Jockey: A User-space Library for Record-replay Debugging

Yasushi Saito

Hewlett-Packard Laboratories® Google, Inc.
Palo Alto, CA, USA Mountain View, CA, USA

yasushi.saito@gmail.com

ABSTRACT Jockey was originally developed as a debugging aidHaB
Jockey is an execution record/replay tool for debugging Linux pro- (Fe?)elf;ated Arrlay of Br]lcks) [¢!3]C.I_FAB ISa hlgh-aval_lglblllty disk ar-
grams. It records invocations of system calls and CPU instructions Iray. ull t oln acluster o corr|1.mo Ity servers. I: provides accesseslto
with timing-dependent effects and later replays them deterministi- ogllc_:a volumes to ISCSI clients using lcomp ex peer-to-peer-style
cally. It supports process checkpointing to diagnose long-running rep 'Cat_'?” and erasure-coding protocols. . .
programs efficiently. Jockey is implemented as a shared-object file Trafldltlonal de_buggf_ersl, such as gdb, pro_wlde comprehenilve sup-
that runs as a part of the target process. While this design is the keyport or debugging sing e-_node, sfequent_la programs. They are,
for achieving Jockey's goal of safety and ease of use, it also poseshowever, not as useful for interactive or distributed programs such
challenges. This paper discusses some of the practical issues wés 'lz(AB [ﬁ(), .4]' Wﬁ identify three key problems and discuss how
needed to overcome in such environments, including low-overhead ‘]OC_ ey alleviates t. em. o .
system-call interception, techniques for segregating resource usage First, the execution of such programs IS |nherently_ nonde_termln-
between Jockey and the target process, and an interface for fine.stic. The behavior of a process will diverge, depending on interac-
grain control of Jockey's behavior tions with the OS, the user, or other processes. Jockey helps debug
' such programs by recording every nondeterministic choice the pro-

))] cess makes, and replaying the execution as many times as the de-
Categorles and Subject DeSCI’IptOI’S veloper wishes. Thus, debugging for a nondeterministic program is
reduced to that for a sequential, repeatable program.

Second, these programs often run for along period of time, either
because they need lots of resources (e.g., scientific computation),
or they are server programs (e.g., FAB and distributed hash tables),
General Terms or they need substantial user interactions (e.g., spreadsheet). Sim-
Reliability, Experimentation, Languages, Verification ply reproducing the bug often tests a developer’s patience. Jockey

alleviates this problem by transparently checkpointing the process
state during execution. The developer can start replaying from any

D.2.5 [Software]: Software Engineering—Festing and Debugging
D.4.9 [Operating System$: Systems Programs and Utilities

Keywords checkpoint and easily “time-travel” through the history of execu-
Debugging, Execution record and replay, Checkpointing, x86, Jocke§jon to diagnose the problem. Checkpointing also bounds the log-
Linux Space overhead, as log records older than the checkpoint can be
discarded.
Third, running a distributed system such as FAB requires start-
1. INTRODUCTION ing processes on multiple computers, which is cumbersome and

Jockey is a record/replay tool for Linux. It logs the execution increases the turn-around time for program development. Jockey
of an ordinary program and replays deterministically later. Jockey alleviates this problem by recording and replaying each process
is designed to help debug interactive or distributed programs that independently—after recording the execution of the whole system,
communicate with the operating system or other computers in a the developer can replay each process under a traditional debugger.
complex fashion. We plan to make Jockey publicly available via This can also be a limitation; Jockey could be less useful when one
http://www.freshmeat.net. wants to investigate the execution of the whole system at once. We
discuss our experience in Sectjon]|5.2.

IThis work was done while the author was with HP Labs. The Theremainder of this section overviews Jockey’s design and dis-
author is now employed by Google. cusses its benefits and challenges.

1.1 Goals and approaches

Jockey is designed with two pragmatic goals in mind. First is
Permission to make digital or hard copies of all or part of this work for ~€ase of use: Jockey must be easy and safe to deploy. It should work
personal or classroom use is granted without fee provided that copies arewithout requiring changes to the target program, the operating sys-
not made or distributed for profit or commercial advantage and that copies tem, or the debugger. Secondgisierality. Jockey should be able
bear this notice and the full citation on the first page. To copy otherwise, to g handle generic Linux programs, not just those written in a partic-

republish, to post on servers or to redistribute to lists, requires prior specific | |5, programming language or API, such as MPI or CORBA [11]
permission and/or a fee. ’ ’

AADEBUG'05,September 19-21, 2005, Monterey, California, USA. We achieve the first goal by implementing Jockey as a user-space
Copyright 2005 ACM 1-59593-050-7/05/00055.00. library that runs as a part of the target process. In contrast to kernel-

http://www.freshmeat.net

/I testl.c

int maing i % LD_PRELOAD=Ilibjockey.so \
FILE *f = fopen("/dev/random”, "r"); S I = = i
printi("o6x\n™, gete(f)- 82./testl jockey=replay=0 # recording
% LD_PRELOAD-=libjockey.so \
82./testl --jockey=replay=1 # replaying

Figure 1: A simple program, testl.c ,thatreads and displays

a random number every time it is run. (a) One can pass a command-line paramejeckey= to

the target process to control Jockey. This parameter is parsed by

libjockey.so . For this method to work, the target program
% cc -0 testl testl.c must be designed to ignore a command-line string that starts
% LD_PRELOAD-=libjockey.so \ with --jockey=
38JOCKEYRC:"repIay:O" Jtestl # recording
% LD_PRELOAD-=libjockey.so \ i i

JOCKEYRC="replay=1" ./testl # replaying 0%Jockey --replay=0 Jtestl # recording

a

O/r‘j9 jockey --replay=1 Jtestl # replaying

a
Figure 2: The most basic use of ‘]OCK?V'. The_program (b) One can also start the test program fromjtekey fron-
outputs the same number even though it is reading from tend. jockey is a small script just sets the environment vari-
/dev/frandom . Setting environment variable LD_.PRELOAD ables and executes the target program.

causes the dynamic linker to loadibjockey.so before other
object files. Environment variable JOCKEYR®asses parame-

ters to libjockey.so . % cc test.c -liockey
%1 Jtestl --jockey=replay=0 # recording
c
based approaches [26], Jockey can be used by anyone without ad- Oc/(i Jtestl --jockey=replay=1 # replaying
ministrative privilege or a patched kernel. Developers can continue

using their favorite debuggers without change. In addition, this de-)

sign allows the target program to control or extend Jockey easily, as (%) Jockeg can ‘:’ll_lﬁ.o be “t?]k%d. manually to tthehtarget prfogram, t"i‘S

we discuss in Sectidrj 4. Our second goal is achieved by recording shown above. 'his method IS convenient wnen one irequently
.) runs the program under a debugger.

and replaying events at a fairly low level—system calls and CPU

instructions.

1.2 Non-goals

We do not try to make program execution under Jockey identi-
cal to native execution without Jockey. Because Jockey internally 1.4 Challenges and limitations
needs to perform mmap and file accesses, the mmap addresses and oy decision to co-locate Jockey with the target process poses
file descriptors allocated to the target process may differ between chajlenges and limitations. First, Jockey could be compromised by
a_r_1at|ve and a recording run. This usually does not cause an ad-g seriously buggy or malicious target program—if it wishes, for
ditional pro'bl_em, becau;e programs targeted by Jockey are Usua")’example, the target program can destroy a memory region used in-
nondeterministic to begin with. _ ternally by Jockey. We address this problem by segregating the
~ Also, performance is a secondary goal. Jockey is used only dur- ;se of resources as much as possible between the target program
ing testing and debugging. Some slowdown under Jockey should ang Jockey. As a result, Jockey has been able to record and replay
be acceptable, as long as it does not change the target program’s bem st common memory bugs, including accessing free’ed memory
havior qualitatively. In practice, as we show in Secfion 5, Jockey's pjocks and off-by-one array accesses. Resource segregation is dis-
overhead is at most 30% for I/O intensive programs, more often - ,ssed further in Sectifn 3.2,
close to zero—well within our limit of tolerance. The second challenge is recording and replaying events that are
not directly initiated by system calls. We describe our solutions to

Figure 3: Alternative ways of running a program under Jockey.

1.3 Example . . ,
o)] two such types of events, signals and memory-mapped file I/Os in
~The meat of Jockey ihjockey.so , an x86 shared-objectfile. section§ 3} and3.6. There are, however, events that are funda-
Figure[1 shows a simple program that reads frdav/random mentally impossible to capture. For example, memory access races

Linux’s random number device. Figuf¢ 2 shows the most basic that happen with kernel-based pthreads cannot be replayed, because
use of Jockey. Recording or replaying program execution requires thread context switches are out of Jockey’s control. For this rea-
no change to the source code or the executable file. Simply load-son jockey does not support kernel multi-threading. Similarly, it
ing libjockey.so on startup causes Jockey to take control of the ypes not support any program or API that interacts with other pro-
process. In this example, Jockey intercepts the call tosthe sys- cesses (or devices) via shared memory or files—e.g., uDAPL [1]
tem call made vigetc . It logs the value read during the recording o, memory-mapped network 1/Os. Note that Jockey does support

phase. When replaying, it reads the value from the log without ac- ser-space threads, such as Capriécib [30]—in fact, FAB is built on
tually reading from the random device. Jockey can also be invoked 3 similar package.

in several different ways, as shown in Fig[ife 3.

2. RELATED WORK logs the values generated by these calls during recording, and

Execution record/replay has long been advocated as an effec- reads the value from the log during replay.
tive debugging method [6, 22, 21]. This section reviews prior ap-

proaches to record/replay debugging and relates them to Jockey. (2) Jockey does the same for CPU instructions with nondeter-

ministic effects. It currently patches ontyitsc , the x86
21 Record/replay debugging for a single pro- instruction for reading the CPU’s timestamp counter. It is
cess used, for example, as a pseudo random-number generator in
Bugnet was one of the earliest deterministic record/replay toals [32]. libe
It intercepted 1/O activities by the processes and took checkpoints (3) jockey checkpoints the process state just before returning

of the system periodically. Bugnet, however, supported only pro- control to the target program. In the replay mode, Jockey
grams written to a special API, unlike Jockey that supports generic simply loads the checkpoint. Checkpointing is needed to en-
Linux programs. Flashback [26] is the most recent work along this sure that the target sees the same set of environment variables
line. It offers a similar set of functionalities as Jockey—recording and command line parameters during both record and replay.

and replaying system calls and fork-based checkpointing—but Flash- \ve discuss checkpointing in more detail in Secfion 3.3.
back is offered as a kernel patch. As such, it is less easy and safe to

use than Jockey. (4) Jockey transfers control to the target program. From this mo-
In a slightly different approach, some systems record and replay ment, Jockey becomes active only when the target executes

individual memory accesses |19, 16] 25, 7]. They have several ad- a system call or a nondeterministic CPU instruction.

vantages over event-based approaches like Bugnet, Flashback, or

Jockey. First, some of them enahi®erse execution—stepping The next section describes the first two steps in more detail.

CPU instructions literally backward [19] 7]. Second, they could Sectior{3.R discusses Jockey's efforts to segregate itself from the
be more generic because they need not know deeply about the setarget program to avoid unnecessary interference. Sectipn 3.3 de-
mantics of system calls and other interactions with OS. However, scribes Jockey’s checkpointing function (step (3)), along with the
they require a special compiler and have a large logging overhead.challenges we had to overcome.
Even with sophisticated optimizations, these systems generate logs . .
at the rate of multiple megabytes per second for CPU-intensive pro- 3.1 Instruction patching
grams [16] 2b]. Jockey, in contrast, generates only a few hundred As an example, Figurg] 4 shows how ttiee system call is
bytes per second for such programs, as we show in S¢ctipn 5.1. recorded and replayed. (a) shows the first few CPU instructions
. . . of time inlibc.so . When Jockey starts, it writesjap instruc-
2.2 Record/replay using virtual machines tion in the first 5 bytes of the procedure, as shown in (b). If the 5th
Revirt is a virtual machine that records and replays low-level in- byte is in the middle of another CPU instruction, as is the case with
terrupts and device activitigs|[2]. It has been proved to be useful for time , Jockey overwrites up to the next instruction boundary (and
network intrusion detection and diagnosing kernel bugs [5]. Sev- fills the memory witmop as needed). In (c), Jockey also copies the
eral other papers also propose distributed-system emulation usingoriginal first 5 bytes (6 bytes faime) of the function to a newly
virtual machines[[3, 17]. While these systems are powerful, they allocated memory region so that Jockey can run the old implemen-
are also cumbersome to use—for example, one needs to create a fulation if necessary. (d) shows the pseudocode of the entry point for
file system tree for each virtual machine. They are overkill when the new implementation afme . As we discuss further in Sec-
one is interested only in debugging user-space programs. Jockey igion[3.3, this code is dynamically generated so that Jockey can in-
designed to be simpler and easier to use than these systems. tercept system calls on a separate stack and avoid corrupting target
. memory. Finally, (e) showsewtime , Jockey’s implementation of
2.3 Record/replay for parallel and distributed time . While recordingnewtime calls the original implementation
programs (c) and logs the returned value. While replaying, it simply supplies
Deterministic record/replay has been most effective in parallel the value from the log without actually executing the system call.
and distributed environments [21]. Indeed, earliest tools specifi- One might wonder whyibjockey.so does not just provide
cally targeted such environments [82] 19]. Since then, many theo-a new implementation of a system call with the same name—in
retical improvements have been proposed for both shared-memoryfact, LD-PRELOADS often used for that purpose. The reason is that
parallel programs|[13] and message-passing progranis [14, 15].doing so will miss system calls made insiite or the dynamic
Jockey does not yet support deterministic replay of a distributed linker—for example, a call teead made bygetc . These internal
system—it can only replay processes within the system indepen- calls are pre-resolved by the static link&t), and they cannot be
dently. As we discuss in Sectifn b.2, we found this limitation not overridden merely by redefining using PRELOAD
to be a serious obstacle so far. For task (2), Jockey rewrites all offending CPU instructions found
in the target process. This is done in two waylew mode and
cached mode. In slow mode, Jockey first reads the special file
3. IMPLEMENTATION OF JOCKEY /proc/ N/maps (N is the target process ID) that shows the virtual-
We have implemented Jockey on Linux in C++. The dynamic memory mappings of the target process. It then reads the header of
linker (Id.so) invokes Jockey'’s initialization routine immediately each mapped shared object file, discovers the locations of the text
afterlibjockey.so is loaded, before the target program starts ex- sections, and scans each text section. Jockey finds nondeterminis-

ecution. The initialization routine performs the following tasks. tic CPU instructions in the section (if any), and patches them. It
also intercepts invocations of themapsystem call and does the
(1) Foreach system calliibc with timing- or context- depen- same when a shared object file is newly loaded onto the process’s

dent effects, Jockey rewrites its first few instructions and in- address space.
tercepts calls to it. Jockey currently intercepts 80 Linux sys- Jockey needs to parse CPU instructions during steps (1) and (2),
tem calls, includingime , recvfrom , andselect . Jockey not a trivial task given x86’s complex instruction encoding. It uses

time: time: /'trampoline: lptime_t newtime (time_t *p) {

0: mov %ebx, %edx Rewrite first 0: jmp trampoline — switch the stack pointer. time_t tmp;

2: mov 8 (%esp), %ecx |6 bytes 5: nop copy args from the old to if (replaying) {

6: mov 4(%esp), Sebx - 6: mov 4 (%esp), %ebx the new stack. J logrecord *r = read_log();
10: mov $0xde, S$ebx 10: mov $0x4e, Sebx call newtime. tmp = r->tv;

15: call *%gs:0x10 15: call *%gs:0x10 switch stack back. } else {
e ret oldtime (&tmp) ;

/ logrecord r = {&tmp};

append_log (&r) ;

(a) Original entry sequence for
time system call.

(b) Rewritten t ime. (d) The trampoline code
generated to invoke new
time implementation.

}
if (p) *p = tmp;
return tmp;

oldtime:
0: mov %ebx, %edx)
2: mov 8 (%esp), %ecx
6: jmp time+6 (e) Jockey’s implementation of t ime.

(c) Newly generated entry point
for the original implementation.

Figure 4: Recording and replayingtime .

a pidgin table-based parser for common instructions and consultsget needs to access this address legitimately. We use an internal
libdisasm [8], an open-source x86 disassembler library, for uncom- malloc-like library to carve the memory out to individual data struc-
mon cases. A few tables that map opcodes and operands to theitures and build a custom C++ STL memory allocator on top of it.
instruction length let us quickly parse more than 80% of all in- Thus, the Jockey code has full access to STL features, including
struction occurrences. maps and dynamic vectors. This design has considerably simpli-
Even using this technique, however, parsing all CPU instruc- fied the development of Jockey.
tions in a typical Linux program takes about 350 milliseconds on One restriction is that Jockey cannot make internal calls to libc
a 1.5GHz Pentium-M processor, which may be too slow for some functions that usenalloc . Examples include high-level 1/O func-
users. To reduce the startup latency further, Jockey also employstions fopen , std::fstream) and DNS resolvergéthostbyname).
cached-mode instruction patching. Here, after finishing the slow
mode, Jockey writes the locations of nondeterministic instructions 3.2.2 Stack

found for each shared object in fit¢jockey-sig . When the Jockey also segregates the use of stack. This is necessary to

program starts the nexttime, it just redisckey-sig without replay a program that improperly accesses data beyond the stack

scanning the process’s virtual memory, unless the timestamp of thepointer (e.g., accessing an on-stack array with a negative index).

object file has changed. o Figure[3 (d) illustrates how this is done. In the first few instructions
Jockey's instruction-patching approach is simpler and faster than ager itintercepts the call time , Jockey saves the stack pointer to

full-program binary translation, employed by ATOM [27] or Val- 5, intemal variable, switches the stack to an internal buffer, copies

grind [24]. It needs to patch only a few bytes at the beginning e harameters time (a 4-byte pointer) from the old to the new

of system calls and nondeterministic CPU instructions; the rest stack, and callsewtime . Once the new implementation returns

of the target program executes natively. Indeed, as we Show in jocyey restores the stack pointer. This allows for deterministic re-

Sectior{ b, Jockey’s performance overhead is negligible for CPU- play of even a buggy program because Jockey never uses the tar-

intensive programs. get's stack.
. This stack-switching process must be done without touching any
3.2 Segregating resource usage CPU register other than the stack pointer. For this purpose, all the

Jockey and the target application run as part of the same processlata structures involved here are allocated statically. This makes
and share all resources. Jockey must segregate the use of resourcd®ckey nonreentrant, but it is not an issue because Jockey does not
to prevent Jockey from unnecessarily changing the target’s behav-support multi-threading.
ior, and to minimize the chance of a misbehaving target program
breaking Jockey. This section discusses Jockey’s treatment of three3.2.3 File descriptors

types of shared resources: heap, stack, and file descriptors. Jockey must perform its own file accesses occasionally, for ex-

ample, when opening a log file or dumping a checkpoint. Because
3.2.1 Heap Jockey and the target process share the same file-descriptor table,
Jockey cannot use standard libc functions, sucmac or Jockey must ensure that its file operations do not alter the descriptor
sbrk , to manage its internal data. Doing so increases the likeli- allocation scheme seen by the target. To achieve this goal, Jockey
hood of a misbehaving target program breaking Jockey. Moreover, moves file descriptors it internally opens to a fixed range not likely
it changes the memory layout of the target process between recordo be used by the target (43@39).
and replay. It would thus become impossible to replay invalid mem- An alternative approach would be to create an indirection table
ory accesses correctly, e.g., accessiag 'ed memory, which is that maps file descriptors between the target program and the oper-
one of the common programming errors. ating system kernel. Jockey would then intercept every system call
Instead, Jockey stores all its internal data in a mmapped region atthat takes a file descriptor and translates it using the table. We chose
a fixed virtual address that is unlikely to be accessed accidentally by our approach for two reasons. First, the former approach simplifies
the target program. This address is by default set to 0x63000000,implementation, especially for system calls suckasct . Sec-
but it could be changed via an environment variable if the tar- ond, the absence of descriptor indirection allows the user to inspect

% jockey --checkpointfrequency=30 \
--retaincheckpoints=5 \
-~ httpd -X
... later ...

% jockey --restore=log/checkpoint-3

(the linker performs an anonymous mmap of its heap memory; all
anonymous-mmapped sections look the same to Jockey). We re-
solve this issue by eagerly linking all libc functions that are called
httpd during snapshot restoration, by making dummy calls to functions
such aspen andread before it restores any checkpoint.

3.3.2 Exec shield

Exec-shield is a facility found in some Linux kernels (e.g., Red
Hat, Fedora Core) to thwart buffer-overflow attacks [12]. One of its
features is randomization of the loading addresses of shared-object
files. This feature breaks Jockey because Jockey needs to keep data
structures that are specific to the process’s memory layout. We
currently require that this feature be disabled by doing the below
the process's state more transparently, for example, by using the®" machine boot. _
system call tracer, such asace echo 0 >/proc/sys/kernel/exec-shield

Gdb (debugger) poses another problem. When starting the target3_4 Handling signals

process, gdb opens a few extra file descriptors in addition to the i ;
usual stdin, stdout, and stderr. Thus, if an execution is recorded Signals, especially those that happen asynchronously (for ex-

under a normal shell and then replayed under gdb, the files opened®MPle, SIGALRM, SIGINT) present a special challenge, because
by the target processes will be assigned different descriptors, whichthey need to be delivered at exactly the same point in the execu-
make replaying divergeﬁ}We solve this problem by having Jockey ~ tion during recprd and. replgy. We handle them in a way similar
open dummy files for descriptors 0 to 9 before starting the target 0 [28]. Each signal delivery is first intercepted by Jockey. Jockey's
program (it leaves descriptors inherited from the parent process un-Signal handler simply records the parameters to the signal (signal
touched). Assuming that gdb opens at most 10 descriptors when ithumber and the CPU register values) and finishes. At the end of

starts the target, we can ensure that the target has the same set ¢he Jockey’s handler for a system callrdtsc - CPU instruction,
files opened upon record and replay. Jockey checks if a signal was intercepted in the past. If so, it logs

the signal (so that it can be replayed) and calls the target-defined

3.3 Checkpointing signal handler. This way, we convert asynchronous signals to syn-
Jockey allows process state to be checkpointed automatically. chronous upcalls that only happen immediately after a system call.
Figure[B shows an example. Checkpointing serves two purposes. This technique may distort program behavior when the target
First, it allows the developer to time-travel through the history of Program runs without issuing a system call (or executing nonde-
execution quickly. Second, it bounds log-space consumption, be- terministic CPU instructions) for a long period and receives signals

cause log records older than the oldest checkpoint can be deleted” the meantime. However, our primary targets, I/O-oriented pro-
from disk. grams, usually do not suffer from this problem.

Following the technique pioneered by libckpt [20] and Flash- ; ;
back [26], Jockey first forks the target process. It then dumps the 3.5 ;clalglucmg Iogglng overhead for I/0 system

state of the child, while letting the parent continue running. Jockey
reads the filgproc/ N/maps (N is the process ID) to obtain the Jockey employs two different types of logging techniques, de-
virtual memory mappings of the process and dumps only those sec-pending on the types of system calls, to reduce the log-space over-
tions that are mapped privately and read-write. To restore a check-head.
point, for each section recorded in the checkpoint file, Jockey un-
maps the memory region if it is already occupied, and either re-
stores the contents from the checkpoint file or remaps the file.

We discuss two particular problems we faced, both related to
dynamic linking.

Figure 5: Taking automatic checkpoints of httpd (Apache)
every 30 seconds. TheX option runs Apache in foreground.
Option --retaincheckpoints=5 causes only the last five
checkpoints to be retained. The last line replay$ttpd from
the third checkpoint.

e For requests to regular files or directories, Jockey performs
“undo” logging [G]. That is, for system calls that update a
file, Jockey logs enough information to restore its contents
before the modification. For example, whenvaite sys-
tem call overwrites the mid-section of a file, Jockey logs the
offset and the old contents of the section. Or, wheite
appends to the end of the file, Jockey just logs the old size

3.3.1 Preventing brain damage to the dynamic linker
One of the challenges of checkpoint restoration is that Jockey

needs to overwrite the memory that is potentially used by the restora-
tion code itself. The process would crash if restoration is done
naively. Here, two types of memory regions need to be taken care
of: Jockey’s internal heap (Sectipn B.2) and the heap used by the
dynamic linker. For example, Jockey must executerthd sys-
tem call to load checkpoint contents. If the callrtad happens
to be the first ever made by the target application or Jockey, then
the dynamic linker is invoked to resolve the symbe@ldd ”, which
involves modifying the linker's heap.

Jockey handles its internal heap by excluding it from checkpoint-
ing, but the dynamic linker poses a particular challenge—we can-
not know a priori where the memory used by the dynamic linker is

of the file. In the replay mode, Jockey scans the log from
the end to the start and restores the file contents. Read-only
system calls (e.gread) to regular files are simply executed
directly on the file.

For all other types of events—I/Os to sockets, pipes, fifos,
devices, oselect ,time , orrdtsc —Jockey performs “redo”
logging. Jockey logs the value produced by the event dur-
ing recording, as illustrated in Figufé 4 (e). During replay,
Jockey just reads the values from the log without executing
the actual system call.

System calls such asad andwrite can operate on both types

2In fact, this problem is not just specific to gdb. It happens when- of files. We intercept calls to functions that create file descriptors—
ever the target process inherits more than the standard number of.g.,0pen, socket , andaccept —remember the type of each de-

file descriptors from the parent.

scriptor, and dispatch based on the descriptor type. File descrip-

tors inherited from the parent process (e.g., stdin) are always redo-

logged.

Various studies have shown that majority of 1/Os to regular files
are reads, and that most of the write traffic is actually appénds [18,
29]. For these common cases, our design allows Jockey to only

Il test2.c

void bar(int i) { ... do something complex .}.
void main()

) for (int i = 0; i < 100000; i++) bar(i);

log the type and the offset of the requests, not the actual contents.

Thus, it drastically reduces the logging overhead for file I/O system
calls.

The downside of the undo-based logging is that the user cannot

Figure 6: A small program that executes procedurebar many
times.

modify the files accessed by the target program between record and

replay. So far, we have not found this to be a significant burden.

3.6 Handling memory-mapped I/Os

Updates to memory mapped files are handled using user-space

memory-protection mechanisms. Jockey intercepts calls tartep

system call. For each file requested to be mapped read-write in a

shared mode (i.eMARPSHARED;’|Jockey makes the mapped region
read-only, and takes a page fauliGSEGVsignal) after the first
write access to each page in the region. In$h@SEGVhandler,

Jockey logs the current page contents (Se¢fioh 3.5), makes the page

writable, and returns the control to the target. A similar approach
is adopted by Flashback [26], albeit using a kernel extension.

Il check.c
#include <jockey/jockey.h>
void check_barei/nt i) {y
if (i 95999)
jockey_breakpoint();

void_ init() {
jockey_interpose_calls("bar",
check_bar, 4);

}

(a) A user-defined checker code that sets a breakpoint when
procedurebar is called 95999 times.

These memory pages are made read-only again just before check-

pointing, so that Jockey can restore the contents of the file at the
moment of each checkpoint.

4. CONTROLLING JOCKEY

Jockey is designed to replay executions without requiring mod-
ification to the target source code. Sometimes, however, allowing

% cc -c check.c -0 check.o

% gdb test2

gdb) b jockey breakpoint

gdb) run --jockey=replay=1;checker=check.o

(b) Running the user-defined checker.

the target program to change the behavior of Jockey could enable

more efficient program execution or debugging. Jockey’s library-
based design makes it easy to offer such control knobs for the tar-
get. This section introduces some of them.

4.1 Controlling the behavior of fork

By default, uporfork , Jockey continues recording only the par-
ent and disables tracing the child. Procedapkey _set _fork-
_trace _mode(mode) can be called by the target program to record
only the child, or both ((the behavior édrk can also be con-
trolled via JOCKEYRGenvironment variable.) It can be used, for

Figure 7: Using a user-defined invariant checker.

The developer writesheck.c in Figure[7 (a) to diagnose the
problem. Proceduramit is called automatically by Jockey when
the object file is loaded into memoryjockey _interpose-

_calls is similar tojockey _redirect _calls (Sectior4.p),
but it returns the control to the original procedure after the callback
returns. In this example, it will causibeck _bar to be called just

example, for daemon-type programs that fork to detach themselvesheforebar is called.

from the parent process.

4.2 Target-specific function call interception

Procedurgockey _redirect _calls(name, newproc , size)
is used to transfer the control tewproc whenever functiomame
is called. Parameteirgsize is the size of the on-stack parameters
to the function. This function is implemented using instruction-

The callback can be an arbitrary procedure as far as it does not
modify the state of the program. It can set a conditional break-
point as shown in this example, or it can check if some application-
specific invariant holds. User-defined checkers offers several ad-
vantages over similar features offered by traditional debuggers, such
as conditional breakpoints and watchpoints. First, it is more flexi-
ble because the checker can evaluate arbitrary application-specific

patching service discussed in Secfior] 3.1. This feature can be usedexpressions. They are also faster because they run at the native

for example, to provide record/replay functionality for obsduce
commands.

4.3 User-defined invariant checker
Jockey allows an arbitrary object file to be linked into the target

CPU speed.

The implementation of this feature is tricky, because we cannot
use the dynamic linker to load the checker object file into the tar-
get process—doing so would alter the target’s memory usage (Sec-
tion[3:3:1), which would cause the program execution to diverge

program during replay. Figufg 6 shows an example. Let us assumepetween record and replay.

that we rantest2.c under Jockey and found that proceduee
behaves anomalously whén== 95999 . We could diagnose the
bug by setting a breakpoint drar in a debugger and waiting until

it hits 95999 times, but Jockey offers a quicker alternative, as shown

in Figure[T.

3Accesses to a private mappingARPPRIVATE) need not be inter-

Jockey instead invokes the static linket,, to create a binary
image at runtime. When Jockey tries to load a checker object,
saycheck.o , it first discovers the memory addresses of all pub-
lic symbols in the target process by invoking tivecommand for
each loaded shared object. Jockey then invokesdtheommand
oncheck.o . It passes the addresses of discovered public symbols

cepted, because private mapping is essentially a heap memory withand instructdd to resolve symbols ircheck.o starting from a

particular initial contents.

fixed virtual address unlikely to be accessed by the target program

Name Run time Log size 5.2 Experiences

Native | Record | Replay | #bytes | #records We have used Jockey regularly for FAB development. Our ex-
g++ 133 | 151 1.49 73KB | 80 periences have overall been positive. Jockey has been most use-
xclock | N/A 180 0.4 80KB | 4639 ful when diagnosing bugs that happen after long stress or regres-
Emacs| N/A 210 5.81 1.4MB | 20769 sion tests. Before Jockey, we were forced to recompile and re-
httpd | 16.7 | 17.5 9.5 2.0MB | 140180 boot the system many times, each time with a slightly different set
FAB 33.7 | 44.1 31.1 | 34MB | 887000 of “printf” statements, hoping that we would eventually reproduce

and catch the error. Jockey allows us to reproduce the bug reliably
Table 1: The performance and log-space overheads of Jockey. as often as we wish. Fixing such bugs, however, is still difficult

Run times are in seconds. “Native” is the run-time without even with Jockey. The real cause of the bug often happens minutes
Jockey. “Record” and “Replay” show the runtime during before the bug exhibits, often on a different machine. The program-
recording and replaying, respectively. mer needs to replay the execution of multiple processes repeatedly

to locate the cause.

On the other hand, we have also found Jockey to be surprisingly
effective in diagnosing bugs that exhibit quickly, e.g., while pro-
cessing the first request from the client (indeed, most real-world
bugs are of this type). Jockey cuts the debugging turn-around time
5. EVALUATION by allowing the developer to replay a single process quickly instead

This section reports performance and space overheads of Jockeyf restarting the entire cluster.
and discusses our experiences using Jockey to debug real-world Our experiences so far suggest that deterministic distributed re-

(0x62000000 by default). The binary image createddbys then
read directly into memory at address 0x62000000 and executed.

programs. play system (Sectign 3.3) is not worth the complexity, at least for
a system like FAB. The most important feature of a record/replay
5.1 Performance and log-space overheads tool is the ability to replay quickly and reduce developers’ turn-

The evaluation was performed on a Fedora Core 3 Linux ma- around time. The whole-system replay does not improve this issue;
chine with a 1.5GHz Pentium-M CPU, 512MB of memory, and a it may actually increase the replay latency. '
7200 rpm ATA disk drive. We ran a variety of programs under There are a few Jockey features that sound useful in theory, but
Jockey, as listed below. Stock binary executable files from the Fe- have turned out to be not quite so in practice. First is user-defined

dora Core distribution were used, except for FAB. invariant checking (Sectign 4.3). Debugging is an ad-hoc activity—
writing and compiling a program every time one wants to debug is

g++: gcc 3.4.2 compiling a small C++ program that uses an STL awkward. A debugger support, such as transparently compiling and
map. The result shows the sum of the fronteel«), back- loading a user-defined watchpoint to the program, would help. An-
end gclplus), assembleras), and linker d). other problem is the checker can only do only limited things—for
example, it cannot intercept calls in the middle of function execu-
xclock: a digital clock for the X window system with a screen up- tjon, nor can it inspect on-stack variables in the call chain.
date every second. Second, the concept of “time travel” using periodic automatic
checkpoints (Sectign 3.3) has turned out to be powerful but cum-
bersome to use. The developer must manually restart the process
every time he or she wants to switch to a different checkpoint. The
httpd: Apache 2.0.52 serving 100000 HTTP GET requests for a developer can easily lose track of which part of the execution he
static 0.5KB file. It was configured to run as a single, non- ©r she is replaying. An extension to debuggers, such as automatic
threaded process. checkpoint scanning for detecting invariant violatior [5, 31], would
go a long way toward making this feature useful.

Emacs: Emacs 21.3 running a program-development session, in-
volving active typing, file reading, and saving.

FAB: a four-process FAB cluster [23] serving 80000 random 1KB
read and write iISCSI requests.
6. CONCLUSION

g++ is an example of a short-running, CPU-intensive program, Thjs paper described Jockey, a Linux tool for deterministic record/-
which is not among Jockey’s primary targets. This example still replay debugging. To achieve Jockey's goals of safety and easy of
shows that Jockey has a very low log-space overhead compared tquse, it is implemented as a user-space library that runs as a part
approaches that involve memory-access logging [16], which could of the target process. It intercepts calls to nondeterministic system
consume up to a few megabytes per second for logging. For g++, calls and CPU instructions, logs the effects of these operations dur-
most of the slowdown is due to checkpointing that happens at the ing recording, and replays them from the log during replay. Jockey

beginning of the execution (Sectiph 3). has a small performance and log-space overhead. Jockey has been
Xclock and Emacs are examples of interactive applications. Jockeyxtensively used to develop FAB.

exhibits reasonable log-space overheads for them. It is able to re-
play their execution extremely fast, because they need not wait for
timeouts or user inputs during replay. This translates to more effi- 7. REFERENCES
cient debugging sessions.

Apache and FAB are examples of server programs. FAB repre-
sents the worst case for Jockey. Not only does FAB perform large
amount of network I/O, it also overwrites existing files repeatedly,
resulting in a large amount of logging traffic (Sectjon|3.5). In com-
parison, Apache has a lower logging overhead because it only reads
from HTML files and appends to access-log files.

[1] DAT collaborative. User-level direct access transport APIs
(uDAPL), 2004. http://lwww.datcollaborative.org/udapl.html.

[2] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza
Basrai, and Peter M. Chen. Revirt: Enabling intrusion
analysis through virtual-machine logging and repla\stim
Symp. on Op. Sys. Design and Impl. (O$BBston, MA,
USA, December 2002.

http://www.usenix.org/publications/library/proceedings/osdi02
http://www.usenix.org/publications/library/proceedings/osdi02

(3]

(4]

(5]

(6]

(7]

(8]
9]

(10]

(11]

(12]

(13]

(14]

(18]

[16]

[17]

Timothy L. Harris!| Dependable software needs pervasive
debugging. IfML0th ACM SIGOPS European Worksh&aint
Emilion, France, September 2002.

Joel Huselius. Debugging parallel systems: A state of the art
repor:. Technical Report 63, Dept. of CSE, Malardalen
University, September 2002.

Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. ITWSENIX Annual Tech. CoinfAnaheim, CA,
USA, April 2005.

Lap Chung Lam. A survey of data breakpoint and reverse
execution. SUNY Stony Brook RPE report,
http://www.ecsl.cs.sunysb.edu/tr/rpel12.ps.gz, September
2001.

Bill Lewis. Debugging backwards in time. Bth Workshop
on Automated and Algorithmic Debugging (AADEBLJG)
Ghent, Belgium, September 2003.

libdisasm. Libdisasm: x86 disassembler library, 2004.
http://bastard.sourceforge.net/libdisasm.html.

David E. Lowell and Peter M. Chen. Discount checking:
Transparent, low-overhead recovery for general applications.
Technical Report CSE-TR-410-99, University of Michigan,
November 1998.

Charles E. McDowell and David P. Helmbold. Debugging
concurrent program&CM Computing Surveys
21(4):593-622, December 1989.

Michael S. Meier, Kevan L. Miller, Donald P. Pazel,
Josyula R. Rao, and James R. Russell. Experiences with
building distributed debuggers. BIGMETRICS Symposium
on Parallel and Distributed Tools (SPD;Tpages 70-79,
Philadelphia, PA, USA, May 1996.

Ingo Molner. Exec shield, new Linux security feature.
http://people.redhat.com/mingo/exec-shield/ ANNOUNC=-
exec-shield,

2004.

Robert H. B. Netzer. Optimal tracing and replay for
debugging shared-memory parallel program#GM
workshop on parallel and distributed debuggir®@gn Diego,
CA, USA, May 1993.

Robert H. B. Netzer and Barton P. Miller. Optimal tracing
and replay for debugging message-passing parallel programs.
In Supercomputingvlineapolis, MN, USA, November 1992.
Robert H. B. Netzer, Sairam Subramanian, and Jian Xu.
Critical-path-based message logging for incremental replay
of message-passing programs1Héth Int. Conf. on Dist.
Comp. Sys. (ICDCSpages 404-413, Poznan, Poland, June
1994.

Robert H. B. Netzer and Mark H. Weaver. Optimal tracing
and incremental reexecution for debugging long-running
programs. IGIGPLAN Conference on Programming
[Canguage Design and Tmplementation (POODylando, FL,

USA, June 1994. Also available as Brown University
Technical Report CS-94-11.

Oliver Oppitz. A particular bug trap: Execution replay using
virtual machines. li5th Workshop on Automated and
Algorithmic Debugging (AADEBUGshent, Belgium,
September 2003.

[18] John K. Ousterhout, Herv Da Costa, David Harrison, John A.
Kunze, Michael D. Kupfer, and James G. Thompson. A
trace-driven analysis of the UNIX 4.2 BSD file system. In
10th Symp. on Op. Sys. Principles (SC$Rpes 15-24,
Orcas Island, WA, USA, December 1985.

[19] Douglas Z. Pan and Mark A. Linton. Supporting reverse
execution of parallel prograrns. KCM workshop on parallél
and distributed debuggindadison, Wi, USA, May 1988.

[20] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li.
Libckpt: Transparent checkpointing under UNIX. In
USENIX Winter Tech. ConfNew Orleans, LA, USA,

January 1995.

[21] Michiel Ronsse, Koen De Bosschere, Mark Christiaens,
Jacques Chassin de Kergommeaux, and Dieter Kranzimuller.
Record/replay for non-determinsitic program executions.
Comm. of the ACM (CACMX6(9), September 2003.

[22] Michiel Ronsse, Koen De Bosschere, and Jacques Chassin
de Kergommeaux. Execution replay and debuggindtin
Workshop on Automated and Algorithmic Debugging
(AADEBUG) Munich, Germany, August 2000.

[23] Yasushi Saito, Svend Frglund, Alistair Veitch, Arif
Merchant, and Susan Spence. FAB: Building distributed
enterprise disk arrays from commodity componentd. lth
Int. Conf. on Arch. Support for Prog. Lang. and Op. Sys.
(ASPLOS-XI)Boston, MA, USA, October 2004.

[24] Julian Seward et al. Valgrind: A GPL'd system for
debugging and profiling x86-linux programs.
http://valgrind.kde.org/, 2004.

[25] Michael W. Shapiro. RDB: A system for incremental replay
debugging. Master’s thesis, Dept of. Computer Science,
Brown University, 1997.

[26] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R.
Andrews, and Yuanyuan Zhou. Flashback: A lightweight
extension for rollback and determinsitic replay for software
debugging. IWJSENIX Annual Tech. CohBoston, MA,

USA, June 2004.

[27] Amitabh Srivastaba and Alan Eustace. ATOM: a system for

building customized program analysis tools[SIGPLAN |

Conterence on Programming Language Design and

Implementation (PLD])pages 196—-205, Orlando, FL, USA,

June 1994.

[28] Daniel Stodolsky, Brian N. Bershad, and J. Bradley Chen.
Fast Interrupt Priority Management in Operating System
Kernels.Usenix Workshop on Microkernelgages 105-110,
September 1993.

[29] Werner Vogels. File system usage in Windows NT 4.0. In
17th Symp. on Op. Sys. Principles (SC$Rpes 93-109,
Kiawah Island, SC, USA, December 1999.

[30] Rob von Behren, Jeremy Condit, Feng Zhou, George C.
Necula, and Eric Brewer. Cappriccio: Scalable threads for
Internet services. 16@9th Symp. on Op. Sys. Principles
(SOSP)Bolton Landing, NY, USA, October 2003.

[31] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble.
Configuration debugging as search: Finding the needle in the
haystack. It6th Symp. on Op. Sys. Design and Impl. (O$DI)
San Francisco, CA, USA, December 2004.

[32] Larry D. Wittie. Debugging distributed C programs by real
time replay. INACM workshop on parallel and distributed
debuggingpages 57-67, Madison, WI, USA, May 1988.

http://www.cl.cam.ac.uk/users/tlh20/papers/tim-harris-sigops.ps.gz
http://www.cl.cam.ac.uk/users/tlh20/papers/tim-harris-sigops.ps.gz
http://www.diku.dk/ew2002/
http://www.mrtc.mdh.se/php/publ_show.php3?id=0434
http://www.mrtc.mdh.se/php/publ_show.php3?id=0434
http://www.usenix.org/publications/library/proceedings/usenix05
http://www.ecsl.cs.sunysb.edu/tr/rpe12.ps.gz
http://aadebug2003.elis.rug.ac.be/
http://aadebug2003.elis.rug.ac.be/
http://people.redhat.com/mingo/exec-shield/ANNOUNCE-exec-shield
http://people.redhat.com/mingo/exec-shield/ANNOUNCE-exec-shield
http://portal.acm.org/toc.cfm?id=174266&coll=portal
http://portal.acm.org/toc.cfm?id=174266&coll=portal
http://aadebug2003.elis.rug.ac.be/
http://aadebug2003.elis.rug.ac.be/
http://portal.acm.org/toc.cfm?id=323647&coll=portal
http://portal.acm.org/citation.cfm?id=69227
http://portal.acm.org/citation.cfm?id=69227
http://portal.acm.org/toc.cfm?id=68210&coll=portal
http://portal.acm.org/toc.cfm?id=68210&coll=portal
http://www.cs.utk.edu/~plank/plank/papers/USENIX-95W.html
http://valgrind.kde.org/
http://www.usenix.org/publications/library/proceedings/usenix04
http://www.cs.washington.edu/homes/bershad/Papers/OptSynch.ps
http://www.cs.washington.edu/homes/bershad/Papers/OptSynch.ps
http://portal.acm.org/toc.cfm?id=319151&coll=portal
http://capriccio.cs.berkeley.edu/publications.html
http://capriccio.cs.berkeley.edu/publications.html
http://portal.acm.org/toc.cfm?id=945445&coll=portal
http://portal.acm.org/toc.cfm?id=945445&coll=portal
http://www.usenix.org/publications/library/proceedings/osdi04
http://portal.acm.org/toc.cfm?id=68210&coll=portal
http://portal.acm.org/toc.cfm?id=68210&coll=portal

	Introduction
	Goals and approaches
	Non-goals
	Example
	Challenges and limitations

	Related work
	Record/replay debugging for a single process
	Record/replay using virtual machines
	Record/replay for parallel and distributed programs

	Implementation of Jockey
	Instruction patching
	Segregating resource usage
	Heap
	Stack
	File descriptors

	Checkpointing
	Preventing brain damage to the dynamic linker
	Exec shield

	Handling signals
	Reducing logging overhead for I/O system calls
	Handling memory-mapped I/Os

	Controlling Jockey
	Controlling the behavior of fork
	Target-specific function call interception
	User-defined invariant checker

	Evaluation
	Performance and log-space overheads
	Experiences

	Conclusion
	REFERENCES -9pt

