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Abstract

The optimization of a single bit string by
means of iterated mutation and selection of
the best (a (141)-Genetic Algorithm) is dis-
cussed with respect to three simple fitness
functions: The counting ones problem, a
standard binary encoded integer, and a Gray
coded integer optimization problem. A mu-
tation rate schedule that is optimal with re-
spect to the success probability of mutation is
presented for each of the objective functions,
and it turns out that the standard binary
code can hamper the search process even in
case of unimodal objective functions. While
normally a mutation rate of 1/l (where ! de-
notes the bit string length) is recommend-
able, our results indicate that a variation of
the mutation rate is useful in cases where
the fitness function is a multimodal pseudo-
boolean function, where multimodality may
be caused by the objective function as well as
the encoding mechanism.

1 INTRODUCTION

Genetic Algorithms (GAs) (Holland 1975) are the
most prominent, widely used representatives of Fwo-
lutionary Algorithms, a class of probabilistic search
algorithms based on the model of organic evolution
(see (Back and Schwefel 1993) for an overview of Evo-
lutionary Algorithms). Basic components of all Evo-
lutionary Algorithms are a population of individuals,
each of which represents a search point in the space
of potential solutions to a given optimization problem,
and random operators that are intended to model mu-
tation and selection. The optimization problem gives
a quality information (fitness) for the individuals, and
the selection process favours individuals of higher fit-
ness to transfer their information to the next genera-
tion.
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As a particular instance of Evolutionary Algorithms,
Holland’s Genetic Algorithm is characterized by spe-
cial realizations of genetic operators and the represen-
tation of individuals (see e.g. (Holland 1975; Goldberg
1989)):

(1) Individuals a are represented as bit strings of fixed
length 1, i.e. a € B' where B = {0, 1}.

(2) Mutation is a bit reversal event that occurs with
small probability p,, per bit (common settings are
pm = 0.001 (De Jong 1975), p, € [0.005,0.01]
(Schaffer et al. 1989), p, &~ 0.01 (Grefenstette
1986)).

(3) The algorithm uses a recombination (crossover)
operator that exchanges arbitrary substrings be-
tween two individuals with probability p. (e.g.,
pe & 0.6 (De Jong 1975), p. € [0.75,0.95] (Schaf-
fer et al. 1989), p. =~ 0.95 (Grefenstette 1986)).
Length and position of these substrings are chosen
at random, but are identical for both individuals.

(4) The probabilistic selection operator forms the
next generation by copying individuals on the
basis of fitness-proportionate probabilities p; =
D(a;)/ Ele ®(a;), where pu denotes the popula-

tion size and ® : B' — IR is the fitness function
(we assume a maximization task and positive fit-
ness in the following in connection with propor-
tional selection, such that no scaling mechanism
is necessary).

Theoretically, GAs are usually analyzed by viewing
them as algorithms that process schemata, i.e. descrip-
tions of hyperplanes in [-dimensional bit space. The
fundamental Schema Theorem explains the power of
GAs by an exponential growth of relatively short, use-
ful substrings — so-called building blocks — and their
accumulation and concatenation to useful substrings
of increasing length (Holland 1975). The choice of
a binary alphabet is supported by the fact that this
maximizes the total number of schemata available for
processing, i.e. consideration of the schema theorem,
the building block hypothesis, and a minimal alpha-



bet are seen as the main design criteria for applying a
GA to an optimization problem (see (Goldberg 1989),
pp. 28-42, pp. 80-82).

Using a binary alphabet, only pseudoboolean optimiza-
tion problems f : B' — IR can be handled directly by
a GA (i.e. ® = f), while other problems of the general
form f : M — IR require the development of a code
that in principle allows the decoding of a bit string to a
representation of an element of the problem space M.
For this reason, it is useful to distinguish between the
decoding function I' : B' — M and the objective fune-
tion f : M — IR, such that ® = f o I'. Both functions
play an important role in the application of GAs to op-
timization problems. A formal mathematical descrip-
tion as presented in the remainder of this introduction
seems useful for two reasons: First, the often informal,
intuitive, and even distributed descriptions presented
in GA literature offer ambiguities. Second, the formal
description helps to identify and characterize special
mappings which are needed in the remainder of this
paper.

While Holland pointed out how to apply the GA to pa-
rameter optimization problems of the form f : R" —
IR (see (Holland 1975), pp. 54-58), K. De Jong was
the first who realized this important application as an
optimization algorithm (De Jong 1975). The binary
decoding function I' requires a constrained codomain
M = x?_;[ui, v;] (u; < v;) and logically divides the bit
string into n segments of (in most cases) equal length
l;, thus implying I = n - l;. FEach segment is inter-
preted as the binary code of the corresponding object
variable z; € [u;,v;] by applying a segment decoding
function I; : B'* — [us, vi]:
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where (a;1 .. .a;,) denotes the i-th segment of an indi-
vidual @ € B'. Then, I =Ty x ...x [, yields a vector
of real values by interpreting the bit string as a con-
catenation of binary encoded integers and by linearly
mapping each integer to the desired range [u;, v;].

Nowadays, besides the simple code presented in equa-
tion (1) a Gray code interpretation of the bit string
is often used for decoding purposes. This works by
first converting a string segment (by ...b;.) (for rea-
sons of simplicity we omit the index which denotes
the segment number) to the simple code (a;1...a;,)
by means of a mapping v~ ! : B'* — B's such that
Vie{l,...,l;} (see (Wright 1991)):

a; = @b] 5 (2)
ji=1

where @ denotes addition modulo 2. Conversely, the
standard binary code can be converted to Gray code by

the mapping v, where Vi € {1,...,l;} (Wright 1991):
b = v (3)
a;_1 ®a; ,ifi>1 .

Indicated by several researchers, the main advantage
of a Gray code is seen in the fact that it maps Eu-
clidean neighborhoods into Hamming neighborhoods
due to the representation of adjacent integers by bit
strings of Hamming distance one (see (Bethke 1981),
pp. 100-104). This was supported by empirical com-
parisons between standard code and Gray code, indi-
cating statistically significant advantages for the latter
(see e.g. (Caruna and Schaffer 1988)). Gray code is the
default mechanism in the important public domain im-
plementation of (Grefenstette 1987).

The impact of the highly nonlinear binary represen-
tation on the search process, however, was not inves-
tigated in a systematical way after the general accep-
tance of a Gray code. To shed some light on this topic,
we will investigate the mutation operator with respect
to its role in case of a simple pseudoboolean optimiza-
tion problem (using no coding at all, i.e. & = f), a
parameter optimization problem using the simple bi-
nary code (i.e. ® = T'), and a parameter optimization
problem using Gray code (i.e. ® = I'Gray).

2 MUTATION

Rather than looking at schemata, the mutation op-
erator m : B' — B'is analyzed here with respect
to its success probability when optimizing a particular
fitness function ® : B’ — IR. The success probabil-
ity pg(a)(p), where a € B' denotes an individual and
p is the mutation probability per bit, is defined here
according to

Pg(a)(P) = P{q)(m(a)) > q)(a)} ) (4)
i.e. the probability of improvement of a bit string by
mutation. Of course, the success probability depends
on both the mutation rate and the actual fitness func-
tion value. In the following, the basic question to be

answered is: How can we mazximize the success proba-
bility during the course of evolution ?

This question seems reasonable both for unimodal and
for multimodal problems. In the former case, maximiz-
ing the success probability also maximizes the conver-
gence velocity, i.e. the expectation value of the im-
provement per generation (see (Back 1992a) for an in-
depth analysis of convergence velocity). In the latter
case, however, maximizing the success probability op-
timizes the chance to leave a local optimum for any
local optimum, though this chance may become arbi-
trarily small (e.g., for a one-step transition from a local
optimum to the isolated global optimum). These argu-
ments justify the advantage of asking for the actually
maximal success probability.



The subsequent sections address the maximization of
success probabilities with respect to the three different
objective functions as indicated above.

2.1 COUNTING ONES

The simple counting problem f : B' — {0,...,1}:

flar...a1) = Zai (5)

was analyzed independently by Mihlenbein and Back,
resulting in the approximation

(1=p/@ (1= (1=p)~/@)  (6)

presented by Miihlenbein (see (Mithlenbein 1992)) and
the exact expression

i)
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presented by Béck (see (Back 1992a)).

P?(a)(P) ~

The optimal mutation rate p*, such that p;f(a)(p) is

maximized for p = p*, is approximated by Mihlenbein
to a value of

FU@) & L= (@)D (@)

(denoted Appr. (A) in figure 1). The exact expres-
sion (7), however, can not be solved analytically but
was optimized numerically by Back, resulting in a
curve that can well be fitted by the expression

1
* ~_ - 9
(denoted Appr. (B) in figure 1; f(a) > (/2 is assumed
in expression (9)). Both curves for p*(f(a)) are shown
in the left part of figure 1.

Though the resulting mutation rate schedules differ
remarkably, it can be shown that the impact on the
expected time (i.e. number of applications of the muta-
tion operator) to locate the optimal string by a (141)-
GA (an algorithm that modifies one parent bit string
by means of mutation and retains the better of parent
and offspring) is relatively small.

Assuming an initial string with f(a) = [{/2], Mihlen-
bein derives an expected time (T'(p*)) & e -1 -In({/2)
for p* = 1/l, and he indicates that the O(l - Inl) es-
timate is valid for any unimodal pseudoboolean func-
tion (Mithlenbein 1992). The expected time result-
ing from the alternative approximation by Back can
only be calculated numerically by means of Markov

chain methods (see (Goodman 1988), pp. 157-162).

For [ < 100 the resulting time to absorption (i.e. un-
til the algorithm has found the optimum) is shown for
both approximations in the right part of figure 1.

The most time-consuming part of optimization con-
sists in fine-tuning of the last few bits, such that these
remarkably different schedules spend most time in al-
most optimal states of the Markov chain. This fact
is reflected by the small differences concerning the ex-
pected time to absorption. Furthermore, the optimal
schedule of the mutation rate is characterized by a
continuous, smooth curve.

2.2 STANDARD CODE

The second example of an objective function is ob-
tained as a simplification of the standard code pre-
sented in equation (1), i.e. g : B'—{0,...,2" —1}:

-1

Za]_i . Qi y (10)

=0

such that g = I'forn =1, u =0, v = 2' — 1. Since the
assumption of a global optimum located at the string
consisting completely of one bits is too restrictive, g is
generalized here to a function ¢’, where

i) = { g(a) , if g(a) <w (1)

-1 ,ifgla)>w

glay...aq;) =

for arbitrary w € {1,...,2' —1}. ¢’ attains its optimal
value w for the bit string a* that represents w.

The success proba.bility p;',(a)(p). = P{g/(m(a)). >
g'(a)} can be obtained by summing over all possible
improvements:

Pro® = Y Pldm(a) =i}
i=g'(a)+1
= Y Plg(m(a)) =i} (12)
i=g'(a)+1
= Y Pima)=g70)}
i=g’'(a)+1

By using the fact that the restriction of ¢’ to {0, ..., w}
is invertible, the transition probabilities P{g(m(a)) =
i} are reduced to transition probabilities P{m(a) =
¢~ 1(4)} on bit strings, which can in general be calcu-
lated according to

P{m(a) =b} =

where H(a,b) denotes the Hamming distance of @ and
b. The general transition probability (13) is maximized

for p* = H(a,b)/l.

For small [ the optimal mutation rate p*(¢’(a)) can be
calculated numerically to obtain a graphic comparable

(1= gy e (13
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Figure 1: Left: Approximations of the Optimal Mutation Rate Schedules Obtained by Miihlenbein (Appr. (A))
and Back (Appr. (B)) for [ = 100. Right: The Corresponding Expected Time to Absorption for Different String

Lengths 2 <1< 100.

to the left part of figure 1. With [ = 10, w = 2! —
1 (ie. ¢ = g) and ¢'(a) varying from 512 to 1022,
the mutation rate schedule shown in the left part of
figure 2 is obtained.

The optimal schedule is no longer continuous, but
clearly reflects the Hamming cliffs occurring period-
ically. This is illustrated most impressively for the
cliff observed between p*(767) = 0.5 and p*(768) =
0.1822. The corresponding bit strings 1011111111 and
1000000000 reflect the necessity to change many bits
simultaneously to overcome the Hamming cliff. How-
ever, the situation is not as bad as it would be if tran-
sition probabilities were considered instead of success
probabilities: To maximize the transition probability
P{m(g=1(767)) = g~1(768)}, a mutation rate p = 0.9
would be optimal — but still yields a very small transi-
tion probability of 3.87 - 1072, In contrast to this, the
success probability p;(a):767(0.5) = 0.249 is remark-

ably large.

2.3 GRAY CODE

It is even more interesting to investigate an objective
function h : B' — {0,...,2' — 1}:

h(a) = g(v"'(a)) (14)

that interpretes the bit string as Gray-coded integer,
converts it to the corresponding binary code, and ap-
plies g. The interdependencies of g, h, and v are sum-
marized for clarity in the commutative diagram shown
in the right part of figure 2.

As before, we modify h to a function h’ where

{ h(a) , if h(a) < w

hl
(@) 1, ifh(a) > w

(15)

for arbitrary w € {1,...,2" — 1}. The success proba-
bilities can be calculated in analogy to equation (12)
according to

> P{m(a) =v(g7 (D))} . (16)

i=h/(a)+1

PZ/(G)(P) =

For the special case w = 2! —1 (i.e. h = h’) an inductive
argument based on the observation that v and v~! do
not change the most significant bit yields the result
p*(g(a)) = p*(h(a)) for all a (see figure 2, left). In
this case, the choice of a Gray code has no advantage
compared to the standard code.

Chosing w < 2'—1, however, reveals some quantitative
differences between both codes with respect to maxi-
mization of success probabilities. These differences are
illustrated in figure 3 for [ = 10, an arbitrarily chosen
value w = 822, and ¢'(a),h'(a) € {512,...,821}. The
figure shows plots of the optimal mutation rate de-
pending on the objective function value for the stan-

dard binary code (left) and the Gray code (right).

Sharp Hamming cliffs are identified for both objec-
tive functions, but the standard code shows a remark-
able behaviour in the range of objective function val-
ues around 767, where the most noticeable Hamming
cliff was already identified in figure 2. In this range of
function values the success probability p';(a) becomes a

multimodal function of p, having a local maximum for
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Figure 2: Left: Optimal Mutation Rate Schedule p*(g(a)) for = 10. Right: Diagram Demonstrating the

Interdependencies of the Mappings g, h, and .

relatively small p and attaining the global maximum
for a large value of p. To understand the situation,
we assume an actual position ¢g=1(766) = 1011111110
and w = 769, resulting in the transition probabilities
summarized in table 1.

Table 1: Example of Transition Probabilities that
Cause Multimodality of the Success Probability Func-
tion.

i |

') | P{m(g™(766)) = (i)} |

767 | 1011111111 p-(1-p)°
768 | 1100000000 p® - (1-p)?
769 | 1100000001 P’ (1-p)

The first derivative of the resulting polynomial
p;’(766) = p(1 —p)° + p*(1 — p)? + p°(1 — p) equals
zero for

e p1 = 0.10000 (pg+,(766)(p1) = 0.0387),
o py = 0.47753 (pg+,(766)(p2) = 0.0028), and
e p3 = 0.88890 (p;,(766)(p3) = 0.0453).

This anomaly can be explained by looking at the bit
strings, where a one-bit mutation would allow an im-
provement to 767, while a many-bit mutation is neces-
sary to cross the Hamming cliff. Such multimodalities
of the success probability function seemingly do not
exist when a Gray code is used. A second difference of
both graphics concerns the proximity of w, where the
Gray code shows smaller fluctuations of the optimal

mutation rate than the standard code, thus reflecting
the observation that fine-tuning of almost optimal so-
lutions is simplified by a Gray code.

Indeed, the fundamental difference between the transi-
tion from g to g’ and those from h to h’ consists in the
fact that for w < 2' — 1 the function ¢’ may become a
multimodal pseudoboolean function while A’ remains
unimodal. A local maximum f = f(a) of a pseudo-

boolean function f : B' — IR is defined by means of
the Aj-neighborhood

Ni(a) = {beB'|H(ab)=1} (17)

by requiring Vb € Ni(a): f> f(b) (see e.g. (Anta-
moshkin et al. 1990)). It is easy to see that h and A’
are unimodal by definition of the Gray code, since for
any a € B’ (a # a*, where a* denotes the global opti-
mum) the Gray code assures existence of a b € N(a)
such that g(y=1(b)) = g(y~'(a)) + 1. The function g
is unimodal due to the fact that changing a single zero
to one assures an improvement. To see that ¢’ is mul-
timodal, we notice that ¢'~(767) = 1011111111 is a
local maximum since no change of a single bit yields an
improvement (remember that ¢’(1111111111) = —1).

These observations are confirmed by some experimen-
tal investigations concerning the time to absorption
needed for ¢’ and ' with optimal mutation rate sched-
ule and a constant mutation rate of 1/I, respectively.
Experimental investigations are necessary in this case
due to the fact that the Markov chain has 2 states for
¢’ and h' rather than [ as for the function f discussed
in section 2.1.

The results are collected in table 2 for values of { €
{8,...,12} and initial objective function values 2'~*
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in each case. The time values are averaged over 100
experiments, each.

Table 2: Experimental Results Concerning the Time
to Absorption for ¢’ and A’ with Optimal Mutation
Rate Schedules (p*) and Constant Mutation Rate (p =
1/1) for Different String Lengths [.

q h
Y Ty [ Tam [T [ Ta7)
206 79.1 812.3 56.5 76.4
9 411 87.6 1745 .4 71.2 86.4
10 822 221.3 42271 89.8 132.4
11 | 1644 576.4 6403.5 | 132.6 156.0
12 | 3288 || 2160.5 | 34225.1 157.5 187.1

The results for ¢’ clearly reflect the problem to over-
come the local optimum in case of the fixed mutation
rate, while the optimal schedule simplifies this prob-
lem remarkably. The Gray code, however, still enables
the algorithm to find the optimal solution within time
complexity O({ - In(!)) and benefits just slightly from
the optimal mutation rate schedule.

3 CONCLUSIONS

The results presented here help to explain the obser-
vations reported in literature that a time-dependent
variation of the mutation rate may accelerate opti-
mization by means of a Genetic Algorithm (Fogarty

1989; Hesser and Manner 1991; Béck 1992b). Further-

more, the results enable us to distinguish two classes
of fitness functions ® : B' — IR: Unimodal and multi-
modal pseudoboolean functions, causing a shift of em-
phasis from unimodality or multimodality of the objec-
tive function to the properties of the fitness function.

As long as @ is a unimodal pseudoboolean function,
the results indicate that a mutation rate p = 1/[ is the
best choice and a mutation rate schedule decreasing
towards 1/0 during optimization would only slightly
accelerate the search. Whenever the objective func-
tion is unimodal, a Gray code assures unimodality of
the fitness function and should therefore be the best
choice.

However, when the fitness function becomes multi-
modal — this may happen by chosing a standard bi-
nary code or in case of a multimodal objective func-
tion — our observations indicate that the search for a
mutation rate control different from a constant value
1/l may be worthwhile in order to overcome local op-
tima. This is likely to be still valid when crossover
is introduced, since one-point crossover in case of an
encoded parameter optimization problem corresponds
to a crossover at a segment boundary plus a mutation-
like perturbation of the parameter within whose seg-
ment the crossover position is located (Wright 1991).
If the number of crossover points is much smaller than
the dimension of the objective function (which is quite
usual), the effect of crossover is expected to be small.
Preliminary experimental investigations seem to con-
firm this suspicion (see (Hoffmeister and Béack 1992),
pp. 64-66).

For the hard case of a multimodal fitness function ®
(where multimodality may be caused by either the de-



coding function, the objective function, or both) the
results reported here may be interpreted as an expla-
nation of the usefulness of a self-adaptation mecha-
nism for mutation rates as described in (Béack 1992b),
where a remarkable diversity of mutation rates exists
in a population of individuals. Further investigations
on this mechanism are necessary in order to evaluate
its general usefulness.
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