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Abstract

This paper describes a neural compiler. The input of the compiler is a PASCAL Program.
The compiler produces a neural network that computes what is specified by the PASCAL pro-
gram. The compiler generates an intermediate code called cellular code.

1 Introduction

We all know that neural nets are at the origin of all the computer science, that is, the very
existence of digital computers. The automata theory founded by Kleene in 1956 [8] (the date of
his fundamental publication, with the revealing title ”"Representation of events in nerve nets”) is
directly issued from the neuron model proposed by Mc Culloch and Pitts [1] in 1943. In 1945, Von
Neuman was also using a system of formal neurons that was a direct offspring of Mc Culloch and
Pitts’s model, to describe the logic of the very first computers. Despite these facts, Rosenblatt’s
perceptron [11] developed in the years 1950, has not been transformed into a working tool. This
is due to theoretical difficulties shown in the work from Minsky and Papert [10], but also because
at this time, it was not possible to implement simulations on machine. The power of machines
was ridiculous compared to now. Moreover, a link was missing in the theory: the fact that a
neural network can simulate a Turing machine. In other word, it is the proof that any computable
function can be computed by a neural network. Odd enough, this equivalence proof was brought
only recently by Siegelmann and Sontag, in 1991 [13]. In [14], Siegelmann and Sontag did a real

time simulation for real time equivalence. Going from Turing machines to modern programming
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languages with variables, procedures and data structures, took about 15 years. Here, we consider
that the first realisation of the Turing machine dates to 1945, and that the first languages like
FORTRAN, PASCAL, or LISP (PASCAL can be considered as a form of ALGOL) appeared in
1960. It took ten more years to learn how to compile these languages efficiently. Siegelmann [12] has
developed a theoretical language for neural networks called AEL, trying to exploit the parallelism
and the analog aspect of the neurons. But her language was not yet implemented with a compiler.

In [3]and [5], Gruau describes the principles of neural compilation. In this paper, we describe
a neural compiler that has been actually programmed. The input of the compiler is a PASCAL
Program. The compiler produces a neural network that computes what is specified by the PASCAL
program. This work is complementary to the work of Siegelmann on AEL. We proposed a method
to actually build the neural network from a program, but did not concentrate on which language
should be best adapted to neural network compilation (although we did add a few instructions to
standard PASCAL that allow to exploit parallelism and hierarchical design). On the other hand
Siegelmann studied the language, but not the compilation.

Since the compiled neural network is a dataflow graph, neural compilation shares some similar-
ities with compilation for dataflow machines like the one presented by Veen, 1991 [16]. However,
our method of compilation is different. It is entirely based on graph rewriting. As we will see,
graph grammars is a simple and efficient tool that not only produces the dataflow graph but also
provides each cell with (z,y) coordinates. These coordinates can be used to map the neural net on
a multiprocessor system, or to draw the neural net automatically.

The steps of the neural compilation are described in details. The basis of the compiler is to use
a list of cellular operators, which are listed in the appendix, and are defined using their microcode.
These operators called program symbols, add or suppress cells, establish or cut a connection. In
other words, they implement truly physical operations on the neural net that is being built. They
allow to encode a neural net by specifying how to build it step by step. The encoding is called
cellular encoding. Macro program symbols represented in a geometrical way, translate the PASCAL
declarations of the program (that build data structure like array) and the PASCAL instructions,

into operations on neural network that can be implemented using a sequence of program symbols.



By applying these program symbols, we can see the neural net that is being built step by step, on
the computer screen.

Thanks to the neural compiler, the simulation of Siegelmann and Sontag is transformed into the
effective building of a neural net that behaves like a given PASCAL program. Modern computers
have completely changed our life. The impact of a neural compiler could be as important, if we
carry on the comparison. It could make it possible to manage neural computers of billions of
neurons, as conveniently as we are now using computer with billions bytes of memory. Personal
computer would be replaced by personal neuro computer that can offer extra learning capabilities.

The compiled neural network structure is fixed and do not change in time according to the
particular inputs. The neural network has therefore a limited memory. For this reason, one cannot
compile instructions for dynamic memory allocation. If there are recursive procedures one must
specify before compilation an upper bound on the number of recursive encapsulations. However
in the case of divide and conquer algorithm the compiler itself can compute the exact number of
recursive encapsulations that is needed, and the user need not specify bounds.

The compiler produces a cellular code from the PASCAL program, and develops a neural
network from the cellular code, which is then fixed. The run of the PASCAL program is simulated
by relaxing the compiled network. A future direction it to develop the neural network at run time.
The subnetwork simulating a procedure would be developed only when that procedure is invoked.
That can be done with relatively few changes with the technique presented in this paper. The
generation of the cellular encoding can also be done during run time. Both changes will transform
the neural compiler into a neural interpreter. The neural interpreter does not need to be provided
with a bound on the number of recursive encapsulations, and it can translate instructions for
dynamic memory allocation. The neural interpreter would spare the compilation time but would
be slower to run than the compiled neural network.

The paper begins with a presentation of the kind of neural networks that are compiled. The
compiler generates an intermediate code which are sequence of program symbols called cellular code.
A background on cellular encoding is given. We then describe in detail the neural compiler. We

explain the stage of the compilation, and the structure of a compiled neural network. We describe



how to compile separately a PASCAL instruction, and then, how to compile the whole PASCAL
program. Two small examples of compilation are reported. They illustrate the explanations. We
then give a precise geometrical description of how to translate each construct of the PASCAL
language into a macro program symbol. We start by a kernel of the PASCAL language, and extend
progressively to control structure, function and procedure, array data structure, and constructs of
an extended PASCAL that allow to exploit the power of neural networks (parallelism, learning).
We show the interest of the neural compiler with height examples of compilation. In the conclusion
we propose future applications of the neural compiler. We will see that neural compilation can be
used for the design of huge neural networks, automatic parallel compilation, and the compilation

of hybrid systems.

2 The neural networks that are used

A neural network is an oriented graph of interconnected cells. Each cell computes an activity using
the activities of the cells connected to its input, and sends its activity to the cells connected to its
output. A neuron is determined by the way it computes its activity. An ordinary neuron makes a
sum of its inputs, weighted by the weights of the connections, subtracts a threshold, and finally,
applies a function called sigmoid. The neural network makes a computation by iterating each of
its neurons. The order of iteration determines the dynamic of the neural net. The dynamic can
be parallel, each neuron updates its activity at the same time, or sequential: neurons update their
activity one after the other. We are now going to describe the particular sigmoid and the particular

dynamic we will use for neural compilation.
2.1 Sigmoid

We use four different kinds of sigmoid listed in figure 1.

[ Figure 1 about here ]

Moreover, we use non classical neurons that make the product of their inputs, and that divide



the first input by the second input. This is used to multiply and to divide two numbers. Siegelmann
and Sontag allowed for only one kind of sigmoid, piecewise linear between 0 and 1. We preferred
to use a small set of sigmoids for efficiency. For example, it is possible to simulate arithmetic
operations on binary coded number with Siegelmann and Sontag’s sigmoid, but it costs a lot of

neurons.
2.2 The Dynamic

The neural network is a data-flow graph. A neuron computing an arithmetic operation with two
operands must wait for the two operands to come before starting to compute its activity. We use a

particular dynamic (denoted Dg). The neurons decide to start their computation using three rules:

e A neuron computes its activity as soon as it has received all the activities from its input

neighbors.
e The input units are initialized with the input vector.

e A neuron sends its activity to the output neighbors, when it is initialized, of if it has just

computed its activity.

There is no special threshold units to encode the threshold. At a given moment, all the neurons
that can compute their activity, do it. The dynamic Dy is half way between the sequential dynamic
and the parallel dynamic. There is no need for a global entity to control the flow of activities. Two

other dynamics are used by the compiler.

e The dynamic Dy concerns neurons having exactly two inputs. As was the case for Dy, the
neuron waits until it has received an activity from both its neighbors. If the first input is
strictly positive, the neuron send the activity of the second neighbor. Otherwise, the neuron

do not propagate any activity. The dynamic Dy allows to block a flow of activities.

e Neuron with dynamic D, compute their activity whenever an activity is received from one of
its input neighbors. Its activity is the activity of that particular neighbor. In order to work
correctly, such a neuron must not received two activities at the same time. Dynamic Dy can

merge on the same neuron, activities coming from different parts.



In [3] Gruau (1992) shows that it is possible to simulate the dynamic Dy Dy Dy with the traditional
parallel dynamic. The number of units is multiplied by 6, and the time needed to relax by 4.

Dynamic Dy and Dy correspond to the “branch” and the “merge” node used in data flow models.

3 Overview of Cellular Encoding

Cellular encoding is a method for encoding families of similarly structured neural networks. Cellular
encoding was previously proposed by Gruau as a way to encode a neural net on chromosomes that

can be manipulated by the genetic algorithm [4] [7] [6].
3.1 The basic Cellular Encoding

In this subsection we present the basic cellular encoding. The cellular code is represented as a
grammar tree with ordered branches whose nodes are labeled with name of program symbols. The
reader must not make the confusion between grammar tree and tree grammar. Grammar tree
means a grammar encoded as a tree, whereas tree grammar means a grammar that rewrites trees!

A cell is a node of an oriented network graph with ordered connections. Each cell carries a
duplicate copy of the cellular code (i.e., the grammar tree) and has an internal reading head that
reads from the grammar tree. Typically, each cell reads from the grammar tree at a different
position. The labels of the grammar tree represent instructions for cell development that act on
the cell or on connections of the cell. During a step of the development process, a cell executes the
instruction referenced by the symbol it reads, and moves its reading head down in the tree. One
can draw an analogy between a cell and a Turing machine. The cell reads from a tree instead of
a tape and the cell is capable of duplicating itself; but both execute instructions by moving the
reading head in a manner dictated by the symbol that is read. We will refer to the grammar tree
as a program and each label as a program-symbol.

A cell also manages a set of internal registers, some of which are used during development,

while others determine the weights and thresholds of the final neural net. The link register is used

to refer to one of possibly several fan-in connections (i.e., links) into a cell.

'In [6], we have demonstrated that cellular encoding represents a parallel graph grammar, this is why we use the
term grammar tree.



Consider the problem of finding the neural net for the exclusive OR (XOR) function. Neurons
can have thresholds of 0 or 1. Connections can be weighted —1 or +1. In this section, we use
a variant of sigmoid (b) of figure 1. If the weighted sum of its input is strictly greater than its
threshold, the neuron outputs 1, else it outputs 0. The inputs of the neural net are 0 or 1.

The development of a neural net starts with a single cell called the ancestor cell connected to
an input pointer cell and an output pointer cell. Consider the starting network on the right half
of figure 2 and the cellular encoding depicted on the left half of figure 2. At the starting step 0
the reading head of the ancestor cell is positioned on the root of the tree as shown by the arrow
connecting the two. Its registers are initialized with default values. For example, its threshold is
set to 0. As this cell repeatedly divides, it gives birth to all the other cells that will eventually
become a neuron and make up the neural network. A cell is said to become a neuron when it looses
its reading-head. The input and output pointer cells to which the ancestor is linked (indicated by
boxes in the figure) do not execute any program-symbol. Rather, at the end of the development
process, the upper pointer cell is connected to the set of input units, while the lower pointer cell
is connected to the set of output units. These input and output units are created during the
development, they are not added independently at the end. After development is complete, the
pointer cells can be deleted. For example, in figure 6, the final decoded neural net has two input
units labeled ”a” and ”¢”, and one output unit labeled ”d”. We will now describe the kernel of the

program-symbol.

e A division-program symbol creates two cells from one. In a sequential division (denoted by
SEQ) the first child cell inherits the input links, the second child cell inherits the output links
of the parent cell. The first child connects to the second with weight 1. The link is oriented
from the first child to the second child. This is illustrated in steps 1 and 3. Since there are
two child cells, a division program-symbol must label nodes of arity two. The first child moves
its reading head to the left subtree and the second child moves its reading head to the right
subtree. Finally, when a cell divides, the values of the internal registers of the parent cell are

copied in the child cells.



e The em Parallel division (denoted by PAR) is a second kind of division program symbol. Both
child cells inherit the input and output links from the parent cell (in step 2 and step 6). The
sequential and parallel division are canonical because they treat all the input and output links

uniformly, regardless of their number. Subsection 3.3 introduces more complex divisions.

o The ending-program symbol denoted END causes a cell to loose its reading head and become a

finished neuron. END labels the leaves of the grammar tree (i.e., nodes of arity 0).

o A walue-program symbol modifies the value of an internal register of the cell. The program-
symbol INCBIAS increments (and DECBIAS decrements) the threshold of a cell. INCLR in-
crements (and DECLR decrements) the value of the link register, which points to a specific
fan-in link or connection. Changing the value of the link register causes it to point to a
different fan-in connection. The link register has a default initial value of 1, thus pointing
to the leftmost fan-in link. Operations on other connections can be accomplished by first
resetting the value of the link register. The program-symbol denoted VAL+ sets the weight of
the input link pointed by the link register to 1, while VAL~ sets the weight to —1 (see step 7).
The program-symbols VAL+ or VAL- do not explicitly indicate to which fan-in connection the
corresponding instructions are applied. When VAL+ or VAL- is executed it is applied to the

link pointed to by the link register.

e An unary program-symbol CUT cuts the link pointed by the link register. This operator

modifies the topology by removing a link.

Operators INCLR, DECLR, CUT are not illustrated, they are not required for the development
of a neural net for the XOR problem. The sequence in which cells execute program-symbols is
determined as follows: once a cell has executed its program-symbol, it enters a First In First Out
(FIFO) queue. The next cell to execute is the head of the FIFO queue. If the cell divides, the child
which reads the left subtree enters the FIFO queue first. This order of execution tries to model
what would happen if cells were active in parallel. It ensures that a cell cannot be active twice
while another cell has not been active at all. In some cases, the final configuration of the network

depends on the order in which cells execute their corresponding instructions. For example, in the



development of the XOR, performing step 7 before step 6 would produce a neural net with an
output unit having two negative weights instead of one, as desired. The waiting program-symbol
denoted WAIT makes the cell wait for its next rewriting step. WAIT is necessary for those cases where

the development process must be controlled by generating appropriate delays.

[ Figure 2 about here ]

[ Figure 3 about here |

[ Figure 4 about here ]

[ Figure 5 about here |

[ Figure 6 about here |

3.2 How to encode recursive grammars

Up to this point in our description the grammar tree does not use recursion (Note that recurrence
in the grammar does not imply that there is recurrence in the resulting neural network.). Non
recursive grammar can develop only a single neural network. But one would like to develop a

family of neural networks, which share the same structure, for computing a family of similarly



structured problem. For this purpose, we introduce a recurrent program-symbol denoted REC which
allows a fixed number of loops L. Each cell contains a register called life. The cell which reads REC

executes the following algorithm:

[ Figure 7 about here |

[ Figure 8 about here |

life := life - 1
If (life > 0) reading-head := root of the grammar tree

Else reading-head := subtree of the current node

where life is a register of the cell initialized with L in the ancestor cell. Thus a grammar
develops a family of neural networks parametrized by L. The use of a recurrent-program symbol is
illustrated figure 7 and 8. The cellular code in this figure is almost the same as the cellular code of
a XOR network. The only difference is that a program symbol END has been replaced by a program
symbol REC. The resulting cellular code is now able to develop a neural net for the parity function
with an arbitrary large number of inputs, by assembling copies of a XOR subnetwork. In figure 8
the network for parity of 3,5 and 7 inputs is shown. This implementation of the recurrence allows
a precise control of the growth process. The development is not stopped when the network size
reaches a predetermined limit, but when the code has been read exactly L times through. The

number L parametrizes the size of the neural network.
3.3 Microcoding

The program symbols introduced in the preceding section are not sufflicient to do neural compilation.

We had to introduce many other division program-symbols, as well as program-symbols that modify
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cell registers, or that make local topological transformations, or that influence the order of execution.
Each new program-symbol may have an integer argument that specifies a particular link or a
particular new register value, this favors a compact representation. The program symbols are
microcoded. The program-symbol’s microcode are listed in appendix 3. A microcode is composed
of two parts. The first part specifies the category of the program symbol. It uses three capital letters.
DIV indicates a division, TOP a modification of the topology, CEL, SIT, LNK a modification of
respectively a cell register, a site register or a link register. EXFE indicates a program-symbol used
to manage the order of execution, BRA tests a condition on the registers of the cells or on the
topology, if it is true, the reading head is placed on the left sub-tree, else it is placed on the right
sub-tree. HOM refers to a division in more than 2 child cells, AFF enhances the display. The
second part of the microcode is an operand. For CEL, SIT, LNK the operand is the name of the
register which value will be modified using the argument. If there is an arithmetic sign, the operator
applies the arithmetic operation to the actual content of the register and the argument and places
the result in the register. Else it simply sets the register with the argument. For BRA the operand
is the name of the condition. For DIV, the operand is a list of segments. Fach segment is composed
of an alphabetic letter and some arithmetic signs. The arithmetic signs specify a sublist of links,
and the letter specifies whether to move or to duplicate this sublist. When the cell divides, the
first child cell inherits all the input links, the second child cell inherits all the output links. The
segments are then decoded, they specify how to duplicate or move links between the two child cells.
Figure 9 gives an example of a DIV microcode analysis. If the segment’s letter is a capital, the
links are duplicated or moved from the output site of the second child cell to the output site of the
first child cell. If the letter is a small letter, the links are duplicated or moved from the input site

of the first child cell to the input site of the second child cell.

e The letter 'm’ or "M’ moves the sublist,
e the letter ’d’ or D’ duplicates the sublist.

e the letter ’r’ or 'R’ is the same as ’d’ or 'D’ except that the added links are not ordered in the

same way, by the neighboring cell. Figure 10 explains the difference between ”d” and ”1”.
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A particular segment with the letter ’s’ means: connect the output site of the first child cell to
the input site of the second child. This segment needs no arithmetic sign. Arithmetic signs specify
the sublist of links to be moved or duplicated. <’, ’>’, =", specify the links lower than, equal, or
greater than the argument, "’ specifies all the links. "#’ and ’$’ refer to the first and the last link,
727 refers to links from the site of the neighboring cell, =" is used when it is necessary to count the

b

links in decreasing order, rather than in increasing order, =’ placed before the three capital letter

" is used to replace the argument by the

exchanges the role of the input site and the output site,
value of the link register. ’|” is used to replace the argument by the number of input links divided

by two.

[ Figure 9 about here |

[ Figure 10 about here |

A similar microcoding is used for the operands of TOP, that locally modifies the topology, by
cutting or reordering links. In this case, the single child cell inherits the output links of the mother
cell, and the analysis of the segments indicates movements of links from the input site of the mother
cell to the input site of the child cell.

In appendix 3 there are also a number of program symbols which are used only for labeling cells.
During the development of the network graph, the software that we have programmed can indicate
the program symbols read by the cell. Neuron keep their reading head on the cellular code, on the
last program symbol read. Therefore we use dummy program symbols to label leaves of the code.

This enables us to see on the computer screen what function a given neuron performs.

12



3.4 Advanced program symbols

In this section, we describe some other program symbols used for the compilation of PASCAL pro-
grams. These program symbols are not described by their microcode, we explain them separately.

The program symbol BLOC blocks the development of a cell. A cell that reads BLOC waits that
all its input neighbors cells become finished neurons. BLOC avoids that a particular piece of cellular
code is developed to early. The compiler generates many grammar trees of cellular code: one tree
for the main program and one tree for each function. These grammar trees have a number. The
argument of the JUMP program symbol specifies the number of a grammar tree. A reading cell that
executes the program symbol JMP x places its reading head on the root of the grammar tree which
number is . JMP x is equivalent to the recurrent program symbol REC if & is the number of the

tree that is currently read by the cell.

[ Figure 11 about here ]

Links can be distributed into groups of links called sub-sites. Figure 11 (a) and (b) describes
how a site divides into two sub-sites. Two conditions are required for a site to split: First the
site flag-register called divisible must be set to 1. Second, a neighboring cell must divide. The
distribution of links into group of links is interesting only with respect to the SPLIT program symbol.
The execution of the SPLIT program symbol is done in two stage described in figure 11 (c), (d)
and (e): First, some links are duplicated, so that the number of links on each output and input
sub-site is the same (figure 11 (e)). We call n the number of links on each sub-site. In the second
stage, the cell splits into n child cells. Fach child cell has as much input (resp. output) links as

there are input (resp. output) sub-sites in the mother cell.
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4 Principles of the neural compiler

4.1 The stages of the compilation

[ Figure 12 about here ]

We will now present the neural compiler. The neural compiler has been programmed. The software
is called JaNNeT (Just an Automatic Neural Network Translator). JaNNeT encompasses three
stages that are shown in figure 12 (a) (b) (¢). The input of the compiler is a program written in an
enhanced PASCAL. The output is a neural net that computes what is specified by the PASCAL
program. The PASCAL is said to be "enhanced” because it proposes supplementary instructions
compared to standard PASCAL.

The first stage is the parsing of the program and the building of the parse tree. It is a standard
technic that is used for the compilation of any language. Nevertheless, this parse tree has a
somewhat unusual form. In appendix 3, a grammar defines the kind of parse tree that we use.
The third stage uses cellular encoding. It is simply the decoding of the cellular code that has been
generated at the second step. This decoding uses the development of a network graph, seen in
section 2.

The second stage is the heart of the compiler. This stage is a rewriting of trees. The rewriting of
a tree (in a simple case) consists in replacing one node of the tree by a sub tree. The added subtree
must specify where to glue the sub trees of the node that is being rewritten. During the second stage
each node of the parse tree is replaced by a sub tree labeled with program-symbols of the cellular
encoding. When the program symbols of that sub tree will be executed by a cell ¢, they will make a
local graph transformation, by replacing cell ¢ into many other cells, connected to the neighbors of
cell ¢. Each node of the parse tree can therefore be associated to a local transformation of a network
graph of cells. This transformation is called a macro program symbol. A macro program symbol
makes a transformation bigger that the one done by a program symbol of the cellular encoding

scheme. A program symbol creates no more that one cell (except for the SPLIT), or it modifies no
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more than one register. It uses no more than a single integer parameter. A macro program symbol
can create many cells, modify many registers, and often needs more than one parameter. The macro
program symbols are implemented using subtrees of program symbols listed in the appendix 3. The
presentation of the compilation method will be done with few reference to the cellular encoding.
We will consider the compilation at the level of macro program symbols.

In its present release, JaNNeT does not produce instructions that can be executed by a particular
neural computer. It produces a neural network, which is a format that suits a neural computer
with many processors dedicated to neuron simulation. Presently, the neural network generated by
JaNNeT are simulated on a sequential machine. The last stage shown in figure 12 (d) consists
in mapping the neural network on a physical architecture of a neural computer. This step must
take into account the memory size of one neuron, the communications between processors, and the

granularity of the computation made by one neuron.
4.2 Structure of the compiled neural network

The compiled neural network behaves like a data flow graph. Figure 13 describes a simple example
of compiled neural network. Fach variable V' of the PASCAL program contains a value. The
variable is initialized at the beginning of the program. Then it changes following the assignments
that are made. For each variable V', there corresponds as many neurons as there are changes in V'’s
value. All these neurons represent the values taken by V' during a run of the program. At a given
step of the run, V' has a given value ». The value v is contained in one of the neuron that represents
V. This neuron is connected to the input neighbors that contain values of other variables, which
have been used to compute v. The same neuron is connected with output neighbor that contain
values of other variables. The output neighbors use the value of V to compute the new value of
the variable that they represent.

The environment in compilation means the set of variables that can be accessed from a given
point of the program. Before the execution of each instruction, the environment is represented by a
row r of neurons. This row contains as many neurons as there are variables. Fach of these neurons

contains the value of the variable that it represents, at this particular moment.
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An instruction modifies the environment, by modifying the value of some given variables. An
instruction is compiled into a neural layer that computes the modified values, from the old values
stored in the row r of neurons. The new values are stored in a row r; of neurons. Hence the
whole PASCAL program is compiled into a sequence of rows r, ry, rg, ... alternated with neural
layers that compute the new values. There are as many such neural layers as there are PASCAL

instructions.

[ Figure 13 about here |

4.3 Compilation of a PASCAL instruction

The idea of the compilation method is to translate each word of the PASCAL language into a
modification of a network graph of neurons. At a coarse granularity, the compilation of a program
is decomposed in the compilation of each instruction. Each instruction is translated into a neural
layer that is laid down, and a row of neurons that contains the environment modified by the
instruction. So the compilation is a construction process. The compiler builds the row of neurons
that contains the initial environment, by translating the part of the parse tree where the variables
are declared. Then the compiler lays down consecutively neural layers, by compiling the program
instruction by instruction.

This idea of progressive building of the compiled neural network can be applied with a granu-
larity smaller than a PASCAL instruction. A PASCAL instruction can be decomposed into words
of the PASCAL language, these words are organized according to a tree data structure called parse
tree (see figure 14). we can associate each word of the PASCAL language with a local modification
of a network graph of cells, so that the combined effect of these small modifications transforms a
single cell into a neural layer that computes what is specified by the PASCAL instruction. This
is modeled using a system similar to the cellular encoding. The neural network will be developed
during many steps. Certain neurons will have a copy of the parse tree, and a reading head that

reads a particular node of the parse tree. They will be called reading cell rather than neuron,
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because their role is not to do the computation corresponding to a neuron, but to divide, so as to
create the neural layer associated to the PASCAL instruction. Each cell reads the parse tree at
a different position. The labels of the parse tree represent instructions for cell development that
on the cell. As we already pointed out in subsection 4.1, these instructions called macro program
symbol can be decomposed into a sequence of program symbols of the cellular encoding scheme.
During a step of development, a cell executes the macro program symbol read by its reading head,
and moves its reading head towards the leaves of the parse tree. A cell also manages a set of internal
registers. Some of them are used during the development, while others determine the weights and

the thresholds of the final neurouns.

[ Figure 14 about here ]

Consider the problem of the development of a neural net for compiling the PASCAL instruction
"a:=a+b'". The development begins with a single cell called the ancestor cell, connected to neurons
that contain the initial values of the environment. Consider the network described on the right
half of figure 15 on the right. At the beginning, the reading head of the ancestor cell is placed on
the root of the parse tree of the PASCAL instruction, as indicated by the arrow connecting the
two. Its registers are initialized with default values. This cell will divide many times, by executing
the macro-program symbols associated to the parse tree. It will give birth to the neural network
associated to the parse tree. At the end, all the cells loose their reading head, and become finished
neurons. When there are only finished neurons, we have obtained the translated neural network
layer. In all the following examples it is important to keep in mind that in the figures, the input and
output connections are ordered. The connection number is coded by the position of the connection
on the circle that represents the cell. For example, in figure 15, the link from cell “b” to cell “1”

has number 2.

[ Figure 15 about here |
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[ Figure 16 about here |

[ Figure 17 about here |

4.4 Compilation of the PASCAL program

[ Figure 18 about here |

We have shown how the parse tree of a PASCAL instruction can be interpreted as a tree labeled
with macro program symbols. When these program symbols are executed by cells, they develop
a neural layer that translates what is specified by the PASCAL instruction. This method can be
generalized to the whole PASCAL program. The total program can be represented by its parse
tree. Figure 18 on the left represents the parse tree of the PASCAL program "program p; var a

integer; begin read(a); write (a); end.”. The first nodes of the parse tree are used to
declare variables. They will create the first layer of neurons that contain the initial values of the
variables. The following nodes of the parse tree correspond to the instructions. They will create
many layers of neurons that make the computations associated to these instructions. Consider the
starting neural network, on the right half of figure 18. The input pointer cell and the output pointer
cell to which the ancestor cell is linked, do not execute any macro program symbols. At the end
of the development, the input pointer cell points to the input units of the network, and the output

pointer cell points to the output units. The development of the network is reported in appendix 1.

5 The macro program symbols

We have presented the method of neural compilation and the compilation of a small PASCAL

program. The method is based on the association of each label of the parse tree with a macro
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program symbol. We call each macro program symbol with the name of the associated label. A
macro program symbol m replaces the cell ¢ that executes it, by a graph d of reading cells and
neurons. This graph is connected to the the neighbors of ¢. The term "neighbor” refers to two
cells connected either with a direct connection or, indirectly, through special neurons called pointer
neurons. The graph d must specify where the reading cells are going to read in the parse tree. In
general, each reading cell will read one of the child node of the node labeled by m.

In this section, we details all the macro program symbols, by drawing its associated graph d,
and explaining it. We will put forward an invariant pattern: when a cell is being rewritten by a
macro program symbol, its neighbor cells are always of the same type, in the same number. If the
environment contains n variables, the cell will have n + 2 input links, and two output links. The
first input (resp. output) link points to the input (resp. output) pointer cell. The second input
link is connected to a cell called ”start” cell, the last n input links point to neurons that contain
the values of the variables. The second output link points to a cell labeled "next”. The input and
output pointer cell points to the input and output units of the neural net. The start cell starts
the neural network by sending a flow of null values. The "next” cell connects the graph generated
by the macro program symbol, with the rest of the network graph. By extension, the cell that is
rewritten is called the ancestor cell.

The parse tree that we use are described by a simple grammar in appendix 3. This grammar
details the list of macro program symbols and how they are combined. We will use the non terminal
of this grammar to explain the macro program symbols. We classify two kinds of macro program
symbols, the macro program symbols of the type "expression”, they correspond to labels generated
using the non terminal <expr>, and produce neurons that are used to compute values. And the
macro program symbols of the type "modification of environment” that modify the environment.
In the invariant patter, if the macro program symbol is of the type "expression”, the "next” cell is
always a neuron, else it is a reading cell.

The first macro program symbol executed during the compilation of a program is the macro
program symbol PROGRAM (figure 23 on the left). This macro program symbol creates the invariant

pattern. By recurrence, this invariant is kept afterwards because the reading cells generated by
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each macro program symbol have their neighbors that verify the invariant pattern.

We sometime use cellular encoding in our description. In the implementation, the macro pro-
gram symbols are decomposed in program symbols. For each macro program symbol, these decom-
positions are reported in appendix 3. The program symbols of cellular encoding implement small
modifications of graph. In the contrary, the macro program symbols create many cells, connected
in a complex manner. The decomposition of macro program symbols into program symbols is a
quick and simple way of implementing macro program symbols. During the compilation, it may
happen that some cells, after the execution of a macro program symbol, block their development
until all their input neighbors are neurons. When they unblock, they usually execute a piece of

cellular code before going back to read the PASCAL parse tree.
5.1 Kernel of the PASCAL

We consider in this subsection, programs that are written with a reduced instruction set: the kernel
of the PASCAL, that allows to write only very simple programs. We consider for the moment only
scalar variables, we will see arrays later. The declaration of variables are translated into a string of
DECL macro program symbols in the PASCAL parse tree. The effect of each DECL is to add an input
link to the ancestor cell. This link is connected to a cell that is itself connected to the "start” cell
with a weight 0 (figure 23 on the right and 24 on the left). This last connection ensures that the
neurons corresponding to the variable will be activated, and will start the network. We suppose
that each variable is initialized with the value 0.

The sequential execution is implemented using a string of reading cells, associated to a list of
instructions. The cell of the string at position ¢ reads the sub parse tree of instruction number
¢ of the list. On right half of figure 24, the input neighbors of cell “1” are neurons that contain
the values of the environment. Cell “¢2 4+ 1”7 has a single input neighbor which is the cell“?”. Cell
“2” must delay its development until cell “1” has finished to develop the subnetwork associated
to instruction 1. Cell “2” blocks its development until all the input neighbor cells have became
neurons.

The assignment (figure 15 on the right) is the most simple example of instruction. Each variable
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corresponds to a particular input link of the ancestor cell. The storage of a value in a variable is
translated by connecting the neuron that contains the value to the ancestor cell. The connection
must have the right number, in order to store the value in the right variable. The management
of the connection number is done by the macro program symbol IDF-AFF, figure 16 on the left.
Similarly, in order to read the content of a variable, it is enough to know its link number (figure 17).
The translation of IDF-LEC is done by connecting the neuron that contains the value of the variable
to the neuron “next” that needs this value.

The input units of the neural net correspond to the values read during the execution of the
PASCAL program. If in the PASCAL program the instruction read a appears, there will be one
more input unit created. By setting the initial activity of this input unit to v, the variable a will be
initialized with v. The output units correspond to the values written during the execution of the
PASCAL program. If the instruction write a appears, there will be one more output unit created.
Each time the instruction write a is executed, the value of this output unit will be the value of
a. A neuron is an input unit if it is connected to the input pointer cell. It is an output unit if it
is connected to the output pointer cell. The macro program symbol READ adds a connection from
the input pointer cell to the neuron that represents the variable, and the macro program symbol
WRITE adds a connection between the neuron that represents the variable and the output pointer
cell (figure 25 on the left and 26 on the right).

An arithmetic expression is translated in a tree of neurons, each neuron implements a particular
arithmetic operation using a particular sigmoid. Unary operators are implemented in the same way
as binary operators (figure 16). Two cells are created instead of three. The first cell will develop the
sub network corresponding to the sub expression to which the unary operator is applied. The second
one will place its reading head on the cellular code that describes how to develop a subnetwork
for computing the unary operator. When a constant is needed in a computation, this constant is
stored in the bias of a neuron n whose sigmoid is the identity (figure 29). This neuron is linked to
the 7start” cell that will control its activity, that is to say, at what time, and how many times, the

neuron n sends the constant to other neurons that need it.
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5.2 Control Structures

Until now, the macro program symbols were rewriting one cell into less than 3 cells. We are going
to present a new kind of macro program symbols. The IF rewrites a cell into a graph of cells whose
size is proportional to the size of the environment. This represents a step in the complexity of the
rewriting. This new class of macro program symbols can be implemented using the SPLIT program
symbol and sub-sites (see section 3.4). The PASCAL line if a then b else c can be translated
by the boolean formula: (a AND b) OR ( (NOT a) AND c) or by the neuronal formula: (a EAND
b) AOR ( (NOT a) EAND c). The neurons EAND (extended AND) and AOR (arithmetic OR) have
respectively the dynamic D and D9 described in section 2.2. These neuron do not perform a real
computation, they are used to control the flow of activities. Their behavior is thus completely
describe by the dynamic. tt AOR and EAND correspond to the MERGE and BRANCH nodes in the
dataflow formalism. The TRUE value is coded on 1, and the FALSE is coded on -1. A logical NOT
can be implemented with a single neuron that has a —1 weight. On figure 30, we can see a layer
of 6 neurons EAND, divided into two sub layers of three neurons. These sub layers direct the flow
of data in the environment towards either the subnetwork that computes the body of the “then”
or the subnetwork that computes the body of the “else”. A layer of 3 AOR neurons retrieves either
the output environment of the “then” subnetwork, or the output environment from the “else”
subnetwork, and transmits it to the next instruction.

The instruction while <condition> do <body> corresponds to a recurrent neural network in
which an infinite loop of computations can take place using a finite memory. The flow of activity
enters the recurrent neural network through a layer of AOR neurons. Then, it goes through a network
that compute the condition of the while. If the condition is false, the flow of activities goes out
of the recurrent neural networks. Otherwise, it is sent to a subnetwork that computes the body
of the loop. After that, it goes through a layer of synchronization neurons and is sent back to the
input layer of AOR. The synchronization is done to avoid that a given neuron in the body of the
loop updates its activity two times, whereas in the mean time, another neuron has not updated it
at all. In the case of two encapsulated loops, the neurons corresponding to the inner loop come

back to their initial state when the computations of the inner loop are finished. They are ready
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to start another loop if the outer loop commands it. The neuron ”"start” is considered as if it was
storing the value of a variable. There is a copy of it in the layer of AOR neurons. It is connected to
all the neurons that contain constants used in the body of the loop, and activate these neurons at
each loop iteration.

The compilation of the REPEAT is very similar to the WHILE. The computation of the condition

is done at the end, instead of at the beginning.
5.3 Procedures and functions

We now explain how to compile procedures and functions. We will refer to the following PASCAL

Program:

program proc_func

Var glob: integer (* global variablex)

Procedure proc2(paf2: integer) (*formal parameter *)

var loc2: integer; (*variable local to procedure proc2#)
begin

end;

Procedure procil(pafl: integer) (*formal parameter *)

var locl: integer; (*variable local to procedure procl*)
begin
proc2(pef2); (*parameter *)
end; (*passed Dby value to proc2*)

BEGIN (*¥body of the main program*)
procl(pefl) (*parameter *)

END. (*passed by value to procilx*)

We use a slightly modified invariant pattern, where the environment contains three variables.
The first variable is global, the second is a parameter passed to a procedure, the third is one is a
local variable of a procedure. In all the figures, the first output link of cell “1” points to the output
pointer cell and the second link points to the "next” cell. If, sometimes, the inverse is represented,
it is only for a purpose of clarity in the representation. It allows to have a planar graph.

Consider the moment when proci calls proc2. The environment on the neuronal side encom-

passes the input pointer cell, the “start” cell, the global PASCAL variable glob and the local

23



variables pefl and locl. We want to translate the calling of procedure proc2. First we suppress
the local variables pefl and locl. This is done by the macro program symbol CALL-P described
figure 34. Then we develop the parameters passed by value from proci to proc2 (macro program
symbol COMMA figure 36). Finally, the ancestor cell will develop the body of proc2. The body of
proc2 begins with the macro program symbol PROCEDURE that inserts a cell. When the translation
of procedure proc2 is finished, this cell will pop the local variables of proc2 (cellular code POP fig-
ure 37 on the right). After that, a cell (inserted by a CALL-P) executes a cellular code RESTORE that
allows to recover the local variables of procl. Putting aside the local variables of procl ensures
that each variable can be assigned a fixed connection number. The macro program symbols CALL-P,
CALL-F and POP use two parameters: GLOBAL is the number of global variables in the environment
and LOCAL is the number of local variables. The macro program symbol CALL-F is simpler than
CALL-P. It does not need to create a cell that will restore the environment of the calling procedure,
because a function returns a value instead of a complete environment. The macro program symbol
FUNCTION has no effect. It is not necessary to create a cell that will pop the environment of the

function. The macro-program symbol RETURN also has a null effect.
5.4 The arrays

The arrays are a very important data structure in a programming language like PASCAL. We had
to use a special kind of neurons in order to be able to handle arrays. These neurons are called
pointer neurons. They are used only to record the array data structure in a neural tree. The
pointer neurons are nodes of the neural tree. The data are the leaves of the neural tree. The use
of pointer neurons ensures that the ancestor cell possesses exactly one input link per variable. It
allows to handle the variables separately, when one want to read or to modify them. Using pointer
neurons, one can represent array with arbitrary dimension. The invariant must be extended. It
now contains pointer neurons. Figure 40 uses an example of extended invariant, that represents a
1D array with two elements. A tree of depth d can represent an array with d dimensions. The use
of many layers of pointer neurons for storing an array with many dimensions is necessary to handle

each column separately, in each dimension.
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When an array variable is declared, the structure of neural tree is created for the first time. For
this purpose, the type of a variable is coded in the parse tree as a string of macro program symbols
TYPE-ARRAY (see figure 41). Fach of these macro program symbol is associated to one dimension of
the array, and creates one layer of pointer neurons, in the neural tree. Fach macro program symbol
TYPE-ARRAY has a single parameter which is the number of columns along its associated dimension.
The string of TYPE-ARRAY is ended by a macro program symbol TYPE-SIMPLE which was already
described in figure 24 on the left.

Many macro program symbols must handle neural trees. For example, the IF, WHILE, X-AOR,
X-SYNC are macro program symbol that must re-build the structure of pointer neurons. Since the
depth of the tree can be arbitrary big, the tree of neuron must be processed recursively. Cellular
encoding allows recursive development as described in section 3.2. A 2-ary program symbol BPN x
is used to stop the recursion. It tests whether the neighbor z is a pointer neuron, or not. Depending
on the result of the test, the left or the right subtree will be executed.

The reading of an array, like a:=t[i1, i2] is translated by an unusual parse tree. The parse
tree used for t[i1, i2] isindicated figure 43. The reading of an array is interpreted as the result of
a function read_index defined by a cellular code that has d+ 1 inputs for an array of d dimensions.
The inputs are the d indices plus the name of the array. The function read_index returns the value
read in the array. The writing of an array like for example t[i1, i2]:=v is translated in a parse
tree indicated figure 44. The writing of an array of d dimensions is interpreted as the result of a
function write_index defined by a cellular code, with d + 2 inputs and one output that is an array.
The inputs are the d indices, the value to assign, the name of the array. The functionwrite_index
returns the modified array after the writing. For either reading or writing in arrays, the number of
used neurons is proportional to the number of elements in the array. However if the indices used
to read or to write the array are known at compilation time (for example the instruction a[0]=1)
the neural net is automatically simplified during the development, and the final number of used

neurons is constant.
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5.5 The enhanced PASCAL

We now describe the compilation of new instruction that have been added to the standard PASCAL.
These instructions exploit the power of neural networks. The instruction CALLGEN allows to include
a neural network directly defined by a cellular code. Alternatively, CALLGEN can be considered as a
call to a function defined by a cellular code. It is similar to a machine call in classic programming
languages. At the beginning of the PASCAL program, there must be an instruction #include
<file-name> that indicates the name of a file where the cellular codes of the functions to be
called are stored. The syntax of the CALLGEN is the following: <idf0> := CALLGEN('"code-name",
<idf1>, .., <idfk>). the result of the call will be a value assigned to the variable 1df0. The
code name indicates the particular cellular code of the called function. idf1, .. idfk are the
parameter passed to the function. The macro program symbol CALLGEN has the same effect as
CALL-F except that the body of the called function is not specified by a parse tree, but by a cellular
code that has been defined before the compilation takes place. The CALLGEN includes a neural layer
that computes the called function. The neurons that contain the values of idf1, ..., idfO are
connected to the input of the included neural network. The output of the included neural network
is connected to the neurons representing the variable idf0. The philosophy of the CALLGEN is to
define a number of functions that can be used in various context, or to include some neural networks
that have been trained. The neural networks included by a CALLGEN never use global variables.
Hence the global variables are suppressed before the calling. Examples of predefined functions in

the appendix 3 are:

e function left returns the left half of an array

e function right returns the right half of an array

function concat merges two arrays.

function int_to_array adds a dimension to an array

e function array_to_int suppresses a dimension to an array

function random initialize an array with random values in {—1,0,1}
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The compiler can do automatic parallelization of a program written with a divide and conquer
strategy. In this strategy, a problem of size n is decomposed into two subproblems of size n/2
and then into 4 subproblems of size n/4 and so on until problems of size 1. The array functions
left and right are used to divide the data of a problem into two equal parts. The decomposition
process must be stopped when the size of the problem is 1. We must test during the development
of the neural net, when the number of elements of the array is 1. In one case, the part of the parse
tree corresponding to the decomposition must be developed. In the other case, the part of the
parse tree corresponding to the problem of size one must be developed. We use a static IF to do
this test. The syntax is the same as the normal IF. The name IF THEN, ELSE are replaced by #IF
#THEN, #ELSE. However, the condition of the #IF is always of the type t=1, where ¢ is an array.
This expression tests whether the array ¢ has one or more than one element. If it is the case, the
ancestor cell goes to read the left sub-tree of the #ELSE parse tree label. Otherwise it goes to read

the right sub tree.
6 Examples of compilation

In this section, we propose a few examples of compilation that illustrate the principles of the
compiler and its interest. In order to run a compiled network, on must initialize the input unit
with the value read during the execution of the PASCAL program. The neural net makes its
computation with a data driven dynamic which is halfway between parallel and sequential. When
the network is stable, the computation is finished. The output units contain the values that are
written by the PASCAL program.

Examples of compiled neural networks are drawn in figure 19 and 22. The drawing have been
produced automatically by the compiler. Each cell possesses a rectangular window. The ancestor
cell possesses a window that covers all the drawing area. Whenever a cell divides, each child cell
inherits half of the window. The division is made horizontally if the two cells are connected, and
vertically otherwise. A cell is drawn at the middle of its windows. An additional mechanism ensures

that each cell possesses a window of approximately the same area.
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6.1 Compilation of two standard PASCAL programs

[ Figure 19 about here |

Figure 19 (a) shows a network compiled with the following program:

program p;
type tab = array [0..7] of integer;
var t : tab; i, j, max, aux : integer;
begin
read (t);
while i < 7 do
begin
j =1+ 1l;max := 1i;
while j <= 7 do
begin
if t[max] < t[j] then max := j £i;
jo= g+
end;
aux := t[i];t[i]
t[max] := aux; i :
end;
write (t);
end.

t [max] ;
i+ 1;

There are 9 input units, the "start” cell plus the 8 values to be sorted. There are 8 output
units that correspond to the instruction write(t). Recurrent connections are drawn using three
segments. The two encapsulated loops that are mapped on two sets of recurrent connections.
Figure 20 shows the step of development for the bubble sorting neural network. During one step,
all the cells that are not blocked are iterated sequentially. At step 63, the 8 cells colored in grays
are deleted. At step 95, the first recurrent neural network for the outer loop is born. At step 59,
the second recurrent neural network for the inner loop is born. At step 223, all the recurrent links
of each of the two recurrent neural network are drawn as a single line to spare room. From step

223 to 356, instruction for reading and writing in arrays are translated.

[ Figure 20 about here |
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Figure 19 (b) shows a neural net that has been compiled with the following program:

program Fibonacci;
var resul: integer; a : integer;
function fib(n: integer):integer;
begin

if (n<=1) then resul := 1

else resul := fib(n-1)+fib(n-2) fi;

return (resul);
end;
begin

read (a); write (fib (a));
end.

This example illustrates the fact that if the program to be compiled uses recursive calls, the

depth of recursion must be bounded, before the compilation begins. The initial life of the ancestor
cell is 6. Hence the depth of recursion is been bounded by 6. This net can compute £ib(i) fori<7.

The number 6 is the value used to initialize the life register of the ancestor cell. Figure 21 shows

how the neural net evolves when the life is increased from 1 to 4.

[ Figure 21 about here ]

6.2 How to use the CALLGEN instruction.

We have added to the PASCAL language two instructions: CALLGEN and #include that allow to
include in the final network, smaller networks whose weights have been found using a learning
algorithm. The code of these nets are stored in a file which name is indicated by the instruction
#include. We now show an example of PASCAL program that uses the CALLGEN instruction. The
compiled net is shown in figure 19 (c).

#include "animal.a"

program animal;

type tab=ARRAY[0..19] of integer; tab2=ARRAY[0..9] of integer;

var pixel: tab; feature: tab2; position, is-bad, move: integer;

function opposite(position: integer):integer;

begin return(l-position); end;
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begin
read(pixel); feature:=CALLGEN("retina",pixel);
position:=CALLGEN("position_object'",feature);
is-bad:=CALLGEN("predator',feature);
if(is-bad=1) then move:=opposite(position)
else move:=0 fi;
write (CALLGEN("motor' ,move));

end.

In the file animal.a are stored the cellular codes of different layered neural networks. The net-
work retinainputs 20 pixels, and outputs a list of 10 relevant features. The network position-object
determines from these features, the position of an object, if an object lies in the visual field. The
neural net predator determines whether the object is a predator animal. The neural net motor
commands 4 motor neurons for moving the legs. The whole compiled neural net simulates the be-
havior of an animal in front of a predator. The input units are the pixels, and the output units are
the neurons of the leg muscles. This neural net can be stored in a library, in order to be included
in a bigger neural network. It illustrates how easy it is to interface the PASCAL language with
predefined neural nets. The compiled neural net encompasses many neural layers, plus one part
that is purely symbolic. This is the part that corresponds to the if instruction. So the compiler
not only links together various neural networks, but it allows to make symbolic computations from

the outputs of the neural networks, and it can manage the input/output.
6.3 How to use the #IF instruction

The instructions #IF #THEN #ELSE allow to test at compile time whether an array has more than
one elements. This instruction allows automatic parallelization of a program written with a ”divide
and conquer” strategy (subsection 5.5). We need other predefined functions to enrich the array
data structure: functions left and right extract the left part and the right part of an array,
int-to-array and array-to-int add or suppress a dimension. The following PASCAL program

uses the instruction #IF. The compiled net is shown figure 19 (d).
#include "array.a"

program merge sort;
const infini=10000; type tab = ARRAY [0..7] of integer; var w : tab;
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function merge(t: tab; n: integer; u: tab; m: integer): tab;
var v: tab; i, j, a, b: integer;
begin
v:=CALLGEN("concat", t, u); a:=t[0]; b:=ul0];
while(i+j<n+m) do
begin
if(a<b) then
begin v[i+jl:=a;i:=i+1; if (i<n) then a:=t[i] else a:=infini f£fi; end
else
begin v[i+jl:=b;j:=j+1; if (j<m) then b:=ul[j] else Db:=infini fi; end
fi;
end;
return(v);
end;

function sort(t: tab; n: integer) : tab;
begin #IF t=1
#THEN return(t)
#ELSE return(merge(sort(CALLGEN("left",t),n DIV 2), n DIV 2,
sort (CALLGEN("right",t),n-(n DIV 2)), n-(n DIV 2)))

#F1;
end;

begin read(w); write(sort(w,8)); end.

Function merge is written in standard PASCAL (except one use of CALLGEN). Function sort
uses the #IF instruction. The file array.a contains the library of the cellular codes of the functions
manipulating arrays. The compiled neural net has 9 input units: the start cells plus 8 integers to
sort. It has 8 output units for the 8 sorted integers. The structure of the net can be understood.
The first layer of 4 recurrent neural nets outputs 4 sorted lists of two integers each. The second
layer outputs two sorted lists of four integers. Although it is recursive, the function sort can be
compiled on a finite graph, because it is applied to a finite array of integers. As opposed to the
Fibonacci function, there is no need to specify a bound on the number of recursive encapsulations.
Since we have used the divide and conquer strategy, the network sorts n integers in a time which
is O(n) (here we assume that the neurons can do their computations in parallel). We have also
compiled many other programs using the divide and conquer strategy. The convolution, the matrix
product, the maximum of an integer list, are programs that are compiled on a neural net able to
do the job in a time O(In(n)). Figure 22 shows the compiled neural nets. We wrote a PASCAL

program that simulates a feed-forward layered neural network, with matrix vector multiplication
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and random weights in {0,—1,1}. Figure 22 (c¢) shows the compiled neural net, it is a layered

neural net!

[ Figure 22 about here ]

7 Conclusion and applications

In this paper, we describe a neural compiler that has been actually programmed. The input of the
compiler is a PASCAL Program. The compiler produces a neural network that computes what is
specified by the PASCAL program. The principle of compilation is not difficult. It consists in the
rewriting of the parse tree in a cellular code, and the development of the cellular code, which can be
formalize as the derivation of a graph grammar. Experimental results show that the compiler works.
The neural compiler is called JaNNeT (Just a Neural Network Translator). Neural compilation is
based on a new paradigm: Automatic building of neural networks using an algorithmic description
of the problem to be solved. This paradigm is at the exact opposite of the existing trend which
present neural networks as machine that learns by themselves. As a conclusion, we want to show

that JaNNeT can reproduce and even improve three kinds of compilation.
7.1 Neural network design

The interest of a language for describing neural networks like SESAME([9]) is to facilitate the design
of large and complex neural networks. These languages propose to first define some ”building block”
neural networks. Then, the building blocks are used to build more complex neural networks. The
latter can again be composed, and so on... This hierarchical design is very practical. We have added
an instruction CALLGEN to the standard PASCAL language that allows to achieve the same effect
with JaNNeT. When it compiles a neural net, JaNNeT produces its cellular code. This cellular
code can be stored in a file, and called using CALLGEN, so as to be included in a bigger neural
network. This technic allows a modular compilation, from the compilation point of view. It permit

a hierarchical design, from the neural network design point of view. But JaNNeT goes further than
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a language of description like SESAME. JaNNeT gives the possibility to combine neural building
blocks without mentioning the physical connections between the networks. The specification is
made on a logical, soft level. A human being understand much better a soft description where it is
enough to describe the logical steps of a computation, rather than an intricate set of connections.
JaNNeT allows the design of huge neural networks. In the near future, machines with millions of
neurons will be available, and the advantages of a logical description will become obvious. Moreover,
JaNNeT produces a graphical representation of the neural net that exploit the regularities of the

graph. To our knowledge, this is the very first software able to do that.
7.2 Tool for the design of hybrid systems

JaNNeT is a process that can compile a PASCAL program towards a neural network. If we would
like to compile a base of rules used in expert systems (artificial intelligence), towards a neural
network, we just need to write the base of rules in PASCAL, as well as the inference motor. Hence
JaNNeT includes the compiler of base of rules, used in the so called hybrid systems, which goal is
to combine artificial intelligence and neural networks. However, JaNNeT can be used for the design
of hybrid system in a more efficient way. The compiler can put in the same connectionist model,
algorithmic knowledge, (that knowledge is compiled) and "fuzzy knowledge”, (that one is learned
in a fixed size neural networks). The compiler can build hybrid systems that encompass two layers.
The first layer is learned and it is sub symbolic. It grounds symbols on fuzzy and distributed data.

The second layer is compiled, it makes a computation on these symbols.
7.3 Automatic parallelization

The numerical examples show that JaNNeT can automatically parallelize algorithms written with
a "divide and conquer” strategy. Many algorithm can be programmed in that way. However,
in its actual version, JaNNeT does not produce instructions for a particular parallel machine.
It produces a neural network. The missing step consists in mapping this network on a multi
processor system. This step must take into account the size of the memory of each processor, the
communications between processors, and the granularity of the neuronal computation. The neural

networks produced by JaNNeT can be mapped on a 3D grid. The three dimensions represent

33



the size of the environment, the functional parallelism, and the time. It is possible to project the
network along the third dimension so as to map the neural net on a 2D array of processors.

We must also parallelize the compiler itself. If the compiler takes one hour to compile a program
that afterwards runs in one second on a parallel machine, it prevents the interactive use of JaNNeT.
We have a model of abstract parallel machine that may allow both parallel compilation and parallel
run. This machine is a 2D grid of processors were a particular processor can dynamically decide to
become a connection. A line of such processors can pass information from arbitrary distant point
in constant time.

Since the compiled neural net is a data flow graph, a comparison with existing compiler for
data flow machine is needed. The main feature of our parallel compiler will be to use a precise
architecture (a 2D grid), and to ensure that two tasks which need to communicate data will be
executed by two neighboring processors. The review done by Veen, 1986, in [15], and the research
monograph [2] (1991) do not report such direction of research in the dataflow community. Last, the
advantage of JaNNeT compared to the data parallel approach described by Zima et al. [17] (1993)
or the dataflow approach by Veen et al. [16] is that the user does not need to add in his program

indications about where (on which processor) to store the data.
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Appendix 1: Small example of compilation

This appendix describes the compilation of a very simple PASCAL program: “program p; var a:

integer; begin write(a); read(a); end.”. Figure 18 describes the initial setting, at step 0.

[ Figure 23 about here |

[ Figure 24 about here ]

[ Figure 25 about here |

[ Figure 26 about here |

36



[ Figure 27 about here |

Appendix 2: The other macro program symbols

In this appendix we describe the macro program symbols that have not yet been illustrated.

[ Figure 28 about here |

[ Figure 29 about here |

[ Figure 30 about here |

[ Figure 31 about here |

[ Figure 32 about here |

[ Figure 33 about here |
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[ Figure 34 about here |

[ Figure 35 about here |

[ Figure 36 about here |

[ Figure 37 about here |

[ Figure 38 about here |

[ Figure 39 about here |

[ Figure 40 about here |

[ Figure 41 about here ]
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[ Figure 42 about here ]

[ Figure 43 about here |

[ Figure 44 about here ]

[ Figure 45 about here |

[ Figure 46 about here |

8 Appendix 3 : Technical implementation

Registers of the cell

[ Table 1 about here |

Moreover, links have 3 registers, one for the weight weight, one for the state state, and one for

the mark of beginning of a sub site begin-sub-site. Sites have a single register called divisible.
Syntax of the micro coding of cellular operators

The following grammar generates the microcode of operators
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<microcode> ::= <top> | <div> | <reg> | <exe> | <aff>

<top> ::= -TOP<segments> | TOP<segments>
<div> ::= <divi> | <«div2>
<div1> ::= -DIV<segments> | DIV<segments>
<segments> ::=<segment><segments> | <segment>
<segment> ::=<operator><operand> |<operator>~<operand> | s
<operator> ::= m | M| r | R | d | D
<operand> ::= x| > | >= | < | <= =] ¢ | &
<div2> ::= HOM<number>
<reg> ::= CELL<character> | SIT<character> | LNK<character>
<exe> ::= EXE<character> | BRA<character>
<aff> ::= AFF<character>

The non terminal <number> is rewritten into a number, The non terminal <character> is
rewritten into a character. The characer is: For the non terminal CEL, SIT, LNK, the abbreviated
name of a cell register, a site register or a link register; for EXFE, it reminds what kind of movements
the reading head does. For BRA, it specifies the kind of condition that is tested, for AFF is indicated

the kind of the neuron that is displayed.
List of program symbols and their microcode

The letter & indicates that the program symbol uses an integer argument. ¢ is the number of input
links, o is the number of output links, r is the value of the link register.

skokkokkkkokkkkkkkkkkk[.ocal Topological TransTormat 1 om %k % %k kk sk sk sk kk sk kk kkokkokkkkkkkk
CUTL x  TOPm-<m-> Cuts the input links i-x

CUTRI x TOPm< Cuts the right input links starting from link x
CUT x TOPm<m> Cuts input link x

CLIP TOPm_<m_> Cuts input link r

CUTO x  -TOPm<m> Cuts output link x

MRG x TOPm<d~"*m> Merges the input link of input neighbour x
MG x TOPm_<d_"*m_>Merges the input link of input neighbor r
CPFO x -TOPm<d"#m>= Copies first output of output cell x

CHOPI x TOPm= Cuts all the input links except link x

CHOPO x -TOPm= Cuts all the output links except link x

CHHL TOPm| > Cuts the first input links from 1 until i/2
CHHR TOPm|<= Cuts the last input links from i/2+1 until i.
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PUTF x  TOPm=m<m> Puts link x in first position
PUTL x  TOPm<m>m= Puts link x in last position
SWITCH x TOPm<m$m>$m= Makes a link permutation between last link and link x

KILL TOP Deletes the neurone
CYC TOPs Creates a recurrent link
*****+++Cell division into two childs which will execute a separate  code¥*****
PAR DIVd*Rx* Parallel division
SEQ DIVs Sequential division
XSPL x  DIVm<=s Gradual division
SEP DIVd*M|> Separation division
ADL x DIVm<sm> Adds a cell on link x
AD x DIVm_<sm_> Adds a cell on link r
IPAR x DIVm<sd=m> Duplicates link x, Add a cell on link x
SPLFI x DIVd<=s Duplicates first x inputs
SPLFIL x DIVd-<=s Duplicates first i-x inputs
SPLLI x DIVsd->= Duplicates last input starting at link x
SPLLIL x DIVsd>= Duplicates last input starting at link i-x
**xx**Cell division into more than two childs which will execute the same code*#**
CLONE x OLC Clones into x childs, x is the argument
SPLIT HOMO Splits into y childs, y is computed from the topology
TAB HOM1 Same has split, but child i has its bias set to i
SPLITN  HOM2 Same as split, but the sub-sites are merged
®kkkkkkkkkkrkkrkkkkkkkkkModification of a registershkkkkkkkkkkkrkskkkskkkkkhkkhkkk*k
SBIAS x CELb Sets the bias to the argument
SBIASO CELb O Sets the bias to 0
SBIAS1 CELb 1 Sets the bias to 1

INCBIAS CEL+b 1 Increments the bias

SSIGMO x CELs Sets the type of sigmoid

SDYN x  CELd Sets the dymamic

EVER x  CELe Sets the level of simplifiability

LR x CEL1 Sets the link register

INCLR CEL+1 1 Increments the link register

DECLR CEL+1 -1 Decrements the link register

SITE SITD Sets the divisability of the sub sites to the argument

SITI SITd Sets the divisability of the input sub-sites to the argument
SITO -SITd Sets the divisability of the output sub-sites to the argument
DELSITE SITO Merges all the input sites and all the output sites

DELSITI SITo Merges all the input sites

DELSITO -SITo Merges all the output sites

MULTSIT SITm Creates one input site for each input link

VAL x LNKv Sets the value of the input weight r to x

VALO -LNKv Sets the value of the output weight r to x

VAL- LNKv -1 Sets the value of the input weight r to -1

RAND x  LNK7? Sets weight x to a random value in {-1, 0, 1}

®kkkkkkRkRkRkkRkkkkkrkkkllanaging of the execution orderkkkkkkkskkkskkkkkkkkskskkskkkk

WAIT x EXEw Waits x steps

WAIT EXEf Waits one step if no arguments are supplied

JMP x  EXEj Includes subnetwork x

REC EXEr Moves the reading head back to the root of the currently read subtree
END EXEe Becomes a finished neuron

BLOC EXEq Waits for the neighbor to loose their reading head

BLIFE BRAf Tests if the value of the life register is one

BUN x BRAu Tests if the neighbor has x input links

BPN BRAp Tests if the neighbour is a pointer neuron

BLR x BRA1 Tests if the value of the link register equals the argument

41



®kkkkkkRkkkkkkkkkkkkkkkkEnhancing display of the graphkkkskkkkkkkkskkkskkkkkkkkkkkk*k

PN AFFpn
VAR AFFvar
RINS EXEf
LINS EXEf
PN_ CELe
VAR_ EXEe
EAND_ EXEe
AOR_ EXEe
INF_ EXEe
SUP_ EXEe
INFEQ_ EXEe
SUPEQ_ EXEe
PLUS_ EXEe
MOINS_ EXEe
MULT_ EXEe
QuUO_ EXEe
NOT_ EXEe
OR_ EXEe
AND_ EXEe
NEQ_ EXEe
EQ_ EXEe
EQB_ EXEe
START_ EXEe

Draws a pointer neuron
Draws a neuron that contains the value of a variable
®kkkkkkRkRkRRkRRkkkkkkkklperators Tor labelingkskkskskkskkkkkkokkkskkkskkkrkokkkhokkkokkk

It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It

indicates insertion of the right sub-tree
indicates insertion of the left sub-tree

is a pointer neuron
contains the initial value of a variable
is a dynamic EAND
is a dynamic AOR

compares the
compares the
compares the
compares the

2
2
2
2

inputs
inputs
inputs
inputs

adds the 2 inputs
substracts the first input from the second inputs
multiplies the 2 inputs

divides the first input by the second inputs

does a logical NOT
does a logical OR
does a logical AND
tests if the two inputs are different
tests if the two inputs are equal
tests if the input is equal to bias
is a Start neuron

Syntax of the parse trees that are used.

The following grammar generates parenthesized expressions that can be interpreted into well formed

parse trees. A parse tree can be the parse tree of the main program, the parse tree of a procedure,

or the parse tree of a function. The compiler generates a list of trees, one tree for the main program,

and one tree for each function or procedure. The parenthesized representation used here is a bit

unusual. We do not put parenthesis when there is a single subtree. When there are two sub trees,

we consider that the right sub tree is a trunc, and put only the left subtree between parenthesis.

This special representation allows to write a simple grammar. Capital letters and parenthesis are

terminals of the grammar. Non terminals are written using small letters, between brackets.

<parse_tree>

<program>
<procedure>
<function>

<decl_list>

<program> | <procedure> | <function>

PROGRAM <decl_list> <inst_list>

PROCEDURE <decl_list> <inst_list>

FUNCTION <decl_list> <inst_f>

DECL attrb (<type>)<decl_list> | DECL attrb <type>
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<type> ::= TYPE_ARRAY attrb <type> | TYPE_SIMPLE

<inst_list> ::= SEMI_COLON (inst) <inst_list> | <inst>
<inst_f> ::= SEMI_COLON (<inst>) <inst_f> | RETURN <expr>
<inst> ::= <write> | <read> | <assign> | <if> | <#if> |

<while> | <repeat> |<call_p> | <callgen>

<assign> ::= ASSIGN ( <idf_aff> ) <expr>
<read> ::= READ <idf_aff>
<idf_aff> ::= IDF_AFF attrb
<write> ::= WRITE <expr>
<if> ::= IF(<expr>) <then>
<then> ::= THEN (<inst_list>)<inst_list>
<#Hif> ::= #IF(<idf_lect>) <itthen>
<#then> ::= #THEN (<inst_list>)<inst_list>
<while> ::= WHILE (<expr>) <inst_list>
<repeat> ::= REPEAT (<expr>) <inst_list>
<call_p> ::= CALL_P attrb <param_list>
<param_list> ::= COMA (<expr>)<param_list> | NO_PARAM
<callgen> ::= CALLGEN attrbO <param_list>
<expr> ::= <read_array> | <write_array> | <idf_lect> |

<const> | <bin_op> | <un_op> | <call_f>

<read_array> ::= CALLGEN attrbl <param_list>
<write_array> ::= CALLGEN attrb2 <param_list>
<idf_lect> ::= IDF_LEC attrb
<const> ::= INT_CST attrb
<bin_op> ::= BINOP attrb (<expr>)<expr>
<bin_op> ::= UNOP attrb <expr>
<call_£> ::= CALL_F attrb <param_list>
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This grammar generates parse trees with nodes having sometimes some attributes. Table 2

indicates what each attribute represents.

[ Table 2 about here |

Predefinitions

The predefinitions are elementary cellular codes that are used many times. They are defined

separately in order to reduce the size of the cellular code generated by the neural compiler.

Arithmetic operators.

Elementary codes implements arithmetic operators, using neurons, as well as the AOR and EAND
dynamic. The sigmo”ids are in increasing order: Identity(1), Pi-units(3), stair step-L(5), stair
step-R(6), equality to zero (7) Div-unit (8)

OR SBIAS 2 (SSIGMO 5 stair step-L (OR- ) )

AND SSIGMO 5 stair step -L (AND- )

NEG LR 1 (VAL -1 (NOT-) )

INFEQ LR 1 (VAL -1 (SSIGMO 6 stair step-R (INFEQ- ) ) )
SUPEQ LR 2 (VAL -1 (SSIGMO 6 stair step-R (SUPEQ- ) ) )
INF LR 1 (VAL -1 (SSIGMO 5 stair step-L (INF-) ) )

SUP LR 2 (VAL -1 (SSIGMO 5 stair step-L (SUP-)))

EQ LR 1 (VAL -1 (SSIGMO 7 equality to zero (EQ-) ) )
NEQ SEQ (JMP EQ ) (JMP NEG )

PLUS SSIGMO 1 identity (PLUS-)

MOINS LR 2 (VAL -1 (SSIGMO 1 identity (MOINS- ) ) )
MULT SSIGMO 3 PI Unit (MULT-)

QUO SSIGMO 8 DIV Unit (QUO-)

EOR SDYN 2 (AOR- )

EAND SDYN 3 (EAND- )

Reading and writing in an array

We list the cellular codes of the two functions for reading and writing in a multi dimensional
array. The function WRITE-INDEX needs three elementary pieces of code that recursively call
themselves. The function READ-INDEX needs two.
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WRITE-INDEX SITE 1 (CUTLE 3 (CUTO 1 (MULTSIT (SEQ (ADL 1 (SITE 0 (JMP CREAT-EQB ) ) (MRG
-2 (SPLIT (JMP WRITE-INDEX-1) ) ) ) (SITE 0 (BLOC (PN-2)))))))

CREAT-EQB TAB (VAL -1 (SSIGMO 7 (EQB- ) ) )

WRITE-INDEX-1 BUN 3 (JMP WRITE-INDEX-2 ) (SEQ (SPLLIL 3 (SITE 0 (CUTRI 3 (ADL 2 (JMP CREAT-
EQB ) (SPLIT (JMP AND ) ) ) ) ) (MRG -2 (SPLIT (JMP WRITE-INDEX-1) ) ) ) (SITE 0 (BLOC (PN-

2))))

WRITE-INDEX-2 BPN 2 (SITE 0 (JMP WRITE-INDEX-3 ) ) (MRG 3 (MRG 2 (SEQ (SPLIT (JMP WRITE-
INDEX-2 ) ) (SITE 0 (BLOC (PN-2))))))

WRITE-INDEX-3 SEQ (PAR (CUT 3 (LR 1 (VAL -1 (JMP EAND ) ) )) (CUT 2 (JMP EAND ) ) ) (JMP AOR
)

READ-INDEX SITE 1 (CUTLE 3 (CUTO 1 (MULTSIT (SEQ (ADL 1 (SITE 0 (JMP CREAT-EQB ) ) (MRG
-1 (SPLIT (JMP READ-INDEX-1) ) ) ) (BLOC (JMP READ-INDEX-2)))) ) )

READ-INDEX-1 BUN 2 (JMP X-EAND ) (SPLLIL 3 (SITE 0 (CUTRI 3 (ADL 2 (JMP CREAT-EQB ) (SPLIT
(JMP AND ) ) }) ) (MRG -1 (SPLIT (JMP READ-INDEX-1) ) ) )

READ-INDEX-2 SPLIT (BPN 1 (JMP AOR ) (SEQ (LR -1 (JMP X-MRG ) ) (SITE 0 (BLOC (PN-2)))))

Recursive macro program symbol for the manipulation of the environment

These are elementary codes that are used in many places in the cellular code generated by the
compiler. Theses code apply recursively the same operation to all the environment and the neural

trees.

X-MRG BLR 0 (MG (ADDLR -1 (JMP X-MRG ) ) ) (JMP READ-INDEX-2 )

X-EAND SPLIT (BPN 2 (JMP EAND ) (MRG 2 (SEQ (JMP X-EAND ) (SITE 0 (BLOC (PN-2))))))
X-AOR SEQ (MRG 2 (MRG 1 (SPLIT (BPN 1 (JMP AOR ) (JMP X-AOR ) )) ) ) (SITE 0 (BLOC (PN-2) ) )
X-DYN SPLIT (BPN 1 (EVER 1 (SDYN 2 ) ) (SEQ (MRG 1 (JMP X-DYN ) ) (SITE 0 (BLOC (PN-2)))))
X-SYNC IPAR 1 (VAL 0 (EVER 0 ) ) (SITE 0 (BLOC (DELSITO (SPLITN (EVER 1)) )) )

REPEAND SPLIT (BPN 2 (JMP EAND ) (MRG 2 (JMP REPEAND ) ) )

WHILEND SPLIT (BPN 1 (END ) (MRG 1 (JMP WHILEND ) ) )

READ-1 BPN 3 (CUT 3 (LR 2 (VAL 0) ) ) (SEQ (MRG 3 (SPLIT (JMP READ-1) ) ) (SITE 0 (BLOC (PN-
2))))

WRITE-1 BPN 1 (END ) (MRG 1 (SPLIT (JMP WRITE-1) ) )
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Rules for rewriting nodes of the parse tree

There is one rules for each label of the PASCAL parse tree. The left member of each rule is a label

of the PASCAL parse tree, the right member is a cellular code.

IF SITE 1 (SPLLIL 1 (CPFO 1 (SITE 0 (DELSIT (RINS ) ) ) ) (SEQ (SITE 0 (SPLFI 2 (CUT 2 (PAR (WAIT
2 (SITE 1 (JMP X-EAND ) ) ) (LR 1 NOT SIMPLIFIE (VAL -1 (SITE 1 (JMP X-EAND )))))) (CUT 1
(CPFO 1 (LINS ) ) ) ) ) (BLOC (CUTO 1 (JMP X-AOR ) ))))

THEN PAR (CUT 3 (BLOC (DELSIT (RINS ) ) ) ) (CUT 2 (BLOC (DELSIT (LINS ) ) ) )

REPEAT SITE 1 (CYC (SITE 0 (XSPL 1 (SITE 1 (JMP X-DYN ) ) (SPLFI 1 (CPFO 1 (BLOC (DELSIT (RINS
)))) (BLOC (MRG 2 (SITE 1 (SPLLIL 2 (CPFO 1 (SITE 0 (DELSIT (LINS ) ) ) ) (PAR (CUTO 1 (CUTO
1 (LR 1 (VAL -1 (SEQ (WAIT 2 (JMP REPEAND ) ) (JMP X-SYNC ) ) ) ) ) ) (CHOPO 2 (SEQ (JMP
X-EAND ) (SITE 0 (BLOC (END ) )))))))))))))

WHILE SITE 1 (CYC (SITE 0 (XSPL 1 (SITE 1 (JMP X-DYN ) ) (BLOC (SITE 1 (SPLLIL 1 (CPFO 1 (SITE 0
(DELSIT (LINS ) ) ) ) (PAR (CUTO 2 (SPLFI 2 (CUT 2 (JMP X-EAND ) ) (SITE 0 (CUT 1 (BLOC (SEQ
(CPFO 1 (RINS ) ) (BLOC (SITE 1 (CUTO 1 (SEQ (MRG 1 (WAIT (JMP WHILEND ) ) ) (JMP X-SYNC
))))))))))) (CHOPO 2 (LR 1 (VAL -1 (SEQ (CUT 2 (JMP X-EAND ) ) (SITE 0 (BLOC (END ) ) ))

))))))))))
PROGRAM IPAR 1 (START- ) (SEQ (CPFO 1 (SWITCH 1 (LINS ) ) ) (BLOC (MRG 1 (CUTO 1)) ))

NO-INST CUTO 1 (CUT 1)

DECL IPAR 2 (RINS ) (PUTL 2 (BLOC (LINS ) ) )

TYPE-ARRAY SEQ (CLONE ATTR (LINS ) ) (BLOC (EVER 2 (PN ) ))
TYPE-SIMPLE VAR (LR 1 (VAL 0 (EVER 2) ) )

SEMICOL SPLFI 1 (CPFO 1 (LINS ) ) (BLOC (MRG 2 (RINS ) ))
ASSIGN SPLFIL 1 (CPFO 1 (RINS ) ) (BLOC (LINS ) )

IDF-AFF SWITCH attr (CUTL 1 (CUT 1 (CUTO1)))

IDF-LEC CUTO 1 (CHOP attr (BPN 1 (END ) (MRG 1 (PN-2))))
COMMA PAR (LINS ) (RINS )

UNOP SEQ (CPFO 1 (LINS ) ) (CUTO 1 (JMP attr ) )

BINOP SEQ (CPFO 1 (PAR (LINS ) (RINS ) ) ) (CUTO 1 (JMP ATTR ) )
INT-CST CHOP 2 (CUTO 1 (SBIAS ATTR (LR 1 (VAL 0 (EVER 2)))))
CALL-F SPLFI GLOBAL (CPFO 1 (RINS ) ) (BLOC (JMP ATTR (CUTO 1 (CHOP 2 (LR 1 (VAL 0))))))
NO-PARAM KILL ()

FUNCTION ou RETURN LINS ()

CALL-P SPLLI LOCAL (CPFO 1 (SPLFI GLOBAL (CPFO 1 (RINS ) ) (BLOC (JMP ATTR (END ) ) ) ) )
(BLOC (MRG 1 (CUTO 1)) )

PROCEDURE SEQ (CPFO 1 (LINS ) ) (BLOC (MRG 1 (CUTRI GLOBAL (CUTO 1)) ))

READ SPLFIL 1 (SPLFI 2 (CHOP ATTR ) (MRG 3 (SITE 1 (MULTSIT (JMP READ-1)))) ) (BLOC (RINS
))
WRITE PAR (CHOPO 1 (SEQ (CPFO 1 (RINS ) ) (BLOC (JMP WRITE-1]) ) ) ) (CUT 1 (CUTO 1) )

#IF SEQ (CPFO 1 (PAR (CUTO 1) (RINS ) ) ) (BLOC (MRG 2 (LINS ) ))
#THEN BUN ATTR (CHOP 1 (MRG 1 (RINS ) ) ) (CHOP 1 (MRG 1 (LINS ) ) )
CALLGEN SPLFI 2 (CPFO 1 (RINS ) ) (BLOC (JMP ATTR (CUTO 1 (CHOP 2 (LR 1 (VAL 0))))))
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Library of functions for handling arrays.

These functions enrich the array data structure, they are used to implement the automatic paral-

lelization of divide and conquer algorithms.

left CUTLE 3 (CUTO 1 (MRG 1 (CHHR 1 (PN-2))))

right CUTLE 3 (CUTO 1 (MRG 1 (CHHL 1 (PN-2))))

concat CUTLE 3 (CUTO 1 (MRG 2 (MRG 1 (PN-2))))

int-to-array CUTLE 3 (CUTO 1 (PN-2))

array-to-int CUTLE 3 (CUTO 1 (MRG 1 (BPN 1 (END ) (MRG 1 (PN-2)))))
randomize CUTLE 3 (CUTO 1 (JMP rand ) )

rand BPN 1 (LR 1 (VAL 0 (RAND ) ) ) (SEQ (MRG 1 (SPLIT (JMP rand ) ) ) (PN-2))

Library of layered neural networks

The following cellular code correspond to neural networks that are included in the PASCAL program

animal.p

retina CUTLE 3 (CUTO 1 (SEQ (MRG 1 (SPLIT ) ) (SEQ (CLO 10 (EVER 0) ) (BLOC (PN-2)))))
position-object CUTLE 3 (CUTO 1 (SEQ (SEQ (MRG 1 (CLO 2 (EVER 0))) (CLO 2 (EVER 0))) (EVER 0) ) )
predator CUTLE 3 (CUTO 1 (SEQ (SEQ (MRG 1 (CLO 3 (EVER 0))) (CLO 3 (EVER 0))) (EVER 0) ) )
motor CUTLE 3 (CUTO 1 (SEQ (EVER 0) (SEQ (CLO 2 (EVER 0)) (SEQ (CLO 4 (EVER 0)) (PN-2) ) ) ))
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(a) (b) (c) (d)

Figure 1: Different kind of sigmoids used. (a) adds two numbers. (b) and (c¢) compare two numbers,
(d) tests the equality of two numbers.
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@

Figure 2: Step 0: Development of the neural net for the exclusive-OR (XOR) function in the right
half of this figure. The development starts with a single ancestor cell labeled ”a” and shown as a
circle. The 0 inside the circle indicates the threshold of the ancestor cell is 0. The ancestor cell is
connected to the neural net’s input pointer cell (box labeled "input”) and the neural net’s output
pointer cell (box labeled "output”). The cellular encoding of the neural net for XOR is shown on
the left half of this figure. The arrow between the ancestor cell and the symbol SEQ of the graph
grammar represents the position of the reading head of the ancestor cell.
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Figure 3: On the left: the execution at step 1 of the sequential division SEQ pointed to by the cell
7a” of preceding figure causes the ancestor cell ”a” to divide into two cells ”a” and ”b”. Cell 7a”
feeds into cell ”b” with weight +1. The reading head of cell "a” now points to the left sub-tree of
the Cellular Encoding on the left (the box with PAR) and the reading head of new cell ”b” points
to the right subtree (the box at the second level down with SEQ). On the right: The execution of
the parallel division PAR at step 2 causes the creation of cell ”¢”. Both cell ”a” and ”¢” inherit the
input formerly feeding into ”a”. Both cells ”"a” and ”¢” output to cell ”b” (The place where ”a”
formerly sent its output). The reading head of cell ”a” now points to the left sub-tree (END) and
the reading head of the new cell ”¢” points to the right sub-tree (which also has an END).
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Figure 4: On the left: the execution at step 3 of the sequential division SEQ pointed to by the cell
”b” of preceding figure causes the cell ”b” to divide into two cells ”b” and ”d”. Cell ”b” feeds into
cell 7d” with weight +1. The reading head of cell ”b” now points to the left sub-tree (the box at
the third level with PAR) and the reading head of new cell ”d” points to the right subtree (the box
at the third level down with VAL-). On the right: The execution of the two end-program symbols.
The END’s causes the cells ”a” and ”¢” to loose their reading head and become finished neurons.
Since there are two END’s, it takes two time steps, one time step for each END
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Figure 5: On the left: the execution of the parallel division "PAR” at step 6 causes the creation
of cell ”e”. Both cell ”b” and ”e” inherit the input from cell ”a” and ”¢” formerly feeding into
"b”. Both cells ”b” and ”e” send their output to cell ”d” (The place where ”b” formerly sent its
output.) The reading head of cell ”b” now points to the left sub-tree (INCBIAS) and the reading
head of the new cell ”e” now points to the right sub-tree (which has an "END”). On the right: The
cell 7d” executes the value-program symbol VAL-. The link register is one (the default value) it
points the left-most link. The action of VAL- is to set the weight of the first link to -1. The heavy
line is used to indicate a -1 weight.
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Figure 6: On the left: Neuron ”b” executes the value-program symbol INCBIAS. The action of
INCBIAS is to increase the threshold of cell ”b” by 1. After execution, the threshold of cell ”b” is
1, and the reading head of cell ”b” points to an END at the fifth level of the tree. On the right:
The last tree steps consist in executing three END-program symbols. The three END’s cause the cells
7h”, 7e” and ”d” to lose their reading head and become finished neurons. Since there are now only
finished neurons, the development is finished. The final neural net has two input units ”a” and
)

¢”, and one output unit ’d”. The neuron ”¢” is the second input unit, because the link from the
input pointer cell to ”¢” is the second output link of the input pointer cell
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Figure 7: A recurrent developmental program for a neural network that computes the even parity
for three binary inputs. The life of the ancestor cell is 2. The first three steps are the same as
those shown in the preceding figures. During the fourth step, cell ”a” executes a recurrent-program
symbol. Its reading head is backtracked the label (SEQ) on the root of the grammar-tree. The
situation of cell 7a” is similar to the beginning of the development at step 0. The life of ”a” has
been decremented and is now equal to 1. Cell ”a” will give birth to a second XOR network, whose

outputs will be sent to the child cells generated by cell ”b”.



parity of 3 inputs parity of 9 inputs parity of 18 inputs

Figure 8: The final decoded neural network that computes the even parity of 3, 9 and 18 binary
inputs. The initial life is respectively 2,8 and 17. A weight —1 is represented by a dashed line.
With an initial life of L we develop a neural network for the L 4+ 1 input parity problem, with L
copies of the XOR network.
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POOD

Figure 9: Microcoding of the program-symbol ADL 2. (Add on Link), 2 is an argument. This
program symbol adds a cell on the link number 2. The microcode is DIVm<sm> 2 (a) before the
division ADL, (b) division in two child cells. (c) the segment "m>" is analyzed,. (d) the segment

7s” is analyzed (e) the segment "m<” is analyzed.
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b e
(a) (b) (c)

Figure 10: The difference between segement’s microcode with ”7d” and with ”r”. (a) before the
cell division; the cell which divides is labeled ”b”, it has an input neighbor labeled ”a”. (b) the
input link is duplicated using a ”d” microcoding. The first child is the first output neighbor of cell
7a” (c¢) the input link is duplicated using a ”r” microcoding. The first child is the second output

neighbor of cell 7a”.
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QP SPLIT

AN

Figure 11: Use of sub-sites. On the left: Splitting of a site into 2 sub-sites. A sub-site is indicated
by a small black disk. (a) Before the parallel division of the cell labeled PAR (b) After the parallel
division, a sub-site has been created by the neighbor cell. On the left: the SPLIT program symbol.
(c) Before the execution of program symbol SPLIT. (d) Result of the splitting division. The four
child cells read the same node. (e) The intermediate stage.
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Simulation
Pascal Parse Cellular Neural on a neural

program Tree Code Net computer

() (b) (c) (@)

Figure 12: Stages of the neural compilation. (a) Parsing of the PASCAL Program. (b) rewriting
of the parse tree into a cellular code, using a tree grammar. (c) decoding of the cellular code into
a neural network. (d) scheduling and mapping of the neural network on a physical machine. This
stage is not yet done.
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a b C

Figure 13: Result of the compilation of the PASCAL program: wvar a,b,c: integer; begin a=a+b;
c=c+b; b=a+c; end. FEach dotted line corresponds to the compilation of one instruction. The
neurons make a simple addition of their inputs (the weights are 1, the sigmoid is the identity).
The line 0 represents the initial environment. It encompasses three values “a”, “b” and ”c¢” stored
in three neurons aq, by and ¢q. At line 1, the value of “a” has changed, it is now contained in a
new neuron as, that computes the sum of “a” and “b”. In order to make this sum, neuron as is
connected to neuron ay and by. The value of ”¢” changes at the next line, finally, the value of “b”
also changes. Omne can see that the two first instructions: a:= a+b; c:=c+b can be executed in
parallel by neurons as and ¢y. On this example, each variable is represented by two neurons during
the run of the program.
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= ASSIGN

/\ IDF-AFF BIN-OP

a + a +

/\ IDF-LECT IDF-LECT

a b a b

Figure 14: Parse tree of the instruction ”"a:=a+b0". On the link side: the parse tree is labeled
with words of the PASCAL program. We will use another format described on the right. The
labels are made of two parts: the first part specifies the kind of the node, the second part is an
attribute. For example, IDF-AFF indicates that the node contains the name of a variable that is
modified, IDF-LEC: the name of a variable which is read, BIN-0P the name of a binary operator like
the addition, ASSIGN corresponds to an assignment. For nodes IDF-AFF and IDF-LEC, the attribute
contains the name of the variable to modify or to read. For BIN-OP, the attribute contains the
name of the particular binary operator.
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ASSIGN ASSIGN

IDF- BIN-

IDF- BIN-
AFFa OP+ AFFa OP +
1
IDF- IDF- IDF- IDF-
LECT LECT LECT LECT
a b a b

Figure 15: On the left: Development of the neural network translating the PASCAL instruction
7a:=a+b”. The development begins with an ancestor cell labeled “1” connected to three neurons
labeled “a”, “b” and ”c¢” which store the state of the environment before the instruction is executed.
On the left side, we represent the parse tree of the PASCAL instruction. The arrow between the
ancestor cell and the symbol ASSIGN of the parse tree represents the reading head of the ancestor
cell. On the right: execution at step 1 of the macro program symbol ASSIGN, read by the ancestor
cell “17. Cell “1” divides into two child cells “1” and “2”. Both child cells inherit the input links
of the mother cell. Child “2” is connected to child “1”. The reading head of cell “1” now points to
the node IDF-AFF and the reading head of cell “2” points to the node BIN-0P
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ASSIGN ASSIGN
/\ a
IDF- BIN-
AFFa opP+

IDF- BIN-
AFRy OP+

IDF- IDF- IDF-
LECT LECT LECT| | LECT
a b a b

Figure 16: On the left: execution at step 2 of the macro program symbol IDF-AFF, read by the
cell “17. Cell “1”7 deletes its first link, and moves its fourth link back in the first position. On the
right: execution at step 3 of the macro program symbol BINOP read by cell “27. Cell “2” divides
into three cells “27, “3” and 74”. Cells “3” and ”4” inherit the input links of their mother cell, and
are connected on the output to cell “2”. Whereas cell “2” inherits the output links of the mother
cell, looses its reading head and becomes a neuron. The sign + inside the circle indicates that it
makes the addition of its inputs.
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ASSIGN

/\ a b ¢ a b CO

IDF- BIN- 3
AFE OP+ 9 1T 9
IDF- IDF- 1 1
LECT | LECT
a b

Figure 17: (a) Step 4: On the left: execution at step 4 of the macro program symbol IDF-LEC,
read by cell 74”. The cell 74” disappears, after having connected its first input neighbor to its
output neighbor. On the right: execution at step 5 of the macro program symbol IDF-LEC, read by
cell “3”7. The cell “3” disappears, after having connected its second input neighbor to its output
neighbor. There are no more reading cells. The compilation of the PASCAL instruction “a:=a+b”
is finished. The ancestor cell “1” is connected to the three neurons that contain the values of the
modified environment. It can start to develop the next instruction.
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DECIa

TYPE-SIMPLE SEMI-COL

/\
READ WRITE

IDF—‘AFFa IDF-LEC a

Figure 18: On the left: The parse tree of the PASCAL Program: "program p; var a : integer;
begin read(a); write (a); end.” This parse tree does not have the usual form. It contains
nodes for the declaration of variables, and the labels are not organized in a standard way. This
particular form helps the implementation of the neural compiler. The appendix 3 contains a BNF
grammar that defines these parse trees. On the right: The development begins with an ancestor
cell labeled “1” and represented as a circle. The ancestor cell is connected to an input pointer cell
(box labeled ”input”) and an output pointer cell (box labeled "output”). The arrow between the

ancestor cell and the parse tree represents the reading head of the ancestor cell. The development
is reported in appendix 1.
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(a) Buble sorting of 8 numbers

(d) Merge sorting of 8 integers

Figure 19: Examples of compiled neural networks
66

@) Simulating an animal behavior



S

N

step 191

T

step 287

Figure 20: Steps of the development of the neural network for the bubble sorting of 8 integers.

step 319
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step 356




fibonaci(i), i<2 fibonaci(i), i<3 fibonaci(i), i<4 fibonaci(i), i<5

Figure 21: The neural network for the Fibonacci function developed with an initial life respec-
tively L=1, 2, 3 and 4. The corresponding networks are self-similar. The networks can compute
Fibonaci(i), ijL42.
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(b) Maximum of 32 integers

(a) Multiplication Vector Vector

(d) Multiplication Matrix Matrix

(c) Multiplication Matrix Vector

Figure 22: Other examples of compiled neural networks that can do computation in parallel.
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PROGRAMM PROGRAMM

DECLa
TYPE- SEMI- TYPE- SEMI-
SIMPLE COL SIMPLE COL o
READ WRITE READ Wl‘%ITE
\ \
or. R [outpui=— (nexd) wr. e [ORuf——Cnexh
AFFa LECTa AFFa LECTa

Figure 23: On the left: execution at step 1 of the macro program symbol PROGRAM. The ancestor
cell “1” gives birth to two other cells. A cell labeled “start” and another one labeled “next”.
The “start” cell controls the propagation of the activities. The “next” cell has not finished its
development. It waits all its neighbors to become finished neurons. The cell “1” now reads the
DECL node. On the left: execution at step 2 of the macro program symbol DECL. The ancestor
cell gives birth to another cell labeled “var”. This cell represents the variable “a”. The input and
output connections of the ancestor cell are now complete and represent a topological invariant. The
first input (resp. output) link points to the input (resp. output) pointer cell. The second input link
points to the “start” cell, the rest of the input links point to “var” neurons. The second output
link points to the “next” cell.
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PRO(‘}RAMM

. v - - T
DECLa
TYPE- SEMI-
SIMPLE COL

READ Wl‘%ITE

\

AFFa LECTa

PRO(‘}RAMM

DECLa
TYPE- SEML-
SIMPLE co 2/
READ WRITE

i T

AFFa LECTa

Figure 24: On the left: execution at step 3 of the macro program symbol TYPE-SIMPLE. The effect

is to nullify the weight of the connection to the neuron that represents variable “a”.

A weight 0

is represented by a dotted line. On the right: execution at step 4 of the macro program symbol
SEMI-COL. This macro program symbol composes two instructions. Cell “1” gives birth to another
cell labeled 2. Cell “1” goes to read the macro program symbol that corresponds to the instruction

read a. Cell “2” is blocked on the instruction write a
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PROGRAMM = —— _

| input}—=(starty ~=(var)
DECLa \ AN

T T e

PROGRAMM . o
| input]—=(star)
DECLa \ el

/\
TYPE- TYPE- SEMI-
SIMPLE SIMPLE COL M/
READ VVF"LITE READ VVF"LITE
| | | |
AFFa LECTa AFFa LECTa

Figure 25: On the left: execution at step 5 of the macro program symbol READ a. A neuron labeled
var is created. It contains the new value of variable “a”. This neuron is connected to the input
pointer cell. On the right: execution at step 6 of the macro program symbol IDF-AFF. The neuron

“var” that contains the old value of “a” will be deleted because it has no more output links. The
cell “2” is unblocked, and carries on its development.

72



PROGRAMM

PRO(‘}RAMM |
DECLa DECLa
/\ /\
TYPE- SEMI- TYPE- SEMI-

SIMPLE COL SIMPLE COL

READ WF‘{ITE READ WRIT
| i
AFFa LECTa AFFa LECTa

Figure 26: On the left: unblocking at step 7 of the cell “2”. Before to start the compilation of
the WRITE, cell “2”7 executes a small piece of cellular code. It merges the input links of cell 1. The
cell “1” will be deleted. Now, the invariant is restored. Cell “2” can start the compilation of the
next instruction. On the right: execution at step 8 of the macro program symbol WRITE. The cell
“2” gives birth to another cell “3”, connected two times to the output pointer cell. The cell “3”
possesses all the input connections of cell “2”7. Cell “2” becomes a neuron.
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DECLa

/\
TYPE- SEMI-
SIMPLE COL

READ Wl‘%ITE
\

IDF- IDF-

AFFa LECTa

Figure 27: On the left: execution at step 9 of the macro program symbol IDF-LECT. Cell “3” selects
the input that corresponds to variable “a”, and connect that input to the output pointer cell. Then,
cell “3” disappears. On the right: unblocking at step 10 of the cell “next” which is deleted. Its
deletion leads to the suppression of neuron “2”. The final neural net encompass two input neurons:
the start cell and the input variable “a”; and one output neuron: the variable “a”. This neural net

9

reads “a” and write “a”. It translates what is specified by the PASCAL program.
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‘ inst, expr

Figure 28: Invariant pattern. We show here the network graph of cells after the declaration of two
scalar variables. We can see the two corresponding neurons labeled “var”. These neurons “var”
with the neuron “start” will constitute the first layer of the final neural network. The graph of this
figure is an invariant pattern that will be taken for the initial configuration, for all the next macro
program symbols. This avoids repetition and stresses the importance of the invariant pattern in
the design of the macro program symbol. Cell “1” will be called the ancestor cell.
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INT-CST (1)
3

Coutput | st

Figure 29: Fxecution of the macro program symbol INT-CST by the ancestor cell of the invariant
pattern. This macro program symbol has one parameter which is the value of the constant. The
macro program symbol INT-CST 3 has the following effect: It sets the bias of the ancestor cell to
the value 3, and deletes all the links, except the link to the “start” neuron and the link to the
“next” neuron. The sigmoid of the ancestor cell is set to the identity, and the ancestor cell becomes
a neuron labeled 1. When the constant is needed, the neuron “start” is used to activate the neuron
1, which delivers the constant coded in its bias.
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Figure 30: Execution of the macro program symbols IF and THEN by the ancestor cell of the
invariant pattern. For the sake of clarity, we have represented the combined action of IF and THEN.
Four reading cells, and a layer of 6 neurons EAND are created. Cell “1” will develop a sub-neural net
that computes the value of the condition. TRUE is coded on value 1, and FALSE is coded on value
-1. The logical operation NOT is realized using a weight -1 (dashed line). Depending on the value
of the condition, the flow of values contained in the environment is sent to the left or to the right.
The reading cell “2” and 3 develop respectively the body of the “then” and the body of the “else”.
Cell “4” possess two input sub-sites which are represented as small black disks. It is blocked on a
piece of cellular code called X-AOQR.
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E T ELSE

() AOR

Figure 31: Execution of the cellular code X-A0R by cell “4” of the preceding figure. The cell “4”
has two input sub-sites that distribute its input links into two lists. The cell “4” produces a layer
of AOR neurons. This layer retrieves either the output environment from the body of the “then” or
the output environment from the body of the “else”; and transmits it to the next instruction.
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Figure 32: Execution of the macro program symbol WHILE by the ancestor cell of the invariant
pattern. Many cells are created: three reading cells, 3 AOR neurons, 6 EAND neurons and one neuron
labeled “4”, used to forward the environment. The layer of AOR neurons merges the flow of values
that comes either from the top of the network (first iteration) or from the bottom (other iterations).
The cell “1” develops a neural net that computes the condition of the while. As in the case of the
IF, the EAND neurons are used as a switching for the flow of activities. If the condition is true, the
flow of values is forwarded in the body of the loop, else it turns to the right and exits the loop. The
cell “2” develops the body of the WHILE. The cell “3” develops an intermediate layer in the loop,
which will synchronize the flow of activities.
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ENV

% ENV

AOR

AOR

Figure 33: Execution of the cellular code X-SYNC by cell “3” of the preceding figure. Cell “3” gives
birth to a layer [ of three neurons plus one neuron ”S” whose dynamic is the normal dynamic. This
layer is inserted between the layer of neuron "ENV” that stores the output environment of the
body of the WHILE, and the layer of AOR at the beginning of the loop. The neuron ”S” is connected
from its input site, to all the neurons in the “ENV” layer. The neuron ”S” is active only when
all the environment is available. The neuron ”S” is linked to the three neurons of layer [ from its
output site, with weights zero (dotted line). These connections block the neurons while ”S” is not
active. So the three neurons of layer [ are unblocked at the same time, and the flow of values is
synchronized.
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CALL-P
attrb

| param-list

attrb

/\

Figure 34: Execution of the macro program symbol CALL-P by the ancestor cell of the invariant
pattern. The environment has three variables. The CALL-P has one parameter (attrb) which is
the name of the called procedure. Three cells are created. Cell “1” develops different subnetworks:
one subnetwork for each parameter to pass to the called procedure. The cell “2” develops the body
of the called procedure. Its reading head is placed on the root of the parse tree that defines the
called procedure. The cell “2” is not connected to the neurons that contain the local variables of
the calling procedure: pefl and locl. These variables cannot be accessed from proc2. Cell “3” is
blocked on a cellular code RESTORE. It will restore the environment of the calling procedure, when
the translation of the called procedure is finished.
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glob  pefl locl glob  pefl locl

[input | Cstart D (var) (var) (var)
(2)
e.

Figure 35: Execution of the cellular code RESTORE by cell “3” of the preceding figure. Cell “3” is
unblocked when the body of proc2 is developed. Cell “3” is linked to cell “2” which is linked to the
global variables, that may have been modified by the called procedure. The execution of RESTORE
brings together the modified global variables, and the unchanged local variables of proci.
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COMM

‘ expr ‘ list-param

output next

Figure 36: On the left: execution of the macro program symbol COMMA by the ancestor cell of the
invariant pattern. This macro program symbol creates two cells. Cell “2” develops a subnetwork
for computing the value of a parameter, cell “1” continues to read the parameter list. On the
right: execution of the macro program symbol NO-PARAM by cell “1”7, assuming that the end of the
parameter list is reached. The end of the list is marked by a NO-PARAM that simply eliminates cell
“177‘
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glob  pef2 glob  pef2 loc2

Figure 37: On the left: execution of the macro program symbol PROCEDURE by the ancestor cell of
the invariant pattern. This macro program symbol adds an intermediate cell “2”, blocked on a POP
cellular code. On the right: when the translation of the procedure is finished, cell “2” is unblocked.
and execute the cellular code POP. POP retrieves only the global variables. The local variables are
not connected to neuron “2” after the execution of POP. This macro program symbol is equivalent

to the pop instruction of a machine language, used for the return of subroutines.
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CALL-F
attrb
‘ FUNCTION
‘ param-list attrb

/\

Figure 38: Execution of the macro program symbol CALL-F by the ancestor cell of the invariant
pattern. This macro program symbol has the same effect as CALL-P except that it does not create
the cell 3, because it is not necessary to restore the environment.
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glob  pef2  loc2

Figure 39: Execution of the macro program symbol RETURN by the ancestor cell of the invariant
pattern. This macro program symbol has a null effect.
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Figure 40: Representation of arrays. On the left: extended invariant pattern, the environment
contains a scalar variable and a 1D array with two elements. On the right: representation of a 2D
array, using a neural tree of pointer neurons, of depth 2. Layers of pointer neurons are marked by
"PN”. The layer ”D” contains the values of the array.
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Figure 41: Execution of the macro program symbol TYPE ARRAY. This macro program symbol
develops the neural tree of pointer neurons that is required to encode an array. We need d macro
program symbols TYPE ARRAY in order to represent an array of d dimensions. TYPE-ARRAY has one
parameter which is the number of columns along the associated dimension.
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Figure 42: Execution of the cellular code X-AOR by cell “4” of the figure that describes the IF macro
program symbol. The result is the production of a layer of AOR neurons, and the duplication of the
neural tree that gives a structure to the data.
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CALLGEN
1lect-index

COMMA

7

T COMMA

Figure 43: Reading of a 2D array [0..1][0..2] of integers. The index i1 is 2, the index i2is 1. The
two first layers of neurons EQBs have a sigmoid that test the equality to zero. They output 1 if
the net input is 0, otherwise they output -1. These EQB neuron’s threshold are indicated. The
third layer of neurons computes logical ANDs. In this layer, a single neuron outputs 1, the one
that corresponds to the element that must be read. All the other neurons of this layer output -1.
The fourth layer of neurons is a layer of EAND neurons. only one of these neuron is activated. It
propagates the element of the array that is read. Last, a neuron AOR merges all the output lines
and retrieves the element that is read. The instruction CALLGEN is almost like CALL-F, except that
all the links to the global variables are deleted. CALLGEN is described in the next to the next figure.
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COMMA

1
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Figure 44: Writing in a 2D array [0..1][0..2] of integers. The index i1 is 2, the index i2 is 1. The
first three layers are the same as in the preceding figure. The fourth layer contains twice as much
EAND neurons arranged in pairs. FEach pair corresponds to an element of the array. In each pair,
one neuron is activated, and the other one is not. The left neuron is never activated except in a
single case, when the element corresponds to the place where we want to write. The next layer is a
layer of AOR neurons. Each AOR neuron retrieves the element of the old array, or the value v that is
written if the element corresponds to the place where we are writing. Last, a neural tree of pointer
neurons preserves the structure of 2D array.
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attrb

‘ param-list

Figure 45: Fxecution of the macro program symbol CALLGEN by the ancestor cell of the invariant
pattern. CALLGEN has the same effect as CALL-F except that the cell “2 ” which will execute the
body of the function written in cellular code, does not have connections to the global variables of
the PASCAL program.
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Figure 46: On the top (a): execution of the macro program symbol #IF by the ancestor cell of the
invariant pattern. Three cells are created. Cell “2” goes to read a macro program symbol IDF-LEC
that will select the array variable which is concerned by the test. Cell “3” is a neuron that will
be used later by cell “1” to restore the environment, once the test is finished. On the middle (b):
execution of the macro program symbol IDF-LEC, by cell number “2” of the preceding figure. On
the bottom (c¢): execution of the macro operator #THEN by cell “1”. Cell “1” tests the number of
input links of its first neighbor. Here this number is 2 because the array has two elements. If this
number is greater than one, cell “1” places its reading head on the right subtree, as it is the case
here. Otherwise it goes to read the left subtree. Finally, cell “1” merges the links of the neuron
“377‘
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Name

Role

Reading Head
Life

Bias

Sigmo

Dyn

link register
simplif

type
x,y,dx,dy

Reads at a particular position on the cellular code
Counts the number of recursive iterations

Stores the bias of the future neuron

Stores the sigmoid

Stores the dynamic

Points to a particular link

Specifies the level of simplifiability

Specifies whether the cell is a neuron or a reading cell
Specifies a window where to draw the cell

Table 1: The registers of a cell
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Name Function of the attribute

DECL name of the declared variable

TYPE-ARRAY | dimension of the array

IDF-AFF name of the variable to assign

IDF-LEC name of the variable to read

INT-CST value of the integer constant

CALL-P name of the procedure to call

CALL-F name of the function to call

CALL-GEN attrb0 1s the name of a pre-encoded solution

CALL-GEN attrbl 1s the name of a procedure
for reading an array

CALL-GEN attrb2 1s the name of a procedure
for writing an array

BINOP name of the binary operator

UNOP name of the unary operatot

Table 2: The attributes of the parse tree
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