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This article assumes some familiarity with analytic geometry and the concept of a limit. The 
article on vector spaces contains useful background, and the article on functional analysis is 
closely related.  

The mathematical concept of a Hilbert space (named after the German mathematician David 
Hilbert) generalizes the notion of Euclidean space in a way that extends methods of vector algebra 
from the plane and three-dimensional space to spaces of functions. In more formal terms, a Hilbert 
space is an inner product space — an abstract vector space in which distances and angles can be 
measured — which is "complete", meaning that if a sequence of vectors approaches a limit, then that
limit is guaranteed to be in the space as well. 

Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as 
infinite-dimensional function spaces. They are indispensable tools in the theories of partial 
differential equations, quantum mechanics, and signal processing. The recognition of a common 
algebraic structure within these diverse fields generated a greater conceptual understanding, and the 
success of Hilbert space methods ushered in a very fruitful era for functional analysis. 

Geometric intuition plays an important role in many aspects of Hilbert space theory. An element of a 
Hilbert space can be uniquely specified by its coordinates with respect to an orthonormal basis, in 
analogy with cartesian coordinates in the plane. This means that Hilbert space can also usefully be 
thought of in terms of infinite sequences that are square summable. Linear operators on a Hilbert 
space are likewise fairly concrete objects: in good cases, they are simply transformations that stretch 
the space by different factors in mutually perpendicular directions. 

Motivation and intuitive meaning 
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Ordinary Euclidean space R3 serves as a model for the more abstract notion of a Hilbert space. In the 
Euclidean space, the distance between points and the angle between vectors can be expressed via the 
dot product, a certain bilinear operation on vectors with values in real numbers. Many problems from 
analytic geometry can be reworded and solved using the dot product, for example, "When are two 
lines orthogonal?" or "How to find the point on a given plane closest to the origin?" 

In a Hilbert space, the fundamental objects are abstractions of vectors, whose nature is unimportant 
(they may be, for example, sequences or functions of some kind). Those abstract vectors can be 
added and multiplied by a scalar, and an analogue of the dot product is defined for them. The 
algebraic operations on vectors in a Hilbert space have familiar properties, like commutativity and 
distributivity. In addition, the technical requirement of completeness ensures that certain limits exist. 
This last property is always true for finite-dimensional inner product spaces, but needs to be stated as 
an additional assumption in the more general case. Completeness guarantees that various geometric 
operations, such as orthogonal projection onto a subspace, that are familiar in the setting of 
Euclidean spaces, can be meaningfully defined in general, even for an infinite dimensional space. 

While the definition of a Hilbert space given below may appear complicated, due to a large number 
of consistency axioms, the basic intuition behind Hilbert spaces is amazingly simple: 

In a large range of physical and mathematical situations, a linear problem can be stated 
within a certain Hilbert space and analyzed in simple geometrical terms.  

In particular, this principle applies to solving linear differential and integral equations, and especially 
eigenvalue problems. One of the first examples of such an analysis was given by Joseph Fourier's 
mathematical theory of heat: a solution of the heat equation can be decomposed into infinitely many 
independent parts, which is closely analogous to the way of representing a vector from R3 as a linear 
combination of three orthogonal vectors. Similar considerations apply to other equations of 
mathematical physics, notably, the wave equation and Helmholtz equation. 

The success of the theory of Hilbert spaces is due in part to the striking fact that 

although they may differ in origin and appearance, most Hilbert spaces considered in physics 
and mathematics are just multiple manifestations of a single separable Hilbert space.  

One way to comprehend this proceeds by introducing a system of coordinates into a given Hilbert 
space using the notion of orthonormal basis described below. As a consequence of the uniqueness 
principle, a theorem stated in abstract terms and valid in one of these spaces will hold in all of them. 

Definition 
A real or complex Hilbert space is a real or complex inner product space that is a complete normed 
space (Banach space) under the norm defined by the inner product. 

Remarks 

1. The inner product �·,·� on a real or complex vector space H gives rise to a norm ||·|| as 
follows: 

  

2. Completeness is the key to handling infinite-dimensional examples, such as function spaces. It 
is expressed using a form of the Cauchy criterion for sequences in H:
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A sequence {vn} is a Cauchy sequence if for every positive real number ε there is a 
natural number N such that for all m, n > N, ||vn – vm|| < ε. The space H is complete with
respect to this norm if every Cauchy sequence converges to an element in the space.  

3. As any normed vector space, an inner product space becomes a topological vector space if we 
declare that the open balls constitute a basis of topology. A Hilbert space is also a Banach 
space in which the following parallelogram identity holds: 

  
4. Conversely, it can be proved that a Banach space in which the parallelogram identity holds is a 

Hilbert space, and the inner product is uniquely determined by the norm.  
5. Some authors use slightly different definitions. For example, Kolmogorov-Fomin[1] define a 

Hilbert space as above but restrict the definition to separable and infinite-dimensional spaces. 
A separable, infinite-dimensional Hilbert space is unique up to isomorphism, called  
[often written  for shorthand — see the next section for the definition]. In this article, a 
Hilbert space is not assumed to be infinite-dimensional or separable.  

6. Older books and papers sometimes call a Hilbert space a unitary space or a linear space with 
an inner product, but this terminology fell out of use.  

Genesis of Hilbert spaces 
The first important theorems that apply to Hilbert spaces were obtained by Joseph Fourier, Friedrich 
Bessel and Marc-Antoine Parseval in the 19th century in the context of periodic functions of one real 
variable. Fourier's theory of trigonometric series in particular provides a template for the later 
development of the theory of function spaces in an abstract setting. Further basic results were proved 
in early 20th century, for example, the Riesz representation theorem of Maurice Frechet and Frigyes 
Riesz from 1907. 

Hilbert spaces are named after David Hilbert, who developed methods of infinite-dimensional linear 
algebra in the course of his work on integral equations beginning around 1909. Hilbert's axiomatic 
approach to the study of function spaces and operators on them, which may be termed the 
"algebraization of analysis", provided the foundations for functional analysis as a new mathematical 
discipline, and made profound impact on the later development of mathematics. 

The significance of the concept of Hilbert space was underlined with the realization that it offers one 
of the best mathematical formulations of quantum mechanics. In short, the states of a quantum 
mechanical system are described by vectors in a certain Hilbert space, the observables are expressed 
by linear operators, and the procedure of quantum measurement is related to orthogonal projection. 
Moreover, the symmetries of a quantum mechanical system can be interpreted as a unitary 
representation of a suitable group, providing an impetus for development of unitary representation 
theory. On the other hand, around the same time it became clear that certain properties of classical 
dynamical systems can be analyzed using Hilbert space techniques in the framework of ergodic 
theory. 

John von Neumann coined the term abstract Hilbert space in his famous work on unbounded 
Hermitian operators, published in 1929.[2] Von Neumann was perhaps the mathematician who most 
clearly recognized their importance as a result of his seminal work on the foundations of quantum 
mechanics which began with Hilbert and Lothar (Wolfgang) Nordheim[3] and continued with 
Eugene Wigner. The name "Hilbert space" was soon adopted by others, for example by Hermann 
Weyl in his 1931 book The Theory of Groups and Quantum Mechanics.[4] 

Examples 
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In these examples, the underlying field of scalars is C, although similar definitions apply to the case 
in which the underlying field of scalars is R. 

Euclidean spaces 

Cn with the inner product defined by
 

 

 

where the bar over a complex number denotes its complex conjugate. 

Sequence spaces 

Infinite-dimensional Hilbert spaces are central to the subject. If B is any set, the sequence space ℓ2 
(said "little ell two") over B is defined 

 

 

This space becomes a Hilbert space with the inner product 

 

 

for all x and y in ℓ2(B). B does not have to be a countable set in this definition, although if B is not 
countable, the resulting Hilbert space is not separable. In a sense made more precise below, every 
Hilbert space is isomorphic to one of the form ℓ2(B) for a suitable set B. If B=N, the natural 
numbers, this space is simply called ℓ2. 

Lebesgue spaces 

These are function spaces associated to measure spaces (X, M, μ), where M is a σ-algebra of subsets 
of X and μ is a countably additive measure on M. Let L2

μ(X) be the space of complex-valued square-
integrable measurable functions on X, modulo equality almost everywhere. Square integrable means 
the integral of the square of its absolute value is finite. Modulo equality almost everywhere means 
functions are identified if and only if they are equal outside of a set of measure 0. 

The inner product of functions f and g is here given by 

 

 

One needs to show: 

That this integral indeed makes sense;  
The resulting space is complete.  

These facts are easy to derive; see, for example, Section 42 of Halmos (1950).[5] Note that the use of 
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the Lebesgue integral ensures that the space will be complete. See Lp space for further discussion of 
this example. 

Sobolev spaces 

Sobolev spaces, denoted by Hs or Ws,2, are another example of Hilbert spaces, and are used often in 
the field of partial differential equations. 

New Hilbert spaces from old 

Two (or more) Hilbert spaces can be combined to produce another Hilbert space by taking either 
their direct sum or their tensor product. 

Applications 
Hilbert spaces allow simple geometric concepts like projection and change of basis to be extended 
from finite dimensional to infinite dimensional spaces, in the first place, function spaces. 

Other applications include: 

The theory of unitary group representations.  
The theory of square integrable stochastic processes.  
The Hilbert space theory of partial differential equations, in particular formulations of the 
Dirichlet problem.  
Spectral analysis of functions, including theories of wavelets.  

One goal of Fourier analysis is to write a given function as a (possibly infinite) linear combination of
given basis functions. This problem can be studied abstractly in Hilbert spaces: every Hilbert space 
has an orthonormal basis, and every element of the Hilbert space can be written in a unique way as a 
sum of multiples of these basis elements. The Fourier transform then corresponds to a change of 
basis. 

Orthonormal bases 
A key role in the theory is played by the notion of orthonormal basis of a Hilbert space H: a family 
{ek}k ∈ B of H satisfying the conditions: 

1. Orthogonality: Every two different elements of B are orthogonal: <ek, ej> = 0 for all k, j in B 
with k ≠ j.  

2. Normalization: Every element of the family has norm 1: ||ek|| = 1 for all k in B  
3. Completeness: The linear span of B is dense in H.  

A system of vectors satisfying the first two conditions basis is called an orthonormal system or an 
orthonormal sequence (if B is countable). It can be proved that such a system is always linearly 
independent. Completeness of an orthonormal system of vectors of a Hilbert space can be 
equivalently restated as: 

if  for all  and some  then  
 

Examples of orthonormal bases include: 
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the set {(1,0,0),(0,1,0),(0,0,1)} forms an orthonormal basis of R3 with the dot product  
the sequence {fn : n ∈ Z} with fn(x) = exp(2πinx) forms an orthonormal basis of the complex 

space L2([0,1])  
the family {eb : b ∈ B} with eb(c) = 1 if b=c and 0 otherwise forms an orthonormal basis of l2

(B).  

Note that in the infinite-dimensional case, an orthonormal basis will not be a basis in the sense of 
linear algebra; to distinguish the two, the latter basis is also called a Hamel basis. That the span of 
the basis vectors is dense means that every vector in the space can be written as the limit of an 
infinite series and the orthogonality implies that this decomposition is unique. 

Using Zorn's lemma, one can show that every Hilbert space admits an orthonormal basis; 
furthermore, any two orthonormal bases of the same space have the same cardinality. A Hilbert 
space is separable if and only if it admits a countable orthonormal basis. 

Since all infinite-dimensional separable Hilbert spaces are isomorphic, and since almost all Hilbert 
spaces used in physics are separable, when physicists talk about the Hilbert space they mean any 
separable one. 

If {ek}k ∈ B is an orthonormal basis of H, then every element x of H may be written as
 

 

 

Even if B is uncountable, only countably many terms in this sum will be non-zero, and the 
expression is therefore well-defined. This sum is also called the Fourier expansion of x. 

If {ek}k ∈ B is an orthonormal basis of H, then H is isomorphic to l2(B) in the following sense: there 
exists a bijective linear map Φ : H → l2(B) such that 

 
 

for all x and y in H. 

Orthogonal complements and projections 
If S is a subset of a Hilbert space H, the set of vectors orthogonal to S is defined by 

 
 

Sperp is a closed subspace of H and so forms itself a Hilbert space. If V is a closed subspace of H, 
then Vperp is called the orthogonal complement of V. In fact, every x in H can then be written 
uniquely as x = v + w, with v in V and w in Vperp. Therefore, H is the internal Hilbert direct sum of V 
and Vperp. The linear operator PV : H → H which maps x to v is called the orthogonal projection 
onto V. 

Theorem. The orthogonal projection PV is a self-adjoint linear operator on H of norm ≤ 1 with the 
property PV

2 = PV. Moreover, any self-adjoint linear operator E such that E2 = E is of the form PV, 
where V is the range of E. For every x in H, PV(x) is the unique element v of V which minimizes the 
distance ||x - v||. 
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This provides the geometrical interpretation of PV(x): it is the best approximation to x by elements of 
V. 

Reflexivity 
An important property of any Hilbert space is its reflexivity. In fact, more is true: one has a complete 
and convenient description of its dual space (the space of all continuous linear functions from the 
space H into the base field), which is itself a Hilbert space. Indeed, the Riesz representation theorem 
states that to every element φ of the dual H' there exists one and only one u in H such that 

 
 

for all x in H and the association φ ↔ u provides an antilinear isomorphism between H and H'. This 
correspondence is exploited by the bra-ket notation popular in physics. 

Bounded operators 
For a Hilbert space H, the continuous linear operators A : H → H are of particular interest. Such a 
continuous operator is bounded in the sense that it maps bounded sets to bounded sets. This allows to 
define its norm as 

 
 

The sum and the composition of two continuous linear operators is again continuous and linear. For 
y in H, the map that sends x to <y, Ax> is linear and continuous, and according to the Riesz 
representation theorem can therefore be represented in the form 

 
 

This defines another continuous linear operator A* : H → H, the adjoint of A.
 

The set L(H) of all continuous linear operators on H, together with the addition and composition 
operations, the norm and the adjoint operation, forms a C*-algebra; in fact, this is the motivating 
prototype and most important example of a C*-algebra. 

An element A of L(H) is called self-adjoint or Hermitian if A* = A. These operators share many 
features of the real numbers and are sometimes seen as generalizations of them. 

An element U of L(H) is called unitary if U is invertible and its inverse is given by U*. This can also 
be expressed by requiring that <Ux, Uy> = <x, y> for all x and y in H. The unitary operators form a 
group under composition, which can be viewed as the automorphism group of H. 

Unbounded operators 
If a linear operator has a closed graph and is defined on all of a Hilbert space, then, by the closed 
graph theorem in Banach space theory, it is necessarily bounded. However, unbounded operators can 
be obtained by defining a linear map on a proper subspace of the Hilbert space. 

In quantum physics, several interesting unbounded operators are defined on a dense subspace of 
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Hilbert space. It is possible to define self-adjoint unbounded operators, and these play the role of the 
observables in the mathematical formulation of quantum mechanics. 

Examples of self-adjoint unbounded operator on the Hilbert space L2(R) are:
 

A suitable extension of the differential operator  

 

 

where i is the imaginary unit and f is a differentiable function of compact support.  

The multiplication by x operator:  

 
 

These correspond to the momentum and position observables, respectively. Note that neither A nor B
is defined on all of H, since in the case of A the derivative need not exist, and in the case of B the 
product function need not be square integrable. In both cases, the set of possible arguments form 
dense subspaces of L2(R). 

See also 
Harmonic analysis  
Hermitian operators  
Mathematical analysis  
Operator algebra  
Riesz representation theorem  
Rigged Hilbert space  
Reproducing kernel Hilbert space  
Topologies on the set of operators on a Hilbert space  
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