Mining Needles in a Haystack: Classifying Rare Classes
via Two-Phase Rule Induction

Uk
Mahesh V. Joshi
IBM T. J. Watson Research

Ramesh C. Agarwal
IBM T. J. Watson Research

Vipin Kumar
University of Minnesota

Center and Center Department of Computer
University of Minnesota, P.O.Box 704 Science

Minneapolis Yorktown Heights, NY 10598 Minneapolis, MN 55455
Depa”mggitecr’]fcgomp“ter ragarwal@us.ibm.com kumar@cs.umn.edu

joshim@us.ibm.com

ABSTRACT

Learning models to classify rarely occurring target classes
is an important problem with applications in network in-
trusion detection, fraud detection, or deviation detection in
general. In this paper, we analyze our previously proposed
two-phase rule induction method in the context of learning
complete and precise signatures of rare classes. The key
feature of our method is that it separately conquers the ob-
jectives of achieving high recall and high precision for the
given target class. The first phase of the method aims for
high recall by inducing rules with high support and a rea-
sonable level of accuracy. The second phase then tries to
improve the precision by learning rules to remove false pos-
itives in the collection of the records covered by the first
phase rules. Existing sequential covering techniques try to
achieve high precision for each individual disjunct learned.
In this paper, we claim that such approach is inadequate
for rare classes, because of two problems: splintered false
positives and error-prone small disjuncts. Motivated by the
strengths of our two-phase design, we design various syn-
thetic data models to identify and analyze the situations in
which two state-of-the-art methods, RIPPER and C4.5rules,
either fail to learn a model or learn a very poor model. In
all these situations, our two-phase approach learns a model
with significantly better recall and precision levels. We also
present a comparison of the three methods on a challenging
real-life network intrusion detection dataset. Our method
is significantly better or comparable to the best competi-
tor in terms of achieving better balance between recall and
precision.

1. INTRODUCTION AND MOTIVATION

*Contact Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM S GMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

One of the important problems in data mining, commonly
known as deviation detection, is that of modeling rarely oc-
curring phenomena in the data. There are many situations
in deviation detection, wherein rare deviant events have oc-
curred in the past and have been identified, leading to a
labeled data. For example, in network intrusion detection,
consider attacks of type remote-to-local (r2l), on a computer
that are made remotely by guessing a password or opening
a ftp data connection. Provided that various data about
the network activity are being collected, then the successful
incidents of this attack would be rare yet they can be iden-
tified and later analyzed. The postulate behind the work
presented and proposed in this paper is that rare events
have their own unique signatures which can be learned from
the given data. The focus is on the supervised learning of
such signatures.

Classification is a powerful supervised technique in data
mining that learns models from labeled data. Input to the
classification problem is a set of observations from the real
world that are recorded as a set of records, each character-
ized by multiple attributes. Associated with each record is
a categorical attribute called class. Given a training set of
records with known class labels, the problem is to learn a
model for the class in terms of other attributes. The goal
is to use this model to predict the class of any given set of
records, such that certain objective function based on the
predicted and actual classes is optimized.

We concentrate on general-to-specific rule-induction tech-
niques of building classifier, because they are easily inter-
pretable by humans, computationally tractable in most prac-
tical scenarios, and they have exhibited competitive per-
formance in many application domains. General-to-specific
techniques start building a DNF model with the most gen-
eral rule, an empty rule, and progressively add specific con-
ditions to it. The commonly used technique of sequential
covering iteratively discovers multiple rules each having very
high accuracy with respect to the target class that it pre-
dicts. Every time a rule is learned, the examples supported
by it are removed before the next iteration. Each such dis-
covered rule is expected to cover a disjoint signature of the
target class. If the signature of the target class is pure,
such that a rule corresponding to it covers very few negative
examples; then this approach works fine.

We now describe two possible scenarios in which this se-

quential covering approach of discovering high accuracy rules
may fail. One is when the target class signature is composed
of two components, presence of the target class and absence
of the non-target-class, and the later component is not cor-
rectly or completely learned. This can happen, especially
for rare classes, when a signature for the presence of the
class is inherently impure by itself. As an example from in-
trusion detection, for a rare attack type r2l, a signature of
the presence might be connection_type=ftp. However, this
will also cover ftp connections made to flood the computer
in a denial-of-service (dos) attack. Rule for r2l has to be re-
fined by detecting signatures for the absence of dos attacks.
In most existing techniques, tight accuracy constraints cause
each rule to be refined immediately by adding more conjunc-
tive conditions that detect the second component. However,
each rule by itself may not cover a sufficient number of neg-
ative examples needed to learn correct signatures. We refer
to this as the problem of splintered false positives.

The other problem that the existing sequential covering
methods may face is that of small disjuncts [8, 15, 6], in
which rules that cover small number of target class examples
are more prone to generalization error than rules covering
larger number of such examples. For prevalent classes, such
rules usually arise in the later iterations of the algorithm,
because the remainder data-set consists of small number of
target class examples to learn from. However, we believe
that for rare classes, such rules can start appearing very
early, because the total number of target class examples is
small to start with. We believe that the problem of small
disjuncts manifests greatly in existing techniques, because
of their tight constraint on the accuracy of each rule. This
constraint translates into a low overall support for the rule’.
From statistical point of view, decisions made with small
evidential support are often unreliable.

Critical observation of these two problems leads us to the
focal point of this paper, which is to analyze the effective-
ness of our recently proposed two-phase rule-induction ap-
proach [1], especially in the context of building models for
rare classes. According to our assessment, existing tech-
niques may be inadequate because they try to achieve the
objectives of high recall and high precision simultaneously,
which may work well for prevalent classes with prevalent sig-
natures. Our two-phase approach, called PNrule, separately
conquers these two objectives in two phases. Like existing
techniques, the first phase of our technique starts off with
tight accuracy constraints. Unlike them, if a high accuracy
rule cannot be found without sacrificing its support, then
we favor a rule that has higher support but lower accuracy.
Thus, in effect, our technique seeks high recall objective in
first phase. We refer to the rules discovered in this phase
as P-rules, as they detect presence of the target class. In
the second phase, we seek precision. The key point is that
before starting the second phase, we collect all the examples
that are covered by P-rules, positive as well as negative,
and learn rules to remove false positives from this collec-
tion. This can be contrasted to the way existing techniques
refine each rule based on what it covers individually. We
call the rules discovered in this second phase as N-rules, as
they detect absence of the target class.

We hypothesize that there are two strengths of our two-
phase method, especially for rare classes: a. the presence

!Support is the total number of examples a rule covers, pos-
itive as well as negative

of second phase allows the first phase of PNrule to be less
sensitive to the problem of small disjuncts, and b. the sec-
ond phase of PNrule has better ability to learn signatures
for the absence of target-class because it combines all the
false positives together. In this paper, we experimentally
validate these hypotheses by designing a variety of synthetic
datasets and comparing our technique’s ability to model rare
classes in these datasets to that of two other existing state-
of-the-art core methods of rule-induction, RIPPER [5] and
C4.5rules [11]2. We identify and analyze the situations in
which existing methods of rule-induction fail, whereas our
method yields a significantly better performance. In this pa-
per, our focus is on the binary classification problem, where
the goal is to learn signatures that distinguish given target-
class from the rest®. The traditional evaluation metric of
accuracy is not adequate when the target-class is rare. If
the class is very rare, say 0.5%, then predicting everything
to be of non-target-class can also achieve very high accuracy
level of 99.5%. Hence, we believe that for rare classes, the
classifier should be evaluated based on how it performs on
both recall and precision. We use one such metric, called
F-measure, widely used by the information retrieval com-
munity [14]. We start our comparative study with a simple
model for generating synthetic datasets, and then progres-
sively make the model complex. We observe the superiority
of our method on all the models. We also present results that
indicate that our technique performs significantly better for
rare classes. As the proportion of target-class increases in
the training set, performance of other methods catches up
with that of our method.

We have made some improvements in the two-phase rule-
inductions algorithm proposed in [1]. We illustrate the ef-
fectiveness of these improvements using a real-life dataset,
which also further validates the better suitability of two-
phase approach for rare classes. We use a dataset from the
domain of network intrusion detection, which was supplied
as part of the KDDCUP’99 classifier learning contest [7].
Unique features of this data-set make this an interesting ap-
plication. We present results for two rare classes from this
dataset. Not only is the improved method of this paper is
better suited to achieve higher performance levels than its
previous version, but it also significantly outperforms RIP-
PER and C4.5rules on this data-set.

The rest of the paper is organized as follows. We start
with an overview of the key features of the improved two-
phase algorith in section 2. Then, in section 3, various
synthetic dataset models are designed, and comparative ex-
perimental results are presented and analyzed. In section 4,
we present results on a real-life dataset. Finally, section 5
concludes the paper with summarizing remarks.

1.1 Related Work

Various rule-based classification algorithms have been pro-
posed in the literature so far such as CN2 [3], the family
of AQ algorithms [9], RIPPER [5], C4.5rues [11], and oth-

2We refer to these methods and our method as core methods
because recently a few rule-induction methods are proposed
(LRI [16], SLIPPER [4]), which use the concepts of boost-
ing or bagging in the learning process [2, 12]. We believe
that these methods are meta-techniques, and our two-phase
induction can be used at the core of such techniques, just
the way RIPPER is used at the core of SLIPPER.

3the framework’s applicability to the multi-class problem
with different costs of misclassification, was illustrated in [1].

ers [10]. We give overview of RIPPER and C4.5rules and
explain why they face the problems of splintered false posi-
tives and small disjuncts.

We believe that the problem of small disjuncts is caused
by the low, statistically insignificant support of the small
coverage rules. Having small coverage can not be avoided
for rare subclasses in a sequential-covering technique. How-
ever, what causes small coverage disjuncts to have small
support is the relatively tight accuracy constraints in exist-
ing algorithms. Our technique relaxes accuracy constraints
in its first phase, if required.

RIPPER and C4.5rules try to avoid overfitting of each dis-
junct, small or large, by pruning the rules. Existing pruning
procedures in C4.5rules [11] or in RIPPER [5] work by first
learning a set of most specific rules, and then generalizing
each individual rule by removing some conjunctive condi-
tions in it. In each iteration, RIPPER splits the remaining
data-set into two random similar parts. One is used to grow
the most specific rule and the other is used to generalize this
rule immediately. As the remainder dataset size reduces,
this approach may face two problems. First, the amount
of training data reduces, so support of the rule decreases
even further. Second, the estimates of error obtained from
the small pruning set may not be reliable. Also, RIPPER
uses principle of minimizing the description length (MDL)
to avoid small disjuncts. However, from our experience and
looking at the formula for computing MDL [11], small dis-
juncts tend to have longer lengths because of their small
support. Hence, they have a higher chance of getting re-
moved from the final rule-set, thus possibly losing on some
rare signatures. The strategy used by C4.5rules starts with
rules obtained from an overfitted decision tree, and then
uses the entire training set for generalization of each rule.
Generalization is guided by pessimistic error rate estimates.
However, the estimate for a small disjunct may not be reli-
able because of its low support. So, any decision made by
comparing this estimate to the estimate of its generalized
version, may be unreliable.

As for the problem of splintered false positives, RIPPER
may face it because of its learning method described ear-
lier. C4.5 decision tree induction technique may also run
into this problem. The greedy approach used by C4.5 splits
the data-set after learning a decision at each node. If these
decisions correspond to the signatures of the presence of
target-classes, then the examples that are required to learn
the absence of non-target-class will get split into multiple
disjoint paths of the tree. C4.5rules starts with the initial
rule-set supplied by the decision tree. Although its rule-
pruning procedure usually improves the generalization abil-
ity of the C4.5 tree model, it has no mechanism to gather
the splintered false positives and re-learn the signatures of
absence of non-target-class present in them. Hence, we be-
lieve, C4.5rules may also face the same problem.

1.2 Paper Contributions
Here are the key contributions of this paper:
e Focus on complete and precise modeling of rare classes;
i.e., the goal is shifted to achieving high recall as well

as high precision for the given rare class as against
achieving overall high accuracy.

e An improved version of the two-phase rule induction
algorithm of [1] that allows a better implicit control

over recall and precision.

Tllustrate the strengths of two-phase rule induction al-
gorithm by designing various synthetic data models
that range from relatively simple to fairly generic and
complex to represent real-life classification scenarios.

Empirical illustration, using synthetic models, of situ-
ations in which existing core rule-induction algorithms,
C4.5rules and RIPPER, learn a very poor or unaccept-
able model. Our two-phase rule-induction algorithm
performs very well in all these situations.

e Comparative results on a challenging real-life data-set
that illustrate the effectiveness of the new improved
version of the two-phase algorithm in yielding even
better performance than its previous version as well as
C4.5rules and RIPPER.

2. TWO PHASE RULE INDUCTION (PN-
RULE) ALGORITHM

‘We have recently proposed a classification framework based
on the two-phase rule-induction approach [1]. Here, we give
a brief overview of the key stages of the two-phase algorithm
in the context of learning a binary classifier model for the
specified target class.

We primarily describe some new parameters and methods
that we have incorporated in the PNrule framework since
the previously proposed version. In particular, the process
of adding and growing a rule in P- and N-phases has new
parameters that give user a control over recall and precision.
Also, we have a new efficient algorithm to evaluate range-
based conditions on numerical attributes.

We start with an overview of the main learning algorithm.

2.1 Main Learning Algorithm and Model For-
mat

Given a training data-set and the target class, the algo-
rithm learns a binary two-phase model for the target class.
The model is represented using two kinds of rules: P-rules
and N-rules. P-rules predict presence of the target class,
whereas N-rules predict absence of the target class. P-
and N-rules are learned using two sequential covering rule-
learning stages. The true and false positives covered by high
support and possibly low accuracy P-rules, are collected to-
gether before starting the N-phase. The two phases are fol-
lowed by a step that constructs the scoring mechanism for
P-N rule combinations. An overview of rule building and
the scoring mechanism are given in following subsections.
Some points to note regarding the overall algorithm are:

e The first phase of the algorithm (P-phase) strives for
rules that have high support and reasonable accuracy.
The mechanism used to build the rules, which includes
the evaluation metric and the criterion for stopping
the growth of a rule, and a user-specified minimum
support together ensure that the rule’s support does
not become too low.

e Each stage (P-stage and N-stage) of the algorithm can
have a distinct stopping criterion which decides when
to stop adding more rules to the rule-set of that phase.
In our current implementation, P-rules are added until
a minimum user-specified fraction of the target class is

covered, and after that a new P-rule is added only if it
satisfies a minimum accuracy threshold. If the desired
minimum coverage is too high, some very low accu-
racy or low support rules may get added to the model.
If the coverage is too low, some important rarer sub-
classes might be missed. So, a proper value of this
parameter needs to found by experimentation. Cur-
rently, N-rules are added until the new rule increases
the description length within some limit of the mini-
mum value obtained so far [5].

e The final step of building the scoring mechanism is
crucial. Without it, the model learned by PNrule
framework will simply mean that if some P-rule ap-
plies and no N-rule applies to a record, then the record
belongs to the target class C. Formally, this means
C= (P()VPlV...VPnpfl)/\ﬂN()/\ﬂNl/\.../\ﬂNnN71,
which is equivalently a DNF model of the form C =
(PoA-NoA-NiA ... A-Nppy—-1) V(P A-Nog A—Ni A
AN —|NnN _1)

V..V (Pnp—l A-=No A=Ni A ... A ﬂNnN_1). As can
be seen, this model is restrictive in the sense that all
conjunctions have all but one conditions in common.
This might seem to restrict the kinds of functions that
can be learned by our two-phase model. However, our
scoring mechanism allows to relax this restriction, by
selectively deciding to ignore the effects of certain N-
rules on a given P-rule.

2.2 Building and Evaluating Rules

Each rule is built by discovering one conjunctive condi-
tion at a time. The candidate conditions used for categor-
ical attributes are currently based on a single value of the
attribute. For each numerical attribute, three kinds of con-
ditions are evaluated. Two one-sided conditions, A < v
and A > v, are evaluated by a single scan of the data-set
sorted on A’s values. Unlike most existing techniques of
rule-induction, we also explicitly evaluate a range-based con-
dition vl < A < vr. The values of vl and vr are computed
by doing an extra scan of the sorted data-set. If condition
A < vr has higher value than condition A > vl, then we
fix vr and scan for the best value of vl to the left of vr. If
condition A > vl has higher value than condition A < vr,
then we fix vl and scan for the best value of vr to the right
of vl. By experimentation, we have verified the ability of
this simple yet efficient method to find close to best range-
based conditions. A range-based decision can be emulated
by two single-sided decisions; however, we believe that find-
ing range-based conditions in one step has an advantage over
methods that use only single-sided decisions. After discov-
ering one of the limits of the range, the condition for other
limit may not be discovered next or may not be discovered at
all, if some attribute or condition becomes more prevalent.

There are two more features of our rule-building proce-
dure that need explanation. First is evaluation metric. This
metric is crucial in deciding which rules are added. The
metric is expected to yield high value for a rule having high
support and high accuracy with respect to the target class.
The metric that we use in our experiments is Z-number [1],
however other metrics can also be used. Possible choices are
gini index, information gain, gain-ratio, chi-squared statis-
tics or the metrics given in [13].

Final important aspect of rule building is the criterion for
stopping the refinement or growth of the rule. Let current

rule be R and the new refined rule be R1. We need to de-
cide whether to accept R1 or to stop at R. Rl is a more
specific version of R, so its accuracy is better than or equal
to R, and its support is less than or equal to R. Based on
the support and accuracy of R and R1, we find the values of
the evaluation metric for both rules with respect to the dis-
tribution of target class in the data-set that remains after
removing data supported by earlier rules. In P-phase, we
accept Rl only if its evaluation metric value is more than
that of R and its support is higher than the minimum speci-
fied fraction of the target class population. In N-phase also,
we select R1 if its evaluation metric has higher value than
R. However, N-phase is guided by a lower limit on the re-
call of the original target class (user-specified). If R1 has
lower value than R, but choosing R will cause the recall to
go below the lower limit, then we let the rule to be refined to
R1. If this lower limit is too high, then lot of highly refined,
low support rules might be discovered, leading to overfitting
in N-phase and loss in overall precision. If its too low, then
some N-rules may remain too general thus introducing lot of
false negatives and thereby losing the recall. Note that the
minimum coverage requirement in the P-phase (section 2.1)
acts as an upper limit on the recall. Thus, these two param-
eters give user a control over classifier’s recall and precision
performance.

2.3 PNrule Classification Strategy and Scor-
ing Algorithm

First we describe how we use P-rules and N-rules to clas-
sify an unseen record. P-rules and N-rules are arranged in
decreasing order of significance, which is the same as their
order of discovery. Given a record consisting of attribute-
value pairs, P-rules are applied in their ranked order. If no
P-rule applies, prediction is False. The first P-rule that ap-
plies is accepted, and then the N-rules are applied in their
ranked order. The first N-rule that applies is accepted. We
always have a default last N-rule that applies when none of
the discovered N-rules apply. If the classifier has to make
a simple True-False decision, then we can predict a record
to be True only when some P-rule applies and no N-rule
applies. However, it is desirable to assign a score to the de-
cision made by the classifier that can be interpreted as the
probability of the given record belonging to the target class.
Hence, depending on which P-rule and N-rule combination
applies, we predict the record to be True with certain score
in the interval (0%,100%). For binary classification, we de-
clare the record to be true if score is greater than some given
threshold, usually 50%.

Another motivation for assigning a probabilistic score to
each individual P-rule, N-rule combination is to weigh the
effect of each N-rule on each P-rule. Remember that the N-
rules were learned on a set of records collectively supported
by all P-rules. So, each N-rule is significant in removing
the collective false positives. However, a given N-rule may
be effective in removing false positives of only a subset of
P-rules. Moreover, some low accuracy N-rule may be intro-
ducing excessive false negatives for some P-rules, possibly
because its primary contribution is to remove false positives
of other lower accuracy P-rules. Such excessive false nega-
tives can be recovered by assigning them a correspondingly
low score. Thus, we need to properly judge the significance
of each N-rule for each P-rule. Our scoring mechanism pre-
cisely does this. Detailed scoring algorithm is given in [1].

The overall effect of scoring mechanism is to selectively ig-
nore effects of certain N-rules on a given P-rule. At the
end of it all, ScoreMatrix reflects an approximate probabil-
ity that a record belongs to the target class, given that a
particular P-rule, N-rule combination applied to it.

3. ANALYSIS USING SYNTHETIC MOD-
ELS

The hypothesis that PNrule is suitable for rare classes,
is empirically evaluated in this section by designing some
synthetic datasets. We compare PNrule’s performance with
two other core, state-of-the-art rule-induction methods; viz.
C4.5rules and RIPPER.

3.1 Comparison Strategy

We compare the binary classification performance of the
methods. Our goal is to learn rule-based model to distin-
guish one class, the target class, from the rest.

In the comparative study that we present now, we use
the following comparison metric. which is widely used by
the information retrieval community [14]. Let target class
C have p examples in a data-set. Let the classifier predict ¢
out of these p examples correctly. The classifier also predicts
r examples to be of class C' whereas they actually belong to
some other class (false positives). Then, recall is defined
as R = q/p and precision is defined as P = ¢/(q + r). The
comparison metric, F-measure, is defined as F' = 2RP/(R+
P). This metric has a range of [0,1]. It is a special case of the
general metric derived in [14], in which recall and precision
are given equal weights. Higher values of F indicate that the
classifier is performing better on recall as well as precision.

Some variations of each method are tried on each dataset,
and the one which yields best results on the test data, is
chosen. For PNrule, we used four combinations of values of
upper limit on recall (0.95, 0.99) and lower limit on recall
(0.7, 0.95). The rest of the input parameters of PNrule were
fixed to very conservative values.

Most recent available versions of RIPPER (version 2.5)
and C4.5, C4.5rules (Release 8) are used for comparison.
For both, we use their default recommended settings of all
input parameters. Two variations of these methods are ob-
tained by using different training sets. One variation refers
to the set of results when each record in the training set has
unit weight. The second variation, denoted henceforth with
extension of ”-we”, refers to the set of results with stratified
training set* In such stratified set, each target class record
has identical weight such that the sum of these weights is
equal to the number of non-target-class records, each of
which is given a unit weight. Stratification process converts
an originally rare class into a class of equal strength.

3.2 Designing Datasets and Analysis of Perfor-
mance

The purpose of designing synthetic datasets is to iden-
tify the nature of datasets where PNrule has an advantage
over its competitors. The goal is to find situations that are
general enough to resemble real-life scenarios, and PNrule’s
approach not only performs better but also becomes a ne-
cessity.

4For C4.5rules-we, we used stratified set to build an overfit-
ted decision tree and this tree was used to construct rules
using unit-weight training set.

The design process is guided by two strengths of PNrule:

e Presence of second phase:
PNrule requires to go into second phase, only when
it cannot find a set of very highly accurate and high
support rules that cover almost entire target class. In
other words, second phase is required whenever a high
support P-rule inevitably captures a chunk of negative
examples along with positive examples.

e Collective removal of false positives in second
phase:
PNrule collects all the false positives covered by the
union of P-rules and learns N-rules on this collection
to remove false positives. We believe that this mech-
anism makes PNrule less sensitive to the problem of
splintered false positives, that its competitors may face
as indicated in section 1. Note that the key difference
made by the N-phase is that PNrule needs to learn
the signatures the presence of non-target-class in this
phase, unlike RIPPER and C4.5rules, which need to
learn signatures for the absence of target class in at-
tributes that distinguish non-target-class.

With these two strengths of PNrule in mind, we designed
the synthetic datasets presented below. The first dataset is
built from a fairly simple model that has only continuous-
valued attributes. By varying the parameters of the model,
we show how the performance of C4.5rules and RIPPER
starts to deteriorate. Then, we extend these results to build
a model that has only categorical-valued attributes. The
final set of models is designed with a mix of continuous
and categorical attributes and is made reasonably complex
to resemble real-life situations. On this set of very general
datasets, we also show the effect of varying the proportion
of target class, and see why PNrule is indeed required for
rare classes.

3.2.1 Datasetswith only continuous-valued attributes

A simple model:

In the first simple model, both target class and non-target-
class have multiple subclasses. Each subclass is distinguished
by signatures on a single attribute. Signatures appear as
disjoint, uniformly-spaced, identical peaks in the subclass
distribution over the values of its distinguishing attribute.
Records of other subclasses are randomly uniformly dis-
tributed over this attribute. The training examples of a
given subclass are is equally divided among its disjoint sig-
natures.

A pictorial description of one of the datasets, nsyn3 given
in Figure 1 shows how each class is distributed along every
attribute. The first attribute has four distinguishing signa-
ture peaks for the target-class, whereas second and third
attributes have similar signatures to distinguish NC1 and
NC2, two subclasses of the non-target-class NC, respectively.
The difficulty of the problem can be seen from how tiny and
deeply embedded the signatures of C are in first attribute’s
distribution. Full coverage of C inherently captures large
number of false positives. So, the classifier has to be able to
learn good model for C as well as NC. The desired classifier
model for the target-class in this dataset is as follows: C is
true if the first attribute (from left) has a value in the range
of one of the peaks of C AND the other two attributes have
values that do not fall in the range of the signature peaks of

NC1 and NC2. In other words, in an ideal PNrule model for
C, each of the C’s peaks in first attribute form P-rules, and
each of the peaks of NC1 and NC2 in other two attributes
form N-rules.

The model has following parameters:

e Number of target subclasses (tc).

e Number of disjoint signatures per target subclass (nsptc).

e Total width of signature peaks for each subclass of
target-class (¢r). Increasing the value of ¢r increases
the number of false positives that need to be removed
in order to learn a high precision model.

e Number of non-target subclasses (ntc).

e Number of disjoint signatures per non-target subclass
(nspntc).

e Total width of signature peaks for each subclass of
non-target-class (nr).

e Shape of a signature’s distribution (d — shape). This
can be flat rectangular signifying a uniform distribu-
tion, or triangular, or Gaussian.

Table 1 describes various parameters used in the experi-
ments conducted using this model, and gives comparative re-
sults for the three techniques on them. For each dataset, the
training set has the target class population of 1,500 (0.3%)
out of total 500,000 training set records. Thus, we are test-
ing the techniques on a very rare class. The training set
and test set are both generated from identical models. The
results reported are on the test set, that has total of 250,000
records, among which 750 are that of target class.

The effect of varying nsptc, ntc, and nspnitc can be seen
from Table 1, whereas the effect of variations in ¢r and nr
can be seen from Figure 1 and Table 2.

The performance results in Table 1 indicate that as the
number of signatures and number of subclasses of the non-
target-class increase, the performance of C4.5rules and RIP-
PER starts to deteriorate. Observing the model learned
by C4.5rules indicated that it learns rules capture the non-
signature regions of values in the non-target-class attributes.
For example, for dataset nsyn2, it learns 16 strong rules
for target class. There are 2 subclasses of non-target-class
and each subclass has three signatures, thus making up four
non-signature regions. A disjunction of 16 possible combi-
nations of these regions forms the rule-set for target class.
This works as long as there are sufficient number of target-
class examples in each such region. However, as the num-
ber of these combinations increases (for example to 125 in
dataset nsyn5), C4.5rules performance dwindles. In fact,
for this dataset, it is unable to learn an acceptable model
(very poor recall as well as precision levels). The rules that
C4.5rules learns for the non-target class are precisely the
non-signature regions in the target-class attribute. Detailed
look at the decision tree model from which C4.5rules gets its
initial rule-set showed that the tree model is facing precisely
the problem of splintering examples that was pointed out in
section 3.2. Due to the lack of ability to collectively remove
the false positives, it tries to remove false positives in each
peak of the target-class individually. In the process, it learns
incomplete description for the signatures of non-target class.

Now, let us see why RIPPER’s performance degrades.
Observation of its learned model indicated that it also faces
the adverse effect of splintering. It learns correct signatures
for the target class as the first conditions in the rules. But,
since these signatures are impure (dominated by negative
examples), it tries to remove these negative examples imme-
diately by refining the rule. Like C4.5rules, RIPPER also
has to add conditions that learn the non-signature regions
of the non-target-class attributes. RIPPER’s rules, however,
are a more specific version of rules learned by C4.5rules, be-
cause most of RIPPER’s rules have a target-class signature
in them. So, as the combinations of non-signature regions
of non-target class increases, RIPPER’s performance starts
to degrade earlier than that of C4.5rules.

Looking at the PNrule results in Table 1, it can be seen
that PNrule is able to learn good models in all the situations.
In fact, an observation of the P-rules and N-rules learned by
PNrule shows that it is learning close-to-precise signatures
of target-class and is able to remove large number of false
positives in the N-phase by learning close-to-precise signa-
tures of the non-target-class. The strategy of stopping the
refinement of P-rule when the global value does not improve,
is working very well.

Effect of stratified training set:

With the stratified set, each target class record has high
weight. The non-signature regions for non-target-class at-
tributes now become much purer in target class as compared
to unit-weight training set. This in conjunction with dom-
inating signature peaks of the target-class attribute makes
both C4.5-we and RIPPER-we to be satisfied with learning
these regions in a piece-meal fashion. Thus, in effect they are
learning an incomplete description to remove false positives.
This results in a very high recall but poor precision, as can
be observed in Figure 1 for dataset nsyn3. Note that we are
reporting results of C4.5-we (tree model) and not C4.5rules-
we (rule model). This is because usually C4.5-we models
were very large trees, and it took unacceptable amount of
learning time to build a rule model from them.

Effect of varying tr and nr:

Finally, let us analyze the effect of variation in ¢r and nr
values. Results in Figure 1 for dataset nsyn3 and Table 2
for dataset nsynb are used for illustration.

An increase in the value of tr causes each signature peak
to widen. When a correct signature of the target class is
learned, this causes more false positives to be covered be-
cause non-target-class is uniformly distributed over target-
class attributes. This is expected to have a good effect on
techniques that suffer from the splintering problem, because
now capturing a single target-class signature makes more
negative examples available to the learner thereby increasing
its chance of learning correct combinations of non-signature
regions of the non-target-class. This effect can be observed
in Figure 1 for C4.5rules and RIPPER, especially for values
of nr = 0.2 and nr = 2.0.

As the value of nr increases, it becomes difficult to re-
move the false positives without removing more and more
true positives of the target-class. This can be seen in the
degradation of performance in all three methods using unit
weight training sets. Of course, the degrading effect is more
significant for C4.5rules and RIPPER than for PNrule. This
can be attributed again to the splintering effect observed in
C4.5rules, because an increase in nr causes a decrease in
the number of examples available to learn the combinations

600 10 10
500 b NC1 NC1 NC1 NC1 NC2 NC2 NC2 NC2
10'F 1 10' 1
400+ \ 1
3 3
NC1 NC2 10°F E 10°F E
300 b
NC2 NC1
10°F 1 10% 1
200 b
c c
10'F / 1 10} / 1
100 | b
R i 41 |
0 ﬁ () A A 10° 10°
0 20 40 60 0 20 40 60 0 20 40 60
[dataset: nsyn3 |
[nr = 0.2 I nr = 2.0 i nr = 4.0 I
[M T Rec [Prec | F][M T Rec [Prec | F [M T Rec [Prec]| F
tr = C 97.07 | 98.78 9792 C 84.31 89.42 .8679 C 36.84 | 60.75 .4586
0.2 Cte | 97.61 28.86 .4455 Cte | 98.67 | 30.34 .4640 Cte | 98.27 | 29.34 .4518
R 68.88 | 73.16 .7096 R 42.55 65.71 5165 R 27.93 55.41 .3714
Re 95.74 | 30.78 .4659 Re 98.94 | 30.67 .4682 Re 98.01 30.56 .4659
P 95.21 99.44 9728 P 84.44 | 97.54 | .9052 P 68.75 95.04 7978
tr = C 92.69 | 99.71 .9607 C T7.79 | 98.32 .8686 C 48.40 | 97.07 .6460
2.0 Cte | 59.44 5.54 1013 Cte | 57.31 4.78 .0882 Cte | 61.97 4.90 .0908
R 78.99 | 99.83 .8820 R 34.57 | 96.30 .5088 R 2.53 73.08 .0488
Re 94.95 5.88 .1108 Re 94.68 4.44 .0849 Re 98.54 4.12 .0791
P 89.89 [98.11 .9382 P 78.46 | 96.88 .8670 P 67.15 94.75 .7860
tr = C 92.15 | 99.86 .9585 C 75.66 | 99.13 .8582 C 39.49 96.43 .5604
4.0 Cte | 57.85 4.30 .0801 Cte | 52.13 3.83 .0714 Cte | 49.34 3.27 .0613
R 73.01 100.0 .8440 R 46.01 93.77 6173 R 7.18 94.74 .1335
Re 88.16 7.37 .1360 Re 96.41 2.21 .0432 Re 92.95 2.29 .0447
P 95.08 | 99.44 9721 P 78.86 | 99.16 .8785 P 66.89 91.12 .7T715

Figure 1: Effect of varying tr and nr on dataset nsyn3. Top part gives the pictorial description of the
distributions of target class C and two subclass (NC1 and NC2) of the non-target class, over the values of
three numerical attributes. The X-axes have values of the attributes, Y-axes show the number of examples
of each class. First attribute (leftmost graph) has distinguishing signatures (peaks in the distribution) for
C, because NC1 and NC2 are uniformly and randomly distributed. Similarly, second and third attributes
have signatures for NC1 and NC2. For each combination of ¢tr and nr, the best classifiers are indicated
by bold-faced F values. Classifier notations are C: C4.5rules, Cte: C4.5-we (tree model), R: RIPPER, Re:
RIPPER-we, P: PNrule

numerical-only datasets

[[target class ||

non-target class

dataset || tc | nsptc | tr || ntc | nspntc | nr || d — shape
nsynl 1 1 0.2 2 3 0.2 || triangular
nsyn2 1 4 0.2 2 3 0.2 || triangular
nsyn3 1 4 0.2 2 4 0.2 triangular
nsyn4 1 4 0.2 2 5 0.2 triangular
nsynb 1 4 0.2 3 4 0.2 triangular
nsyn6 1 4 0.2 3 5 0.2 triangular
H dataset ‘| C4.5 I C4.5-we i RIPPER RIPPER-we PNrule i
| Rec | Prec F || Rec [Prec [F || Rec | Prec | F Rec [Prec | F Rec [Prec | F
nsynl 97.20 | 99.73 | .9845 || 98.93 | 29.11 | .4498 96.13 | 99.86 | .9796 || 99.60 | 35.02 | .5182 98.13 | 99.73 | .9892
nsyn2 94.81 | 99.72 | .9721 || 98.67 | 30.27 | .4633 89.63 | 99.70 | .9440 94.41 | 39.60 | .5580 94.81 | 99.30 | .9701
nsyn3 97.07 | 98.78 | .9792 || 97.61 | 28.86 | .4455 68.88 | 73.16 | .7096 95.74 | 30.78 | .4659 95.21 | 99.44 | .9728
nsyn4 90.82 | 99.13 | .9480 96.81 | 29.35 | .4505 35.51 | 58.04 | .4406 94.68 | 34.45 | .5051 96.41 | 97.45 | .9693
nsyn5 7.05 54.64 | .1249 96.94 | 29.13 | .4479 31.91 | 44.86 | .3730 96.01 | 29.66 | .4532 94.28 | 97.93 | .9607
nsyn6 6.78 49.51 | .1193 96.94 | 29.04 | .4470 7.45 50.91 .1299 96.54 | 29.84 | .4559 92.69 | 97.21 | .9489

Table 1: Comparative Results on numerical-only datasets. First table gives description of each data-set. See
text for an explanation of column names. Rec: recall (R), Prec: precision (P), F: 2RP/(R+P). Bold-faced
values of F indicate the classifiers which perform best for the given dataset.

of non-signature regions of non-target-class. PNrule is still
able to learn models with reasonably acceptable levels of
recall and precision.

Effect of increasing ¢r on C4.5-we and RIPPER~we is to
incur further loss in precision. This is due to even wider
highly weighted target-class peaks. The increased width
causes more false positives to be covered by each target class
signature, and increased weight of true positives in each sig-
nature misleads these techniques to further ignore the job
of removing the false positives.

Performance of C4.5-we and RIPPER-we is more or less
unaffected by the value of nr, in fact it may increase slightly
with an increase in nr. This can be explained as follows. As
nr increases, the non-signature regions in non-target-class
shrink. Because the target class examples have much higher
weights in RIPPER-we, these regions become purer. Thus
they can be learned a bit more accurately.

Summary:

In summary, for all the datasets generated with this simple
disjunctive model, when C4.5rules and RIPPER, can learn
good models, PNrule can also learn equally good models.
However, C4.5rules and RIPPER start to fall apart as the
learning difficulty increases; and PNrule still holds its per-
formance to an acceptably high level.

3.2.2 Datasets with only categorical-valued attributes

Extending the idea of designing numerical-only datasets,
we can create a model to generate datasets that have only
categorical attributes. Instead of representing signatures as
peaks in the distribution over a continuous-valued attribute,
we form each signature by a conjuction of a set of words.
Figure 2 gives the description of categorical-only datasets
that are generated. The role of t¢ and ntc is played by
distinct values of na for target and non-target class. The
role of nsptc and nspnic is played by nspa, and roles of ¢tr
and nr are played by values of nwps for target and non-
target-class.

The results on these categorical-only datasets, tabulated
in Table 3, are similar to those seen on the numerical-only
datasets in the sense that PNrule outperforms both RIP-
PER and C4.5rules. The results for datasets of categories

A and B indicate that, as the number of signatures of non-
target-class increases (na x nspa), performance of PNrule’s
competitors degrades. This observation is similar to that
made for numerical-only datasets. The effect of variation in
the probability of each signature can be seen in datasets of
category C. Once again, as the probability increases, perfor-
mance of all the classifiers decreases. However, the decrease
in PNrule’s performance is still at an acceptable level.

3.2.3 General Datasets

Finally, one very generic dataset is generated. This dataset
has both categorical and numerical attributes, each attribute
distinguishing one subclass of target or non-target class.
The description of this dataset, syngen, is given in Figure 3.
The signature of the subclass C1 of the target-class is formed
by a disjunction of two conjunctions of its peaks (marked
C1) in first two attributes (left two graphs in the Figure).
Note that these two attributes also have signatures for a
subclass NC1 of non-target-class. Signatures for subclasses
C2 and NC2 of target and non-target class, are disjunctions
of their respective peaks (last two graphs). Subclasses C3
and NC3 are distinguished by categorical attributes having
signature parameters shown in the figure. We believe that
this model is fairly general and complex to represent real-
life situations. The results on this generic model are given in
Table 4. They show that PNrule outperforms its best com-
petitor techniques, on all the combinations of ¢r and nr,
thus illustrating PNrule’s strength on a complex dataset.

3.3 Why PNrule is especially better for Rare
Classes

After demonstrating PNrule’s superiority in many differ-
ent situations, including complex close-to-reality scenarios,
it would be interesting to see why we claim PNrule to be
especially suitable for rare classes. In all the datasets that
were described so far, the target class size was set to 0.3%
in the training dataset. Now, we take the most general
dataset that we designed, syngen. Keeping its data gen-
eration model the same, we vary the percentage of target
class examples available to the learner. This is done by tak-
ing the datasets (both training and test) with 0.3% target

[dataset: nsyn5

[nr=0.2 I nr=4.0 [

| M T Rec [Prec| F || M] Rec [Prec | F |
tr= Cte | 96.94 | 29.13 .4479 Cte | 97.47 | 30.57 .4654
0.2 Re 96.01 | 29.66 .4532 Re 97.74 | 30.70 4673
P 94.28 | 97.93 | .9607 P 67.02 | 80.00 | .7294
tr= Cte | 39.76 2.66 .0499 Cte | 37.23 2.50 .0469
4.0 Re 86.97 2.61 .0507 Re 98.27 2.11 .0413
P 93.35 | 96.56 | .9493 P 57.18 | 57.03 | .5710

Table 2: Comparative Results on dataset nsyn5. Cte: C4.5-we, Re: RIPPER-we

na: Each class has na number of subclasses.

nspa: Each subclass is distinguished by nspa number of disjoint signatures over a distinct pair of attributes.

nwps: Each distinct pair of attributes has total nwps combinations of words that identify the corresponding signature.
Each subclass of the target-class has same values of nspa and nwps, but different set of distinguishing words.

Each subclass of the non-target-class has same values of nspa and nwps, but different set of distinguishing words.

Example::

target-class: na = 1, nspa = 2, nwps = 4 (2x2);
subclass C1: Csigll OR Csigl2;
Csigl1:(AC11=w1111 AND AC12=w1211) OR (AC11=w1111 AND AC12=w1212) OR
(AC11=w1112 AND AC12=w1211) OR (AC11=w1112 AND AC12=w1212);
Csigl2:(AC11=w1121 AND AC12=w1221) OR (AC11=w1121 AND AC12=w1222) OR
(AC11=w1122 AND AC12=w1221) OR (AC11=w1122 AND AC12=w1222);

Figure 2: Description of categorical-only datasets

[categorical-only datasets

dataset || target class [[non-target class

[na [nspa [nwps || na [nspa [nwps

coal 1 3 2/400 2 3 2/100

A coa2 1 3 27400 3 3 2/100

coa3 1 3 2/400 4 3 2/100

coad 1 4] 2/400 || 2 Z | 2/100

B coad 1 4 2/400 3 4 2/100

coab 1 4 2/400 4 4 2/100

coadl 2 4 [27400 || 4 1 | 27400

C | coad? 2 4 [27400 || 4 7 | 2/100

coad3 2 4 2/100 4 4 2/400

coadd || 2 7 [2/100 || 4 4 [27100
dataset [[C4.5rules i RIPPER I PNrule i
| Rec [Prec [F || Rec | Prec | F || Rec [Prec | F |

coal 82.40 | 100.0 | .9035 100.0 | 16.74 | .2868 73.33 | 100.0 | .8462
A coa2 62.93 | 100.0 7725 100.0 | 16.90 | .2892 83.20 | 100.0 | .9083
coa3d 46.13 | 99.14 .6297 100.0 | 16.79 | .2875 78.40 | 100.0 | .8789

coad 72.21 | 100.0 .8386 100.0 | 13.13 | .2321 85.11 | 100.0 | .9195
B coab 42.69 | 100.0 .5983 100.0 | 13.09 | .2316 76.86 | 100.0 | .8692
coab 22.74 | 97.16 .3685 100.0 | 13.16 | .2326 71.28 | 100.0 | .8323

coadl 11.44 | 13.98 1258 100.0 7.04 .1315 89.23 | 65.40 | .7548
C coad2 100.0 0.30 .0060 100.0 7.10 1325 65.69 | 51.24 | .5758
coad3 5.05 35.51 .0885 100.0 1.93 .0379 64.23 | 84.15 | .7285
coad4 20.88 | 100.0 .3454 100.0 1.92 .0377 72.07 | 100.0 | .8377

Table 3: Comparative Results on categorical-only datasets. First table gives description of each data-set. See
text for an explanation of column names.

10 10 10 10
NC1 NC1 NC1 NC1 NC1,NC2,NC3
NC2,NC3 G A b gl T N2
10° NCi,NCS 10° ¥ 2 10°
Ly L 10
) ‘ [U N S
10° c2 c2 102
NC1,NC3
c1 C1 . C1,C2,C3
10} c1 c3
1 1
10 c2,c3 10 \1
| I ‘ 0 it ¢
I
100 100 100
0 50 0 50 0 50 0 50

C3 and NC3, subclasses of target and non-target respectively,
are distinguished by categorical attributes:

C3: na=1, nspa=2, nwps=2

NC3: na=1, nspa=4, nwps=2

Figure 3: Description of dataset syngen. There are 8 total attributes: four categorical attributes distinguish
subclasses C3 and NC3 or target and non-target class, respectively. Four numerical attributes, over which
the class distributions are shown, distinguish other subclasses. The distribution of a subclass over non-
distinguishing attributes is random and uniform.

[dataset: syngen

|
| nr=0.2 || nr=4.0 ||
[M T Rec [Prec | F [M] Rec [Prec] F
tr= C 25.73 | 93.69 .4038 C 26.80 | 85.90 .4085

0.2 Re | 91.60 | 13.95 2717 Re | 96.67 | 14.92 .2586
P 85.87 | 94.29 | .8988 66.13 | 65.78 | .6596
tr= C 25.33 | 100.0 | .4043 9.60 83.72 1722
4.0 Re | 88.13 2.28 .0444 Re | 95.07 2.30 .0450
P 75.07 | 98.77 | .8530 52.40 | 48.04 | .5013

e/

@]

T

Table 4: Comparative Results on dataset syngen

[dataset: syngen (tr=0.2,nr=0.2) |

ntcfrac | tc % || C4.5rules | RIPPER | PNrule || | dataset: syngen (tr=4.0,nr=4.0) |
1.0 0.3% 4038 2717 | .8988 ntcfrac | tc % || CA4.5rules | RIPPER | PNrule
0.5 0.6% 5177 4137 | .9208 1.0 0.3% 0.1722 | 0.0450 | 0.5013
0.1 2.9% 77569 77766 | .9090 0.1 2.9% 0.5326 | 0.5203 | 0.6181
0.05 5.7% 8261 8643 | .8709 0.05 5.7% 0.6411 | 0.6639 | 0.6944
0.02 13.1% 9270 93905 | .0390 0.02 13.1% || 0.6545 | 0.7314 | 0.7598
0.01 23.1% 0448 9644 | .0603 0.01 23.1% || 0.7681 | 0.7935 | 0.8328
0.003 | 50.0% 9577 .9840 | .9539

Table 5: Comparing effect of variation in target class size on syngen dataset. ntc-frac is the fraction of
non-target-class examples randomly sampled from the dataset with 0.83% target class proportion.

Class C4.5rules RIPPER old PNrule [1]
Rec Prec F Rec Prec F Rec Prec F
probe || 73.04 | 86.38 | 0.7915 81.16 | 77.92 | 0.7951 89.01 | 82.11 | 0.8542
r2l 5.23 96.36 | 0.0993 8.33 81.85 | 0.1512 13.05 | 82.37 | 0.2252

Table 6: Results of C4.5rules, RIPPER, and older version of PNrule for binary classification for r2| and probe
in the KDDCUP’99 test data-set.

class proportion, retaining all the target class examples in
them, and randomly sampling a varying fraction of the non-
target-class examples. The results are given in Table 5.

As the target class proportion increases, the difference be-
tween the performances of all the three techniques becomes
lesser and lesser. For the simpler syngen dataset (tr=0.2,
nr=0.2), PNrule certainly has a definitive edge over its com-
petitors for target class proportions of upto 5.0%, Moreover,
PNrule also performs competitively when target class is not
rare. For the tougher datasets, such as syngen with tr=4.0
and nr=4.0 as shown in Table 5, PNrule’s edge can extend
to even larger target class proportions.

Hence, PNrule is clearly the best choice when target class
is rare. This final set of results on synthetic datasets corrob-
orates our claim that for such classes, it is necessary to have
PNrule’s capability of attacking recall and precision goals
separately by first learning high support rules to get recall,
and later collectively removing the false positives that get
inevitably covered.

4. PNRULE ON A REAL-LIFE DATASET

As illustrated by synthetic datasets, PNrule’s two-phase
design certainly has a potential to perform well on rare
classes. In this section, we test the technique on an actual
real-life dataset.

We use a dataset from the domain of network intrusion
detection. It was provided as part of the KDD-CUP-99 clas-
sifier learning contest [7]. The data-set is collected by moni-
toring a real-life military computer network that was inten-
tionally peppered with various attacks that hackers would
use to break in. Original training set has close to 5 million
records belonging to four attack classes and one no-attack
or normal class. A 10% sample of this original set was also
supplied as part of the contest. We use this sample, T1g%,
in our experiment. We had reported some results on the
rare classes of this data-set using the previous version of
PNrule [1]. Our interest in this paper is to study the effect
of the new parameters of PNrule, especially the minimum
coverage of target class in P-phase and lower recall limit
used in N-phase, on improving the PNrule performance fur-
ther. We present results for two rare classes: probe and r2l,
whose respective populations in the Tjq¢ training data-set
are 0.83% and 0.23%. The Tigy data-set preserves all the
examples of these rare classes from the original training set.

The test data used here is the test-data supplied as part of
the contest. Note that this test-data has a very different dis-
tribution of these classes (1.34% for probe and 5.2% for r2l)
and some new subclasses that are not present in the training
data, so there is some inherent limitation on how good the
core data mining techniques such as PNrule, C4.5rules, and
RIPPER can perform.

As with synthetic datasets, we used default settings for
RIPPER and C4.5, but we tested them with two training
sets: as-is and stratified. The best results of these classifiers
on the test dataset are given in Table 6.

The results we had obtained with our previous version of
PNrule are shown in Table 6. These results are certainly
better than C4.5rules and RIPPER. But, we want to see
if we can obtain further improvement with the improved
PNrule version of this paper. So, we start by varying two
of its control parameters: minimum target class coverage
in P-Phase (denoted rp) and lower limit on recall used to
control growth of a rule in N-phase (denoted rn). We use

RIPPER’s evaluation metric of information gain for these
experiments.

The results for r2| are as follows, where R, P, and F denote
recall, precision, and F-measure respectively:

(I 12l [™ I
[rp | 0.8 [0.95 [0.995 |
0.95 R 6.10 6.02 6.02

P 99.30 99.39 99.39
F .1149 1135 1135
0.995 | R 6.63 6.63 8.58
P 59.35 59.35 71.08
F L1192 L1192 .1531

The effect of increasing rn is negligible for value of rp=0.95.
Whereas for rp=0.995, which covers almost the entire target
class in first phase, thereby covering relatively more false
positives, variation in rn has some role to play by controlling
how refined the N-rules become. For large values of rn, N-
phase is forced to refine N-rules to the point they cover very
small number of false positives of N-phase (i.e. the original
target class). As can be seen, the precision as well as recall
get affected because of this. The best result here is still just
similar to RIPPER. We observed that the P-rules together
are covering relatively small number of false positives. This
usually is a good thing, but given the skewed and different
distribution of test-data, we decided to try making P-rules
very general. Here is the effect of variation in rp and rn on
the model learned, when P-rule length was kept at 1:

I r21.P1 [™ I
[rp | 09 [095 J 0.99 |
0.95 R 6.04 13.34 13.05

P 98.59 83.11 82.37
F .1138 .2299 .2252
0.995 | R 8.23 10.22 10.43
P 98.23 99.04 98.54
F .1519 .1853 .1887

Following observation can be made from these results: Re-
stricting P-rule length to 1 allows P-rules to be very general,
thus giving PNrule more ability to collectively remove the
false positives in second phase. Furthermore, by varying rp
and rn, one can control the recall and precision obtainable
from the classifier for the given class. We have improved
substantially over RIPPER and C4.5rules for learning r2l’s
signatures.

Now, let us see how PNrule performs on probe by doing
similar experiments. First, here are the results when P-
rule length was controlled by the growth criterion given in
section 2.2; i.e. it was not artificially restricted:

[probe] n I
I rp | 0.8 [095 [0.995 ||
0.95 R 87.16 87.16 87.16

P 74.64 74.64 74.64
F .8041 .8041 .8041
0.995 | R 87.54 86.20 86.13
P 73.32 68.54 72.81
F .7980 7636 7891

We can see similar effect of varying rn as was seen for r2l;
i.e. it is not affecting the performance much. Again, we
obtain results close to RIPPER’s results. We observed that,
as with r2l, the P-phase is covering relatively small number
of false positives. So, we decided to make each P-rule very
general. Here are the results when P-rule length is 1:

[probeP1] ™ I
[rp | 09 T o0.99 |

0.95 R 84.69 87.37
P 92.38 73.43
F .8837 || .7980
0.995 | R 84.69 87.37
P 92.38 73.43
F .8837 .7980

The performance gets a sudden boost by using very general
P-rules. Now, PNrule’s margin of performance for probe has
become much stronger over C4.5rules and RIPPER, as com-
pared to our previous PNrule version. PNrule’s performance
on probe can be attributed to two things: first its ability to
collectively remove false positives in second phase; and sec-
ond, the ability to control recall and precision by varying rn
and rp.

Result of probe.P1 and r2l.P1 show that sometimes it helps
to generate more false positives in first phase. Also, all
the above results indicate that choosing correct values of
parameters rp and rn is important. If rn is set too high,
as with rn=0.995 in probe.P1, then the classifier might gain
somewhat on the recall but may lose precision significantly
by overfitting the N-rules (i.e. not being able to remove false
positives). Of course, if rn is too low, as in rn=0.9 in r2l.P1,
then total recall will suffer and F-measure will be lower. If rp
is set too high, as with rp=0.995 (rn > 0.9) for r2I.P1, then
the later rules in P-phase may run into overfitting (most
probably due to problem of small disjuncts), thus reducing
the recall. If rp is set too low, as with rp=0.95 in the table
of r2| with P-rule length not restricted artificially, then again
the recall may suffer because of low target class coverage. In
general, the combination of rp and rn determines the overall
performance, along with their individual values.

All these observations and results illustrate that the two-
phase approach and the control parameters of the improved
version of PNrule indeed give extra tools and ability to out-
perform existing state-of-the-art techniques of its class, for
efficient modeling of rare classes in challenging real-life sit-
uations such as this.

5. CONCLUSION

We empirically demonstrate the necessity of a two-phase
rule-induction framework for learning effective rule-based
models, especially when the target class being modeled has
very small yet sufficient number of examples in the training
data. Experiments on specially designed synthetic datasets
and one real-life data-set show the strength and ability of
our technique to perform very well for rare target classes. At
the same time, via these data-sets, we identify and analyze
the situations in which existing state-of-the-art classifiers
fail to build an acceptable model. The primary contribu-
tion of this paper is to show that the method of attacking
recall and precision separately in two phases has a potential
to solve the problem of splintered false positives and prob-
lem of small disjuncts that the existing techniques may face
especially while modeling rare classes.

The proposed framework opens up many avenues for fur-
ther research. Some possibilities are: evaluating various
stopping criteria for growing rules, automating or guiding
the selection of recall limits in each stage, adding some
pruning mechanisms to further protect the N-stage from
running into overfitting, improving scoring mechanism to
reflect close-to-true probabilities, and finally, extending the

two-phase approach to a multi-phase approach.

6. REFERENCES

[1] R. C. Agarwal and M. V. Joshi. PNrule: A new
framework for learning classifier models in data
mining (a case-study in network intrusion detection).
In Proceedings of First SIAM Conference on Data
Mining, Chicago, April 2001. Expanded version
available as IBM Research Division Report, RC 21719,
April 2000.

[2] L. Breiman. Bagging predictors. Machine Learning,
24(2):123-140, 1996

[3] P. Clark and T. Niblett. The CN2 induction
algorithm. Machine Learning, 3:261-283, 1989.

[4] W. Cohen and Y. Singer. A simple, fast, and effective
rule learner. In Proc. of Annual Conference of
American Association for Artificial Intelligence, pages
335-342, 1999.

[6] W. W. Cohen. Fast effective rule induction. In Proc.
of Twelfth International Conference on Machine
Learning, Lake Tahoe, California, 1995.

[6] A. Danyluk and F. Provost. Small disjuncts in action:
Learning to diagnose errors in the local loop of the
telephone network. In Proc. of Tenth International
Conference on Machine Learning, pages 81-88.
Morgan Kaufmann, 1993.

[7] C. Elkan. Results of the KDD’99 classifier learning
contest. In
http://www-cse.ucsd.edu/ "elkan/clresults.html,
September 1999.

[8] R. C. Holte, L. Acker, and B. Porter. Concept learning
and the problem of small disjuncts. In Proc. of
Eleventh International Joint Conference on Artificial
Intelligence (IJCAI-89), pages 813-818, 1989.

[9] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The
multi-purpose incremental learning system AQ15 and
its testing application to three medical domains. In
Proc. of Fifth National Conference on AI (AAAI-86),
pages 1041-1045, Philadelphia, 1986.

[10] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[11] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[12] R. Schapire and Y. Singer. Improved boosting
algorithms using confidence-rated predictions.
Machine Learning, 37(3):297-336, 1999.

[13] Y.-S. Shih. Family of splitting criteria for classfication
trees. Statistics and Computing, 9:309-315, 1999.

[14] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, 1979.

[15] G. M. Weiss. Learning with rare cases and small
disjuncts. In Proc. of Twelfth International
Conference on Machine Learning, pages 558-565, Lake
Tahoe, California, 1995.

[16] S. M. Weiss and N. Indurkhya. Lightweight rule
induction. In Proc. of Seventh International
Conference on Machine Learning (ICML-2000), 2000.

