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ABSTRACT
Jockey is an execution record/replay tool for debugging Linux pro-
grams. It records invocations of system calls and CPU instructions
with timing-dependent effects and later replays them deterministi-
cally. It supports process checkpointing to diagnose long-running
programs efficiently. Jockey is implemented as a shared-object file
that runs as a part of the target process. While this design is the key
for achieving Jockey’s goal of safety and ease of use, it also poses
challenges. This paper discusses some of the practical issues we
needed to overcome in such environments, including low-overhead
system-call interception, techniques for segregating resource usage
between Jockey and the target process, and an interface for fine-
grain control of Jockey’s behavior.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering—Testing and Debugging;
D.4.9 [Operating Systems]: Systems Programs and Utilities

General Terms
Reliability, Experimentation, Languages, Verification

Keywords
Debugging, Execution record and replay, Checkpointing, x86, Jockey,
Linux

1. INTRODUCTION
Jockey is a record/replay tool for Linux. It logs the execution

of an ordinary program and replays deterministically later. Jockey
is designed to help debug interactive or distributed programs that
communicate with the operating system or other computers in a
complex fashion. We plan to make Jockey publicly available via
http://www.freshmeat.net.
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author is now employed by Google.
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Jockey was originally developed as a debugging aid forFAB
(Federated Array of Bricks) [23]. FAB is a high-availability disk ar-
ray built on a cluster of commodity servers. It provides accesses to
logical volumes to iSCSI clients using complex peer-to-peer-style
replication and erasure-coding protocols.

Traditional debuggers, such as gdb, provide comprehensive sup-
port for debugging single-node, sequential programs. They are,
however, not as useful for interactive or distributed programs such
as FAB [10, 4]. We identify three key problems and discuss how
Jockey alleviates them.

First, the execution of such programs is inherently nondetermin-
istic. The behavior of a process will diverge, depending on interac-
tions with the OS, the user, or other processes. Jockey helps debug
such programs by recording every nondeterministic choice the pro-
cess makes, and replaying the execution as many times as the de-
veloper wishes. Thus, debugging for a nondeterministic program is
reduced to that for a sequential, repeatable program.

Second, these programs often run for a long period of time, either
because they need lots of resources (e.g., scientific computation),
or they are server programs (e.g., FAB and distributed hash tables),
or they need substantial user interactions (e.g., spreadsheet). Sim-
ply reproducing the bug often tests a developer’s patience. Jockey
alleviates this problem by transparently checkpointing the process
state during execution. The developer can start replaying from any
checkpoint and easily “time-travel” through the history of execu-
tion to diagnose the problem. Checkpointing also bounds the log-
space overhead, as log records older than the checkpoint can be
discarded.

Third, running a distributed system such as FAB requires start-
ing processes on multiple computers, which is cumbersome and
increases the turn-around time for program development. Jockey
alleviates this problem by recording and replaying each process
independently—after recording the execution of the whole system,
the developer can replay each process under a traditional debugger.
This can also be a limitation; Jockey could be less useful when one
wants to investigate the execution of the whole system at once. We
discuss our experience in Section 5.2.

The remainder of this section overviews Jockey’s design and dis-
cusses its benefits and challenges.

1.1 Goals and approaches
Jockey is designed with two pragmatic goals in mind. First is

ease of use: Jockey must be easy and safe to deploy. It should work
without requiring changes to the target program, the operating sys-
tem, or the debugger. Second isgenerality. Jockey should be able
to handle generic Linux programs, not just those written in a partic-
ular programming language or API, such as MPI or CORBA [11].

We achieve the first goal by implementing Jockey as a user-space
library that runs as a part of the target process. In contrast to kernel-
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// test1.c
int main() {

FILE *f = fopen("/dev/random", "r");
printf("%x\n", getc(f));

}

Figure 1: A simple program, test1.c , that reads and displays
a random number every time it is run.

% cc -o test1 test1.c
% LD_PRELOAD=libjockey.so \

JOCKEYRC="replay=0" ./test1 # recording
38
% LD_PRELOAD=libjockey.so \

JOCKEYRC="replay=1" ./test1 # replaying
38

Figure 2: The most basic use of Jockey. The program
outputs the same number even though it is reading from
/dev/random . Setting environment variable LD PRELOAD
causes the dynamic linker to loadlibjockey.so before other
object files. Environment variable JOCKEYRCpasses parame-
ters to libjockey.so .

based approaches [26], Jockey can be used by anyone without ad-
ministrative privilege or a patched kernel. Developers can continue
using their favorite debuggers without change. In addition, this de-
sign allows the target program to control or extend Jockey easily, as
we discuss in Section 4. Our second goal is achieved by recording
and replaying events at a fairly low level—system calls and CPU
instructions.

1.2 Non-goals
We do not try to make program execution under Jockey identi-

cal to native execution without Jockey. Because Jockey internally
needs to perform mmap and file accesses, the mmap addresses and
file descriptors allocated to the target process may differ between
a native and a recording run. This usually does not cause an ad-
ditional problem, because programs targeted by Jockey are usually
nondeterministic to begin with.

Also, performance is a secondary goal. Jockey is used only dur-
ing testing and debugging. Some slowdown under Jockey should
be acceptable, as long as it does not change the target program’s be-
havior qualitatively. In practice, as we show in Section 5, Jockey’s
overhead is at most 30% for I/O intensive programs, more often
close to zero—well within our limit of tolerance.

1.3 Example
The meat of Jockey islibjockey.so , an x86 shared-object file.

Figure 1 shows a simple program that reads from/dev/random ,
Linux’s random number device. Figure 2 shows the most basic
use of Jockey. Recording or replaying program execution requires
no change to the source code or the executable file. Simply load-
ing libjockey.so on startup causes Jockey to take control of the
process. In this example, Jockey intercepts the call to theread sys-
tem call made viagetc . It logs the value read during the recording
phase. When replaying, it reads the value from the log without ac-
tually reading from the random device. Jockey can also be invoked
in several different ways, as shown in Figure 3.

% LD_PRELOAD=libjockey.so \
./test1 --jockey=replay=0 # recording

82
% LD_PRELOAD=libjockey.so \

./test1 --jockey=replay=1 # replaying
82

(a) One can pass a command-line parameter--jockey= to
the target process to control Jockey. This parameter is parsed by
libjockey.so . For this method to work, the target program
must be designed to ignore a command-line string that starts
with --jockey= .

% jockey --replay=0 ./test1 # recording
a9
% jockey --replay=1 ./test1 # replaying
a9

(b) One can also start the test program from thejockey fron-
tend. jockey is a small script just sets the environment vari-
ables and executes the target program.

% cc test.c -ljockey
% ./test1 --jockey=replay=0 # recording
c1
% ./test1 --jockey=replay=1 # replaying
c1

(c) Jockey can also be linked manually to the target program, as
shown above. This method is convenient when one frequently
runs the program under a debugger.

Figure 3: Alternative ways of running a program under Jockey.

1.4 Challenges and limitations
Our decision to co-locate Jockey with the target process poses

challenges and limitations. First, Jockey could be compromised by
a seriously buggy or malicious target program—if it wishes, for
example, the target program can destroy a memory region used in-
ternally by Jockey. We address this problem by segregating the
use of resources as much as possible between the target program
and Jockey. As a result, Jockey has been able to record and replay
most common memory bugs, including accessing free’ed memory
blocks and off-by-one array accesses. Resource segregation is dis-
cussed further in Section 3.2,

The second challenge is recording and replaying events that are
not directly initiated by system calls. We describe our solutions to
two such types of events, signals and memory-mapped file I/Os in
Sections 3.4 and 3.6. There are, however, events that are funda-
mentally impossible to capture. For example, memory access races
that happen with kernel-based pthreads cannot be replayed, because
thread context switches are out of Jockey’s control. For this rea-
son, Jockey does not support kernel multi-threading. Similarly, it
does not support any program or API that interacts with other pro-
cesses (or devices) via shared memory or files—e.g., uDAPL [1]
for memory-mapped network I/Os. Note that Jockey does support
user-space threads, such as Capriccio [30]—in fact, FAB is built on
a similar package.



2. RELATED WORK
Execution record/replay has long been advocated as an effec-

tive debugging method [6, 22, 21]. This section reviews prior ap-
proaches to record/replay debugging and relates them to Jockey.

2.1 Record/replay debugging for a single pro-
cess

Bugnet was one of the earliest deterministic record/replay tools [32].
It intercepted I/O activities by the processes and took checkpoints
of the system periodically. Bugnet, however, supported only pro-
grams written to a special API, unlike Jockey that supports generic
Linux programs. Flashback [26] is the most recent work along this
line. It offers a similar set of functionalities as Jockey—recording
and replaying system calls and fork-based checkpointing—but Flash-
back is offered as a kernel patch. As such, it is less easy and safe to
use than Jockey.

In a slightly different approach, some systems record and replay
individual memory accesses [19, 16, 25, 7]. They have several ad-
vantages over event-based approaches like Bugnet, Flashback, or
Jockey. First, some of them enablereverse execution—stepping
CPU instructions literally backward [19, 7]. Second, they could
be more generic because they need not know deeply about the se-
mantics of system calls and other interactions with OS. However,
they require a special compiler and have a large logging overhead.
Even with sophisticated optimizations, these systems generate logs
at the rate of multiple megabytes per second for CPU-intensive pro-
grams [16, 25]. Jockey, in contrast, generates only a few hundred
bytes per second for such programs, as we show in Section 5.1.

2.2 Record/replay using virtual machines
Revirt is a virtual machine that records and replays low-level in-

terrupts and device activities [2]. It has been proved to be useful for
network intrusion detection and diagnosing kernel bugs [5]. Sev-
eral other papers also propose distributed-system emulation using
virtual machines [3, 17]. While these systems are powerful, they
are also cumbersome to use—for example, one needs to create a full
file system tree for each virtual machine. They are overkill when
one is interested only in debugging user-space programs. Jockey is
designed to be simpler and easier to use than these systems.

2.3 Record/replay for parallel and distributed
programs

Deterministic record/replay has been most effective in parallel
and distributed environments [21]. Indeed, earliest tools specifi-
cally targeted such environments [32, 19]. Since then, many theo-
retical improvements have been proposed for both shared-memory
parallel programs [13] and message-passing programs [14, 15].
Jockey does not yet support deterministic replay of a distributed
system—it can only replay processes within the system indepen-
dently. As we discuss in Section 5.2, we found this limitation not
to be a serious obstacle so far.

3. IMPLEMENTATION OF JOCKEY
We have implemented Jockey on Linux in C++. The dynamic

linker (ld.so ) invokes Jockey’s initialization routine immediately
afterlibjockey.so is loaded, before the target program starts ex-
ecution. The initialization routine performs the following tasks.

(1) For each system call inlibc with timing- or context- depen-
dent effects, Jockey rewrites its first few instructions and in-
tercepts calls to it. Jockey currently intercepts 80 Linux sys-
tem calls, includingtime , recvfrom , andselect . Jockey

logs the values generated by these calls during recording, and
reads the value from the log during replay.

(2) Jockey does the same for CPU instructions with nondeter-
ministic effects. It currently patches onlyrdtsc , the x86
instruction for reading the CPU’s timestamp counter. It is
used, for example, as a pseudo random-number generator in
libc .

(3) Jockey checkpoints the process state just before returning
control to the target program. In the replay mode, Jockey
simply loads the checkpoint. Checkpointing is needed to en-
sure that the target sees the same set of environment variables
and command line parameters during both record and replay.
We discuss checkpointing in more detail in Section 3.3.

(4) Jockey transfers control to the target program. From this mo-
ment, Jockey becomes active only when the target executes
a system call or a nondeterministic CPU instruction.

The next section describes the first two steps in more detail.
Section 3.2 discusses Jockey’s efforts to segregate itself from the
target program to avoid unnecessary interference. Section 3.3 de-
scribes Jockey’s checkpointing function (step (3)), along with the
challenges we had to overcome.

3.1 Instruction patching
As an example, Figure 4 shows how thetime system call is

recorded and replayed. (a) shows the first few CPU instructions
of time in libc.so . When Jockey starts, it writes ajmp instruc-
tion in the first 5 bytes of the procedure, as shown in (b). If the 5th
byte is in the middle of another CPU instruction, as is the case with
time , Jockey overwrites up to the next instruction boundary (and
fills the memory withnop as needed). In (c), Jockey also copies the
original first 5 bytes (6 bytes fortime ) of the function to a newly
allocated memory region so that Jockey can run the old implemen-
tation if necessary. (d) shows the pseudocode of the entry point for
the new implementation oftime . As we discuss further in Sec-
tion 3.2, this code is dynamically generated so that Jockey can in-
tercept system calls on a separate stack and avoid corrupting target
memory. Finally, (e) showsnewtime , Jockey’s implementation of
time . While recording,newtime calls the original implementation
(c) and logs the returned value. While replaying, it simply supplies
the value from the log without actually executing the system call.

One might wonder whylibjockey.so does not just provide
a new implementation of a system call with the same name—in
fact,LD PRELOADis often used for that purpose. The reason is that
doing so will miss system calls made insidelibc or the dynamic
linker—for example, a call toread made bygetc . These internal
calls are pre-resolved by the static linker (ld ), and they cannot be
overridden merely by redefining usingLD PRELOAD.

For task (2), Jockey rewrites all offending CPU instructions found
in the target process. This is done in two ways,slow mode and
cached mode. In slow mode, Jockey first reads the special file
/proc/ N /maps (N is the target process ID) that shows the virtual-
memory mappings of the target process. It then reads the header of
each mapped shared object file, discovers the locations of the text
sections, and scans each text section. Jockey finds nondeterminis-
tic CPU instructions in the section (if any), and patches them. It
also intercepts invocations of themmapsystem call and does the
same when a shared object file is newly loaded onto the process’s
address space.

Jockey needs to parse CPU instructions during steps (1) and (2),
not a trivial task given x86’s complex instruction encoding. It uses



time: 
0: mov %ebx, %edx
2: mov 8(%esp), %ecx
6: mov 4(%esp), %ebx

10: mov $0x4e, $ebx
15: call *%gs:0x10

...

time_t newtime(time_t *p) {
time_t tmp;
if (replaying) {

logrecord *r = read_log();
tmp = r->tv;

} else {
oldtime(&tmp);
logrecord r = {&tmp};
append_log(&r);

}
if (p) *p = tmp;
return tmp;

}

time: 
0: jmp trampoline
5: nop
6: mov 4(%esp), %ebx

10: mov $0x4e, $ebx
15: call *%gs:0x10

...

oldtime: 
0: mov %ebx, %edx
2: mov 8(%esp), %ecx
6: jmp time+6

Rewrite first 
6 bytes

Copy first 6 bytes

(a) Original entry sequence for 
time system call. (b) Rewritten time.

(c) Newly generated entry point 
for the original implementation.

(e)  Jockey’s implementation of time.

trampoline: 
switch the stack pointer.
copy args from the old to

the new stack.
call newtime
switch stack back.
ret

(d) The trampoline code 
generated to invoke new 
time implementation.

Figure 4: Recording and replayingtime .

a pidgin table-based parser for common instructions and consults
libdisasm [8], an open-source x86 disassembler library, for uncom-
mon cases. A few tables that map opcodes and operands to their
instruction length let us quickly parse more than 80% of all in-
struction occurrences.

Even using this technique, however, parsing all CPU instruc-
tions in a typical Linux program takes about 350 milliseconds on
a 1.5GHz Pentium-M processor, which may be too slow for some
users. To reduce the startup latency further, Jockey also employs
cached-mode instruction patching. Here, after finishing the slow
mode, Jockey writes the locations of nondeterministic instructions
found for each shared object in file˜/.jockey-sig . When the
program starts the next time, it just reads˜/.jockey-sig without
scanning the process’s virtual memory, unless the timestamp of the
object file has changed.

Jockey’s instruction-patching approach is simpler and faster than
full-program binary translation, employed by ATOM [27] or Val-
grind [24]. It needs to patch only a few bytes at the beginning
of system calls and nondeterministic CPU instructions; the rest
of the target program executes natively. Indeed, as we show in
Section 5, Jockey’s performance overhead is negligible for CPU-
intensive programs.

3.2 Segregating resource usage
Jockey and the target application run as part of the same process

and share all resources. Jockey must segregate the use of resources
to prevent Jockey from unnecessarily changing the target’s behav-
ior, and to minimize the chance of a misbehaving target program
breaking Jockey. This section discusses Jockey’s treatment of three
types of shared resources: heap, stack, and file descriptors.

3.2.1 Heap
Jockey cannot use standard libc functions, such asmalloc or

sbrk , to manage its internal data. Doing so increases the likeli-
hood of a misbehaving target program breaking Jockey. Moreover,
it changes the memory layout of the target process between record
and replay. It would thus become impossible to replay invalid mem-
ory accesses correctly, e.g., accessingfree ’ed memory, which is
one of the common programming errors.

Instead, Jockey stores all its internal data in a mmapped region at
a fixed virtual address that is unlikely to be accessed accidentally by
the target program. This address is by default set to 0x63000000,
but it could be changed via an environment variable if the tar-

get needs to access this address legitimately. We use an internal
malloc-like library to carve the memory out to individual data struc-
tures and build a custom C++ STL memory allocator on top of it.
Thus, the Jockey code has full access to STL features, including
maps and dynamic vectors. This design has considerably simpli-
fied the development of Jockey.

One restriction is that Jockey cannot make internal calls to libc
functions that usemalloc . Examples include high-level I/O func-
tions (fopen , std::fstream ) and DNS resolvers (gethostbyname ).

3.2.2 Stack
Jockey also segregates the use of stack. This is necessary to

replay a program that improperly accesses data beyond the stack
pointer (e.g., accessing an on-stack array with a negative index).
Figure 4 (d) illustrates how this is done. In the first few instructions
after it intercepts the call totime , Jockey saves the stack pointer to
an internal variable, switches the stack to an internal buffer, copies
the parameters totime (a 4-byte pointer) from the old to the new
stack, and callsnewtime . Once the new implementation returns,
Jockey restores the stack pointer. This allows for deterministic re-
play of even a buggy program because Jockey never uses the tar-
get’s stack.

This stack-switching process must be done without touching any
CPU register other than the stack pointer. For this purpose, all the
data structures involved here are allocated statically. This makes
Jockey nonreentrant, but it is not an issue because Jockey does not
support multi-threading.

3.2.3 File descriptors
Jockey must perform its own file accesses occasionally, for ex-

ample, when opening a log file or dumping a checkpoint. Because
Jockey and the target process share the same file-descriptor table,
Jockey must ensure that its file operations do not alter the descriptor
allocation scheme seen by the target. To achieve this goal, Jockey
moves file descriptors it internally opens to a fixed range not likely
to be used by the target (430∼439).

An alternative approach would be to create an indirection table
that maps file descriptors between the target program and the oper-
ating system kernel. Jockey would then intercept every system call
that takes a file descriptor and translates it using the table. We chose
our approach for two reasons. First, the former approach simplifies
implementation, especially for system calls such asselect . Sec-
ond, the absence of descriptor indirection allows the user to inspect



% jockey --checkpointfrequency=30 \
--retaincheckpoints=5 \
-- httpd -X

... later ...
% jockey --restore=log/checkpoint-3 httpd

Figure 5: Taking automatic checkpoints of httpd (Apache)
every 30 seconds. The-X option runs Apache in foreground.
Option --retaincheckpoints=5 causes only the last five
checkpoints to be retained. The last line replayshttpd from
the third checkpoint.

the process’s state more transparently, for example, by using the
system call tracer, such asstrace .

Gdb (debugger) poses another problem. When starting the target
process, gdb opens a few extra file descriptors in addition to the
usual stdin, stdout, and stderr. Thus, if an execution is recorded
under a normal shell and then replayed under gdb, the files opened
by the target processes will be assigned different descriptors, which
make replaying divergent.2 We solve this problem by having Jockey
open dummy files for descriptors 0 to 9 before starting the target
program (it leaves descriptors inherited from the parent process un-
touched). Assuming that gdb opens at most 10 descriptors when it
starts the target, we can ensure that the target has the same set of
files opened upon record and replay.

3.3 Checkpointing
Jockey allows process state to be checkpointed automatically.

Figure 5 shows an example. Checkpointing serves two purposes.
First, it allows the developer to time-travel through the history of
execution quickly. Second, it bounds log-space consumption, be-
cause log records older than the oldest checkpoint can be deleted
from disk.

Following the technique pioneered by libckpt [20] and Flash-
back [26], Jockey first forks the target process. It then dumps the
state of the child, while letting the parent continue running. Jockey
reads the file/proc/ N /maps (N is the process ID) to obtain the
virtual memory mappings of the process and dumps only those sec-
tions that are mapped privately and read-write. To restore a check-
point, for each section recorded in the checkpoint file, Jockey un-
maps the memory region if it is already occupied, and either re-
stores the contents from the checkpoint file or remaps the file.

We discuss two particular problems we faced, both related to
dynamic linking.

3.3.1 Preventing brain damage to the dynamic linker
One of the challenges of checkpoint restoration is that Jockey

needs to overwrite the memory that is potentially used by the restora-
tion code itself. The process would crash if restoration is done
naively. Here, two types of memory regions need to be taken care
of: Jockey’s internal heap (Section 3.2) and the heap used by the
dynamic linker. For example, Jockey must execute theread sys-
tem call to load checkpoint contents. If the call toread happens
to be the first ever made by the target application or Jockey, then
the dynamic linker is invoked to resolve the symbol “read ”, which
involves modifying the linker’s heap.

Jockey handles its internal heap by excluding it from checkpoint-
ing, but the dynamic linker poses a particular challenge—we can-
not know a priori where the memory used by the dynamic linker is
2In fact, this problem is not just specific to gdb. It happens when-
ever the target process inherits more than the standard number of
file descriptors from the parent.

(the linker performs an anonymous mmap of its heap memory; all
anonymous-mmapped sections look the same to Jockey). We re-
solve this issue by eagerly linking all libc functions that are called
during snapshot restoration, by making dummy calls to functions
such asopen andread before it restores any checkpoint.

3.3.2 Exec shield
Exec-shield is a facility found in some Linux kernels (e.g., Red

Hat, Fedora Core) to thwart buffer-overflow attacks [12]. One of its
features is randomization of the loading addresses of shared-object
files. This feature breaks Jockey because Jockey needs to keep data
structures that are specific to the process’s memory layout. We
currently require that this feature be disabled by doing the below
on machine boot.

echo 0 >/proc/sys/kernel/exec-shield

3.4 Handling signals
Signals, especially those that happen asynchronously (for ex-

ample, SIGALRM, SIGINT) present a special challenge, because
they need to be delivered at exactly the same point in the execu-
tion during record and replay. We handle them in a way similar
to [28]. Each signal delivery is first intercepted by Jockey. Jockey’s
signal handler simply records the parameters to the signal (signal
number and the CPU register values) and finishes. At the end of
the Jockey’s handler for a system call orrdtsc CPU instruction,
Jockey checks if a signal was intercepted in the past. If so, it logs
the signal (so that it can be replayed) and calls the target-defined
signal handler. This way, we convert asynchronous signals to syn-
chronous upcalls that only happen immediately after a system call.

This technique may distort program behavior when the target
program runs without issuing a system call (or executing nonde-
terministic CPU instructions) for a long period and receives signals
in the meantime. However, our primary targets, I/O-oriented pro-
grams, usually do not suffer from this problem.

3.5 Reducing logging overhead for I/O system
calls

Jockey employs two different types of logging techniques, de-
pending on the types of system calls, to reduce the log-space over-
head.

• For requests to regular files or directories, Jockey performs
“undo” logging [9]. That is, for system calls that update a
file, Jockey logs enough information to restore its contents
before the modification. For example, when awrite sys-
tem call overwrites the mid-section of a file, Jockey logs the
offset and the old contents of the section. Or, whenwrite
appends to the end of the file, Jockey just logs the old size
of the file. In the replay mode, Jockey scans the log from
the end to the start and restores the file contents. Read-only
system calls (e.g.,read ) to regular files are simply executed
directly on the file.

• For all other types of events—I/Os to sockets, pipes, fifos,
devices, orselect , time , or rdtsc —Jockey performs “redo”
logging. Jockey logs the value produced by the event dur-
ing recording, as illustrated in Figure 4 (e). During replay,
Jockey just reads the values from the log without executing
the actual system call.

System calls such asread andwrite can operate on both types
of files. We intercept calls to functions that create file descriptors—
e.g.,open , socket , andaccept —remember the type of each de-
scriptor, and dispatch based on the descriptor type. File descrip-



tors inherited from the parent process (e.g., stdin) are always redo-
logged.

Various studies have shown that majority of I/Os to regular files
are reads, and that most of the write traffic is actually appends [18,
29]. For these common cases, our design allows Jockey to only
log the type and the offset of the requests, not the actual contents.
Thus, it drastically reduces the logging overhead for file I/O system
calls.

The downside of the undo-based logging is that the user cannot
modify the files accessed by the target program between record and
replay. So far, we have not found this to be a significant burden.

3.6 Handling memory-mapped I/Os
Updates to memory mapped files are handled using user-space

memory-protection mechanisms. Jockey intercepts calls to themmap
system call. For each file requested to be mapped read-write in a
shared mode (i.e.,MAPSHARED),3 Jockey makes the mapped region
read-only, and takes a page fault (SIGSEGVsignal) after the first
write access to each page in the region. In theSIGSEGVhandler,
Jockey logs the current page contents (Section 3.5), makes the page
writable, and returns the control to the target. A similar approach
is adopted by Flashback [26], albeit using a kernel extension.

These memory pages are made read-only again just before check-
pointing, so that Jockey can restore the contents of the file at the
moment of each checkpoint.

4. CONTROLLING JOCKEY
Jockey is designed to replay executions without requiring mod-

ification to the target source code. Sometimes, however, allowing
the target program to change the behavior of Jockey could enable
more efficient program execution or debugging. Jockey’s library-
based design makes it easy to offer such control knobs for the tar-
get. This section introduces some of them.

4.1 Controlling the behavior of fork
By default, uponfork , Jockey continues recording only the par-

ent and disables tracing the child. Procedurejockey set fork-
trace mode(mode) can be called by the target program to record
only the child, or both ( (the behavior offork can also be con-
trolled via JOCKEYRCenvironment variable.) It can be used, for
example, for daemon-type programs that fork to detach themselves
from the parent process.

4.2 Target-specific function call interception
Procedurejockey redirect calls( name, newproc , size )

is used to transfer the control tonewproc whenever functionname
is called. Parameterargsize is the size of the on-stack parameters
to the function. This function is implemented using instruction-
patching service discussed in Section 3.1. This feature can be used,
for example, to provide record/replay functionality for obscureioctl
commands.

4.3 User-defined invariant checker
Jockey allows an arbitrary object file to be linked into the target

program during replay. Figure 6 shows an example. Let us assume
that we rantest2.c under Jockey and found that procedurebar
behaves anomalously wheni == 95999 . We could diagnose the
bug by setting a breakpoint onbar in a debugger and waiting until
it hits 95999 times, but Jockey offers a quicker alternative, as shown
in Figure 7.
3Accesses to a private mapping (MAPPRIVATE) need not be inter-
cepted, because private mapping is essentially a heap memory with
particular initial contents.

// test2.c
void bar(int i) { ... do something complex ...}
void main() {

for (int i = 0; i < 100000; i++) bar(i);
}

Figure 6: A small program that executes procedurebar many
times.

// check.c
#include <jockey/jockey.h>
void check_bar(int i) {

if (i == 95999)
jockey_breakpoint();

}
void init() {

jockey_interpose_calls("bar",
check_bar, 4);

}

(a) A user-defined checker code that sets a breakpoint when
procedurebar is called 95999 times.

% cc -c check.c -o check.o
% gdb test2
(gdb) b jockey_breakpoint
(gdb) run --jockey=replay=1;checker=check.o

(b) Running the user-defined checker.

Figure 7: Using a user-defined invariant checker.

The developer writescheck.c in Figure 7 (a) to diagnose the
problem. Procedureinit is called automatically by Jockey when
the object file is loaded into memory.jockey interpose-
calls is similar to jockey redirect calls (Section 4.2),

but it returns the control to the original procedure after the callback
returns. In this example, it will causecheck bar to be called just
beforebar is called.

The callback can be an arbitrary procedure as far as it does not
modify the state of the program. It can set a conditional break-
point as shown in this example, or it can check if some application-
specific invariant holds. User-defined checkers offers several ad-
vantages over similar features offered by traditional debuggers, such
as conditional breakpoints and watchpoints. First, it is more flexi-
ble because the checker can evaluate arbitrary application-specific
expressions. They are also faster because they run at the native
CPU speed.

The implementation of this feature is tricky, because we cannot
use the dynamic linker to load the checker object file into the tar-
get process—doing so would alter the target’s memory usage (Sec-
tion 3.3.1), which would cause the program execution to diverge
between record and replay.

Jockey instead invokes the static linker,ld , to create a binary
image at runtime. When Jockey tries to load a checker object,
saycheck.o , it first discovers the memory addresses of all pub-
lic symbols in the target process by invoking thenmcommand for
each loaded shared object. Jockey then invokes theld command
on check.o . It passes the addresses of discovered public symbols
and instructsld to resolve symbols incheck.o starting from a
fixed virtual address unlikely to be accessed by the target program



Name
Run time Log size

Native Record Replay #bytes #records
g++ 1.33 1.51 1.49 73KB 80
xclock N/A 180 0.4 80KB 4639
Emacs N/A 210 5.81 1.4MB 20769
httpd 16.7 17.5 9.5 2.0MB 140180
FAB 33.7 44.1 31.1 34MB 887000

Table 1: The performance and log-space overheads of Jockey.
Run times are in seconds. “Native” is the run-time without
Jockey. “Record” and “Replay” show the runtime during
recording and replaying, respectively.

(0x62000000 by default). The binary image created byld is then
read directly into memory at address 0x62000000 and executed.

5. EVALUATION
This section reports performance and space overheads of Jockey

and discusses our experiences using Jockey to debug real-world
programs.

5.1 Performance and log-space overheads
The evaluation was performed on a Fedora Core 3 Linux ma-

chine with a 1.5GHz Pentium-M CPU, 512MB of memory, and a
7200 rpm ATA disk drive. We ran a variety of programs under
Jockey, as listed below. Stock binary executable files from the Fe-
dora Core distribution were used, except for FAB.

g++: gcc 3.4.2 compiling a small C++ program that uses an STL
map. The result shows the sum of the frontend (g++), back-
end (cc1plus ), assembler (as ), and linker (ld ).

xclock: a digital clock for the X window system with a screen up-
date every second.

Emacs: Emacs 21.3 running a program-development session, in-
volving active typing, file reading, and saving.

httpd: Apache 2.0.52 serving 100000 HTTP GET requests for a
static 0.5KB file. It was configured to run as a single, non-
threaded process.

FAB: a four-process FAB cluster [23] serving 80000 random 1KB
read and write iSCSI requests.

g++ is an example of a short-running, CPU-intensive program,
which is not among Jockey’s primary targets. This example still
shows that Jockey has a very low log-space overhead compared to
approaches that involve memory-access logging [16], which could
consume up to a few megabytes per second for logging. For g++,
most of the slowdown is due to checkpointing that happens at the
beginning of the execution (Section 3).

Xclock and Emacs are examples of interactive applications. Jockey
exhibits reasonable log-space overheads for them. It is able to re-
play their execution extremely fast, because they need not wait for
timeouts or user inputs during replay. This translates to more effi-
cient debugging sessions.

Apache and FAB are examples of server programs. FAB repre-
sents the worst case for Jockey. Not only does FAB perform large
amount of network I/O, it also overwrites existing files repeatedly,
resulting in a large amount of logging traffic (Section 3.5). In com-
parison, Apache has a lower logging overhead because it only reads
from HTML files and appends to access-log files.

5.2 Experiences
We have used Jockey regularly for FAB development. Our ex-

periences have overall been positive. Jockey has been most use-
ful when diagnosing bugs that happen after long stress or regres-
sion tests. Before Jockey, we were forced to recompile and re-
boot the system many times, each time with a slightly different set
of “printf” statements, hoping that we would eventually reproduce
and catch the error. Jockey allows us to reproduce the bug reliably
as often as we wish. Fixing such bugs, however, is still difficult
even with Jockey. The real cause of the bug often happens minutes
before the bug exhibits, often on a different machine. The program-
mer needs to replay the execution of multiple processes repeatedly
to locate the cause.

On the other hand, we have also found Jockey to be surprisingly
effective in diagnosing bugs that exhibit quickly, e.g., while pro-
cessing the first request from the client (indeed, most real-world
bugs are of this type). Jockey cuts the debugging turn-around time
by allowing the developer to replay a single process quickly instead
of restarting the entire cluster.

Our experiences so far suggest that deterministic distributed re-
play system (Section 2.3) is not worth the complexity, at least for
a system like FAB. The most important feature of a record/replay
tool is the ability to replay quickly and reduce developers’ turn-
around time. The whole-system replay does not improve this issue;
it may actually increase the replay latency.

There are a few Jockey features that sound useful in theory, but
have turned out to be not quite so in practice. First is user-defined
invariant checking (Section 4.3). Debugging is an ad-hoc activity—
writing and compiling a program every time one wants to debug is
awkward. A debugger support, such as transparently compiling and
loading a user-defined watchpoint to the program, would help. An-
other problem is the checker can only do only limited things—for
example, it cannot intercept calls in the middle of function execu-
tion, nor can it inspect on-stack variables in the call chain.

Second, the concept of “time travel” using periodic automatic
checkpoints (Section 3.3) has turned out to be powerful but cum-
bersome to use. The developer must manually restart the process
every time he or she wants to switch to a different checkpoint. The
developer can easily lose track of which part of the execution he
or she is replaying. An extension to debuggers, such as automatic
checkpoint scanning for detecting invariant violation [5, 31], would
go a long way toward making this feature useful.

6. CONCLUSION
This paper described Jockey, a Linux tool for deterministic record/-

replay debugging. To achieve Jockey’s goals of safety and easy of
use, it is implemented as a user-space library that runs as a part
of the target process. It intercepts calls to nondeterministic system
calls and CPU instructions, logs the effects of these operations dur-
ing recording, and replays them from the log during replay. Jockey
has a small performance and log-space overhead. Jockey has been
extensively used to develop FAB.
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