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1 Introduction

Many problems in science require that a multidimensional vector be found which can
presumably satisfy the constraints placed on a particular physical system and provide
an optimal solution to the problem. In principle this is a di±cult problem. If the
dimension of the problem is much larger than three, it is di±cult, if not impossible to
guess the solution or ¯nd it by random search. As a result, several techniques have
been created to solve these problems. These techniques are stochastic methods, and
all have elements which relate to hillclimbing methods.

The basic premise behind a stochastic method is the following. In direct hillclimb-
ing methods, problems with `bumpy' ¯tness landscapes pose serious threats to the
usefulness of the technique. The plethora of local minima and maxima can trap an
iterative search, ending the search in a suboptimal search. Problems like this can be
alleviated to some extent by increasing the step size, but this can often times lead
to imprecise ¯nal answers. Moreover, di®erent step sizes can often lead the search
along di®erent paths, e®ecting the ¯nal outcomes. To deal with these problems,
stochastic methods were developed. Stochastic methods take particular steps in the
n-dimensional space which do not necessarily lead to an increase in overall ¯tness of
the current solution or solution set. In this way, the stochastic methods can often
times avoid these local minima problems, to ¯nd the global maxima. On the other
hand, these methods are limited by many of the same things that limit hillclimbing
methods.

In the following pages, we will present a set of stochastic search methods. While
it can be shown that some of these search methods are actually identical, we will
ignore this. We will attempt to show the reasons for using population-based search
paradigms in some cases, and for single-solution paradigms in other cases.

2 Directed RandomSearch

2.1 De¯nition

There are many di®erent ways of searching an n-dimensional vector1 space. The most

1In this paper, we will interchangably use the words vectors and solutions.
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direct way is a random search. In this paradigm, random vectors are evaluated, with
the highest scoring vector being retained as the search result. This particular search
has a few problems. In ¯nite spaces, this is a reasonable way of ¯nding a solution
if we assume that the function varies smoothly with the vectors. If we are searching
for a good solution, we need only randomly ¯nd a `good' vector, and then use a
hillclimbing method to ¯nd the absolute optimum. On the other hand, this is not
a good solution if we have an unbounded space, and, moreover, cannot narrow our
search by problem-speci¯c reasoning.

One direct solution to this problem which solves our problem of unbounded so-
lutions is the directed random search. In this method, we begin with a particular
vector, randomly chosen. Next, we choose several random vectors located in an n-
ball of radius ² > 0 and with the center at the chosen vector. All of these vectors
are evaluated, and the one with the highest function value is stored. All others are
discarded. The process is iterated until no higher values are found. Variations on this
theme allow for the n-ball to be increased in size once the solution has apparently
been found, and this allows the method to jump over larger hills.

2.2 Strengths and Weaknesses of the Method

Let us try to understand when this method will work, and when it won't. First, we
need a geometric idea of what is going on. In our case, we start with a point. By
choosing an ² > 0; we are restricting the search to the space directly around the point.
That means that if we are at a point located on a local maxima, and the `next hill' is
a greater distance than ² from the point, we will never ¯nd the other hills. Thus, the
directed random search is very dependant on local properties of the function. While
it will robustly climb hills, and jump over small or narrow maxima, it will not climb
down extended peaks.

On the other hand, let us suppose that the ¯tness landscape is made up of several
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narrow peaks.

Now, again, if the step size is too small, then the algorithm will tend to get trapped on
whatever peak it initially climbs. On the other hand, if the stepsize is very large, then
the algorithm will have to densely cover the ²¡ball in order to ¯nd a peak correctly.
Thus, the algorithm is highly dependant on the step size and initial conditions. More-
over, it has no mechanism for back-tracking. While it can jump over small peaks, it
cannot climb down peaks in order to ¯nd other higher peaks.

This technique has several attractive qualities. The obvious one is that the tech-
nique is cheap. It is easily implemented and is fast. Moreover, by varying the starting
positions, the ¯nal positions for more complicated function landscapes will be varied,
and this will tend to re°ect the complexity of the function. Knowing the complexity
of the function can help to decide what more advanced methods to use. Finally, the
technique can be very precise. Once a peak has been found, re¯nements made to the
original solution only serve to improve the precision. If the technique ¯nds a good
solution, this solution will be very close to the exact solution.

In using this technique, it is important to know what function you are using. This
technique is useful if it recovers the same result from many di®erent starting positions,
and using many di®erent choices of ²: It is not useful if these conditions do not hold.

3 SimulatedAnnealing

3.1 De¯nition

The second method typically used is a single-element search called simulated anneal-

ing. This technique is an abstraction of the spinglass problem in physics. The idea
is to allow a number of quantum states of a particular system, allowing the system
to `bounce around' to many di®erent states, eventually settling on a ¯nal state. In
spinglasses, this is allowed because the ¯nal low-energy state is very ordered, and the
function is generally concave (meaning a concave function punctuated by many small

3



peaks).

Simulated annealing is de¯ned in the following way. Suppose that we have a vector
space ¡ and we choose a vector º 2 ¡: We also suppose that there is a function
which we are trying to optimize (known in physics as the Hamiltonian, or the energy

function) f which maps ¡ to the real numbers. Then, we also choose a temperature
¿ > 0. Once this temperature is chosen, we may choose a new vector º0 2 ¡ which is
related to º by adding a small perturbation to º to obtain º0: Now, we may keep this
new vector with probability

p = e
f(º0)¡f(º)

¿ (1)

where a probability exceeding 1 is interepreted as an automatic acceptance. If the
temperature is very small, than any new vector scoring less than the old vector is
immediately rejected, while high temperatures are very likely to accept it.

It is easy to see why this might work for large temperatures. Small hills such
as those given in the preceding ¯gure are easily overcome, and the function may
easily move down the general energy gradient. However, convergence requires that
the acceptance of poor solutions decreases as the simulation continues. This requires
that we introduce a cooling schedule whereby the `temperature' ¿ slowly decreases.
In generally concave functions, this means that the function will converge to the true
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solution rather directly, providing that the cooling schedule is su±ciently slow.

3.2 Strengths and Weaknesses of the Method

This method has several strengths. The ¯rst, and perhaps the most important, is its
ability to walk over and around peaks of di®erent heights and of di®erent widths with
the same stepsize. This technique is used in the Metropolis et al. Monte Carlo (for
entirely di®erent reasons), and can be used to simulate quantum tunnelling, perhaps
for obvious reasons. The method is also quite robust. With the correct mutation
capabilities, the function can reach many peaks from one starting position, and thus
can avoid being limited by its starting position. This means that it may start on one
hill, and eventually climb an adjacent hill. In fact, it may even climb down the other
side of that adjacent hill and climb up another hill.

The fundamental weakness with this method is that it requires, for solutions to
be unique, the energy landscape to be generally convex. Because of this constraint,
it is often times not a good method to use on many problems, which have more than
one comparable energy wells. Most functions that this method is used on are not
well understood, and so such an observation may not be made. The method is highly
dependant on the way that the vectors are mutated. It is possible for a vector which
can be signi¯cantly improved by a random mutation to never undergo that mutation
because the way that the mutations are done makes it impossibly unlikely for such a
mutation to occur. This is known as the encoding problem. Finally, the ¯nal solution
of a simulated annealing run is often times highly dependant on the initial vector
position and the cooling schedule. This would indicate a non-convex function, and
there is no way yet of overcoming this problem except to run the program from many
di®erent initial conditions.

4 Genetic Algorithms

4.1 De¯nition

Genetic algorithms are generalizations of natural genetic search mechanisms. In its
simplest form, a genetic algorithmmay be built over a ¯nite alphabet A = fa1; : : : ; ang
and using strings of length ` built using the alphabet A. This is a population-based
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search algorithm, and many of the concerns in using the genetic algorithm are those
found while using general population based search algorithms. We start with a pop-
ulation P , made up of many strings of length ` and built using the alphabet A. A
function known as the ¯tness function or the energy function maps each possible
string to a real number. Our objective is to ¯nd the string which maximizes or
minimizes (as the problem dictates) the ¯tness function.

There are three operators de¯ned to help us. The ¯rst is the mutation operator.
This operator randomly chooses one or more of the string positions and replaces the
current letter with a new letter from the alphabet. This serves as a search mechanism
which `¯nds' new information in the ¯tness function. The second is the crossover

operator. This operator chooses one or more of the letters in a word, and chooses two
elements of the population, and switches the chosen letters in the two elements. This
serves as a sorting operator, which sorts out the best information in the population
and stores it in a group of elements (a subpopulation). The third is the reproduction

operator. This serves as the `engine' that drives the method. This removes those
elements from the population that do not score as well, probabilistically, in favor of
the higher scoring elements.

4.2 Strengths and Weaknesses of the Method

Of all the methods discussed so far, the genetic algorithm is the most robust. In fact,
as mentioned above, it can even be shown to be equivalent to both of the methods
given above. This method is capable of passing over local minima and maxima at
varying degrees, depending on the way that the reproduction operator is encoded. The
search ability of the genetic algorithm is dictated by two operators. The mutation
operator introduces new information into the population. The crossover operator sorts
through this information, producing new elements with di®erent ways of combining
this information. These two operators perform the search very robustly because, when
the function is separable, that is when the function can be written as the sum of two
di®erent functions, each of which depend on di®erent subsets of the strings, these
di®erent subsets of strings can be e±ciently sorted. In this way, improvements due to
mutation in one part of the vector may be added to improvements due to a di®erent
mutation in another vector, and these would then produce a superior vector. Removal
of the inferior information from the population due to the reproduction operator can
be either strict or loose, or vary depending on a number of di®erent factors. The lack
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of rigidity of the method makes it powerful, while its fundamental operators make it
e®ective.

The genetic algorithm, while very powerful and robust, is limited by the encoding.
Once again, the concerns that cropped up when we were considering the simulated
annealing appear. (This is due to the fact that the simulated annealing is, in fact,
a genetic algorithm.) The e®ectiveness of the mutation operator can often times be
orders of magnitude smaller than that of another mutation operator working on the
same problem and population. Moreover, we stated that the crossover operator is
good at sorting information when the problem is separable. It is not true when the
problem is not separable. The combination of di±culties in both these operators can
lead to premature convergence, and non-competitive results. Finding a good encod-
ing for these operators is a subject of current research. The genetic algorithm is also
computationally dense. Like other population-based techniques, the genetic algorithm
requires a great deal of computation. Depending on the ¯tness function in question,
this computation can often times be expensive. However, once this computation is
done, computations such as population-based gradients, and encoding transforma-
tions may be carried out. It is beyond the scope of this synopsis to delve into these
techniques. It su±ces to say that the genetic algorithm's performance bene¯ts greatly
from these concerns.

It is worth noting that the genetic algorithm is also susceptible to the problem of
local maxima and minima, in certain encodings. As the genetic algorithm is also a hill-
climbing method in a particular view, it cannot overcome several of the same barriers
that other hill-climbing methods cannot. However, it is capable of searching, very
quickly, the entire hypercube encasing all of its elements. This makes its limitation
to a particular hill only true if that particular hill encompasses the entire hypercube
that contains the population. By making this hypercube very large, the requirement
that the entire hill be large may be made, and this can often times lead to unique
solutions if the `good' solutions are spatially bounded.

5 Conclusions

Stochastic methods were developed in order to deal with the problem of `rugged ¯tness
landscapes'. The methods succeed where other methods fail because they are capable
of avoiding many of the traps encountered by other methods. However, this does not
mean that these methods are immune to these pitfalls. The directed random walk
is capable of ¯nding precise solutions to the problem, but the solution obtained is
very dependent on the initial conditions of the algorithm, and on the step size. The
simulated annealing is capable of walking up, down, and over peaks in order to ¯nd
new peaks. This makes it less limited by locality problems. However, it is usually
only robust in its solution if the function is convex, and this makes it dependant on
initial conditions. Also because it uses only one solution for its search, it cannot
take advantage of population-based information. Simulated annealing also requires
a cooling schedule, and it is not always clear what this should entail. Finally, the
genetic algorithm is quite robust, and can be made to run the same calculations as
the random walk and simulated annealing searches. However, it is susceptible (to a
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smaller degree) to locality problems, and to encoding problems.
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