the algorithm to the low-order bit yields an
algorithm for OR with one-sided error 1/4, which does beat
the Saks-Wigderson-Santha bound (Q= 3/2 for the depth-one
case), but is dominated by a similarly derived algorithm de-
scribed in the next section.

4 New Results

The new version of our genetic programming apparatus
described in Section 2, including MEASUREMENT gates,
evolved the algorithm listed in Figure 2. For the sixteen pos-
sible functions of two bits, this algorithm had error probabil-
ities given in Table 1.

Changing some angles, combining some sequences of
gates into single gates, and hand-optimizing the final rota-
tion angle on qubit 2, yielded the algorithm of Figure 3. To

e Mo
=7
F
1 — H — H — Ml
b X(0) ||
2 N 0 = 0.075 M

Figure 3: Hand-tuned version of new evolved AND/OR

Orbit Pe (simplified) | p. (best evolved)
0000 | .00561 .00830
0001 | .28729 28873
0011 | 21264 21547
0101 | 28736 .28858
1101 | .21833 21957
1111 | .00561 .00830

Table 2: Error probabilities for new simplified AND/OR al-
gorithm

avoid clutter in this and other algorithms, we define X (6) =
U2 (¢ =0,0,% =7/2,a = 7/2), with matrix:

[ cos

sin 6

sin 6 ]

—cos 6

Note that the time-ordering of measurement gates on dif-
ferent qubits, indicated in our figures by the horizontal posi-
tion of gates, is material to the algorithm. The M gate indi-
cates the sequence MEASURE-0, MEASURE-1 in immedi-
ate succession on the same qubit.

This simplified algorithm has error probabilities constant
on orbits of the automorphism group, given in Table 2, which
also reports error probabilities for another evolved algorithm
which emerged while we were simplifying the first. The au-
tomorphism group of a Boolean property consists of those
permutations of its input variables which leave the value
of the Boolean property invariant, no matter what assign-
ment is made to the variables (no matter what the black-
box function is, in our context). Depth-two AND/OR has
input variables fo = f(00), f1 = f(01), fo, f3; its auto-
morphism group is generated by the permutations of indices:
(0 < 1),(2 < 3),(0 < 2,1 < 3). Application of a per-
mutation from the automorphism group to a black-box func-
tion yields a function with the same AND/OR value; the six
distinct orbits of this permutation group on the set of func-
tions may be labeled 0000;, 00014, 00115, 01014, 11014,
1111;. The strings specify representative functions written
fooforfiofi1 = fifafsfa; the subscripts indicate the num-
ber of functions in the orbit containing that representative.
The first three orbits have AND/OR=0; the last three have
AND/OR=1.
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1 /R
N

X@— M

Figure 4: An algorithm for OR

5 Discussion

If we restrict the hand-tuned two-bit AND/OR algorithm to
qubits 1 and 2 by fixing a value z for qubit O and omitting the
final two gates on it, we effectively get an algorithm for com-
puting OR on the “marginal” black-box function of one bit
@) defined by f*)(y) = f(yx) (Where yx stands for con-
catenation, not multiplication). With qubits relabeled (2 — 1,
1 — 0), the algorithm is given in Fig. 4.

Writing ¢ = cos(), s = sin(#), the error probabilities for
this algorithm are

pzdd:1/2+<cgs)27p:uen282. (1)
With § = 0, this algorithm has error probabilities zero on
the two even parity functions (the functions fyfi = 00 and
fofi = 11), and 1/4 on the two odd parity functions. Since
this is one-sided, it is below the classical Saks-Wigderson-
Santha lower bound of 1/3 for one-query routines. With
0= sin_l(\/%—o), it has error probability 1/10 for all inputs,
below the two-sided classical bound of 1/6. (No exact one-
query quantum algorithm for OR is possible [24],[20].) The
MEASURE-1 [0] gate may be replaced by a CHADAMARD
[0 1] gate, which effects a Hadamard on qubit 1 if qubit 0
is in the state |1) and otherwise does nothing, yielding an al-
gorithm with the same output probabilities but different char-
acteristics when used as a building block in larger networks,
since it does not gather information about (and thereby de-
cohere) the two ways in which the algorithm of Fig. 4 may
obtain the result 1.

A similar restriction of the algorithm to qubits O and 2
yields an analogous algorithm for AND on one-qubit func-
tions. With @ = 0 in both algorithms, the AND algorithm is
equivalent (though not identical) to the AND algorithm ob-
tainable from the OR algorithm via De Morgan’s law. The
overall algorithm may therefore be thought of as beginning
with a “nested” use of the § = 0 algorithms for AND and OR,
with the top-level AND algorithm, instead of calling a stan-
dard black-box oracle with two inputs superposed, calling the
lower level OR routine on two functions (f(0y) and f(1y))
in superposition. This interpretation must be used with care,
however, since the “function” called by the top-level routine
is not a standard black-box oracle or even a stochastic ver-
sion of such an oracle, since we cannot measure the output
of the lower-level algorithm before input to the top-level al-
gorithm (which would make the lower-level algorithm be-

have like a stochastic black-box oracle) without destroying
coherence on which the functioning of the top-level algo-
rithm depends. Also, the nested algorithm is followed by an
optimally-chosen X (6) rotation before the final qubit. In sim-
ulations of other nesting schemes, we have seen cases where
these additional interference effects in the top-level algorithm
lead to a worse outcome (even with optimal rotation of the
output qubit before the final measurement) than one would
expect from a naive analysis which treats the lower-level rou-
tine as a stochastic black-box oracle. Here, these interference
effects appear to improve the results. We will give a fuller
treatment of the quantum mechanics of these algorithms in a
future article.

While the depth-two AND/OR tree problem is only of
theoretical interest, an efficient, scalable, quantum AND/OR
algorithm could have much broader significance. AND/OR
graphs have many applications in computer science; for ex-
ample they have been applied to dynamic programming prob-
lems, decision tree optimization, symbolic integration, analy-
sis of waveforms, and theorem-proving [25]. Considerable at-
tention has been focused on AND/OR tree search algorithms
such as heuristic AO*, and one would therefore expect better-
than-classical quantum algorithms to have a major impact.

One particularly intriguing possibility derives from the
observation that a Prolog program and query induce an
AND/OR tree, the solution of which provides the answer to
the Prolog query [26]. This suggests that an efficient, scal-
able, quantum AND/OR algorithm could possibly serve as
the foundation for a better-than-classical Prolog interpreter,
or “Quantum Logic Machine” (QLM). Because Prolog is a
general-purpose programming language this further suggests
a new approach to achieving quantum speedups for arbitrary
algorithms, via expression of the algorithms in Prolog and
execution on a QLM. We stress that this is only speculation
at this time, as we currently have neither a scalable quan-
tum AND/OR algorithm nor the full procedure for harness-
ing such an algorithm for better-than-classical Prolog query
interpretation. But the idea of a QLM serves as a reminder
that better-than-classical algorithms for AND/OR problems
may someday have practical import.

6 Conclusions

Genetic programming appears to be useful in exploring the
potential of quantum computation. We described how a quan-
tum computer simulator and a specialized genetic program-
ming system, both presented in some detail, can be used to
discover new, better-than-classical quantum algorithms. In
particular, we documented the evolution of a new better-than-
classical quantum algorithm for the depth-two AND/OR tree
problem. This new algorithm has several interesting proper-
ties and provides insights into the quantum speedups possible
for Boolean oracle problems. We are currently working to
leverage these insights and additional runs of our system to
find a scalable better-than-classical AND/OR tree evaluation
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algorithm. Because of the many applications of AND/OR
trees in computer science, we speculate that such a scalable
algorithm would have many uses.
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