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Abstract

We describea recipeto solve very large parity
problemsusingGP.Therecipeincludes:smooth
uniform crossover (a crossoveroperatorinspired
by our theoreticalresearch),sub-machine-code
GP (a techniqueto speedup fitnessevaluation
in Booleanclassificationproblems),and inter-
actingdemes(sub-populations)runningonsepa-
rateworkstations.We testedthis recipeonparity
problemswith up to 22 input variables,solving
themwith a veryhighsuccessprobability.

1 INTRODUCTION

Theeven-� -parity functionshave long beenrecognisedas
difficult for GeneticProgramming(GP)to induceif nobias
favourableto their inductionis introducedin the function
set,theinputrepresentation,or in any otherpartof thealgo-
rithm. For thisreasonthey havebeenwidelyusedasbench-
mark tests[1, 3, 4, 5, 6, 16, 17, 19]. For an even-parity
functionof � Booleaninputs,thetaskis to evolve a func-
tion thatreturns1 if anevennumberof theinputsevaluate
to 1, 0 otherwise.Thetaskis difficult for at leasttwo rea-
sons.Firstly, thefunctionis extremelysensitive to changes
in thevalueof its inputs,sinceflipping asinglebit reverses
theoutput. Secondly, the functionsetthat is usuallyused
by GP researchersattemptingto induceit,

�
OR, AND,

NOR, NAND� , hasaninbuilt biasagainstparity problems
sinceit omits the building block functionsEQ and XOR,
eitherof which canbeusedto constructparsimoniousso-
lutions [7]. Thedifficulty of theproblem,asmeasuredby
theestimatednumberof fitnessevaluationsrequiredto find
a solutionwith 99% probability (a quantityknown asef-
fort), alsorisessharplywith thenumberof inputs,� . Koza
estimatedthat thenumberof evaluationsnecessaryfor the
canonicalform of GP to solve even-n-parityproblemsin-
creasedby aboutanorderof magnitudefor eachincrement
of � [6, p. 192].

The increasein difficulty is compoundedby the increased
memoryandprocessordemandsmadeby higher-orderver-
sionsof the problem. In part thesedemandsarenot pe-
culiar to the parity problems– the bloating of candidate
solutionsasa GP run progresseshasbeenobserved for a
broadvarietyof applications[8]. However, thenumberof
fitnesscasesassociatedwith a Booleaninductionproblem
increasesexponentiallywith its orderandcanbevery large
(e.g.for ������� , treesareevaluated�
	��
���
���
� times).

Weaddresstheseissuesin thispaper, bringinganumberof
diversetechniquesto bearon high-order( ������������� )
versionsof the even-� -parity problem. Firstly, we im-
prove the searchprocessusingthe GP uniform crossover
andpoint mutationoperatorsdescribedin [13] anda sub-
symbolicnoderepresentation[10] which usesanenlarged
functionsetandallows GPto make small,directedmove-
mentsaroundthe programspace. We also apply a tech-
niqueknown asSub-MachineCodeGP[11, 14], whichal-
lows the parallel evaluationof 32 or 64 fitnesscasesper
programexecution. Finally, we employ a parallel imple-
mentationin whichGPsub-populations,or demes,aredis-
tributedovera numberof workstations.

Theremainderof thepaperis organisedasfollows. In the
next section,we review otherattemptsto solve the even-� -parity problemsusingGP. We thendescribeour repre-
sentationandoperators.In Section4 we describethesub-
machinecodetechniqueand,in Section5, thedememodel
used. Finally, in Sections6 and7 we presentanddiscuss
theresultsof experimentsontheeven-� -parityproblemfor��������������� ��!�� ��"��#�$� and ��� anddraw someconclusions.

2 RELATED WORK

Koza provided a detailedtreatmentof the even-� -parity
problemin his extensive discussionsof the standardGP
paradigm[5] andAutomaticallyDefinedFunctions(ADFs)
[6]. In both caseshe restrictedhimself to the four dyadic
Boolean functions AND, OR, NAND, NORand what-



Table1: Minimum efforts (in thousandsof fitnessevalu-
ations)requiredto solve the even-� -parity problemusing
variousmethods. %

Approach 5 6 7 8 9
StandardGP[6] 6,528 70,176a n/a n/a n/a
GP+ ADFs [6] 464 1,344 1,440 solvedb

EP[3] 2,100 n/a n/a n/a n/a
EP+ ADFs [3] 126 121 169 321 586
GP+ ADFs [1] 359 627 n/a n/a n/a

aEstimated- standardGPdid notactuallysolvethisproblem.
bKozasolved parity problemsfor & up to 12. However, the

heavy computationloadrequiredpreventedhim fromperforming
sufficient runsto estimatetheeffort.

ever input terminalswerenecessaryfor the problem. As
we have seen,theomissionof theXORandEQprimitives
from the setcreatesadditionalproblemsfor standardGP,
sinceit mustindependentlyevolvesemanticallyequivalent
blocksof codeat numerouslocationsthroughoutthe pro-
gramtree.Unsurprisingly, solvingtheparity problemsus-
ing standardGP without ADFs is computationallyexpen-
sive andKozawasunableto obtaina result for valuesof�(')! . Of course,the discovery and reuseof building
blocksis theideabehindADFs,andKozareportedgreater
successwhenthey wereused. The solutionshe reported
for �*�+���,�-�#!��,�-�."/�#0�� ��� all evolved,andmadeextensive
useof, codeequivalentto eithertheXORor EQprimitives
on their function-definingbranches.The estimatedcom-
putationaleffort for theseand,whereavailable, the other
studiesdiscussedherearegivenin Table1.

Chellapilla[3] essentiallyreplicatesthesestudies,omitting
thecrossoveroperatorandusinginsteada varietyof muta-
tion operators.His resultscomparefavourablywith those
of Kozaandheusesthemto arguethat thesignificanceof
crossoverhasbeenoverstated.

Aler [1] presentsa modification of Koza’s ADF tech-
niquein which functionandresult-producingbranchesare
evolvedin separatepopulations.Themainbranch-evolving
populationusesthe ADF of the bestindividual from the
ADF populationof thepreviousgenerationandviceversa.
His resultson theeven-5and-6-parityfunctionsalsocom-
parewell with thoseof Koza.

GathercoleandRoss[4] useGPwithoutADFsandafitness
functionin which evaluationof the individual ceasesonce
a givennumberof fitnesscaseshavebeenmisclassified.If
this thresholdis reached,theremaining,untested,casesare
also judgedas misclassifications.The result is that low-
fitnessprogramscanbeidentifiedwithout beingevaluated
on the full trainingset,with considerablesavings in CPU
time. Theorderof presentationof thefitnesscasesis mod-
ified at run-timesothattheevolving populationis exposed

to casesof increasingdifficulty. GathercoleandRoss’s re-
sultsarevery encouragingalthoughthey do not estimate
theeffort.

The studiesdiscussedso far have all treatedthe even-� -
parity problemfor different valuesof � as distinct tasks
and evolved specificsolutionsfor each. Wong and Le-
ung [19] describean alternative approachin which logic
programsareevolved. Programsoperaterecursively on a
list of Booleanvalues(eachlist representinga singlefit-
nesscase),rather than a set of distinct input terminals.
Whilst thesolutionsreportedby WongandLeungaregen-
eralsolutionsto theeven-� -parityproblem,theirmethodis
necessarilyheavily constrainedto avoid infinite recursions
andcontainsa greatdealof problem-specificinformation.
Lessbiasedis theapproachof Yu [20] who evolvesrecur-
sive generalsolutionsto the even-� -parity problemusing
lambdaabstractions.

A brief examinationof Table1 shows that,as � increases,
the problem rapidly becomesvery difficult for GP sys-
tems which use the traditional function set without any
favourableinbuilt bias. For ���1� , the effort is at least
of the order of � ��2 , and for many methodsthe problem
becomesintractable.Recently, however, we demonstrated
an approachthat could solve the even-6-parityproblem
with a populationof 50 individualsandwith an effort of
17,000fitnessevaluations[10]. Typicalsolutionswerealso
comparativelyparsimonious,theaveragecomplexity being
around50 nodes. Theseresultsgave us groundsto be-
lieve thatveryhighorderversionsof theproblemcouldbe
solved. In thenext section,we describetheGPalgorithm
weusedto achievethis level of efficiency.

3 OPERATORS AND REPRESENTATION

3.1 UNIFORM CROSSOVER

GPUniform crossover (GPUX)[13], asthenamesuggests,
is a GP operatorinspiredby the GA operatorof thesame
name[18]. GA uniformcrossover (GAUX) constructsoff-
spring on a bitwise basis,copying eachallele from each
parentwith a50%probability. Thustheinformationateach
genelocation is equally likely to have comefrom either
parentandon averageeachparentdonates50%of its ge-
neticmaterial.Thewholeoperation,of course,reliesonthe
fact that all the chromosomesin the populationareof the
samestructureandthe samelength. No suchassumption
canbe madein GP sincethe parenttreeswill almostal-
wayscontainunequalnumbersof nodesandbestructurally
dissimilar.

GP uniform crossover begins with the observation that
many parsetreesareat leastpartially structurallysimilar.
This meansthat if we startat the root nodeandwork our
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Figure1: Two parentalparsetreesprior to GPUX.
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Figure2: OffspringtreesafterGPUX.

way down eachtree,we canfrequentlygo someway be-
fore finding function nodesof differing arity at the same
locations.Furthermorewe canswapevery nodeup to this
point with its counterpartin theothertreewithout altering
thestructureof either. Working down from the root node,
wecandefinetwo regionsof apairof treesasfollows.Any
nodein onetreehaving a correspondingnodeat thesame
locationin theotheris saidtobelocatedwithin thecommon
region. Thosepairsof nodeswithin thecommonregionthat
have thesamearity arereferredto asinterior. Theinterior
nodesandthecommonregionof two treesareillustratedin
Figure1. Notethatthecommonregionnecessarilyincludes
all interior nodes.GPUX is thenasfollows. Oncethe in-
terior nodeshave beenidentified,theparenttreesareboth
copied.Interiornodesareselectedfor crossoverwith some
probability 354 . Crossover involvesexchangingtheselected
nodesbetweenthetrees,with thosenodesnot selectedfor
crossoverremainingunaffected.Non-interiornodeswithin
thecommonregioncanalsobecrossed,but in thiscasethe
nodesandtheir subtreesareswapped. As in GAUX, the
valueof 3 4 is generallysetto 0.5,resultingin anexchange
of 50% of the nodes.The resultof GPUX appliedto the
treesin Figure1 is shown in Figure2.

GPUX, like GAUX, is a homologousoperator, that is it
preservesthepositionof geneticmaterialin thegenotype.
This is a beneficialpropertybut in somecasesit canlead
to thephenomenonof lexical convergencewherebya sub-
optimalgenebecomesfixedata givenlocation.Whenthis
happens,crossover cannotintroducetheoptimalgeneand
for thisreasonit is generallydesirableto includeamutation
operatorto maintaindiversityin thepopulation.Theoper-
atorwe usehere– GPpoint mutation(GPPM)[9] – is also

inspiredby its GA counterpart(GAPM).GPPMsubstitutes
a single function nodewith a randomlyselectedreplace-
mentof thesamearity. As in GAPM, theaveragenumber
of mutationsperformedon an individual is a function of
the programsizeanda user-definedmutationrate. Since
in GP programlengthsvary, larger programsundergoing
mutationwill, on average,beperturbedto a greaterdegree
thansmallerones. Sincesuchperturbationsaregenerally
detrimentalto thefitnessof a highly-evolvedprogram,this
will generateanemergentparsimony pressure[12].

3.2 SUB-SYMBOLIC NODE REPRESENTATION

Whilst a singlepoint mutationis the smallestsyntactical
operationthatcanbeappliedto aparsetreeunderthestan-
dardrepresentation,it may neverthelessresult in a signif-
icantchangein behaviour. For example,considerthe fol-
lowing subtree:(AND6 	 6 � ) where6 	 and 6 � areBoolean
input terminals. If the ANDnodeis replacedwith NAND,
the valuereturnedby the subtreewill be alteredin all the
fitnesscases.Controllingthis meansaddressingthemech-
anismusedto replacethenode.Oursolutionis simple.We
begin by noting that a Booleanfunctionof arity � canbe
representedasa truth table(bit-string)of length ��7 , spec-
ifying its returnvalueon eachof the ��7 possibleinputs.
ThusANDmayberepresentedas1000 , ORas1110 . We
referto thisrepresentationassub-symbolicbecausetherep-
resentation,and hencethe behaviour, of a function node
canbemodifiedslightly duringthecourseof aGPrun. For
example,flipping asinglebit will alterthebehaviour of the
nodefor justoneof its possibleinput combinations.

Onefeatureof thesub-symbolicrepresentationof Boolean
function nodesis that, in contrastto the reducedfunction
setnormallyusedin Booleanclassificationtasks,it is un-
biasedsince it incorporatesall ��7 nodesof arity � into
its function set. Someof theseareobviously superfluous
(e.g.always-ON andalways-OFF ) althoughwhat ef-
fect they haveonperformanceis poorlyunderstood.Rosca
[16] notesthat increasingthesizeof the functionsetfrom
4 to 8 increasesthe fitnessdiversity of randomlygener-
atedtreeson the even-5-parityproblem,but that this ef-
fect is slightly reducedwhenthe sizeis further increased
to 16 functions. Koza [5] examinedthe effectsof extra-
neousfunctionson a numberof problemsincludingthe6-
multiplexer andfoundperformanceusingsetsizesof less
than6 to be superiorto that usinglarger sets,becauseof
greatercompetitionfor spacefrom inferior nodes.

Of course,the choiceof function set is problemspecific
andoftensomethingof anart. In his studiesof theparity
problems,Kozarestrictedhimselfto thefunctionsetAND,
OR, NAND, NOR, presumablybecauseit combinedmin-
imality with completeness(in the sensethat solutionsto
any Booleanfunction canbe constructedfrom the primi-



tives). However, omitting the XORandEQ functionsun-
doubtedlymakeslife harderfor GP, ascanbeseenfrom the
regularitywith whichKoza’sADF systemevolvedthem.

Even with knowledgeof useful primitives,we shouldbe
carefulnot to minimisethesizeof the functionsetexces-
sively. Langdonand Poli [7] have shown that programs
constructedexclusively from EQ(for evenvaluesof � ) and
XOR(for odd � ) areeithersolutionsto the even-� -parity
problemor scoreexactly half marks. In otherwords, the
fitnesslandscapesof suchrepresentationsoffer nogradient
informationfor GPto follow.

In this work, our principal reasonfor including all 16
dyadicBooleanfunctionsin our set is simplicity – to do
otherwisewould require constrainingthe smoothsearch
operators(describedin the next section)in someway. In
doingso,wenotethattheEQandXORfunctionsareneces-
sarilyincludedandthatthesewill probablyenhanceperfor-
mance.On theotherhand,thefunctionsetis muchlarger
thannormalandcontainsseveralextraneousfunctions.

3.3 SMOOTH OPERATORS

We can definea point mutationoperatorwhich works in
exactly this manner– a single randomly-selectedbit is
flipped in a single randomly-selectednode. In addition,
sinceGPUX is homologous,we canextendit to usea GA
crossoveroperatorwithin thenodesat reproduction(in the
experimentsreportedherewe useGAUX). The crossover
operationis illustratedin Figure3. Whena pair of inte-
rior nodesareselectedfor crossover, GA uniformcrossover
is appliedto their binary representations.In otherwords,
thebits specifyingeachnode’s functionareswappedwith
probability 0.5. Clearly suchan operatorinterpolatesthe
behaviour of theparents’correspondingnodes,ratherthan
exchangingnodesin theirentirety. Thesub-symbolicnode
representationallowsGPtomovearoundthesolutionspace
in a smoother, morecontrolledmannerandhencewe refer
to theseversionsof theoperatorsassmoothpointmutation
(GPSPM)andsmoothuniformcrossover (GPSUX).

4 SUB-MACHINE-CODE GP

Mostcomputerusersconsidertheirmachinesassequential
computers.However, CPUscanbeseenasparallelSingle
InstructionMultiple Data(SIMD) processorsmadeup of
many interacting1-bit processors.In a modernCPUsome
instructions,suchasBooleanoperations,areperformedin
parallelandindependentlyfor all thebits in theoperands.
For example,thebitwiseAND operation(seeFigure4(a))
is performedinternallyby theCPUby concurrentlyactivat-
ing a groupof AND gateswithin thearithmeticlogic unit
asindicatedin Figure4(b). In otherinstructionsthe CPU
1-bit processorsinteractthroughcommunicationchannels.
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Figure3: Uniformcrossoveronthesub-symbolicrepresen-
tation.

If we seethe CPU as a SIMD computer, then we could
imaginethateachof its 1-bit processorswill beableto pro-
ducea resultaftereachinstruction.Most CPUsdo not al-
low handlingsinglebitsdirectly. Insteadall thevaluestobe
loadedinto theCPUandtheresultsproducedby theCPU
arepackedinto bit vectors,which arenormallyinterpreted
asintegersin mostprogramminglanguages.For example,
in many programminglanguagestheuserwill seeabitwise
AND operationasa function which receivestwo integers
andreturnsaninteger, asindicatedin Figure4(c).

Sub-Machine-CodeGP (SMC-GP) exploits this paral-
lelism to doGPby makingtheCPUexecutethesamepro-
gramon differentdatain parallelandindependently. This
canbedoneasfollows: (1)Thefunctionsetincludesopera-
tionswhichexploit theparallelismof theCPU,e.g.bitwise
Booleanoperations.(2) The terminalset includesinteger
input variablesandconstants,to be interpretedasbit vec-
torswhereeachbit representstheinput to a different1-bit
processor. For example,theintegerconstant21,whosebi-
naryrepresentationis 00010101(assumingan8-bit CPU),
wouldbeseenas1 by the1-bitprocessorsprocessingbits1,
3 and5. It wouldbeseenas0 by all other1-bit processors.
(3) The resultproducedby the evaluationof a programis
interpretedasa bit vector, eachbit of which representsthe
resultof a different1-bit processor. E.g. if theoutputof a
GPprogramis theinteger13,thisshouldbeconvertedinto
binary (obtaining00001101)anddecomposedto obtain8
binaryresults(assumingan8-bit CPU).



An ideal applicationfor this paradigmis to evaluatemul-
tiple fitnesscasesin parallel. Booleaninductionproblems
lend themselvesto this useof sub-machine-codeGP. The
approachusedis asfollows: (1) BitwiseBooleanfunctions
areused.(2) Beforeeachprogramexecutiontheinputvari-
ablesareinitialisedsoasto passa differentfitnesscaseto
eachof thedifferent1-bit processorsof theCPU.(3) The
output integersproducedby a programareunpacked and
eachof their bits is interpretedastheoutputfor a different
fitnesscase.

In the Figure5 we provide a simpleC implementationof
this ideawhich demonstratesthe changesnecessaryto do
sub-machine-codeGPwhensolvingtheeven-5parityprob-
lem. The function run() is a simple interpretercapa-
ble of handlingvariablesanda small numberof Boolean
functions. The interpreterexecutesthe programstoredin
prefix notationasa vectorof bytesin the global variable
program . The interpreterreturnsan unsignedlong in-
teger which is usedfor fitnessevaluation. The function
e5parity() computesthe target output in the even-5
parity problemfor a groupof 32 fitnesscases.The func-
tion even5 fitness function(char *Prog) ex-
ecutesa programandreturnsthenumberof entriesof the
even-5 parity truth table correctly predictedby the pro-
gram. More implementationdetailsareavailable in [14].
A moreextendedC codefragmentis availablevia anony-
mous ftp from ftp.cs.bham.ac.uk in the directory
/pub/authors/R.Poli/code/ .

In practical termsthis evaluationstrategy meansthat all
the fitnesscasesassociatedwith the problemof inducing
a Booleanfunction of � argumentscanbe evaluatedwith
a singleprogramexecutionfor �98:! on 32 bit machines,
and �;8�� on 64 bit machines.So, this techniquecould
leadto speedupsof up to 1.5or 1.8ordersof magnitude.

Becauseof the overheadsassociatedto unpackingof the
results producedby GP programs,the speedupfactors
achievedin practiceareslightly lower than32 or 64 [14].
In testson an SunUltra-10 300MHz workstationusinga
32-bit compilerwe obtainedspeedupsof 31 times in the
evaluationof large programsachieving peaksof around
190 million primitives per secondwith a C implementa-
tion. In testsperformedwith aDECAlpha500workstation
with a400MHz64-bitCPU,SMC-GPwasableto evaluate
onaverage550million primitivespersecond,whichcorre-
spondsto 1.3operationsperclock tick!

Theparallelevaluationof multiple fitnesscasesis not the
only way SMC-GPcanbeused.SMC-GPallows theevo-
lution of truly parallelprogramsfor theCPU.In recentre-
search[11, 14] wehaveshownhow thiscanbedone,evolv-
ing, for example,paralleladdersandmultipliers.

0000000101011111

1001000110011111

000000100011111

Bitwise AND351
37279

287

(b)

Bitwise AND

(a)

0 0

...
1 1

(c)

0 1 0 0 1 1 1 1

Figure 4: (a) bitwise AND betweenbinary numbers,(b)
implementationof (a) within the CPU, and (c) the same
AND asseenby theuserasanoperationbetweenintegers.

enum {X1, X2, X3, X4, X5, NOT, AND, OR, XOR};
unsigned long x1, x2, x3, x4, x5;
char *program;

/* Interpreter */
unsigned long run() {

switch ( *program++ ) {
case X1 : return( x1 );
case X2 : return( x2 );
case X3 : return( x3 );
case X4 : return( x4 );
case X5 : return( x5 );
case NOT : return( ˜run() ); /* Bitwise NOT */
case AND : return( run() & run() ); /* Bitwise AND */
case OR : return( run() | run() ); /* Bitwise OR */
case XOR : return( run() ˆ run() ); /* Bitwise XOR */
}

}

/* Bitwise Even-5 parity function */
unsigned long e5parity() {

return(˜(x1ˆx2ˆx3ˆx4ˆx5));
}

/* Fitness function */
int even5_fitness_function( char *Prog ) {

char i;
int fit = 0;
unsigned long result, target, matches, filter;
x1 = 0x0000ffff; /* 00000000000000001111111111111111 */
x2 = 0x00ff00ff; /* 00000000111111110000000011111111 */
x3 = 0x0f0f0f0f; /* 00001111000011110000111100001111 */
x4 = 0x33333333; /* 00110011001100110011001100110011 */
x5 = 0x55555555; /* 01010101010101010101010101010101 */
program = Prog;
result = run();
target = e5parity();

/* Count bits where TARGET=RESULT*/
matches = ˜(result ˆ target);
filter = 1;
for( i = 0; i < 32; i ++ ) {

if( matches & filter ) fit ++;
filter <<= 1;

}
return( fit );

}

Figure5: C programillustrating theparallelevaluationof
fitnesscaseswith SMC-GP.



5 DISTRIBUTED DEMES

The final ingredientswe usedto solve large parity prob-
lemswere: a) to usea setof small interactingpopulations
(demes)and b) to distribute the load of the computation
acrossmultipleworkstations.

Dividing the populationinto demeshelpsmaintaindiver-
sity in thepopulationandhasbeenreportedto be,in itself,
a way of speedingup therateof convergencein theeven-
5 parity problem[2] andotherproblems[15]. Demesare
oftenorganisedinto ringsor toroidalgrids.After eachgen-
erationa smallpercentageof individuals(thebestin each
deme)is sentto theneighbouringdemes.Themigratedin-
dividualsarethenselectively introducedin thepopulation
of eachdeme,e.g. by replacingthe worst individuals. In
this approach,if a very good individual is discoveredin
onedeme,spreadingthat individual to all demesrequires
severalgenerations.

Thedemeapproachlendsitself to efficient parallelisation.
Indeed,it isquiteeasyto runeachdemeonaseparatework-
stationorprocessorandthentoperformmigrationviasome
form of communication. Sincecommunicationhappens
only at the endof eachgeneration,thereis no significant
communicationcostin thisapproach.

In our work we useda star(client/server) architecturefor
our demes. In the architecturethere is a (server) deme
which sendsand receives individuals to and from all the
other (client) demesin the architecture. Eachdemein-
cludes< individuals.Theserverdemeincludesa database
with thebest =>< ( =@?BA ��C �
!��,��CD� �$E ) individualsseensofar
in all thedemes.Whennew individualsaresentfrom one
client demeto the server deme,the databaseis updated.
Whena client demecompletesonegeneration,it sendsa
messageto the server askingfor the database,which the
serversendsassoonaspossible.Whenthis is received,the
individuals in it are selectively introducedin the deme’s
population. To maintaindiversity in the server database,
only individualswith differentfitnessarestored.If anindi-
vidualof agivenfitnessis in thedatabase,andanotherindi-
vidual with thesamefitnessis sentto theserver, a random
decisionis madeasto whichindividualto keep.Theserver
demealsoincludesa populationof < individualswhich is
run exactly like a client deme,so that theserver alonecan
performGPrunswhennoextramachinesareavailable.

The systemis asynchronous.The server demeis able to
receive andsendthe databaseat any time (even if it is it-
self runninga deme). So, client demesrunningon slow
or heavy loadedmachinescanstill contribute to the suc-
cessof a run. Also, sincein someof our runswe useda
largenumberof workstationsin theSchoolandelsewhere,
in orderto avoid disturbingthe activity of otherusersthe
client GP processesconstantlymonitoredtheseactivities.

As soonasan interactive userwaspresenton a machine,
the correspondingGP processwould go into sleepmode.
In thismode,theprocessdoesnoprocessingexceptcheck-
ing onceper minutewhetherthe machineis free and the
GPrunshouldberesumed.

The server is also able to interact with other programs
which allow to controlandmonitorthewholesystem.For
example,the server is able to respondto HTTP requests
sendingback HTML pagesincluding all the information
necessaryto checktheprogressof a run.

Theuseof a starconfigurationwith a centraliseddatabase
is an elitist approachwith a sharedelite. This allows the
quickpropagationof goodindividualsacrossall thedemes
andin the endmakesall the demesconverge towardsthe
sameareaof thesearchspace.Of coursethis quick prop-
agationmaybe risky sinceit reducesdiversity. However,
sincethe databaseincludedquitediversesolutionsthanks
to its mechanismto promotediversity, thisstrategy wasex-
tremelybeneficialin ourexperiments.

6 RESULTS

We have taken up whereKoza[6] left off, applyingvari-
ouscombinationsof thetechniquesdescribedto theeven-� -parityproblemsfor �F�G��� . Specifically, thevaluesstud-
iedwere12,13,15,17,20and22. Kozastoppedat �����
�
not becauseGP with ADFs wasfailing to find a solution,
but becausethe combinationof the large populationsizes
andthe increasingnumberof fitnesscasesto beevaluated
was becomingcomputationallytoo expensive. The GP-
SUX andGP-SPMoperatorsallow us to solve the parity
problemsmuchmorequickly andwith muchsmallerpop-
ulations,sowewereableto solve theeven-12-parityprob-
lem on a singlemachine,runningrepeatedrunswith code
written in Pop11.For thelargerproblems,however, it was
necessaryto utilise parallelpopulationsandsub-machine
codeGP for a completerun to be executedin a realistic
time,andgenerallywedid asinglerun.

In all theexperiments,we usedtheGP-SUXandGP-SPM
operators.Although the mutationratewasvariedfor dif-
ferentproblems,thecrossoverprobability 3 4 wassetto 0.3
throughout. Runswere terminatedif a solution had not
beenfoundwithin 500generations.

Performanceon eachproblemappearsto be highly sensi-
tive to the initial parameters.In many cases,it wasfound
necessaryto varyoneor moreof theparametersto optimise
performancefor a specificvalueof � . Thoseparameters
thatwerevariedaregivenfor each� in Table6. In thetable
“ramped”representstherampedhalf-and-halfinitialisation
method,while “uniform” is a methodby which thepopu-
lation is initialisedusingrandomprogramswhoselengthis
uniformly distributedbetween1 andthesizeindicated.



Table2: Parametersvariedfor differentvaluesof � on the
even-� -parityproblem.� pop initial depth/size init. method 35H

12 100 9 ramped 0.01
13 100 8 ramped .005
15 100 8 ramped .005
17 1000 500 uniform .01
20 300 500 uniform .01
22 200 1000 uniform .005

Table3: Numberof generationsandevaluationsrequired
to solve theeven-� -parityproblemfor varying � .

� No. Generations Individualsevaluated
13 285 28,500
15 542 54,200
17 490 98,000
20 1188 356,400
22 2093 418,600

We performed30 independentrunson the even-12-parity
problem,andon the basisof the resultsestimatedthe ef-
fort requiredto solve it with 99%probabilityto be98,800
fitnessevaluations.The remainingresults,summarisedin
Table3, arebasedon singlesolutionsto eachproblem.In
thistable,thenumberof generationsis thetotalnumberex-
ecutedby every machinein thenetwork duringthecourse
of theentirerun, andthenumberof individualsprocessed
is thereforesimplythisvaluemultipliedby thedeme’spop-
ulationsize.Giventheestimatedeffort for even-12-parity,
thesevaluesindicatethe extremelypositive effect of us-
ing demesin thisclassof problems.Theseresultscompare
very well with the datareportedin the literaturefor low-
orderversions(seeTable1).

7 CONCLUSIONS

In thispaperwehavedescribedarecipeto solvevery large
parity problemsusingGP without ADFs. The recipein-
cludesthreemain ingredients:a) smoothoperatorswhich
arebasedon a fine grain programrepresentation,b) sub-
machine-codeGP, which allows theexploitationof the in-
ternalparallelismof theCPU,andc) a paralleldistributed
GPimplementationwith sharedelitism.

With thisrecipewehavesolvedproblemsthatincludethree
to four ordersof magnitudemorefitnesscasesthan any-
thing tried before. However, this doesnot describefully
the difficulty of theselarge parity problems: it is well
knownthatas� increases,thenumberof fitnessevaluations
necessaryto standardGPto solve even-� -parity problems
grows muchfasterthanlinearly. So, it is arguablethat the
even-22-parityproblem(the largestproblemwe tried, and

solved) is millions of timesharderthanthe largestparity
problemsolvedby standardGPwithoutADFs.

How didwedothat?Firstly, weneedtoconsiderthatSMC-
GP andthe useof up to 50 workstationsgave us a speed
up factorof slightly morethanthreeordersof magnitude
(many of our workstationsused32 bit code). Secondly,
theuseof demesprobablygave usconsiderableextra effi-
ciency. However, we believe that a very importantingre-
dient for thesuccessof our runswastheuseof a function
set including all the Booleanfunctionsof arity 2 in con-
junctionwith smoothuniform crossover andsmoothpoint
mutation.Thepresencein thefunctionsetof theXOR and
EQfunctionsalonewouldnotprovidethisperformanceim-
provements,without theability of thesmoothoperatorsto
movefrom onepoint in thesearchspaceto any otherpoint
with continuityandwithoutobstacles.

In futureresearchweintendto studywhethertherecipefor
solving the even-� -parity problemsis applicableto other
Booleanclassificationproblems.We alsowant to develop
a deeperunderstandingof themechanismswith which the
smoothoperatorsmentionedabovebuild solutions.
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