

Tutorial 11

1. Let X be a set and let $L^2(X, \mu_c)$ be the Hilbert space defined in Tutorial 10, with underlying vector space the set of all functions $f : X \rightarrow \mathbb{C}$ such that

$$n(f) = \sup\{\sum_{x \in F} |f(x)|^2 \mid F \subseteq X, F \text{ finite}\}$$

is finite and with inner product given by

$$b(f, g) = \sup\{\sum_{x \in F} f(x)\overline{g(x)} \mid F \subseteq X, F \text{ finite}\}.$$

Show that the subset consisting of all functions δ_x such that $\delta_x(x) = 1$ and $\delta_x(y) = 0$ for $y \neq x$ is an orthonormal basis for $L^2(X, \mu_c)$.

Solution.

Clearly $b(f, \delta_x) = f(x)$ for all $f \in L^2(X, \mu_c)$ and $x \in X$.

Hence $b(\delta_x, \delta_x) = 1$ and $b(\delta_x, \delta_y) = 0$ for all $x, y \in X$ with $y \neq x$.

If $f \perp \delta_x$ for all $x \in X$ then $f(x) = 0$ for all $x \in X$ and so $f = 0$.

2. Let $H = \ell_2^\infty$ and let N be the subspace of all sequences $\{x_n\}_{n \geq 1}$ which are ultimately 0, i.e., for which $x_n = 0$ for n sufficiently large.

Show that N is a vector subspace and $N \neq H$, but that $N^\perp = 0$.

Solution.

This Hilbert space is the special case of the type in the previous exercise, corresponding to $X = \mathbb{N} = \{1, 2, \dots\}$.

Let δ_n be the sequence whose n^{th} term is 1 and with all other terms 0.

As N is the set of all finite linear combinations of the δ_n s it is a vector subspace.

The sequence $\{\frac{1}{n}\}_{n \geq 1}$ is in H but not in N , so $N \neq H$.

If $v = \{v_n\}_{n \geq 1} \perp N$ then $v_n = b(v, \delta_n) = 0$ for all $n \geq 1$, and so $v = 0$.

3. Let $A : H \rightarrow H$ be a linear operator on a Hilbert space H such that

$$\|A\| = \sup\{\|Ax\| \mid \|x\| \leq 1\} < \infty.$$

Show that $\|Ax\| \leq \|A\| \cdot \|x\|$ for all $x \in H$.

Solution.

This is clear if $x = 0$. If $x \neq 0$ let $y = \frac{1}{\|x\|}x$, so $\|y\| = 1$.

Then $x = \|x\|y$, and $Ax = \|x\|Ay$, and so $\|Ax\| = \|x\| \cdot \|Ay\| \leq \|x\| \cdot \|A\|$.

4. Let H be a Hilbert space and N the vector subspace generated by a finite orthonormal subset $\{u_1, \dots, u_n\} \subset H$.

Show that N is closed in H .

(The Gram-Schmidt process provides such a basis for any finite-dimensional vector subspace, and so all finite dimensional subspaces are closed.)

Solution.

If $\{n_k\}_{k \geq 1}$ is a Cauchy sequence in N then $\beta_{i,k} = b(n_k, u_i)$ is a Cauchy sequence in \mathbb{C} for each $1 \leq i \leq n$. These sequences converge, with limits β_i , say. It is easy to see that $\{n_k\}_{k \geq 1}$ converges to $n = \sum_{1 \leq i \leq n} \beta_i u_i$ in N . Hence N is complete and therefore closed.

5. Let $\{H_n\}_{n \geq 1}$ be a sequence of Hilbert spaces, with inner products b_n and associated norms $\| - \|_n$. (Note: here the subscript is merely an index - these are all norms deriving from inner products). Let H be the space of all sequences $\{h_n\}_{n \geq 1}$ with $h_n \in H_n$ for all $n \geq 1$ and $\sum_{n \geq 1} \|h_n\|_n^2 < \infty$.

Show that H is a vector space, and that $b(\{x_n\}, \{y_n\}) = \sum_{n \geq 1} b_n(x_n, y_n)$ defines an inner product on H making it into a Hilbert space.

Solution.

Argue as the the special case $H_n = \mathbb{C}$ for all $n \geq 1$, which gives $\ell_2^\infty(\mathbb{C})$.