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Abstract. It is believed that the second phase of the Baldwin effect is
basically governed by the cost of learning. In this paper we argue that
when learning takes place the fitness landscape undergoes a modification
that might block the Baldwin effect even if the cost of learning is high.
The argument is that learning strategies will bias the evolutionary pro-
cess towards individuals that genetically acquire better compared to in-
dividuals that genetically behave better. Once this process starts the
probability of experiencing the Baldwin effect decreases dramatically,
whatever the learning cost. A simulation with evolving learning indi-
viduals capable of communication is set to show this effect. The set of
acquired behaviors (culture) competes with the instinctive one (genes)
giving rise to a co-evolutionary effect.

1 Introduction

1.1 The Baldwin effect

In the context of the debate between Darwinism and Lamarckism, James Mark
Baldwin (1896) proposed that phenotypic plasticity might be regarded as “a new
factor in evolution” [1]. Phenotypic plasticity allowing adaptation, would smooth
the fitness landscape increasing the efficiency of the evolutionary process [2, 3].
However, phenotypic plasticity has inherent costs associated with the training
phase in terms of energy, time and eventual mistakes. For these reasons, in a
second phase, evolution may find a way to achieve the same successful behaviors
without plasticity.

Thus the Baldwin effect has two phases. During the first phase, adapting in-
dividuals can, in same cases, acquire behaviors that help them achieving higher
fitness scores. But because of the costs of adaptation, there is an evolutionary
advantage towards the discovery of equivalent instinctive behaviors. Thus in this
second phase, a behavior that was once learned may eventually become instinc-
tive (see also below and [1–5]) In computer science, the phenotypic plasticity is
analog to a local search strategy. The evolutionary process and the local search
may be used in combination, often achieving higher efficiency than either of the
methods alone [5, 6].
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There are three basic requirements for the second phase to take place. First
there must be a cost for the local search. In this way, the evolutionary process
will have a reason (in terms of inclusive fitness) for the genetic assimilation to
take place. This also means that in some settings, i.e. in a fast changing environ-
ment, genetic assimilation will never take place. With those setting, plasticity
would be the optimal strategy. We will refer to this characteristic by Assimilation

Advantage.
Also, genetic assimilation requires for the optimal strategy, acquired first

through local search, to be expressible by the genotype. This might be impossible
under some genotype-phenotype mapping strategies in which, the phenotype
plasticity is required as part of the developmental process 1. We will refer to this
characteristic as Genotypic Expressibility.

In addition, the probability of the assimilation depends on the distance be-
tween the genotype using plasticity and the one not using it. The distance would
be measured using the metric imposed by the genetic operators. A small distance
is possible if there is a strong neighborhood correlation in the transformation
from genotypic to phenotypic space. Where the distance is too high, the probabil-
ity of genetic assimilation could be so little to be considered actually impossible.
We will refer to this as Genotypic-Phenotypic Correlation

1.2 How learning effects evolution

In a now famous paper, Hinton and Nowlan [6] proved that with the help a local
search mechanism it is possible to speed up evolution in a hard fitness landscape.

In the Hinton and Nowlan example, the adaptive solution is ideally placed
in the middle between the lowest fitness solutions and the single high one, hence
smoothing the fitness landscape. Adaptation in this case is a step towards the
discovery of the best non-adaptive solution. The same considerations apply to
other examples such as [2, 8] among others.

In these cases adaptation success is not affected by any genetically coded
learning strategy. We argue that the search for good learning strategies might
distract the evolutionary process from the discovery of fit non-adaptive behav-
iors. In other words, co-evolution of learning and the non-learning strategies
modifies the fitness landscape. The quality of these modifications is an other
factor that governs the second phase Baldwin effect.

2 Learning, culture and fitness

Learning can be seen as the process of acquiring behaviors. The difficulty and
time lost acquiring behaviors constitute a cost of learning. We have to introduce a
clear distinction between instinctive and acquired behaviors. Instinctive are those
behaviors that emerge steadily and directly from the genotype, while acquired
ones are those that emerge through the interaction with the environment.

1 Like in the development of the retina [7]
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If we consider individuals belonging to a population sharing the same geno-
type, their individual fitness can be considered the sum of shared population fit-
ness (PopFit), fitness change due to local environmental characteristics (LEFit)
and fitness change due to individual specific behavior (IFit): Fitness = PFit +
LEFit + IF it.

The LEFit can be considered as noise and could be absent in ideal experi-
mental settings (all individuals having the exact same initial conditions or long
fitness tests). Fitness deriving from acquired behaviors (IFit) constitutes the
value of the learning process and incorporates the cost of learning.

When PFit � IFit, the advantage for plasticity is negligible. Otherwise ac-
quired behaviors may provide an advantage to genotypically similar individuals
(see figure 1). In this case, there is strong evolutionary pressure towards the
discovery of better acquisition mechanisms.
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Fig. 1. Two similar individuals (A and B), share similar genotype and PFit values. By
acquiring different behaviors they achieve different fitness scores. On the other side,
two genotypically different individuals (A and C) reach the same fitness values because
the same acquired behavior shadows the instinctive ones.

2.1 Memes

As genes form the transmission medium of biological systems, memes [9] do for
acquired behaviors. Memes will be considered behavioral information blocks2.
Basically memes are those things that “leap from brain to brain” [9] carrying a
behavioral content. To strike a comparison to human society, we will call the set
of transmittable behaviors Culture.

3 Simulation details

We set up a population of learning individuals. Each individual/agent is equipped
with a single layer neural network (NN) subject to an evolutionary process and a

2 Memes usually have a wider definition, but considering only the behavioral ones, the
discussion is simplified
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classifier-like system (memes), see Figure 3. Agents perceive resources and other
bots from all tiles in a hamming distance of 2 (see figure 2), this constitutes the
input vector.

The NN produces an output vector with the expected reinforcement for each
of the possible actions: don’t move, go north, west, south and east.

Memes remind the agent the reinforcement experienced in the past. They are
constituted by an input pattern P , an action a and an expected reinforcement
R. If the pattern P matches the present input vector, then the meme replaces
the output of the genetically evolved NN with R for the given action a. Basically
the meme can recognize a particular sensory context (P ) and reminds the agent
that in the past he had performed a certain action (a) and the action yielded a
given reinforcement (R).

The four expected reinforcements, generated by the NN and eventually mod-
ified by the memes, are used to stochastically select the action performed by the
agent.

Agents score fitness by collecting resources spread at random in a toroidal
map. Each resource type gives a fixed amount of reinforcement. If an agent does
not move or collides with another agent it receives a small negative reinforce-
ment3. Fitness is the sum of all reinforcements received over a fixed number of
iterations. Agents undergo a steady state selection with a replacement fraction
of 25%. Surviving individuals keep their memes. The offspring is placed in the
proximity of a parent.

Fig. 2. Simulated Envi-
ronment. The vision range
of agent 1 is printed in
a thick line. Two dif-
ferent types of resources
are present. The resources
represented by a darker
color give a fixed neg-
ative reinforcement and
fitness value, while the
others give a fixed posi-
tive value. Resource types
never change value and
when consumed are regen-
erated on a random tile.
Newly generated agents
are placed in proximity of
a parent.
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3 These penalties were added to speed up the evolutionary process
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Fig. 3. Agent controller. The geneti-
cally evolved NN and the acquired cul-
ture are activated in parallel. When a
pattern P matches the current input,
the corresponding meme is activated
(encircled in the figure). Its expected
reinforcement R4 replaces the NN out-
put for action a4. The performed ac-
tion is selected stochastically giving a
higher probability to higher expected
reinforcements.
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3.1 Cultural evolution

An agent culture is built by a certain number of memes (20 at maximum in these
simulations). Memes can be acquired in two different ways.

First by transmission, whenever two individuals are next to each other. Every
iteration a fixed number of memes can be transmitted. These memes are prob-
abilistically selected from the transmitter culture according to their estimated
value. The number of memes transmitted when two agents are in contact (com-
munication speed, CS) is varied from 0 (no transmission) to 20 (all the meme
pool is transmitted in a single iteration). As the CS increases, the agents can
acquire fit behaviors earlier during the fitness evaluation, hence the Assimilation

Advantage is reduced.

The second way is through operant conditioning.

Operant conditioning is a learning mechanism that has been observed in a
variety of animals. When an animal experiences a reinforcement, its brain tries
to explain what caused the reward. The effect is that the behaviors that are
thought to be responsible of the reinforcement are rewarded. Learning appears
to build a relationship between behavior and reinforcement based on two gen-
eral assumptions: the behavior that steadily is followed by reinforcement is held
responsible for it, behavior and reward must fall into a certain time window.
These assumptions have strong biological and psychological support [10–12].

Whenever an agent experiences an unexpected reinforcement a meme is gen-
erated from this situation. The value of the meme changes as it is used, increasing
when it helps predict the expected reinforcement. This inhibition/enhancement
is an explicit measure of the memes fitness, and is used to drive the memetic
evolutionary process. Unfit memes can be explicitly identified and dropped, fit
ones will proliferate through transmission and new variants will eventually be
generated.

Memes variants are generated by merging, a stochastic generalization mech-
anism. Merging is the memetic equivalent of crossover and mutation in genes.
It can occur if two memes code the same action and expected reinforcement.
In this case, the merging probability is proportional to the hamming distance
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between the memes input matching patterns. Those parts that are different in
the two input matching patterns are replaced by don’t care symbols.

Merging is a weak simplification of a boolean function:
given (P1∧a 7→ R) and (P2∧a 7→ R) then with probability ∼ dH(P1, P2) replace
them with ((P1 ~ P2) ∧ a 7→ R); where Pi ∈ pattern, a ∈ action, R ∈ reinforce-
ment, dH is the Hamming distance, and ~ is a bitwise operator ~(bi, bj) = { bi

if bi = bj , don’t care if bi 6= bj }.
If it does not merge, a meme can be added only if the meme pool size does

not exceed the maximum. If the maximum is exceeded a meme is dropped, the
less general being dropped with higher probability. Because merging of memes
can sometimes produce unfit memes, if the expected reward does not match the
one experienced, the meme responsible for the error is removed.
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Fig. 4. run showing the Baldwin effect, convergence to the MG attractor. The memetic
contribution to the fitness is at first high. As it decreases, the memetic behavior is
partially assimilated in the genes.

4 Results

Agents can transmit some of their memes whenever their are next to each other.
The number of memes transmitted when two agents are in contact (communi-
cation speed, CS) is varied from 0 (no transmission) to 20 (all the meme pool is
transmitted in a single iteration).

As the CS increases, the agents can acquire fit behaviors earlier during the
fitness evaluation, hence the Assimilation Advantage is reduced.

It is possible to evaluate the amount of fitness generated through acquired
behaviors by stopping the simulation every generation and recording how much
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Fig. 5. run not showing the Baldwin effect, convergence to the M attractor. Genetic
assimilation does not take place.

fitness the agents score with and without the help of memes. It is so possible
to plot how much the memes contribute to the total fitness score (memetic
contribution). Figures 4 and 5 show three different plots. The first one is a
state diagram, memetic contribution vs. fitness, showing the trajectory that a
population undergoes during evolution. The second one displays the amount of
average fitness scored by the population, and the third the quantity of memetic
contribution.

The state diagram is particularly useful because it shows the attractors of the
evolutionary process. Figure 4 shows the attractor for a typical population that
went through the second phase of the Baldwin effect, figure 5 one that doesn’t
show it.

In almost every setting two attractors, such as those in figure 4 and 5 are
present. The two attractors show the convergence basin of different strategies.
The first relies both on memes and genes (MG) with the instinctive behaviors
capable of scoring some fitness. The second relies on memes only (M).

It is then understandable that while the dynamic towards MG is associated
to the second phase of the Baldwin effect, the path to M is not.

Figure 6 shows with which frequency a population falls in the MG attractor.

One would expect to experience a decreasing number of populations falling
in the MG attractor as CS is being increased. In fact, increasing CS reduces the
cost of learning and the advantage for genetic assimilation. Instead the frequency
decreases to a minimum and then increases again. This proves that the Baldwin
effect is influenced by other factors apart the cost of learning.
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Fig. 6. Populations falling into the MG attractor with each CS setting

4.1 Different strategies

An agent can acquire fit behaviors in three possible ways: evolving the proper
NN, building memes by operant conditioning, and acquiring memes from other
agents. CS can affect only the latter.

Being born next to its parent without any meme, an agent is faced with a
dilemma. It can either try:

1. first receive as many memes as possible from other agents, and then exploit
them to score fitness

2. start scoring fitness immediately and acquire memes by itself

Either choice requires a genetically coded strategy, a social one in the first case,
and an asocial one in the latter. The social strategy, scoring fitness mainly by
memes, is the one that converges to M. MG is instead the attractor of the asocial
strategy.

CS does not only change the cost of learning, modulating the acquisition
speed. It also changes the nature of the two strategies M and MG.

As CS decreases the social strategy becomes more difficult. In other words it
requires a more committing strategy and a more specialized genotype. In fact, it
must strongly avoid any asocial behavior, otherwise it will risk to interrupt the
acquisition phase. On the other side when CS is maximal, the parent’s culture is
acquired in a single shot. The social strategy is achieved simply by being born. In
this case M and MG will be maximally overlapping because an asocial individual
will receive the same amount of culture as a social one.

The difference between the two strategies determines the probability of mov-
ing from one to the other. The higher the difference the lower the probability.

A second aspect is that the quality of culture (the amount of fitness it can
guarantee) is not fixed. As genes evolve every generation, memes do every it-
eration. If CS is zero, agents cannot share their memes and the culture quality
improves in a given generation but not across generations. If CS is high, even if
an agent dies some of its memes might survive and continue evolving on other
hosts.
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The fitness advantage of a strategy or the other, is subjected by the actual
level of cultural evolution. When many agents do not socialize, culture improves
slowly and the social strategy is less attractive. With many social agents, cultural
evolution is faster and offers a greater prize for adaptivity.

X
 X
 X


M


M


M


MG
MG
 MG


Low culture

quality, low CS


High culture

quality, high CS


a
d
a
p
t
i
v
i
t
y


fitness
 fitness
 fitness


A
 B
 C


Fig. 7. effects of CS to evolvability

As the cultural quality evolves or fails to evolve, the fitness landscape changes.
If cultural evolution proceeds steadily, the M strategies will be able to dig into
their attractor increasing their stability. Still, if MG lies too close to the M

attractor, this is insufficient to prevent the second phase of the Baldwin effect.
Figure 7 summarize these concepts.

Figure 7A With low CS, the quality of culture is not enough so that the asocial
strategy MG is more convenient (the thicker line indicates a higher transition
probability).

Figure 7B CS increases and the M attractor becomes stronger. As the attrac-
tors are far away in genotypic space, the probability to move from M to
MG is very low. The frequency of the second phase of the Baldwin effect is
minimal.

Figure 7C CS continues to increase, the social and asocial strategy are very
similar and passage from M to MG is more probable.

5 Conclusions

We have provided an example in which genetic assimilation cannot be explained
by the Baldwin effect alone.

It is suggested that the Baldwin effect considers cases in which the genotype
cannot modify directly the adaptation mechanism. Under these conditions, the
genetic search can evolve only the non-adaptive part of the phenotype, and only
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that can provide a continuous fitness improvement. Examples for this case can
be found in [6, 2, 8, 13].

We argue that the adaptive behavior must be somehow expressed in the
genotype, so that evolution affects also the adaptation mechanism and its quality.

Evolution can than proceed in at least two directions, one towards the dis-
covery of better adaptive strategies (in this case the social behavior), the second
towards the discovery of fitter instinctive behaviors (the asocial behavior).

The state of the evolution of adaptivity affects both the cost of learning and
the correlation between genotype and phenotype. This can cause that both the
cost of learning and the correlation decrease, so that the probability of observing
the Baldwin effect is not a monotonic function.

Even in a static environment4 as the one provided in this paper, the fitness
landscape will undergo a dynamic. Under these circumstances, genetic assimila-
tion is ruled more by the quality of the fitness landscape dynamic than by the
assimilation advantage.

The simulations presented in this paper are very computational expensive
and have been run on ClustIS5 cluster.
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