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where this equation was obtained from Condition (7.34) by
dividing by ¢. The first thing to notice is that the multi-
plier on r is a fraction with denominator p — 1, since ¢
evenly divides ¢(p— 1) — {e¢(p — 1) }4. Thus, we need only
round d/¢ off to the nearest multipleof 1/(p—1)and divide
(mod p— 1) by

¢ = C(p — 1) — {C(p - 1)}‘] (740)

q
to find a candidate ». To show that this experiment need
only be repeated a polynomial number of times to find the
correct r requires only a few more details. The problem is
again that we cannot divide by a number which is not rela-
tively prime to p — 1.

For the general case of the discrete log algorithm, we
do not know that all possible values of ¢’ are generated
with reasonable likelihood; we only know this about one-
tenth of them. This additional difficulty makes the next step
harder than the corresponding step in the two previous al-
gorithms. If we knew the remainder of » modulo all prime
powers dividing p — 1, we could use the Chinese remain-
der theorem to recover r in polynomial time. We will only
be able to find this remainder for primes larger than 20, but
with a little extra work we will still be able to recover r.

What we have is that each good (e, d) pair is generated
with probability at least .137p/q > 1/16¢, and that at least
a tenth of the possible ¢’s are in a good (¢, d) pair. From
Eq. (7.40), it follows that these ¢’s are mapped from ¢/q to
¢'/(p — 1) by rounding to the nearest integer multiple of
1/(p — 1). Further, the good ¢’s are exactly those in which
e/qisclosetoc/(p — 1). Thus, each good ¢ corresponds
with exactly one ¢’. We would like to show that for any
prime power p;"* dividing p — 1, a random good ¢’ is un-
likely to contain p;. If we are willing to accept a large con-
stant for the algorithm, we can just ignore the prime powers
under 20; if we know » modulo all prime powers over 20,
we can try all possible residues for primes under 20 with
only a (large) constant factor increase in running time. Be-
cause at least one tenth of the ¢’s were ina good (¢, d) pair,
at least one tenth of the ¢’’s are good. Thus, for a prime
power p3*, a random good ¢’ is divisible by p;** with proba-
bilityatmost 10/p;". 1f we have ¢ good ¢'’s, the probability
of having a prime power over 20 that divides all of them is
therefore at most

(7.41)

where the sum is over all prime powers greater than 20 that
divide p — 1. This sum (over all integers > 20) converges
for t = 2, and goes down by at least a factor of 2 for each

10

further increase of ¢ by 1; thus for some large constant ¢ it
is less than 1/2.

Recall that each good ¢’ is obtained with probability at
least 1/16¢ from any experiment. Since there are ¢/10
good ¢’’s, after 160¢ experiments, we are likely to obtain
a sample of ¢ good ¢’’s chosen equally likely from all good
¢’’s. Thus, we will be able to find a set of ¢’’s such that all
prime powers p;** > 20 dividing p — 1 are relatively prime
to at least one of these ¢’’s. For each prime p; less than 20,
we thus have at most 20 possibilities for the residue mod-
ulo p;**, where «; is the exponent on prime p; in the prime
factorization of p — 1. We can thus try all possibilites for
residues modulo powers of primes less than 20: for each
possibility we can calculate the corresponding = using the
Chinese remainder theorem, and then check to see whether
it is the desired discrete logarithm.

This algorithm does not use very many properties of Z,,,
S0 We can use the same algorithm to find discrete logarithms
over other fields such as Z,~. What we need is that we
know the order of the generator, and that we can multiply
and take inverses of elements in polynomial time.

If one were to actually program this algorithm (which
must wait until a quantum computer is built) there are many
ways in which the efficiency could be increased over the ef-
ficiency shown in this paper.
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Note that we now have two moduli to deal with, p—1 and q.
While this makes keeping track of things more confusing,
we will still be able to obtain » using a algorithm similar to
the easy case. The probability of observing a state ¢, d, )
with y = ¢* (mod p) is, almost as before,

1 ori
—_— exp | = (ac+ bd 7.28
(r—1)q Z,: ( i )) (7.28)
a—rb=k
where the sum is over all («,b) such that a — rb
k (mod p — 1). We now use the relation

a=brtk—(p—1) foﬂ (7.29)

and substitute in the above expression to obtain the ampli-
tude

m’fexp (%”(brc—I—kC-l-bd—c(P_ 1) V}%ﬂ >)'

b=0

(7.30)
The absolute value of the square of this amplitude is
the probability of observing the state |c, d, g* (mod p)>.
We will now analyze this expression. First, a factor of
exp(2mike/q) can be taken out of all the terms and ignored,
because it does not change the probability. Next, we split
the exponent into two parts and factor out b to obtain

1 = 27 27
where
U = bT,
T = rc+d- pil{c(p -1}y, (7.32)

and

Vo= (plfl—{%J){c(p—l)}q. (7.33)

Here by {z}, we mean the residue of z (mod ¢) with
—q/2 < {z}; < ¢/2. We will show that if we get enough
“good” outputs, then we still can deduce », and that fur-
thermore, the chance of getting a “good” output is constant.
The idea is that if

T}l = fre+d-

. 1
perielp = Dy —jg| < 5, (734
where j is the closest integer to 7'/¢, then as b varies be-
tween 0 and p — 2, the phase of the first exponential term
in Eq. (7.31) only varies over at most half of the unit circle.
Further, if

He(p — D}yl < /20, (7.35)

then |V] is always at most ¢/20, so the phase of the sec-
ond exponential term in Eqg. (7.31) never is farther than
exp(wi/10) from 1. By combining these two observations,
we will show that if both conditions hold, then the contribu-
tion to the probability from the corresponding term is sig-
nificant. Furthermore, both conditions will hold with con-
stant probability, and a reasonable sample of ¢’s for which
Condition (7.34) holds will allow us to deduce r.

We now give a lower bound on the probability of each
good output, i.e., an output that satisfies Conditions (7.34)
and (7.35). We know that as b ranges from 0 to p — 2, the
phase of exp(27il//¢) ranges from 0 to 27 where

—9
w="2

(”’ +d—o{elp =Dy - jq) (7.36)

and j is as in Eq. (7.34). Thus, the component of the am-
plitude of the first exponential in Eq. (7.31) in the direction

exp (wilV) (7.37)

is at least cos(27 |W/2 — Wb/(p — 2)|). Now, by Condi-
tion (7.35), the phase can vary by at most #7/10 due to the
second exponential exp(27iV//q). Applying this variation
in the manner that minimizes the component in the direc-
tion (7.37), we get that the component in this direction is at
least cos(27 |W/2 — Wb/(p — 2)| + =/10). Since p < g¢,
and from Condition (7.34), |IW| < 1/2, putting everything
together, the probability of arriving at a state |¢, d, y) that
satisfies both Condition (7.34) and (7.35) is at least

Tm/20 2
(lz/ cost dt) , (7.38)
97 Jr/10

or at least .137/¢%.

We will now count the number of pairs (e, d) satisfying
Conditions (7.34) and (7.35). The number of pairs (¢, d)
such that (7.34) holds is exactly the number of possible ¢’s,
since for every c there is exactly one d such that (7.34) holds
(round off the fraction to the nearest integer to obtain this
d). The number of ¢’s for which (7.35) holds is approxi-
mately ¢/10. Thus, there are ¢/10 pairs (¢, d) satisfying
both conditions. Multiplying by p — 1, which is the number
of possible y’s, gives approximately pq/10 states |e, d, y).
Combining this calculation with the lower bound on the
probability of each good state gives us that the probabil-
ity of obtaining any good state is at least p/80¢, or at least
1/160 (since ¢ < 2p).

We now want to recover » from a pair ¢, d such that

L d rf Adp=Dly 1 e
Py ( p—1 )SQq (mod 1),

q q
(7.39)
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Figure 1: The probability of observing values of ¢ between 0 and 239, given ¢ = 240 and r = 13, using the quantum algorithm described
for factoring. With high probability the observed value of ¢ is near an integer multiple of 240/13.

i.e., if there is a d such that

_r r
— <re—dg< . .24
5 Sre dg < 5 (6.24)
Dividing by r¢ and rearranging the terms gives
d 1
Co% < 4 (6.25)
S

We know ¢ and ¢q. Because ¢ > 2n?, there is at most one
fraction d/r with » < n that satisfies the above inequal-
ity. Thus, we can obtain the fraction d/r in lowest terms
by rounding ¢/ to the nearest fraction having a denomina-
tor smaller than . This fraction can be found in polyno-
mial time by using a continued fraction expansion of ¢/q,
which finds all the best approximations of ¢/q by fractions
[17, Chapter X].

If we have the fraction d/r in lowest terms, and if d hap-
pens to be relatively prime to », this will give us ». We will
now count the number of states |c, * (mod n)) which en-
able us to compute r in this way. There are ¢(r) possible
values for d relatively prime to », where ¢ is Euler’s ¢ func-
tion. Each of these fractions d/r is close to one fraction ¢/q
with |¢/q — d/r| < 1/2q. There are also r possible val-
ues for z*, since » is the order of z. Thus, there are r¢(r)
states |c, 2* (mod n)) which would enable us to obtain r.
Since each of these states occurs with probability at least
1/3r2, we obtain » with probability at least ¢(r)/3r. Us-
ing the theorem that ¢(r)/r > k/loglogr for some fixed
k [17, Theorem 328], this shows that we find r at least a

k/loglogr fraction of the time, so by repeating this ex-
periment only O(loglog ) times, we are assured of a high
probability of success.

Note that in the algorithm for order, we did not use many
of the properties of multiplication (mod n). In fact, if we
have a permutation f mapping the set {0,1,2,...,n — 1}
into itself such that its kth iterate, f(*)(a), is computable in
time polynomial inlog n and log &, the same algorithm will
be able to find the order of an element « under f, i.e., the
minimum r such that /") (a) = a.

7 Discretelog: the general case

For the general case, we first find a smooth number ¢
such that ¢ is close to p, i.e., with p < ¢ < 2p (see Lemma
3.2).

Next, we do the same thingas in the easy case, thatis, we
choose a and b uniformly (mod p — 1), and then compute
g%x~" (mod p). This leaves our machine in the state

p—2p—-2

ﬁZZ ja,b,9%™" (mod p)) .

a=0 p=0
As before, we use the Fourier transform A, to send a —
cand b — d (mod ¢), with amplitude %exp(?ﬂ'i(ac +
bd)/q), giving us the state

(7.26)

p—2 ¢—1

(p—ll)q Z Z exp (2 (ac+bd)) |e, d, g*e~" (mod p)) .

a,b=0 ¢,d=0

)

)

(7.27)



for quantum algorithms. Although Bernstein and Vazirani
[4] show that the number of bits of precision needed is
never more than the logarithm of the number of computa-
tional steps a quantum computer takes, in some algorithms
it could conceivably require less. Interesting open ques-
tions are whether it is possible to do discrete logarithms or
factoring with less than polynomial precision and whether
some tradeoff between precision and time is possible.

6 Factoring

The algorithm for factoring is similar to the one for the
general case of discrete log, only somewhat simpler. |
present this algorithm before the general case of discrete
log so as to give the three algorithms in this paper in order
of increasing complexity. Readers interested in discrete log
may skip to the next section.

Instead of giving a quantum computer algorithm to fac-
tor n, we will give a quantum computer algorithm for
finding the order of an element z in the multiplicative
group (mod n); that is, the least integer » such that " =
1 (mod n). There is a randomized reduction from factor-
ing to the order of an element [24].

To factor an odd number n, given a method for comput-
ing the order of an element, we choose a random z, find
the order r, of x, and compute ged(z"=/? — 1,n). This
fails to give a non-trivial divisor of » only if » . is odd or if
2"=/? = —1 (mod n). Using this criterion, it can be shown
that the algorithm finds a factor of » with probability at least
1—1/2%=1 where k is the number of distinctodd prime fac-
tors of n. This scheme will thus work as long as » is not a
prime power; however, factoring prime powers can be done
efficiently with classical methods.

Given  and n, to find » such that 2™ = 1 (mod n), we
do the following. First, we find a smooth ¢ with 2n? < ¢ <
4n?. Next, we put our machine in the uniform superposi-
tion of states representing numbers a (mod ¢). This leaves
our machine in state

1
7 > a). (6.16)
a=0

As in the algorithm for discrete log, we will not write n, «,
or ¢ in the state of our machine, because we never change
these values.

Next, we compute z* (mod n). Since we keep = and «
on the tape, this can be done reversibly. This leaves our ma-
chine in the state

—

)

1
PvE) la, * (mod n)) . (6.17)

I
=)

a

We then perform our Fourier transform A, mapping a — ¢
with amplitude > exp(27iac/q). This leaves our ma-
chine in state
11

- Z exp(2wiac/q) |c, * (mod n)) . (6.18)
q a=0

Finally, we observe the machine. It would be sufficient
to observe solely the value of ¢, but for clarity we will as-
sume that we observe both ¢ and z* (mod n). We now
compute the probability that our machine ends in a particu-
lar state |c, z¥ (mod n)>, where we may assume 0 < k <
r. Summing over all possible ways to reach this state, we
find that this probability is

1 2

- Z exp(2miac/q)| . (6.19)
q

a:rr=xk

where the sum is over all a, 0 < a < ¢, such that ¢ =
z* (mod n). Because the order of z is , this sum is equiv-
alently over all « satisfying a = & (mod r). Writing a =
br + k, we find that the above probability is

| Wa=E=1y/7) :

- Z exp(2mi(br + k)e/q)| . (6.20)
q b=0

We can ignore the term of exp(2mike/q), as it can be fac-
tored out of the sum and has magnitude 1. We can also
replace rc¢ with {rc},, where {rc}, is the residue which
is congruent to r¢ (mod ¢) and is in the range —¢/2 <
{rcty < ¢/2. This leaves us with the expression

| La=k=1y/n) ’

- Z exp(2mib{rc}y/q)| - (6.21)
q b=0

We will now show that if {rc}, is small enough, all the am-
plitudes in this sum will be in nearly the same direction,
giving a large probability. If {rc}, is small with respect to
q, we can use the change of variables ¢t = b/4 and approx-
imate this sum with the integral

L(g—k-1)/r] ?
/ exp(2mi{re} t)dt| . (6.22)
0

If |{rc},| < r/2, this quantity can be shown to be asymp-
totically bounded below by 4/(x%r?), and thus at least
1/3r2. The exact probabilities as given by Equation (6.21)
for an example case are plotted in Figure 1.

The probability of seeing a given state |c, 2* (mod n))
will thus be at least 1/3r2 if

T r
7 S {T’C}q S 5, (623)



in polynomial time on a quantum machine. This leaves the
machine in state

p—2

ﬁ Z exp (pzi”l (ac—i—bd)) |c, d, g%z~ (mod p)> .
a,b,c,d=0

UGy

(4.13)
We now compute the probability that the computation ends
with the machine in state |c, d, y) with y = ¢* (mod p).
This probability is the absolute value of the square of the
sum over all ways the machine could produce this state, or

2

ﬁ Z exp (1)27_”1 (ac + bd)) , (4.14)

a,b
a—rb=k

where the sum is over all @,b satisfying a — rb =
k (mod p—1). This conditionarises from the fact that com-
putational paths can only interfere when they give the same
y = g°~"" = ¢* (mod p). We now substitute the equation
a = k + rb (mod p — 1) in the above exponential. The
above sum then reduces to

%)2 pz_f exp (pzfll (ke+ b(d+ rc)))

(p o b=0

(4.15)

However, if d+rc # 0 (mod p — 1) the above sum is over
a set of (p — 1)** roots of unity evenly spaced around the
unit circle, and thus the probability is 0. If d = —rc the
above sum is over the same root of unity p — 1 times, giv-
ing (p—1)e?™k</(r=1) so the probabilityis 1/(p—1)2. We
can check that these probabilities add up to one by count-
ing that there are (p — 1)? states |e, —re, y) since there
are p — 1 choices of ¢ (mod p — 1) and p — 1 choices of
y # 0 (mod p).

Our computation thus produces a random ¢ (mod p—1)
and the correspondingd = —rc¢ (mod p—1). Ifcand p—1
are relatively prime, we can find » by division. Because
we are choosing among all possible ¢’s with equal proba-
bility, the chance that ¢ and p — 1 are relatively prime is
é(p — 1)/(p — 1), where ¢ is the Euler ¢-function. It is
easy to check that ¢(p — 1)/(p — 1) > 1/log(p). (Actu-
ally, from [17, Theorem 328], liminf ¢(p — 1)/(p — 1) ~
e~7/loglogp.) Thus we only need a number of experi-
ments that is polynomial in log p to obtain » with high prob-
ability. In fact, we can find a set of ¢’s such that at least one
is relatively prime to every prime divisor of p — 1 by re-
peating the experiment only an expected constant number
of times. This would also give us enough information to
obtain r.

5 A noteon precision

The number of bits of precision needed in the ampli-
tude of quantum mechanical computers could be a barrier
to practicality. The generally accepted theoretical divid-
ing line between feasible and infeasible is that polynomial
precision (i.e., a number of bits logarithmic in the problem
size) is feasible and that more is infeasible. This is because
on a quantum computer the phase angle would need to be
obtained through some physical device, and constructing
such devices with better than polynomial precision seems
unquestionably impractical. In fact, even polynomial pre-
cision may prove to be impractical; however, using this as
the theoretical dividing line results in nice theoretical prop-
erties.

We thus need to show that the computations in the pre-
vious section need to use only polynomial precision in the
amplitudes. The very act of writing down the expression
exp(2miac/(p—1)) seems to imply that we need exponen-
tial precision, as this phase angle is exponentially precise.
Fortunately, this is not the case. Consider the same ma-
trix A,_; with every term exp(27iac/(p— 1)) replaced by
exp(2wiac/(p — 1) £ wi/20). Each positive case, i.e., one
resulting in d = —re, will still occur with nearly as large
probability as before; instead of adding p — 1 amplitudes
which have exactly the same phase angle, we add p — 1 am-
plitudes which have nearly the same phase angle, and thus
the size of the sum will only be reduced by a constant fac-
tor. The algorithmwill thus give a (¢, d) withd = —rc with
constant probability (instead of probability 1).

Recall that we obtain the matrix A,_; by multiplying at
most log p matrices A,,. Further, each entry in A,_; isthe
product of at most log p terms. Suppose that each phase an-
gle were off by at most ¢/ logp in the A,,’s. Then in the
product, each phase angle would be off by at most ¢, which
is enough to perform the computation with constant proba-
bility of success. A similar argument shows that the mag-
nitude of the amplitudes in the A,, can be off by a polyno-
mial fraction. Similar arguments hold for the general case
of discrete log and for factoring to show that we need only
polynomial precision for the amplitudes in these cases as
well.

We still need to show how to construct A,, from con-
stant size unitary matrices having limited precision. The ar-
guments are much the same as above, but we will not give
them in this paper because, in fact, Bennett et al. [4] have
shown that it is sufficient to use polynomial precision for
any computation on a quantum Turing machine to obtain
the answer with high probability.

Since precision could easily be the limiting factor for
practicality of quantum computation, it might be advis-
able to investigate how much precision is actually needed



b= p1q1 + B=2,and ¢ = y1q1 + 2. Note the asymmetry in
the definitions of @, b and c.
We can now define C' and D:

0 if 9 ;é 61
C(a,b) = { L waafaaatBiPa(utl)  otherwise,
! (3.7
and
0 if By # 2
D(b,c) = { 11/2 whimiar—F1fzu otherwise.
4z
(3.8)

Itis easy to see that C'D(a, c¢) = C'(a, b)D(b, c) where b =
@2qy + 2 Since we need as = 5 and 5 = v, to ensure
non-zero entries in C'(a, b) and D(b, ¢). Now,

1 1 —
CD(a,c) — S wa1ﬁ2(12+ﬁlﬁz(u+ ) +B1v191—B1B2u
9, 95

_ 1 wa172(12+0z271(11+0z272

- ql 2

_ w(a142+a2)(71(11+72)

- 1/2

= L (3.9)
s0 C'D(a,c) = Aq(a,c).

We will now sketch how to rearrange the rows and
columns of C'to get the matrix B, A,,. The matrix C' can
be put in block-diagonal form where the blocks are indexed
by as = 1 (since all entries with a2 # 3; are 0). Let
u—+ 1 = tg2 (mod ¢q). Within a given block a3 = 31, the
entries look like

Vi Cla,b) =
= exp(2mi(a1 P8y + f152t)q2/q)
= exp(2mi(ay 4+ aat)B2/q1). (3.10)

wa1ﬁ2(12+ﬁlﬁz(u+1)

Thus, if we rearrange the rows within this block so that
they are indexed by o' = a1 + aat (modgqy), we
obtain the transformation o’ — 3 with amplitude
1/2 exp(2mia’ B2 /q1); that is, the transformation given

by the unitary matrix with the (o', 32) entry equal to
—L exp(2mia’ B2 /¢1), Which is Ay, . The matrix D can
q

silmilarly be rearranged to obtain the matrix @ql Ay,

We also need to show how to find a smooth ¢ that lies
between n and 2» in polynomial time. There are actually
smooth ¢ much closer to » than this, but this is all we need.
It is not known how to find smooth numbers very close to
n in polynomial time.

Lemma3.2 Given n, there is a polynomial-time algorithm
to find a number ¢ with n < ¢ < 2n such that no prime
power larger than clog ¢ divides ¢, for some constant ¢ in-
dependent of n.

Proof: To find such a ¢, multiply the primes 2 -3 -5 - 7 -
11---pg until the product is larger than n. Now, if this
product is larger than 2n, divide it by the largest prime that
keeps the number larger than n. This produces the desired
q. There is always a prime between m and 2m [17, The-
orem 418],s0 n < ¢ < 2n. The prime number theorem
[17, Theorem 6] and some calculation show that the largest
prime dividing ¢ is of size O(logn). |

Note that if we are using Coppersmith’s transformation
Ay using the 2%th roots of unity, we set ¢ = 2% where k =
[log,n] + 1.

4 Discretelog: the easy case

The discrete log problem is: given a prime p, a generator
¢ of the multiplicative group (mod p) and an « (mod p),
find an r such that ¢" = « (mod p). We will start by giv-
ing a polynomial-time algorithm for discrete log on a quan-
tum computer in the case that p — 1 is smooth. This algo-
rithm is analogous to the algorithm in Simon’s paper [29],
with the group Z% replaced by Z,_1. The smooth case is
not in itself an interesting accomplishment, since there are
already polynomial time algorithms for classical comput-
ers in this case [25]; however, explaining this case is easier
than explaining either the general case of discrete log or the
factoring algorithm, and as the three algorithms are similar,
this example will illuminate how the more complicated al-
gorithms work.

We will start our algorithm with «, ¢ and p on the tape
(i.e., in the quantum memory of our machine). We are try-
ing to compute » such that ¢” = » (mod p). Since we will
never delete them, z, ¢, and p are constants, and we will
specify a state of our machine by the other contents of the
tape.

The algorithm starts out by “choosing” numbers a and
b (mod p — 1) uniformly, so the state of the machine after
this step is

p—2p=2
— Z > la,b). (4.12)
a=05=0
The algorithm next computes g%z ~* (mod p) reversibly,
so we must keep the values @ and b on the tape. The state
of the machine is now

p—2p=2

ZZ|a,b,g x~

aObO

(mod p)) . (4.12)

What we do now is use the transformation A,_; to map
a — ¢ with amplitude ﬁexp(?ﬂ'iac/(p — 1)) and
b — d with amplitude v 1)1/2 exp(2mibd/(p — 1)). As
was discussed in the previous section, this is a unitary trans-
formation, and since p— 1 is smooth it can be accomplished



From results on reversible computation [3, 19, 31],
we can compute any polynomial time function
f(a) as long as we keep the input, a, on the ma-
chine. To erase « and replace itwith f(a) we need
in addition that f is one-to-one and that « is com-
putable in polynomial time from f(a); i.e., that
both f and f~! are polynomial-time computable.

Fact 2: Any polynomial size unitary matrix can be ap-
proximated using a polynomial number of ele-
mentary unitary transformations [10, 5, 33] and
thus can be approximated in polynomial time on a
quantum computer. Further, this approximation is
good enough so as to introduce at most a bounded
probability of error into the results of the compu-
tation.

3 Building unitary transformations

Since quantum computation deals with unitary transfor-
mations, it is helpful to be able to build certain useful uni-
tary transformations. In this section we give some tech-
niques for constructing unitary transformations on quan-
tum machines, which will result in our showing how to
construct one particular unitary transformation in polyno-
mial time. These transformations will generally be given
as matrices, with both rows and columns indexed by states.
These states will correspond to representations of integers
on the computer; in particular, the rows and columns will
be indexed beginning with 0 unless otherwise specified.

A tool we will use repeatedly in this paper is the follow-
ing unitary transformation, the summation of which gives
a Fourier transform. Consider a number a with 0 < a < ¢
for some ¢ where the number of bits of ¢ is polynomial. We
will perform the transformation that takes the state |} to the

state
1=

7 bz; |b) exp(2miab/q). (3.6)
That is, we apply the unitary matrix whose («, b)’th entry
is q% exp(2miab/q). This transformation is at the heart of
our algorithms, and we will call this matrix 4,. Since we
will use A, for ¢ of exponential size, we must show how
this transformation can be done in polynomial time. In fact,
we will only be able to do this for smooth numbers ¢, that
is, ones with small prime factors. In this paper, we will deal
with smooth numbers ¢ which contain no prime power fac-
tor that is larger than (log ¢)¢ for some fixed ¢. Itis also
possible to do this transformation in polynomial time for all
smooth numbers ¢; Coppersmith shows how to do this for
q = 2* using what is essentially the fast Fourier transform,
and that this substantially reduces the number of operations
required to factor [8].

If we know a factorization ¢ = qi1¢293--- ¢ Where
ged(g:, ¢;) = 1 and where & and all of the ¢; are of poly-
nomial size we will show how to build the transformation
A, in polynomial time by composing the A,,. For this, we
first need a lemma on quantum computation.

Lemma3.1 Suppose the matrix B is a block-diagonal
mn X mn unitary matrix composed of » identical unitary
m x m matrices B’ along the diagonal and 0’s everywhere
else. Suppose further that the state transformation B’ can
be done intime 7'( B”) on a quantum Turing machine. Then
the matrix B can be done in T'(B’) + (log mn)° time on a
guantum Turing machine, where ¢ is a constant.

We will call this matrix B the direct sum of n copies of B’
and use the notation B = &p,, B’. This matrix B is the
tensor product of B’ and I,,, where I, is the n x n identity
matrix.

Proof: Suppose that we have a number @ on our tape. We
can reversibly compute «; and «, from a where a =
may + «y. This computation erases « from our tape and
replaces it with «; and 2. Now «; tells in which block
the row « is contained, and « tells which row of the ma-
trix within that block is the row a. We can then apply B’ to
a2 to obtain 3 (erasing « in the process). Now, combin-
ing «; and - to obtain b = may + /- gives the result of
B applied to a (with the right amplitude). The computation
of B’ takes T'(B') time, and the rest of the computation is
polynomialinlogm + logn. |

We now show how to obtain A, for smooth ¢. We
will decompose A, into a product of a polynomial num-
ber of unitary transformations, all of which are performable
in polynomial time; this enables us to construct A, in
polynomial time. Suppose that we have ¢ = ¢1¢- with
ged(qi1, ¢2) = 1. What we will do is represent A, = C'D,
where by rearranging the rows and columns of /> we ob-
tain €, A,, and rearranging the rows and columns of C
we obtain P, A,, . Aslong as these rearrangements of the
rows and columns of C" and D are performable in polyno-
mial time (i.e., given row », we can find in polynomial time
the row ' to which it is taken) and the inverse operations
are also performable in polynomial time, then by using the
lemma above and recursion we can obtain a polynomial-
time way to perform A, on a quantum computer.

We now need to define C' and D and check that A, =
C'D. To define C' and D we need some preliminary def-
initions. Recall that ¢ = ¢1¢2 with ¢; and ¢, relatively
prime. Letw = exp(27i/q). Let u be the number (mod ¢)
such that « = 0 (mod ¢;) and u = —1 (mod ¢2). Such a
number exists by the Chinese remainder theorem, and can
be computed in polynomial time. We will decompose row
and column indices «, b and ¢ as follows: ¢ = a7 ¢s + a3,



toring, is in use. We show that these problems can be solved
in BQP.

Currently, nobody knows how to build a quantum com-
puter, although it seems as though it could be possible
within the laws of quantum mechanics. Some suggestions
have been made as to possible designs for such comput-
ers [30, 22, 23, 12], but there will be substantial difficulty
in building any of these [18, 32]. Even if it is possible
to build small quantum computers, scaling up to machines
large enough to do interesting computations could present
fundamental difficulties. It is hoped that this paper will
stimulate research on whether it is feasible to actually con-
struct a quantum computer.

Even if no quantum computer is ever built, this research
does illuminate the problem of simulating quantum me-
chanics on a classical computer. Any method of doing this
for an arbitrary Hamiltonian would necessarily be able to
simulate a quantum computer. Thus, any general method
for simulating quantum mechanics with at most a polyno-
mial slowdown would lead to a polynomial algorithm for
factoring.

2 Quantum computation

In this section we will give a brief introduction to quan-
tum computation, emphasizing the properties that we will
use. For a more complete overview | refer the reader to Si-
mon’s paper in this proceedings [29] or to earlier papers on
quantum computational complexity theory [5, 33].

In quantum physics, an experiment behaves as if it pro-
ceeds down all possible paths simultaneously. Each of
these paths has a complex probability amplitude deter-
mined by the physics of the experiment. The probability of
any particular outcome of the experiment is proportional to
the square of the absolute value of the sum of the ampli-
tudes of all the paths leading to that outcome. In order to
sum over a set of paths, the outcomes have to be identical
in all respects, i.e., the universe must be in the same state.
A quantum computer behaves in much the same way. The
computation proceeds down all possible paths at once, and
each path has associated with it a complex amplitude. To
determine the probability of any final state of the machine,
we add the amplitudes of all the paths which reach that final
state, and then square the absolute value of this sum.

An equivalent way of looking at this process is to imag-
ine that the machine is in some superposition of states at
every step of the computation. We will represent this su-
perposition of states as

)

where the amplitudes a; are complex numbers such that

> la;]* = 1 and each |S;) is a basis state of the machine;
in a quantum Turing machine, a basis state is defined by
what is written on the tape and by the position and state
of the head. In a quantum circuit a basis state is defined
by the values of the signals on all the wires at some level
of the circuit. If the machine is examined at a particular
step, the probability of seeing basis state |5;) is |a;|*; how-
ever, by the Heisenberg uncertainty principle, looking at the
machine during the computation will disturb the rest of the
computation.

The laws of quantum mechanics only permit unitary
transformations of the state. A unitary matrix is one whose
conjugate transpose is equal to its inverse, and requiring
state transformations to be represented by unitary matrices
ensures that the probabilities of obtaining all possible out-
comes will add up to one. Further, the definitions of quan-
tum Turing machine and quantum circuit only allow local
unitary transformations, that is, unitary transformations on
a fixed number of bits.

Perhaps an example will be informative at this point.
Suppose our machine is in the superposition of states

5 1000) + 3 [100) — 5 [110) (2.2)

and we apply the unitary transformation

00 01 10 11
1 1 1 1
or | 1 il (2.3)
1 1 1 1
01 3 =3 3 T3
1 i 1 i
i s -5 -3 3

to the last two bits of our state. That is, we multiply the
last two bits of the components of the vector (2.2) by the
matrix (2.3). The machine will then go to the superposition
of states

775 (1000) +1001) +1010) +]011)) + 5 [101) + 5 [111) .

(2.4)
Notice that the result would have been different had we
started with the superposition of states

5 1000) + 3 [100) + 5 [110), (2.5)

which has the same probabilities of being in any particular
configuration if it is observed.

We now give certain properties of quantum computation
that will be useful. These facts are not immediately appar-
ent from the definition of quantum Turing machine or quan-
tum circuit, and they are very useful for constructing algo-
rithms for quantum machines.

Fact 1: A deterministic computation is performable on a
quantum computer if and only if it is reversible.



of exponential search problems. These are problems which
may require the search of an exponential size space to find
the solution, but for which the solution, once found, may
be verified in polynomial time (possibly with a polynomial
amount of additional supporting evidence). We will also
discuss two other traditional complexity classes. One is
BPP, which are problems which can be solved with high
probability in polynomial time, given access to a random
number generator. The other is P#F which are those prob-
lems which could be solved in polynomial time if sums
of exponentially many terms could be computed efficiently
(where these sums must satisfy the requirement that each
term is computable in polynomial time). These classes are
related as follows:

P C BPP,NP C P#¥ C PSPACE.

The relationship of BPP and NP is not known.

The question of whether using quantum mechanics in a
computer allows one to obtain more computational power
has not yet been satisfactorily answered. This question
was addressed in [11, 6, 7], but it was not shown how to
solve any problem in quantum polynomial time that was not
known to be solvable in BPP. Recent work on this problem
was stimulated by Bernstein and Vazirani’s paper [5] which
laid the foundations of the quantum computation theory of
computational complexity. One of the results contained in
this paper was an oracle problem (a problem involving a
“black box™ subroutine, i.e., a function that the computer
is allowed to perform, but for which no code is accessible.)
which can be done in polynomial time on a quantum Turing
machine and requires super-polynomial time on a classical
computer. This was the first indication, other than the fact
that nobody knew how to simulate a quantum computer on
a classical computer withoutan exponential slowdown, that
quantum computation might obtain a greater than polyno-
mial speedup over classical computation augmented with
a random number generator. This result was improved by
Simon [29], who gave a much simpler construction of an
oracle problem which takes polynomial time on a quantum
computer and requires exponential time on a classical com-
puter. Indeed, by viewing Simon’s oracle as a subroutine,
this result becomes a promise problem which takes polyno-
mial time on a quantum computer and looks as if it would
be very difficult on a classical computer (a promise problem
is one where the input is guaranteed to satisfy some con-
dition). The algorithm for the “easy case” of discrete log
given in this paper is directly analogous to Simon’s algo-
rithm with the group 74 replaced by the group Z,,_1; | was
only able to discover this algorithm after seeing Simon’s
paper.

In another result in Bernstein and Vazirani’s paper, a par-
ticular class of quantum Turing machine was rigorously de-

fined and a universal quantum Turing machine was given
which could simulate any other quantum Turing machine
of this class. Unfortunately, it was not clear whether these
quantum Turing machines could simulate other classes of
quantum Turing machines, so this result was not entirely
satisfactory. Yao [33] has remedied the situation by show-
ing that quantum Turing machines can simulate, and be
simulated by, uniform families of polynomial size quantum
circuits, with at most polynomial slowdown. He has further
defined quantum Turing machines with &£ heads and showed
that these machines can be simulated with slowdown of a
factor of 2*. This seems to show that the class of problems
which can be solved in polynomial time on one of these
machines, possibly with a bounded probability ¢ < 1/3
of error, is reasonably robust. This class is called BQP in
analogy to the classical complexity class BPP, which are
those problems which can be solved with a bounded proba-
bility of error on a probabilistic Turing machine. This class
BQP could be considered the class of problems that are ef-
ficiently solvable on a quantum Turing machine.

Since BQP C P#F C PSPACE [5], any non-relativized
proof that BQP is strictly larger than BPP would imply the
structural complexity result BPP ¢ PSPACE which is not
yet proven. In view of this difficulty, several approaches
come to mind; one is showing that BQP C BPP would lead
to a collapse of classical complexity classes which are be-
lieved to be different. A second approach is to prove re-
sults relative to an oracle. In Bennett et al. [4] it is shown
that relative to a random oracle, it is not the case that NP
C BQP. This proof in fact suggests that a quantum com-
puter cannot invert one-way functions, but only proves this
for one-way oracles, i.e. “black box” functions given as a
subroutine which the quantum computer is not allowed to
look inside. Such oracle results have been misleading inthe
past, most notably in the case of IP = PSPACE [15, 28].
A third approach, which we take, is to solve in BQP some
well-studied problem for which no polynomial time algo-
rithm is known. This shows that the extra power conferred
by quantum interference is at least hard to achieve using
classical computation. Both Bernstein and Vazirani [5] and
Simon [29] also gave polynomial time algorithms for prob-
lems which were not known to be in BPP, but these prob-
lems were invented especially for this purpose, although Si-
mon’s problem does not appear contrived and could con-
ceivably be useful.

Discrete logarithms and inte-
ger factoring are two number-theory problems which have
been studied extensively but for which no polynomial-time
algorithms are known [16, 20, 21, 26]. In fact, these prob-
lems are so widely believed to be hard that cryptosystems
based on their hardness have been proposed, and the RSA
public key cryptosystem [27], based on the hardness of fac-
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Abstract

A computer is generally considered to be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a increase in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics is
taken into consideration. Several researchers, starting with
David Deutsch, have developed models for quantum me-
chanical computers and have investigated their computa-
tional properties. This paper gives Las Vegas algorithms
for finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, e.g., the number of digits of
the integer to be factored. These two problems are gener-
ally considered hard on a classical computer and have been
used as the basis of several proposed cryptosystems. (We
thus give the first examples of quantum cryptanalysis.)

1 Introduction

Since the discovery of quantum mechanics, people have
found the behavior of the laws of probability in quan-
tum mechanics counterintuitive. Because of this behavior,
quantum mechanical phenomena behave quite differently
than the phenomena of classical physics that we are used
to. Feynman seems to have been the first to ask what ef-
fect this has on computation [13, 14]. He gave arguments
as to why this behavior might make it intrinsically compu-
tationally expensive to simulate quantum mechanics on a
classical (or von Neumann) computer. He also suggested
the possibility of using a computer based on quantum me-
chanical principles to avoid this problem, thus implicitly
asking the converse question: by using quantum mechan-
ics in a computer can you compute more efficiently than on
a classical computer. Other early work in the field of quan-

tum mechanics and computing was done by Benioff [1, 2].
Although he did not ask whether quantum mechanics con-
ferred extra power to computation, he did show that a Tur-
ing machine could be simulated by the reversible unitary
evolution of a quantum process, which is a necessary pre-
requisite for quantum computation. Deutsch [9, 10] was the
first to give an explicit model of quantum computation. He
defined both quantum Turing machines and quantum cir-
cuits and investigated some of their properties.

The next part of this paper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generally two resources which limit the ability
of computers to solve large problems: time and space (i.e.,
memory). The field of analysis of algorithms considers
the asymptotic demands that algorithms make for these re-
sources as a function of the problem size. Theoretical com-
puter scientists generally classify algorithms as efficient
when the number of steps of the algorithms grows as a poly-
nomial in the size of the input. The class of problems which
can be solved by efficient algorithms is known as P. This
classification has several nice properties. For one thing, it
does a reasonable job of reflecting the performance of al-
gorithms in practice (although an algorithm whose running
time is the tenth power of the input size, say, is not truly
efficient). For another, this classification is nice theoreti-
cally, as different reasonable machine models produce the
same class P. We will see this behavior reappear in quan-
tum computation, where different models for quantum ma-
chines will vary in running times by no more than polyno-
mial factors.

There are also other computational complexity classes
discussed in this paper. One of these is PSPACE, which
are those problems which can be solved with an amount
of memory polynomial in the input size. Another impor-
tant complexity class is NP, which intuitively is the class



