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Abstract

This thesis focuses on two different aspects of quantum computation: gquantum
complexity and quantum semantics. In the first part, | study the quantum com-
plexity mainly within the quantum query model. Together with my colleagues, |
introduce a new framework for quantum query complexity, phrased in terms of the
minimal oracle and analyse limits and strengths of this new model in comparison to
their classical and quantum counterparts. Working within the query model | study
guantum one-way functions. | show that in the quantum setting, the problem of the
existence of a quantum one-way permutation can be reduced to the problem of con-
structing polynomial size networks for performing the specific task of the reflection
about a sequence of states. Furthermore, | extend these results to the domain of the
state and operator complexity. | show that if a quantum one-way function exists,
then we can construct a sequence of so called “hard” states with the property that
the reflection operators about those states are efficiently implementable.

In the second part, | study the extension of domain theory to the quantum setting
and develop the semantics of quantum computation. By defining a quantum domain
I introduce a rigourous definition of quantum computability for quantum states and
operators. Furthermore | show that the denotational semantics of quantum compu-
tation has the same semantical structure as the denotational semantics of classical
probabilistic computation introduced by Kozen. This could be considered as a foun-
dation for designing functional programming languages for quantum computation.
Finally, I continue with an abstract mathematical approach to study a general for-
malism for describing entanglement manipulation and introduce a new approach to

derive a unique measure of entanglement for bipartite quantum pure states.
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Preliminary Materials

The topic of this thesis lies in the new and rapidly growing field of quantum comput-
ing, which explores connections between physics and computing in general. Quan-
tum information processing is a cross-disciplinary field and is of great importance
from both a fundamental, as well as technological perspective [79]. From the fun-
damental perspective we have deepened our understanding of the relationship be-
tween physics, information and computation in general, and have also gained a
deeper understanding of the fundamental aspects of quantum theory - non-locality
and entanglement in particular [105]. From the technological perspective we have
manipulated larger and larger quantum systems and obtained powerful practical
applications in the domain of communication and cryptography such as the uncon-
ditionally secure quantum cryptography (key exchange) and quantum teleportation
[19, 42, 13].

Historically, the greater potential of the quantum computer was first realised by
Feynman, who noted that quantum systems appear to be exponentially hard to sim-
ulate with classical computers [45]. He speculated that, therefore, quantum com-
puters could potentially be much more powerful than their classical counterparts.
This intuition has been proven to be correct for some tasks, such as factoring large
numbers and searching unstructured databases. Every computer is fundamentally

a physical system, and any computation is just a physical process undergone by



1.1 Mathematical Structures

this system. Quantum physics is the most accurate way of describing physical sys-
tems and their behaviour in general. Encoding information into quantum systems
and processing it according to the laws of quantum physics results in new features
which do not exist in the classical computation.

Large scale quantum computation is still hypothetical. However, Moore’ law
predicts that technology will reach the level where the quantum effects become im-
portant in near future. Parallel to this there is a growing effort to build quantum
computers by manipulating larger numbers of quantum systems. Steady progress
has now led to ion trap quantum computers withubits [101], Nuclear Magnetic
Resonance (NMR) schemes witlyubits [65, 26] and realistic proposals for quan-
tum computing in solid state environments [70]. Simple quantum algorithms such
as the Deutsch-Jozsa algorithm [34] or quantum database search algorithms [53]
have been experimentally demonstrated in NMR schemes and further progress to-
wards higher numbers of qubits)) seems likely in the foreseeable future.

Either way, we will enter the quantum realm where every aspect of computing,
including storing information, loading and running of programs and reading the
output will be governed by laws of quantum physics which are completely different
from those of classical physics. Therefore there is a great need for theoretical study
of quantum computation. The aim of this thesis is to study the quantum effects on
computational complexity and semantics of computation.

In this chapter we present all the required preliminary materials for this thesis.
First we briefly review the mathematical structures which we will refer to later in
this thesis. Subsequently, we describe the mathematical foundation of quantum

mechanics and finally, we discuss the basis of the theory of quantum computation.

1.1 Mathematical Structures

We will use the notation and terminology of the following book&easure Theory
by Halmos [55];Probability Theoryby Feller [44] and Chung [27];inear Analysis

1Gordon Moore, one of the founders of the Intel, observed in mid 1960’s that the memory ca-
pacity of a typical chip doubles roughly every eighteen months while its physical size remains the
same.



1.1 Mathematical Structures

by Dunford and Schwartz [37]. In addition Thirring [100] is an excellent introduc-
tion to Mathematical Physics

We begin by recollecting the basic definitions and theorems in linear spaces.

1.1.1 Linear Spaces

The linear spaces are the mathematical structure of quantum mechanics as we will

describe in the next section.

Definition 1 A vector spac@ver complex numberS is a setV equipped with a
sum operatol x V. — V : (u,v) — u+ v = v + u and ascaler product
V x C — V : (u,a) — au such that the following conditions are satisfied:

(i) (V,+) is an Abelian group.
(i) a1(azv) = (aqas)v.
(i) a(u+v) =aou+ av.
(iv) (aq + az)v = v + agu.
(V) v =w.
(iv) 1v =w.
A subsel/; C V which is also a vector space is calledsabspacef V.

By the axiom of choice, it is always possible to fintHamel basige., },v € 1,

such that every vector can be written uniquely as

v = Z ey, o; €C.
finite

The cardinality ofl is known as thalgebraic dimensiomwf the space.

Definition 2 Anormon a vector spac& is a map|||| : V' — R such that:

o |[v]| =0 iff v=0.

10



1.1 Mathematical Structures

o |lav| = |a||v|| forall scalarsc.
o [lu+oll < full + ol

The norm induces a metric dn where the distance betweerandv is ||u — v||. If

V' is complete with respect to this metric, thens called aBanach space

Definition 3 A scalar producfor inner producton a complex vector spadeéis a
map(|): V x V — C such that:

o (u|(aqvy + o)) = aq{ulvy) + ag{ulvs).
o (ulv)* = (vlu).
e (v|v) >0 with (v|v) =0iff v = 0.

The scalar product induces a norm &hwhere thel|v||? = (v|v). If V is complete

with respect to this norm, the is called aHilbert space

Remark.

1. It is possible to introduce a smaller basis than the Hamel basis for complete
normed space¥’ (e.g. Banach and Hilbert spaces). A set of vecters,
where~y € 1, is said to beotal whenever the set of its finite linear combina-
tions is dense irV/. If I is countable, the is separable(as a topological

space).

2. By the axiom of choice, the, can even be chosen to be orthonormal in a
Hilbert space. If this has been done and= } . _;c,e,,c, = (e,[v) then

lvll* =32 e les

1 assigns every element bthe measuré. If I is countable, then the Hilbert

2, and the Hilbert space can be considered’d§, ;) where

space is isomorphic to dh space.

Definition 4 A linear mapbetween two vector spacésand V' is a mappingA :
U — V such that:

A(auy + Pug) = aA(uy) + BA(ug) forall o,5 € C and uy,uy € V5.

11



1.1 Mathematical Structures

The set of all linear mapd : U — V, denoted byC(U, V), is itself a vector space,
andB(V) = L(V,V). The elementsl € L(U, V') are also calledoperators

A linear functionalon a vector spac&’ is a linear map betweel andC. The
vector space of all linear functionals dn is called itsdual spaceand is denoted
by V™.

In a vector spac&” with scalar product | ), a natural map betweeri and its
dual spacéd’* can be defined as follows. To each vectoe V' associate a map
A, 'V — C defined by:

1.1.2 Measure and Probability

The following definitions from measure theory are required for the discussion of the
semantics of quantum computation in Chagter

A measurable spade a pair(X, M) whereX is a set andV/ is ac-algebra of
subsets ofX, i.e. M is a Boolean algebra of subsets.¥fclosed under countable
union. Elements of\/ are calledmeasurable setsr eventsand are denoted by

B, C,---and—=B denotes the complement 8fin X.

Definition 5 A functionf : (X, M) — (Y, N) is measurabléf for all B € N we
havef~'(B) € M.

Let (X, M,) be a sequence of measurable spaces anfl[|eX,, be the di-
rect product of theX,, with projectionr; : [[, X,, — X;. Thecartesian product
I1,(Xn, M,) is the spac€[ [, X,, M), where) is the smallest-algebra contain-
ing all cylindersr; ' (B), B € M;.

Definition 6 A measureor distributiony on (X, M) is a function inM — R that
is countably additive, i.ey(U,B,) = >, n(B,) where{B,} is a countable set of
pairwise disjoint elements df/.

A measure ipositiveiff VB € M : u(b) > 0. Itis a probability measuré it is
positive andu(X) = 1 and a subprobability measure if it is positive andX) < 1.

12



1.1 Mathematical Structures

If X andY are two measurable spaces andndv are measures over them,
then theproductof 1 andv, denoted by: x v is a measure on the cartesian product
X x Y defined with:

(nx v)(Bx C) = p(B) xv(C),

Definition 7 Assumeu is a measure and € M is given. Theconditional proba-
bility of u relative to B is defined withug /u(B) whereus(A) = p(A N B).

Every measure can be decomposed into its positive and negative parts: to ev-
ery measure: there correspond unique positive measurésand .~ such that for
someB € M we haveut = pug andpy~ = —pu_p. This is called theJordan
decompositiorof 4.

Definition 8 Thetotal variationor absolute valuef . is the measurgu| = pt+u~.
Thetotal variation normis a map|||| : B — R associating with each measure

the non-negative real numbér|| = |u|(X).

A measure spaceX, M, ) is a measurable space equipped with a measure. A
probability spaces a measure spaceX, M, i) wherep is a probability measure.
A random variables a partial measurable function whose domain is a probability
space.

A random variabler : (X, M, ) — (Y, N) induces a subprobability measure
pox~ton(Y,N):

por(B) = u(z~\(B)).

If z is total thenu o 2! is a probability measure. When the domain:a$ clear we
denote the value gf o z71(A) by Prob(z € A).
A random vector is a list of random variables

Z; - (X7 M?M) - (K?Nz)

with the same domain. Equivalently,random vectoiis a random variable from
(X, M, i) into the cartesian produgq,(Y;, IV;).

13



1.2 Quantum Mechanics

Definition 9 Thejoint distributionof the random variables = x, z», - - - is the

subprobability measurg o 2~ on ], (Y, IV;) induced byz.

1.2 Quantum Mechanics

Plank, Einstein and Bohr obtained the early great success in the quantum theory
in the period from1900 to 1925. Nevertheless, up to this time there existed no
complete mathematical system for quantum theory to capture everything known up
to that time in a unified picture. The year 1925 brought the resolution. A procedure
initiated by Heisenberg was developed by Born, Heisenberg, Jordan and a little later
by Dirac, into a new system of quantum theory. A little later $climger developed

the wave mechanics from an entirely different starting point. These two procedures,
known as Heisenberg’s and Solinger’s pictures , soon proved to be equivalent.

There are two main mathematical frameworks within which quantum theory
can be developed. One takes as its central object a certain algebraic structtire (a
algebra) on the set of physical observables. States are then defined in relation to this
algebra. On the other hand in the well-known Hilbert space approach the primary
object is the vector space of states, with observables being defined in relation to
this space. In this thesis we only work within the latter frameworks. A brief review
of the Hilbert space framework for quantum mechanics has been described in what
follows.

We will use the notation and terminology of the following books: Quantum
Theory by Isham [63]; Quantum Computation and Quantum Information by Nielsen
and Chuang [79]; and Mathematical Foundation of Quantum Mechanics by von
Neumann [108].

1.2.1 Hilbert Space Framework

In 1925 Schibdinger proposed one of the first formulations of quantum mechan-
ics. His structure, known asave mechani¢xan be generalised within the Hilbert
Space framework where the mathematical tool to describe the physical postulates
is linear algebra. The standard notation of quantum mechanics for linear algebraic

14



1.2 Quantum Mechanics

concepts was introduced by Dirac in 1920.

In Dirac’s notation, a vector in the state space is represented witiThe state
space of a physical system is a Hilbert space. Postuldietow will formalise this
fact. The dual of the vectdt)) € H is the function

(W|:H — C
[0) = {¥le),
where(.|.) is the inner product of the two vectors. A linear map (operator, transfor-

mation) is always represented by a matrlx, The following tables gives a summary
of the Dirac’s notation.

Notation Description
z* Complex conjugate of the complex numhber
|v) Vector. Also known as &et
(Y| Vector dual to:)). Also known as dra.
(P|v) Inner vector product.
) @ |¥) Tensor vector product. For simplicity we
omit ® and just write|¢)|) or ¢, ).
A* Complex conjugate of the matriA.
AT Transpose of the matriA.
Al Hermitian conjugate of the matrix, AT = (AT)*.
Aly) Application of operatord on vector|«)).
(p|Al) The inner product ofp) and A|vy), (¢|(A|y)).

The four postulates that follow deal with the general mathematical framework
within which it has been found possible so far to describe all quantum mechanical
systems.

The first postulate sets up the state space in which quantum mechanics takes
place.

Postulate 1. The predictions of results of measurements of an isolated system are

probabilistic in nature. In situations where the maximum amount of information is

15



1.2 Quantum Mechanics

available, this probabilistic information is represented mathematically by a vector
in a complex Hilbert spack that forms the state space of the quantum theory. This
vector is thought to be the mathematical representative of the physical notion of
stateof the system. In this framework, a physical observable is represented by a
Hermitian matrix.

The following postulate is concerned with the evolution of the system.

Postulate 2.In aclosedsystem, the evolution of the system is described byitary
transformation That is, the state),) of the system at timé, is related to the state

|1,) at timet, by a unitary operatol/ which depends only on the time andt.,

[2) = Ulipn) .

A refined version of this postulates describes the continuous time evolution of

the system as follows.

Postulate 2. The state vectdr)(t)) of a closed system changes smoothly in time

according to the time-dependent Satlinger equation

dlv(y) 5

= — Alo(y)).

In the above formulak is the Planck’s constarit ~ 6.63 x 10~3* Joule-second
divided bytr andH is the Hamiltonian operator which is described by a Hermitian
matrix.

The next postulate describes the effect of observing (measurement) a quantum

system.

Postulate 3. Quantum measurements are described by a colledtignof mea-
surements operatorsThese are operators acting on the state space of the system
being measured. The index refers to the measurements outcome that may occur

in the experiment. If the state of the quantum systefjsmmediately before the

16



1.2 Quantum Mechanics

measurement then the probability that the resuticcurs is given by

p(m) = (Y| M} M),

and the state of the system after the measurement is

M, |b)
(| M M| 0)

The measurements operators satisfydbmpleteness equatipn

> MM, =1.

The last postulate deals with composite quantum system.

Postulate 4.The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. Moreover, if we have systems
numberedl to n, and system is prepared in the state), then the joint state of

the total system ig);) ® [1s) @ - - - @ [1),,).

In other word, the first postulate describes the encoding of the information, the
second postulates explains the process of information, the third postulate deals with
retrieving the information and finally the last postulates speaks about combining
different systems.

Mixed statesarise when we do not have complete information about the state
of the physical system. This is always the case in experiments, since the system
we are trying to prepare in a pure state interacts with an uncontrolled environment.
A mixed state is a probabilistic mixture of pure states, denotedzhy|v;)} or

alternatively with adensity matrix
p=Y pilti) (W]

A density matrixp € B(H is a hermitian (i.e.p = p') semi positive definite

operator withTr(p) = 1 (whereTr(.) indicates the trace aj. Note that a given

17



1.2 Quantum Mechanics

pure stateq) can also be represented with the density matfix|.

The most general operation on quantum states are the transformations of density
matrices i.e. linear operators on operatstgoer-operator. The physically allowed
super-operators are linear completely positive and trace-preserving operators, called
CP mapdor short. A super-operatdr is positive if it sends positive semi-definite
Hermitian matrices to positive semi-definite Hermitian matrices; it is completely
positive if " ® 1, is positive, wherd,; is the identity operator on é&dimensional
Hilbert space.

In what follows we reformulate the postulates of quantum mechanics in terms

of density matrices.

Postulate 1. The predictions of results of measurements of an isolated system are
probabilistic in nature. This probabilistic information is represented mathematically
by a density operator, which is a positive operatowith trace one, acting on a
complex Hilbert spacé{ that forms the state space of the quantum theory. If a

guantum system is in the stgbe with probability p;, the denisty operator for the
systemisy . p;p;.
Postulate 2.In aclosedsystem, the evolution of the system is described byitary

transformation That is, the statg, of the system at timeg is related to the state

at timet, by a unitary operatol/ which depends only on the tinte andt,,

p2=UpUT.

Postulate 3. Quantum measurements are described by a colledtignof mea-
surements operatorsThese are operators acting on the state space of the system
being measured. The index refers to the measurements outcome that may occur
in the experiment. If the state of the quantum system immediately before the

measurement then the probability that the resuticcurs is given by

p(m) = Te(M},Myup)

18



1.2 Quantum Mechanics

and the state of the system after the measurement is

M,p M,
Te(MM,.p)

The measurements operators satisfydbmnpleteness equatipn

> MM, =1.

Postulate 4.The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. Moreover, if we have individual
systems numberetito n, and systemi is prepared in the state (independently

from other systems), then the joint state of the total systemisp, ® - - - ® p,,.

1.2.2 Technical Developments

In this subsection we discuss some technical developments of the quantum rules

presented in the previous subsection. First we briefly review the notatientah-

gled stateandLOCC mapswhich will be the topic of Chaptes. Then Gleason’s

Theorem for determining all the measures on a Hilbert space will be presented. This

Is required for our discussion on semantics of quantum computing in Chiapter
Entanglement is a uniquely quantum resource that plays a key role in most of

the applications of quantum computation and information theory [67, 105].

Definition 10 A pure state of a composite system that cannot be written as a prod-

uct of states of its component systems is calledrgangledstate.

We are also interested in the manipulation of entanglement, by which we mean:
Given an entangled state of a composite system, what other entangled states can be
prepared using arbitrary operations only on the local systems, including measure-
ment, and classical communications between components of the system? In other

word the class of transformations which are allowed to be performed are:

Definition 11 LOCC (local operations and classical communication) consists of

arbitrary quantum operations acting separately on individual parts of a composite

19



1.2 Quantum Mechanics

system, assisted by classical communications between the individual parts.

In terms of understanding entanglement both in a phenomenological sense and
as a resource, it would be useful to be able to measure the amount of entanglement
for a given state. To this end, a measure of entanglement is required to order states
according to the amount of entanglement they contain. This issue will be discussed
in more detail in Chaptes.

In the remaining part of this subsection we present the following important the-
orem by Gleason [50], which provides a correspondence between density operators

and probability measures on measurable sets of the corresponding Hilbert space.

Theorem 12 [50] Let p be a probability measure on the closed subspaces of a
separable Hilbert spacg( of dimension at least three. There exists a positive semi-
definite self-adjoint operatdr’ of the trace class (density matrix) such that for all
closed subspace$ of H

1(A) = Te(T'Pa),

whereP, is the orthogonal projection dff onto A.

We omit the proof as it needs special treatment and it can be found in [50]. The

following lemmas can be also proven in the same way.

Lemma 13 Let 4 be a positive measure on the closed subspaces of a separable
Hilbert spaceH of dimension at least three. There exists a positive semi-definite
self-adjoint operatofl” such that for all closed subspacdsof H

u(A) = Te(TP,),

whereP, is the orthogonal projection dff onto A.

Lemma 14 Let i, be a measure on the closed subspaces of a separable Hilbert
spaceH of dimension at least three. There exists a self-adjoint operétsuch
that for all closed subspace$ of H

u(A) = Tr(TPa),

20



1.3 Quantum Computation

whereP, is the orthogonal projection df{ onto A.

1.3 Quantum Computation

The bounds on encoding and the speed of information processing using quantum
systems are different to those based on the laws of classical physics. Since classical
laws can be consider as a special case of the more general quantum laws it is clear
that a quantum computer will be at least as efficient as the classical computer. In
other word a quantum computer can efficiently simulate any classical processing
with the same computational costs on a classical computer. The exciting discov-
ery was that quantum computer is in fact provably more efficient than any classical
computer [9]. One of the key effects leading to this efficiency is the quantum super-
position phenomenon which allows a quantum computer to perform a given tasks
simultaneously (in parallel) on multiple data.

There are few distinct algorithms which show that a quantum computer can be
more efficient than its classical counterpart. These include factoring of numbers
[97], database search [53], solution to the Pell's equation [54, 69], computing or-
ders for solvable groups [110] to name a few [29]. There are also a number of
guantum communication protocols that can be viewed as elementary quantum com-
putations, such as the cryptographic key exchange [19], quantum teleportation [13]
and dense coding [11]. The clearest advantage of using quantum systems is seen
in factorisation which is an NP problem on the classical computer [97], whereas on
the quantum computer it can be performed in polynomial time [46]. Factorisation
is also potentially of great importance for the field of cryptography. It is known
that this algorithm is a special case of a general problem, the hidden sub-group
problem (HSP) [68]. HSP has been studied recently and for the Abelian case the
general solution is known [77]. The other key example for the quantum speed-up
is Grover’s database search [53], which can achieve a quadratic speed-up over its
classical counter-part. Grover’s search idea has been generalised to the amplitude
amplification method which can be applied to speed up a number of other algorithms
[47]. Search itself lies at the root of many other important difficult computational

tasks so that this algorithm has a wide applicability. All these indicate that there is
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1.3 Quantum Computation

an enormous potential in using quantum systems to encode and process information
which is much more powerful than the present classical computers.

In this section we present the two models of quantum computation, quantum
Turing machine and quantum circuit model. Subsequently we review the basic def-

initions of quantum complexity analysis.

1.3.1 Quantum Turing Machine

Here we give the formal definition of quantum Turing Machine; more details can
be found in [32, 14, 80]. The quantum Turing machine was introduced by Benioff
[8]. Afterward Deutsch described a universal simulator for QTMs with exponential
overhead [32]. And finally Bernstein and Vazirani constructed a universal QTM
with polynomial overhead [14].

A guantum Turing machine (QTM)V/, consists of a processor, a two-way in-
finite tape and a head. We denote the set of processor configurations, a finite set
of symbols, with) and the set of finite alphabet with. ¥ always contains the
special symbob, the blank symbol. The sets of initial)(and final ') states
are proper subsets ¢f. Then the system configuration is represented by a triple
(q,S,n) € Q x ¥ x Z whereq is the current state§ the infinite string of the tape
andn the head position. The quantum stateléfis represented by a unit vector in
H, the Hilbert space spanned by vectorgirk X x Z. The transition function of

M is a complex-valued function,
0:QxYxQ@QxXx{-1,1} - C.

The quantum Turing machin®/ defines a linear operator (the unitary time evolu-

tion):
UM H— H,
such that

UM|Q7 Sv n> = EPEQ,SGZ,dG{—Ll}é(qJ S(n)ap7 S, d) |p7 Srsw n -+ d> )
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1.3 Quantum Computation

where

, S if i=n
Si(i) = .
S@iE) if i#n
A final configuration of a QTM is any configuration in state If when QTM
M is run with inputz, at timeT’ the superposition contains only final configurations
and at any time less thdh the superposition contains no final configuration, then
M haltswith running timeT" on inputz. The superposition af/ at timeT" is called

the finalfinal superposition

Definition 15 A QTM is calledvell-behavedf it halts on all input strings in a final
superposition where each configuration has the tape head in the same cell. If this
cell is always the start cell, we call the machistationary A well-behaved QTM is

in normal formif ¢, always leads back tq,.

Despite its simple appearance, the Turing Machine can efficiently simulate ar-
bitrary algorithms. The concept afanguagesn Turing model is defined in the

following way.

Definition 16 We definel, c (X \ {b})* to be aLanguagei.e. a language is a
set of strings of symbols. L&t/ be a Turing machine such that, for any string
re (X\{p})*,ifz € L, thenM(x) ="yes” (i.,e. M on inputz halts at the “yes”
state), and ift ¢ L, thenM (z) ="no”. Then we say that\/ decidesL.

The following notation of recursive language is required for our discussion on

computability (Chaptet).

Definition 17 If a languageL is decided by some Turing machiné, thenL is
calledrecursive We say thaf\/ acceptd. whenever, for any string € (X \ {b})*,
if v € LthenM(z) ="yes”; however forz ¢ L, thenM does not halt. IfL is

accepted by some Turing machimg thenL is calledrecursively enumerahle

It is clear that, if a language is recursive, then it is also recursively enumerable.
We shall not only deal with the decision and acceptance languages, but also

occasionally with the computation of string of functions.
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1.3 Quantum Computation

Definition 18 Suppose thaf is a function from(X \ {b})* to ¥*, and letM be
a Turing machine with alphabet. We say that\/ computesf if, for any string
z e (B\{b})*, M(z) = f(z). If such anM exists,f is called arecursivefunction.

In quantum computation, we will consider the probabilistic analogue of the

above definitions.

Definition 19 Let M be a stationary, normal forma, multi track QTM. We say that
M acceptse with probability p and rejectse with probability 1 — p, if when we run
M with string z on the first track and empty string elsewhere, aftérhalts? we

observel with probabilityp on the last track of the start cell.

We define two different settings for accepting a languageith a quantum

Turing machine.

Definition 20 We say that QTM\V/ acceptsL exactlyif M accepts every string
x € L with probability1 and rejects every string € (X\ {b})*\ L with probability
1. In thebounded errosetting, M accepts with probability at least every string
x € L and rejects with probability at leagtevery stringe € (X \ {b})* \ L.

1.3.2 Quantum Circuit Model

Here we discuss the quantum circuit model for quantum computation which will
be the main framework for all the discussions in this thesis [33, 114]. In analogy
with a classical bit, a two-state quantum system is callgdlat or aquantum bit
Mathematically, a qubit takes a value in the vector sp@te We single out two
orthogonal basis vectors)) and|1), to denote the computational basis. A quantum
circuit is built out of logical quantum wires carrying qubits, and quantum gates

acting on these qubits.

Definition 21 A quantum gatel/, of orderk is a unitary linear map ork qubits.
Its action on a staté¢y)) is denoted a#/|v).

2This can be accomplished by performing a partial measurement to check whether the machine
is in the final state.
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1.3 Quantum Computation

The matrix representations of the quantum operations used in this thesis are:

1 1 1
Hadamard H = — ;
V2 11 -1
_ 0 1
Pauli-X X = )
1 0
_ 0 —i
Pauli-Y Y = )
1 0
_ 1 0
Pauli-Zz Z = )
0 -1
1 0
Phase P = ,
0 =
. 1 0
Rotations/8 T = ‘ :
0 6z7r/4
(1 0 0 0]
0O 1 0 0
controlled-Not CNOT = )
0O 0 0 1
(0 0 1 0]
(1 0 0 0]
0O 0 1 0
swap S =
0O 1 0 0
(0 0 0 1|

A set of quantum gates is said to beiversal for quantum computatiaohany
unitary operation can be approximated to arbitrary accuracy by a quantum circuit
involving only those gates. in the literature, there exists many examples of universal

set of gates [79]:
e The Hadamard, Phase, CNOT an(8 Rotation gates,

¢ Single qubit and CNOT gates.
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1.3 Quantum Computation

In quantum circuit model, measurements can always be moved to the end of the
circuit and this process is performed in the computational basis of one or more of
the qubits of the circuit.

All the different settings oéxact zero-errorandtwo-sided bounded erraran
be also considered for the computation of a function with a quantum circuit model.

In the remaining part of this subsection we present the quantum circuits model
in the most general setting, with mixed state, which was introduced by Aharonov et
al. in [4]. They also showed that this model is polynomially equivalent in computa-
tional power to the standard unitary quantum circuit model, introduced by Deutsch
[33].

We start by definition of the building blocks of a network i.e. gates.

Definition 22 A quantum gatey, of order (k,[) is a trace preserving, completely
positive, linear map from density matrices énqubits to density matrices oh

qubits. Its action on a density matrixis denoted ag o p.

The definition of a quantum network in the general setting of working with

mixed states and CP maps is:

Definition 23 Let G be a family of quantum gates. A quantum circuit that uses
gates fromg is a directed acyclic graph. Each nodein graph is labeled by a
gateg, € G of order(k,,!,). The in-degree and out-degreewtre equalk, and

l,, respectively. An arbitrary subset of the inputs are labeled blank. An arbitrary
subset of the outputs are labeled result.

The final definition describes the function computed by a quantum network:

Definition 24 Let @ be a quantum circuit, with. inputs andr result outputs. The
probabilistic function computed b§, fo : {0,1}" — [0,1]{®1" is defined as
follows: For inputi, the probability for getting the outpytis

fig = GlQ o) {il)]als),
whereA is the set of the result outputs.
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1.3 Quantum Computation

1.3.3 Complexity Analysis

Complexity theory studies the required cost of solving computational problems
[84]. The cost is measured in terms of different well-defined resources e.g. ele-
mentary operations, memory usage, amount of communicatiocorputational
problemcan be thought of as a function whose input ipragram instanceand
whose corresponding output is thelutionto it. A decision problendeals with a
question that requires either a “yes” or “no” answer and can be represented with a
function f : {0,1}* — {0,1}. Decision problems are simple tools for develop-
ing a rigourous mathematical theory for complexity analysis and they are general as
many other problems can be recast in terms of decision problems that are essentially
equivalent to the original problem.

In complexity theory, it is common to use the following asymptotic notation.

Definition 25 Assumef and g are functions fromN to N. We sayf is bounded
abovewith g, denoted by (n) = O(g(n)), iff

3 positive integersc,ng : (Vn > ng : f(n) < cg(n)).

Also f is bounded belowvith g, denoted byf(n) = Q(g(n)), iff g(n) = O(f(n)).
Finally f(n) = ©(g(n)) means thaif(n) = O(g(n)) and f(n) = Q2(g(n)).

There are different known frame-works for quantum complexity analysis: com-
putational complexity, query complexity and communication complexity [14, 28].
In the first scenario the complexity involves the number of elementary gates that
need to be applied to execute the problem, as well as the number of qubits used in
the computation. In the query complexity we assume that in addition to elementary
gates we are given a black-box performing a special computational task which we
can query as many times as needed to solve the problem. The complexity is now the
number of times we have to query the black box. In the final scenario we consider
the number of qubits needed for communication between the two parties who wants
to perform a computational tasks.

Despite the differences between these models, there are also some intimate re-

lationships between them [28]. The query model is a simple model to compare the
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1.3 Quantum Computation

computational power of quantum and classical computer (see below). Quantum al-
gorithms in the query complexity model can also be transformed into protocols in
communication complexity model and most of the currently known quantum algo-
rithms evolved from algorithms in the query model.

In this thesis we mainly use query model (next section) for complexity analysis.

1.3.4 Quantum Query Model

One important way of comparing the efficiencies of quantum and classical algo-
rithms is by analysinguery complexitywhich measures the number of invocations
of anoracle— which may be a standard circuit (or a Turing machine) implementing
a useful sub-routine, a physical device, or a purely theoretical construct — needed
to complete a task.

In this thesis we mainly consider an oracle to be a given quantum circuit which
efficiently implements a boolean functiofi : {0,1}" — {0,1}. Equivalently,
an oracle (black-box) contains av-tuple (V= 2") of Boolean variables\ =
(xo,x1,-+-,xy_1). The box is equipped to output on inputi. The goal is to
determine some property &f accessing the; only through the black box. Such
a black-box access is calledqaeryand assumes to have a unit cost of evaluation.
A property of X is any Boolean function that depends &n AssumeN = 2", a

property can be represented with a function of the following type:
F:{0,1}"Y —{0,1}.

As mentioned before we can consider different settings for computiran
{0, 1}* in the query model. The minimum number of queries required by a quantum
circuit to computel” in the exact, zero-error, and bounded-error settings, is denoted
by Qr(F), Qo(F) andQ.(F'), respectively.

A number of general results show the limitations and advantages of quantum
computers using the query complexity models [34, 15, 9, 7, 103, 22, 28]. Itis
clear that upper bounds in the query model implies upper bounds for computational

complexity, i.e. for the circuit description model in which the functi&nis suc-
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1.3 Quantum Computation

cinctly described as Bog N)°™M-sized circuit computing; from . On the other
hand, lower bounds in the black-box model do not imply lower bounds in the circuit
model, though they can provide useful guidance, indicating what certain algorith-
mic approaches are capable of accomplishing. In [7], some general lower bounds
for query complexity of computing an arbitrary Boolean functibrare given. In

Chapter3 we discuss the quantum oracles in more detail.
Complexity Classes

A complexity classs a set of languages representing a set of decision problems.
All the languages in a complexity class can be decided within some bound on some
aspect of their performance [84]. In what follows we give the definitions of standard

complexity classes that we will refer to, in this thesis.

e P. The class of decision problems that can be solved in polynomial time by

deterministic Turing machines.

e NP. The class of decision problems that can be solved in polynomial time by

nondeterministic Turing machines.

e PSPACE The class of decision problems that can be solved in polynomial

space by deterministic Turing machines.

e BPP. The class of decision problems that can be solved in polynomial time
by probabilistic Turing machines with error probability bounded (for all

inputs).

e BQP. The class of decision problems that can be solved in polynomial time by

guantum Turing machines with error probability boundéd (for all inputs).

We presented in this chapter all the basic definitions and structures which are
required for the rest of our discussion throughout this thesis. In the first part, we
present complexity analysis of different scenarios in quantum computation frame-
work. We work mainly within the quantum query model, which offers an elegant

way of putting bounds on the efficiency of quantum algorithms. Furthermore we
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1.3 Quantum Computation

consider the notions of states and operators complexity as a key way to find the
relationship between physical complexity and computational complexity.

In the second part of this thesis we study semantics of quantum computation.
Semantics studies the meaning of programs, mainly in order to be able to state
correctness properties of the instructions within them. Domain theory has proven
to be a proper mathematical structure to describe denotational semantics for pro-
gramming languages. We extend this structure to the quantum setting and derive a

denotational semantics for quantum computing.
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Quantum One-way Function

2.1 Introduction

The existence of one-way functions is one of the most important open problems
in classical computation. It is also well-known that one-way functions have appli-
cations in cryptography [84]. Loosely speaking, a one-way function is one that is
easy to compute but hard to invert (the precise definition of one-way function will
be given later). The existence of one-way functions is linked to the complexity class
UP, the class of languages accepted by a special, caflachbiguouspolynomial

time bounded nondeterministic Turing machines and the following relationship is
well-known,P C UP C NP [84]. Furthermore the existence of one-way functions
is equivalent to the separation between the complexity cld3sesl UP [52], and
henceP and NP which indicates the difficulty of the problem of the existence of
one-way functions.

In this chapter we consider the quantum one-way permutations which is a re-
stricted class of quantum one-way functions. We prove a necessary and suffi-
cient condition for inverting efficiently a polynomial time computable permutation
[72, 73]. In the classical case, Hemaspaandra and Rothe [59] presented a necessary
and sufficient condition for the existence of one-way permutations. We show that in

the quantum setting, the problem of inverting a permutation in polynomial time is
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equivalent to the problem of constructing polynomial size quantum networks for the
reflection about a class of quantum states that we will define later. In the proof of
this equivalence, we present a quantum algorithm for inverting a permutation effi-
ciently under the condition that reflections about their quantum states are efficiently
implementable. Furthermore, we consider the relationship between the complexity
of preparing a state and the reflection about that state.

Through out this chapter we will refer to the search and invert problems.

Problem 1 For a given boolean function on-bit strings, f : {0,1}" — {0,1},
let U; denote the unitary operator mapping the basis stajéy) to |x)|f(z) & y),
where|z) consist ofn qubits and|y) is a single qubit. Givert/; as an oracle, the
goal is to findzy = f~1(1). We assume that there exists a unigyeThis problem
is calledSEARCH

Grover’s algorithm [53] for SEARCH consists of the following steps.

ALGORITHM A

Stepl (Preparation).

Prepare the uniform superposition

Step2 (Iteration).
Iterate Step.1 and SteR.2.
Step2.1. Perform the tagging operator given by

T2 W) ).

Step2.2. Perform the reflection operator about the stategiven by

I =2[) (@]
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2.1 Introduction

The state in Step is prepared by performing Hadamard gates on qubits
with initial state|0):

1
H®™0---0) = x) .
o= 75 3 W

Step2.1 is implemented by querying the oradle twice:
{( =217 YT @)) @ THa)|0) = {Ur (I @ (I = 2[1)(1]))Uy}x)]0).
And finally Step2.2 is implemented using Hadamard gates and CNOT gates:
I =2[) (| = H"(I = 2/0){0]) H*".

Problem 2 For a given one-to-one function enbit strings,g : {0,1}" — {0,1}",
let U, denote the unitary operator mapping the basis staj¢y) to |z)|g(z) & y),
where|z) and |y) each consist ofi qubits and® is addition modul®™. Given
U, as an oracle, the goal is to find, = ¢g~*(y) for any giveny € {0,1}". This
problem is calledNVERT.

An algorithm for INVERT (AlgorithmB below) is as follows [18].

ALGORITHM B

Stepl (Preparation).
Prepare the uniform superposition

1

ye{0,1}

Step2 (Iteration).
Iterate Ste.1 and Step.2.
Step2.1 Perform the tagging operator given by

I—2g () g~ (y)|.
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2.2 Worst Case Complexity

Step2.2. Perform the reflection operator about the stategiven by

I =2[¢) (]

Stepl and Ste.2 are implemented similar to AlgorithrA and Step.1 is

implemented using two queries to the oralle

{I=2lg7 W) g~ W) ® I}0) = Us(I @ (I = 2y)yD)Uyly)0) . (2.1)

2.2 \Worst Case Complexity

In this section we consider “one-wayness” in the worst case complexity, i.e. the
highest computational cost among all the possible inputs. The following definitions
give the precise description of quantum one-way permutation in the worst case sce-

nario. We consider permutation functions in the following setting.

Definition 26 A functionf : {0, 1}* — {0, 1}* is called apermutatiorif it satisfies

the following conditions

(i) fis one-to-one and length preserving.

(i) For some strictly increasing function: N — N we have:

Dom(f) = | J{0,1}™.

neN

These conditions imply that the restriction 6fo {0, 1} C Dom( f) is a permuta-
tion on{0, 1}". The definition of one-way function in the worst case complexity is
as follows.

Definition 27 A function f is a worst case quantum one-way functjohthe fol-
lowing conditions are satisfied:
(i) f is one-to-one, and for alt € {0,1}*, |z|r < |f(z)| < |«|* ? for some

k > 0. Thatis, f(x) is at most polynomially longer or shorter than

'Here|x| denotes the length of the string
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2.2 Worst Case Complexity

(i) f can be computed by a uniform polynomial size classical network.

(iii) f~! cannot be computed by any polynomial size quantum network.

Note that conditior{i) is naturally satisfied for one-way permutations.
As we saw in the introduction AlgorithrB for INVERT uses the tagging op-
eratorO (defined below) which can be simulated by two application& paindn

controlled-not gates (Equation 2.1).

—|x)y) if fly) ==
Olx = (2.2)
) { D) i ) £

Moreover, if f is polynomial time computable, then it is also possible to efficiently

construct the unitary operat6ik| defined by

Olk]|z)|y) = —lo)ly) I f(Y)kp+1) = Trrtn)
[2)y) 0 fW)ekr1) F Topr)

wheres; ;) denotes the bit string frorith bit to j-th bit of the bit strings. The op-
eratorsO[k]’s will enable us to mark all the statég such tha® qubits of| f(y)) are
equal to the corresponding qubits|ef. GeometricallyO[k] can be considered to
be the reflection about the hyper-plane spanned by the vediors f(y) k1) 7
Tkt t- We will show that if we can efficiently implement[k]'s and the set of

unitary operators

Qi= Y |o)(@l® 2ya)(tal = 1),

z€{0,1}"

where

1
|¢j7x> = \/ﬁ Z )

y:f(y)(l,Qj):fE(l,Zj)

then we can efficiently inverf by a polynomial size network. Conversely, we will
also prove thatiff is difficult to invert, thernt),’s are also difficult to construct. Now

we state and prove this result formally. We say that aFsef unitary operators is
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2.2 Worst Case Complexity

easyif everyU € F'is easy i.e. it can be implemented with a quantum polynomial

size network. The precise definition of easy operator is given in Section 2.5.

Theorem 28 Suppos¢g’ satisfies conditiorii) and (i:) of definition 27. Therf is a

worst case quantum one-way permutation if and only if thé'set {Q,};—01 2y

.....

of unitary operators is not easy.

Proof Without loss of generality, we can assume thag even.

(=) Suppose that’, is easy. Then we show th#t! is computable by a poly-
nomial size quantum network. A guantum algorithm computfng is as follows
(Algorithm C below). Assume that is given as the input in the first register of the

guantum network to be constructed.

ALGORITHM C

Stepl (Preparation).
Prepare the second register in the uniform superposition

1

ye{0,1}”

Step2 (Iteration).
Forj = 0to 5 — 1, implement the following step& j.1-2.5.2.
Step2.;.1 Perform the operatap|2; + 1] on the first and the second registers.

Step2.5.2 Perform the operatap; on the first and the second registers.

Step2.j.1 can be implemented through the following three stgp$:Perform
the operatoi; : |y)|z) — |y)|f(y) ® z) on the second and third registerg)
Compare thej + 1-th and the2; + 2-th qubits of the first register with the corre-
sponding qubits of the third register, and apply a phase shiftlaf they are same,;
otherwise do nothing3) Perform the operatdy; on the second and third registers
(Figure 2.1).
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W {7

Zo|e £k l

|} o

|a} !
& .
-U

Figure 2.1: A quantum circuit for tagging operator.

Now we show that AlgorithnC computesf—!. After Stepl, the state of the

system is

1
\/2—n|x> > .

ye{0,1}"
We show that after Stepj.2 the state of the system is
2J+1

NoTid > v) .

y:f(y)(1,2‘j+2):1'(1,2‘7'-4-2)

which means that Algorithr® computesf~' after % iterations. In the casg= 0,
the state evolves as follows (note that for amywe havelvy ) = [)):

1
i Y )
\/27 yE{O,l}n
201 1
y:f(Y)(1,2)7%(1,2) v:f(¥)1,2)=%@1,2)

1
= ﬁm (\/27%> -2 Z y>)

yv:f(¥)1,2)=71,2)
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2.0.2
—

)(2[¢bo) (tho| — T) (ﬁww -2 y>)

y:f(Y)(1,2)=2(1,2)

—|
\/27 x
= \/127’@ (2\/27”%) — V2" [tho) — 4lo) > <¢0y>>

yif(y)(1,2):37(1,2)
+2 >y
v:f(¥)1,2)=71,2)

2
= \/2—”!@ > [y)-

yif(y)(l,Q):l"(Lz)

On the other hand, suppose that the casek — 1 holds. Then, following Steps
2.k.1-2.k.2, the state evolves as follows:

2k’
ﬁm > ly)

y:f (V) (1,20) =T (1,2k)

okt 2F
— —=|z) > ly) — > y>)
2 (y:f(y)

(1,2k)=T(1,2k) y:F(Y)(1,2k+2)=(1,2k+2)

k
= ;27’@ (V 22Ky ) — 2 > y))
yif(y)(1,2k+2)=$<1,2k+2)
or2  2F o=
- W!@(?\W,Mw,x! — 1) 2 k,z) — 2 Z 1Y)
yif(y)(1,2k+2)=$(1,2k+2)
2k
= \/27|f”>

(2@%@ — VIR ) — i) 2 Ww«”)

y:f(Y)(1,26+2)=T(1,2k+2)
2k
+ z) |2
) » > )

y)(1,2k+2) =T(1,2k+2)

2k’+1

= ﬁm Z 1Y) -

Y (Y)(1,264+2) =T (1,26+2)

Thus, the casg¢ = k holds. From the assumption thg®; } is easy, it is simple to
see that AlgorithnB can be implemented by a polynomial size quantum network.

(<) Suppose thaf is not a worst-case one-way permutation. Then we show
that{Q,};=01,.. n_j can be implemented by a polynomial size quantum network.

38



2.2 Worst Case Complexity

According to the assumptiorf,and f~! are quantum polynomial time computable.

The following operator

My = Ja) = [ f(2))

can be implemented by a polynomial size quantum network [12, 71] (Chapter

To see why note that, for any< {0, 1}" we have
(M @ 1N|x)[0) = [(Us—) " SUy]|x)0) ,

where the swap gatg is defined a5 : |a) ® |b) — |b) @ |a).

In the following we show that the unitary operat@f = (1 ® M;)Q;(I ® M)
can be implemented by a polynomial size quantum network, which mean® that
can also be implemented by a polynomial size quantum network. The opé&¥ator
can be rewritten as follows:

Q; = <I®Mf>{ > x><x®(2 (ingjz*y><y/)1)}(I®Mf)T

x€{0,1}m Y5y’

- 3 x><x®(22f2jz*f<y>><f<y'>1)

z€{0,1}7

= ) lole

z€{0,1}"

1 *
(2$(1,2j)><$(1,2j)w Z ’f(y)(2j+1,n)><f(y/)(2j+1,n)\ - —7)
Y,y

= Z |z)(z| ® (2‘$(1,2j)><37(1,2j)’ ® |1;) (| — 1)

z€{0,1}"

= ) lale

z€{0,1}"

(x(l,zj)><$(1,2j) ® (215) (s = I) + Z )yl @ I) :
yiy7533(1,2j)

Here,)" , denotes) and|i;) denotes

vy F (W) 1,25 =F (W) (1,25)=%(1,25)

1 :
|¢J> = \/m Z |Z> :

i€{0,1}—2J
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Thus, we can implemer®’. by comparing the firsg;j qubits of the first register
with the corresponding qubits of the second register and appdjing(y;| — I if
they are the same and applying the identity otherwise (i.e. conditi@ha); (v;| —
I)). The operatoR|y;)(v;| — I is easy, since|y;) (v, — I = H®"=%(2]0)(0| —
IYH®"=2I whereH is the Hadamard gate and the supersaript 2 indicates that
the Hadamard gate is applied to the last 2j qubits. Thereforeq)’ is easy and

this completes the proofl

Note that all unitary operatofs; are easy if and only if the operation
D k) (k| @ U,
k

which implementdJ,, conditionally, is easy. The operat@; implements the re-
flection about the state); ) conditionally, therefore Theorem 28 gives a necessary
and sufficient condition for quantum one-way permutations in terms of the reflec-
tion about a quantum state.

Using quantum amplitude amplification method [47] we can generalise the def-
inition of operatorsO[k] andQ; in the Algorithm C as follows. In each step of
Algorithm C we are concerned with onB/qubits of input, i.e. the tagging operator
O[k] works only with thekth and(k + 1)th qubits of its input register. However,

one can consider the more general operattjfs /] as follows

—l2)|y) i fY) ko) = Topri-1)

Ok, l]|z)|y) =
! { ) ly) (W) kpri-1) F Tepri-1),

wherel is any integer satisfying < [ < O(log(n)). The corresponding reflection

operatorsy);,; are

Q=Y |2}l ® @ljue) (Wial = 1),

z€{0,1}"
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where

1
Vita) = == y:ﬂy)gﬂj:w ly) -

Now the generalised Algorithr@’ has the same structure as Algoriti@n but
in Algorithm C’ steps2.5.1 and2.;.2 will be iterated7; = O(\/?) times, where
the integerT; is known in advance. Note thdj is a polynomial inn. Intuitively,
Step2 of Algorithm C is an analogue of Grover’s algorithm for the search problem
where the number of the required items;isf the total number of items. On the
other hand, Step of Algorithm C’ is also an analogue of Grover’s algorithm for
the search problem where the number of required iterésdf;the total number of
items. After applying step®.;.1 and2.5.2 (for j = k) of Algorithm C’, we obtain
the state

) | D A+ Y Bily) |,

YESk41 YESk+1\Sk

whereS, = {y : f(y)a,x) = 2@,k } and positive numberd; and B; are known in
advance. Thus, using the quantum amplitude amplification process [47], we obtain
the desired state:

1
Vo=l D DR
Y F () (1,1k+1)) =T (1,1(k+1))

and hence we can proceed to the next step.

2.3 Average Case Complexity

In order to apply our result to a realistic cryptographic scenario we need to consider
also the average case complexity domain. This is because a realistic cryptographic
protocol should be secure in “most” cases, which implies that it is hard to break
on the average. We define two types of one-wayness in the average case setting.

In what follows, for a property? defined onN, we say thatP(n) holds for all
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sufficiently largen if the set{n € IN | P(n) does not hold is finite.

Definition 29 A permutationf is a weakly quantum one-way, if the following con-
ditions are satisfied:

(i) f can be computed by a polynomial size network.

(i) There exists a polynomial such that for any polynomial size quantum net-
work A and all sufficiently large: € N,

1 1
o {Z} ProblA(f(x) # 4] > s,

whereProb: {0,1}" — [0, 1] is a probability distribution induced by the measure-
ment in the standard basis on the output register of the netwlogkven the input

x, and A(x) is a random variable distributed with the functiémob.

In other words, a weakly quantum one-way permutation is easy to compute but the
probability that any quantum algorithm fails to invert it is not negligible.

Definition 30 A permutationf is a strongly quantum one-way, if the following con-
ditions are satisfied

(i) f can be computed by a polynomial size network.
(i) For any quantum polynomial size netwotkany polynomiap, all sufficiently

large n,

1 1
Q—er%}n Prob[A(f(z)) = 7] < oL

where A(z) is a random variable given as the output of the quantum algorithm
with the inputz.

Again, in simple terms, a strongly quantum one-way permutation is easy to compute
but the probability that any quantum algorithm succeeds in inverting it is negligible.
From the above definitions, it is easy to check the following relations.
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Proposition 31 In general we have

(i) Every strongly quantum one-way permutation is also a weakly quantum one-

way permutation.

(i) Every weakly quantum one-way permutation is also a worst case quantum

one-way permutation.

In the applications to cryptography, the existence of strongly quantum one-way
permutations is the main concern. However, the following proposition shows that it
is sufficient to characterise the existence of weakly quantum one-way permutations.

We omit the proof as it is the same as the proof of Theazehn [51].

Proposition 32 Weakly quantum one-way permutations exist if and only if strongly

guantum one-way permutations exist.

For the rest of this section we discuss the relationships between weakly quantum
one-way permutations and reflection operators, as we did in the worst case setting.
We give a weaker analogue of Theorem 28 in the average case and finish the section
with an open conjecture regarding the characterisation of weakly quantum one-way
permutations. In order to carry out our discussion in the average case setting we

need to introduce an approximation of the identity operator as follows:

Definition 33 Letd: N — N be a function satisfying(n) > n. A d(n) qubit
unitary operator.J, is called(a(n), b(n))-pseudo identity, if there exists a S¥},
with | X,| /2™ < b(n) such that fori € {0,1}"\ X,,,

1 = (G {0l2) Ju([7)110)2)] < aln),

where|-); and|-), denote the first qubit state and the last(n) — n qubit state.

In what follows, I, denotes thg-qubit identity operator, and),, ..,, means that
the system consists of the registérs . . , 7, and its state i$)). For a vectow, we
denote the length af by |v|. Now we can give the first result on the link between

average case one-wayness and the reflections about quantum states.
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2.3 Average Case Complexity

Theorem 34 Let f: {0,1}* — {0,1}* be a permutation that can be computed by
a classical polynomial size network. fifis not weakly quantum one-way, then for
any polynomiap and infinitely many., there exist a polynomiai, andr,(n)-qubit
(1/2°( 1 /p(n))-pseudo identity operators,,, such that the family

Fp,n - {(In 0y Jp(n))T<Qj 0y ]Tp(n)—n)<ln X Jp(n))}j:[],l ..... 5-1
is easy, wherg); is the same reflection operator defined in Section

Proof Assume thayf is not weakly quantum one-way. Then, for any polynorial

there exist a polynomial size quantum netwedrland infinitely manyn such that

1

o (2.3)

> ProblA(y) = f'(y)] >1-

ye{0,1}»

Let X, = {y € {0,1}"| Prob[A(y) = f*(y)] < i} andY, = {0,1}"\ X. From
Equation (2.3) we have

1 1 1
— (Y- 1+1X'.Z 1 — —
5 (il eix3) = 1- .
and hence we obtajtX, | < —2” Defineg(n) = 1p(n), then|Y, | > (1—%)2“.
Now assume € Y, . The flnal state of the netwonk for inputy is:
ayly)1 [ f T W))alg)s + [y)alw(y))eldf)s (2.4)

wherea, € R, [1 —ay| < 3, [ (y))2 L [w(y))e, and|[vyg)s| = [[w(y))z] = 1
(note that|¢y)s is not a unit vector). By repeating the netwotkat mostO(q(n))
times, we can easily construct a polynomial size quantum netWwonkhose final
state has the same form as Equation (2.4), where|howa, | < W Denote
by C' the quantum network constructed frabhby the approximate clean garbage
method [9] as follows:(1) Apply B, (2) copy the contents of the second register
(which is the output register aB) to an extra registef3) apply the inverse of3

and change the contents of the second and the extra registers. Then, we can see that
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the final state o’ ony is written in the following form:

Byly)al £ (1))210)s + #5123,

whereg,

1— | < 5t andy) | f 1 ())2]0)s L [¢7)123.

To establish the analogue result of Theorem 28 we define the following two ap-
proximation operators. First, the approximation of the operafpfrom Theorem
28 for the average case is defined as follows

My = (Ue) S D(U;eI), (2.5)

whereS denotes the swap operator on the first and the second registel’s ana
unitary operator corresponding to the netw6tk The operatof\/ 7 can be written
in more detail as follows:

Mf = Z(ﬁm)\f(x)h\(l)zﬁ\¢§>m)<w\1<0!23

IEYn
+ ) 1) 12(@1(Ol2s + D Y 06 ) 1as ()1 (2las,
zeXn T z:z#£0

where|l — ()| < 5t foranyz € Y, = {z € V)| f(z) € Y}, |f(2))1]0)23 L
|5 ) 123, Xy = {0, 1} \ Yy, @and|[hs) 123] = |[¢5 ,)123] = 1. The above form can be
obtained by replacing the following forms of the operai@rs) ' and(S®I)(U;®
I) in the Equation (2.5):

(Ue)™ = > 15,0,0)125(8,(y, f 7 (%), Olis + (9] 123)

yeyy,

+ Z |y7070>123<y7070|123U51

yeX),

+ Z Z 1y, 2, 2")123(y, 2, 2 [123U¢

¥ (22)#(0,0)

and

(SNUs1I) Z\f , 2, 0)123(2, 0, 0123

z€eY,
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+ Z|f ; 7, 0)123(7, 0, 0]123

zeX],
+ Z Z ’f(x)@Z,I,Z/>123<I‘,Z,Z/|123.
T (2,2)#(0,0)

Next, the approximation of the reflection operatgyss from Theorem 28 is
defined as follows

Q = (I M) (Q,®I)I® M;)
= (I@M;'"My)'(Q; @ I)(I ® M;'M;),

where(’; is the same unitary operator defined in the proof of Theorem 28. The
family {Q,}, satisfies the required conditions of Theorem 34. Fifst,is easy,
sinceQ’;, My ande can be implemented by polynomial size quantum networks.
Next, we check thaf\/; ' M, is (1/24),1/q(n))-pseudo identity. Indeed, from
Y| > (1 —1/2¢g(n))2™ and|X/,| < (1/2q(n))2", we have that

Yal = IVl =z € Yalf(x) € X}
1
> (1———)2"—|X/
> (1= 552" = IX)]
1
> (1——=)2"
z Q(”))
and henceX,,| < (ﬁ)Z”. Thus, it is sufficient to check that far € Y,, we have
1
1= (Gl {0ls) M7 M (|21 10)23)| < 5 (2.6)

This relation can be checked as follows. kot Y,, we have

My|2)1]0)2s = ) (Brw| £(@))1]0)25 + [¢5) 123)

€Yy

and

(@]1(0las M7t = (f()]1(0]2.
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Thus, forz € Y,, we have

(1 (0l23) M} My (|2)110)28) = Ba)

and hence fronil — ()| < 5 We obtain Equation (2.6), which completes the

proof

It is an open problem whether the converse of the above theorem holds. How-
ever, by restricting the second parameters of pseudo identity operators, we can prove

the following restricted version of the converse of Theorem 34.

Theorem 35 Let f:{0,1}* — {0,1}* be a permutation that can be computed by
a classical polynomial size network. If for any polynomiand infinitely many.
there exist a polynomiat, and anr,(n)-qubit (1/2°™ p(n)/2")-pseudo identity

operator.J,,,y such that the family

Frp =1{Q;} = {0 ® o) (Q; @ Ly tny—n) (In ® Jy(m)) }i=0.1....2 1

is easy, thery is not weakly quantum one-way.

Proof Assume that for a fixed polynomig| infinitely manyn, and some

(1/2°() p(n)/2")-pseudo identity operatof,, the family F,, , is easy. To show
that f is not a weakly quantum one-way permutation we give a polynomial size
algorithm for invertingf. Algorithm C has the same steps as Algoritt@rexcept

the following two changes:
() The number of iterations of Ste&is now 3 — [2log p(n)].
(i) The operator); is now replaced b@j.

A quantum network implementation for Algorithlﬁ consists of three registers.
The first and the second registers consist.ajubits similar to the network for
Algorithm C. The third register consists @f(n) — n qubits. From the definition
of pseudo identity operators, there exists a¥gtwith | X,,| < p(n) such that if
yeY,={01}"\X,,

o) [1)210)3 = ay|y)2]0)3 4 [1y) 23, (2.7)
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where|i, )23 L |y)2]|0)s and|1l — o, | <
In Algorithm C, we apply J,,) before and after Step.;.2 for eachj. The

Qp(n)

application ofJ,(, creates an error in computation ¢f'. We call the vector
Jpmy|¥) — [4), the error associated t@). To measure the effect of this error, we

use the following lemmas (the proof is given later).

Lemma 36 Assume thai” C S C {0,1}". Then length(S,T) of the error asso-

ciated to the state

yeS\T yeT

(S, T)) \/— ( > Iy)lo) Zy>0>> ,

satisfies the following relation

. o - 1SN Yal +215 1 X
,T) < 2=
V151

From Lemma 36 one can easily check the following lemma.

Lemma 37 Let Jyi) [¢(S,T)) = a|¢(S,T)) + [¢(S,T)*), where|y(S,T)) L
(S, T)*"). Then[[y(S, T)*4)| < U(S, T).

First, suppose that for some = k all steps before step.k.2 of Algorithm
C have been implemented as Algoritin By a similar argument to the proof of

Theorem 28 we get the state

|2)1[9(S,T))a2s

(5 o)

eS\T yeT

whereS = {y : f(¥)a2r) = Ta2w} andT = {y : f(¥)@2x42) = T2y} IN
Algorithm C, Jp(n) 1S applied for the statg) (S, T'))93. Fork < n/2 —[2logp(n)],

from Lemma 36 we have

(s.1) 2@ 1S NY,| + 2|5 N X,
1) < 22
VIS
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szn) ) ‘S| + Z‘Xn|

<
V15
2 n—2k (n

B AP G e ()
- v/ 9n—2k - \/ 9n—2k
< () _ 4p(n)
— 95—k — 92[2logp(n)]
< 4

p(n)

Therefore, fork < n/2— [2logp(n)], from Lemma 37 we get a vector= v, + vy
whereﬁ is the unit vector corresponding to the state before 3teR (up to a
total phase) and, is a vector of length at mo%% orthogonal ta;. The vectom,
corresponds to an error which happens whigp, is applied before Step.%.2.
Next, assume that for some= k all steps before Step.k.2 and SteR.k.2
itself have been implemented in the same way as for AlgorithrilVe obtain the

State

k+1

V21

@)1 [9(S, T))as = €)1 === D 1y)2l0)s,

yes
whereS = {y : f(y)a,26+2) = T(2642)} andT = (. By a similar argument to the
above, we get a vectar = v, + vy, whereﬁ Is the unit vector corresponding to
the state after Step k.2 andwv, is a vector of length at mo%{‘;) orthogonal tov;.
The vectomw, corresponds to an error which occurs whgp,) is applied after Step
2.k.2.

Now, from the above analysis, we can see that after the completion of Algorithm

Con inputz the final state i = v; + v, Wherev; is parallel to

1
T —F—— 0
e > 1)2l0)
y:f(y)(l,n—QI—Z log p(n)]) =T (1,n—2[2log p(n)])

anduv, is a vector of length at mof(n/2 — [2logp(n)|)(4/p(n)) orthogonal to
v1. Thus,|vs| < 1/g(n) for some polynomial. We know in advance that for any
x the probability of obtainingf~!(z) upon measuring the second register in the

stateu, is 1/22121°er(")1 Now, using the algorithm in [47] (the quantum amplitude
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amplification when the success probability is known), we can change thevstate
into w = w; + w9, Wherew, is parallel to|x),|f 1 (x))2]0)3, wy L ws, and|w,|* =

0 < -
infinitely manyn such that

Therefore, there exist a polynomial size quantum netwérand

1 o 1
> > Prob[B(z) = f(z)] > 1 el

We can give any large polynomigd(n) by taking any large polynomial. Thus, f
is not weakly quantum one-wai

Finally, we give the proof of Lemma 36.

Proof Lemma 36First, we show that the length of the error associated to the state

|%)]0) is at most—2 if y € Y}, and is at mosR if y € X,.. Fory € Y, from
2

p(n)
"

Equation (2.7) we have — |o,| < |1 — o, | < =+, and hence

2p(n)

[[y)asl® = 1= Jay[* = (14 |ay )(1 = |oy|) <

Thus, for the length of the error associateditd0) we obtain the following relation

[ Jomy|[9)2]0)3 — |)2]0)3] = [(c, — 1)[y)2|0)3 + [tby) 23]
= oy = 12 + {1,252

1 >
2
= \/(gp(m) +

- 42
= Ve T e

On the other hand, i§ € X,,, we have
[Jom)[9)10) = 9 {0)] < 1oy [9)10)] + (19210} < 2.
Finally, for the length (.S, T") of the error associated to the statg.S, 7)) we have
WS, T) = [Jpm[¥(S,T)) — (S, T))]
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IN

ﬁ S Wy = DI + 3 [y — D)0}

yeS\T yeT

= \/I?Z| Dy)|0)]

1 Z Z
= _— Jpn —I O Jpn _[ O
\/E <y€SﬂYn‘( " )|y>| >| +y€SﬂXn|( " >’y>| >|>
1

( p(n)|SmY|+2\SmX \)

NEL

From Proposition 32, Theorem 34 and Theorem 35, we obtain the following
relationship between the existence of quantum one-way permutations and the re-
flection operators about a particular class of quantum states.

Theorem 38 The following relations hold.

() There exists a polynomial time computable functfasuch that: there exists
a polynomialp such that for all sufficiently large and all (1/2P(™ | 1/p(n))-
pseudo identity operators,,,),

Fop(f) = {(In © Jy)) Qi (f) @ Liymy—n) (In @ Jpn)) }j=o,1,...2 1.

IS not easy.
= (ii) There exists a weakly quantum one-way permutation.
< (i) There exists a strongly quantum one-way permutation.

= (iv) There exists a polynomial time computable functicuch that: there exists a
polynomialp such that for all sufficiently large and all (1/2P(), p(n)/2")-
pseudo identity operators, ,,

Fop(f) = {(In © Jy)) Qi (f) @ Liymy—n) (In @ Jpn)) }j=o,1,... 21

IS not easy.
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On the other hand, for the bounded-error setting in the worst case complexity,
we can prove the following necessary and sufficient condition by a similar argument
to the proofs of Theorems 34 and 35 (the proof is therefore omitted).

Theorem 39 The following statements are equivalent.
(i) Worst case quantum one-way permutations exist in the bounded error setting.

(i) There exists a polynomially computable functipsatisfying the condition:
there exists a polynomial such that forinfinitely manyn and all
(1/2°() p(n)/2")-pseudo identity operators,,

Fop(f) = {Q5);
= {(In & Jp(n))T(Q](f) ® ITp(n)—n>([n ® Jp(n))}j:O,l 77777 %*1'

iS not easy.

Comparing Theorem 39 with Theorem 38, we can see that condition (iv) of
Theorem 38 is given essentially to characterise the existence of worst case quantum
one-way permutation in the bounded-error setting (the only different part is the
condition “all sufficient large” and “infinitely many”). We conjecture that condition
(i) of Theorem 38 gives a necessary and sufficient condition for the existence of

weakly (and strongly) quantum one-way permutations.

2.4 Complexity Classes

In this section we give the relationship between the existence of one-way functions
and well-known complexity classé#? andEQP. To this end we recall some def-
initions given in [52]. Assume thaf’ is a complexity class; then we define the
complexity clasg’, as follows:

C, = {f € C|Graph(f) € P},
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2.4 Complexity Classes

where

Graph(f) = {(z,y) [z € Dom(f) &y = f(z)} .

Denote byQPSYV, the class of all single valued functions which can be computed
exactly by polynomial time quantum Turing machinB¥2SV, the class of all sin-

gle valued non-deterministic polynomial time computable function;dR8V, the
class of all functionsf in NPSV such that for every: in domain of f there ex-

Ists a unique accepting computational path. The following lemma introduces two

relationships between the quantum and classical complexity classes.

Lemma 40 The following relations hold:
(i) UP C EQP
= (i) UPSVC QPSV
= (i) UPSV, C QPSV.

Proof The proof of (ii)=- (iii) is trivial. We give a sketch of the proof of (B (ii)
[52]. Assume thay is in UPSV and defineRz; to be the following language:

Ry ={(z,y)lz € Dom(f) &y < f(x)}.

Sincef € UPSYV, given input(x, y) one can computé(z) unambiguously and then
check from the output whethgr< f(z). This shows thaf?; belongs tdJP and by
assumption also belongs EQQP. Therefore using binary search one can show that
f€eQPSV.O

Now using a similar method to [52] we can prove the following theorem.

Theorem 41 There exists a worst case quantum one-way function if and only if

UP ¢ EQP.
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Proof (=) Assume thatf is a worst case quantum one-way function. Then by
definition we havef~' € UPSV,. Howeverf~! ¢ QPSV therefore from Lemma
40 we deriveJP Z EQP.

(<) AssumelL to be a language iWP \ EQP and M to be an unambiguous
Turing machine accepting. Then, the total functiorf defined below is a worst

case one-way function:

Fa) = y0 if z = Compy,(y)

x1l otherwise

where Comp, (y) denote the unique accepting computatiod6on inputy. O

2.5 State and Operator Complexity

The study of states and operators complexity is an important way to find the rela-
tionship between physical complexity and computational complexity. As we show
in the following, the special case of the relationship between the complexity of
preparing a state and the complexity of performing the operator of reflection about
that state, has a close connection with the question of the existence of quantum one-
way functions. We introduce a notion of complexity of preparing quantum states
and constructing unitary transformations. We consider families of the states and
unitary operators, and introduce the complexity classes similar to classical com-
putation. DefineS to be the set of all familiess;' = {[¢.)}.ca Wherep is an
increasing functiond is a language, and ) is an arbitraryp(|z|)-qubits state. We

also define? to be the set of all familieéf;,“ = {U,}+ca, Wherep is an increasing
function, A is a language, andl, is an arbitrary unitary transformation acting on
p(|z])-qubits andp is a polynomial. In what follows, we omit the symbgisand A

for the simplicity. (We consideA = {0, 1}* andp(z) = |z| in most of the cases.)

Definition 42 A family {|¢,)}. € S of states is defined to ®mputableif there
exists a uniform quantum network family = {N,} such that on input;, N,
produces exactly the output staie,). We denote by &£ the set of allcomputable
families of states
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Definition 43 A family {U,}, € O of unitary operators is defined to bsom-
putable if there exists a uniform quantum network famNy = {V,} such that
on inputz and|), N, produces exactly the outplt.(|:)). We denote by O the

set of allcomputable families of unitary operators

The analogue of the complexity classes of families of states and unitary opera-

tors corresponding tB andPSPACE can also be defined in a similar fashions.

Definition 44 A family {|¢.)}. € S of states igpolynomial-time (or space) com-
putable if there exists a polynomial-time (or space) uniform quantum network fam-
ily N = {N,} such that on input, N, produces exactly the output state,). We
denote byPS (or PSPACES) the set of all polynomial-time (or space) computable
families of states.

Definition 45 A family {U,}, € O of unitary operators is polynomial-time (or
space) computable, if there exists a polynomial-time (or space) uniform quantum
network familyN = {N,} such that on input: and |¢'), N, produces exactly the
outputU,(|v)). We denote by?O (or PSPACED) the set of all polynomial-time

(or space) computable families of unitary operators.

In what follows, we consider the relationship between states and reflection op-
erators about those states. The reflection operator about a givep/statelefined

to be

20yl — 1.

The reflection operators have many interesting properties. Here we mainly study
them from the complexity theoretic point of view. It is well-known that if a state

is preparable in polynomial time, then the reflection about that state can implement
in polynomial time (Problen6.2(1) in [79]). To see this, without loss of generality
assume thaf|y,) }.. is a polynomial-time computable family of states and

N = {N,}, is a uniform polynomial size network family implementing a family

{U.}. of unitary operators, wher&,|0)®" = |, ). Therefore, we have:

Ua(210)(0] = D)UL = 2[tp) (W] — T,
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which can be implemented by a uniform polynomial size network family. This
arguments can be easily applicable to the case of a computable, polynomial-time or

polynomial-space computable family:

Proposition 46 If {|¢.)}. is in CS (resp.PSPACES, PS), then the sequence of

reflection operators:

{2[¢2){(da] — I}a
is in CO (resp.PSPACED, PO).

Does the inverse hold? In particular, we consider the inverse of the above proposi-

tion for the polynomial-time case

Reflection Assumption: Assume tha{|¢.)}. is in CS is given such that the
family of reflection operator§2|¢,){(¢.| — I}, is polynomial-time computable.

Then{|¢.)}. is also polynomial-time computable.

We shall relate the Reflection Assumption to the existence of quantum one-
way permutation by revisiting INVERT problem. L¢tbe a permutation on-bit
strings, and/; the unitary operator mapping the basis stai¢y) to |z)|f(z) & v),
where|z) and|y) each consist of. qubits. GivenU; as an oracle, AlgorithnB
for INVERT computesf—'(z) with high probability inO(y/2") queries and this

algorithm is shown to be optimal [6]. Note that the operator

2f @) (@) - 1,

is performing the reflection about the stdfe!(z)). Thus, AlgorithmB shows
that even if the reflection about the stafe!(z)) is assumed to bgolynomial-
time computable (Equation 2.1), the state itself is not necessarily computable by a
polynomial-time quantum Turing machine with oracle.
Now consider a family of unitary operato{é/;, },,, whereUy, is the unitary

operator implementing,, exactly. By condition (ii) of Definition 27{Uy, }, is
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polynomial-time computable. Therefore using Equation 2.1 we obtain the follow-

ing:

Lemma 47 Assume thaf is a quantum one-way permutation, the following family

of unitary operators is iPO:

21 @ @) - T

On the other hand, by condition (iii), the family of statgg~'(z))}. is not

easy. This implies the following interesting fact:

Proposition 48 If there exists a quantum one-way permutation, then we can con-

struct a counter-example to the Reflection Assumption.

We can make sure that by a minor modification the above proposition holds
under the existence of a quantum one-way function, which is equivalent to the open
problem thatUP is not included irEQP. Can we make this assumption weaker, for
example, based on the separation betwe@® and PSPACE? This is still open.

Instead, we present the following simple facts.
Theorem 49 If EQP # PSPACE, thenPSPACES \ PS # 0.

Proof Consider @SPACE-complete languagé, therefore
L € PSPACE\ EQP.

We identify L with its characteristic function. Clearly|z, L(z))}, € PSPACES.
Now assume thaff|z, L(x)) }, isinPS. Then{I — 2|z, L(x)){x, L(z)|}. is in PO.

We have:

(I - 2|ZL‘, L(ZL‘))(L(J]),ZEl)(|J],O> + |I7 1> + |:L’, 2) + |[E, 3>)
_ |z, 0) — |z,1) + |x,2) + |z, 3) if L(z) =1
—|x,0) + |2, 1) + |x,2) + |x,3) if L(z) =0
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2.5 State and Operator Complexity

and hence one can design an exact quantum polynomial algorithm for accépting

on inputz. This contradicts the assumption and we derive that
{|z, L(z))}. € PSPACES \ PS .

O
Corollary 50 S\ CS # 0.

Proof Define the family{|z, L(z))}. of states similar to the proof of Theorem 49,

wherelL is the halting function.O

Corollary 51 If EQP # PSPACE, then there exists a family of states
{|2)}. € PSAPCES \ PS # 0,

such that the family of reflection operatdrs— 2|1,.) (¢, | }», is in PSPACEO \ PO.
Proof The family in the proof of Theorem 49 will workD

Note that in Theorem 49 and Corollary 51, the complexity cRS®ACE can be

replaced with any other complexity cla&shaving a complete languadg as far as

the following condition is satisfied{|x, L(x)) }, (or {I — 2|z, L(z))(x, L(x)|}.) is

in the class of states (or unitary operators) corresponding to theXclaldanguages.
The notion of Turing reducibility can also be generalized to the setting of the

state and operator complexity as follows.

Definition 52 Assume that the two famili¢sp,. )}, and{|v.) }. of states are given,
we define{|¢.)}. to bepolynomial-time Turing reducibléo {|,)}. (denoted by
{|62)}e <b {|¥)}2), if {|¢)}. can be prepared by a polynomial-time quantum
Turing machine given oracle:)|0) — |z)|t.).

Definition 53 Assume the two familied/, }, and {V,.}. of unitary operators are
given, we defing¢U, }, to bepolynomial-time Turing reducibléo {V, }, (denoted
by {U.}. <4 {V:}.), if {U.}. can be implemented by a polynomial-time quantum

Turing machine given oracle)|y) — |z)V.|y).
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2.6 Discussion

We end this section with the following two conjectures which seem to hold

intuitively.

Conjecture 1 For given stateso) and|¢) we have the following relationship be-

tween states and reflection operators:

{lo)te <7 {lta)}e & {T = 2|¢0)(Pol}o <7 {T = 20000) (Yol }a -

Conjecture 2 If EQP # PSPACE, then we can construct a counter-example to the

Reflection Assumption.

2.6 Discussion

We have reduced the problem of the existence of a quantum one-way permutation
to the problem of constructing a polynomial size network for performing the spe-
cific task of the reflection about a given state. Ambainis [6] proved that inverting
a permutation on the-bit strings in the standard query model requif&s,/2")
gueries. In the standard query model [7], a quantum computationfiheries is

a sequence of unitary operators
Uy—0—-U -0 —=Upy — O —Ur,

whereU;’s are arbitrary unitary operators independent of a database to be searched
or a permutation to be computed, afdds the standard query operator. However,
our algorithm is consistent with Ambainis’ result, since we consider the case that
U,'s depend on a permutation to be computed and this does not fit his model.
Another related issue is the work of Chen and Diao [25] where they attempted
to present an efficient quantum algorithm for the problem SEARCH, which is sim-
ilar to our algorithm for the problem INVERT. They mentioned that the tagging
operation and the reflection about a given state which varies dynamically can be
constructed by polynomial size networks, but they did not show the construction for
their operations. (This construction is, of course, impossible given Grover’s black

box, since it would violate the optimality proof of Grover’s algorithm [18, 115, 6].)
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2.6 Discussion

For the problem INVERT we have given a polynomial size network for the tagging
operation and we have shown that the difficulty of the construction of the reflec-
tion operation is equivalent to the existence of the quantum one-way permutation.
Furthermore it is an interesting open problem whether there exists a reduction from
other types of one-way functions to constructing a polynomial size network for per-
forming the reflection about a given state.

On the other hand, we have seen that Grover’s algorithm gives us an example
of states that are difficult to prepare but the reflections about these states are easy,
I.e., it provides a counter-example to Reflection Assumption assuming the existence
of one-way permutations. This investigation of Reflection Assumption seems to be
useful for cryptographic applications since recently, quantum bit commitment pro-
tocols based on quantum one-way permutations have been proposed [36, 3]. More-
over, it is interesting to find such a concrete counter-example without the existence
of quantum one-way permutations. Presenting such examples of states may provide

us with more ideas for constructing novel quantum algorithms.

60



Quantum Oracle

3.1 Introduction

Query complexity is a simple framework to study the power of oracles to separates
guantum complexity classes from classical one. The query complexity of a function
Is the minimum number of queries to some oracle that are needed to compute one
value of this function (Chapter). Most quantum algorithms are defined in this
simple setting. Examples of quantum oracle algorithms that are provably better
than any classical algorithms can be found in [34, 53, 98, 14, 104, 30, 7, 21]. In this
chapter we introduce an alternative definitions for quantum oracle and compare its

computational power with the standard oracle.

3.2 Minimal Oracle

In this section we compare the query complexity analysis of quantum algorithms
given two different ways of representing a permutation in terms of a black box

guantum oracle. Consider the following oracles, defined for a permutation function

f:40,1}" — {0,1}"
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3.2 Minimal Oracle

e thestandardoracle,S; : [z)|b) — |z)|b® f(x)).
e theFourier phaseoracle,P; : |x)|b) — €27/ @¥/2"|2)|p).

Herex andb are strings of bits, represented as numbers moddle= 2", |x) and
|b) are the corresponding computational basis statesgasdddition modul@™.

Note that the oracle®; and Sy are equivalent, in the sense that each can be
constructed by arf-independent quantum circuit containing just one copy of the

other. To see this, define the quantum Fourier transform operAtion

2"—1

1 -
F|j>—>—§ :eQka/NU{?).
VN k=0

Then one query to the standard oracle can be simulated with one query to the Fourier

phase oracle as following:

) |b) > RN k)

2n—1

1 ~ 5 bk /N _2mikf(z)/N
e T e e xX T k
v )1k

2n—1
Z e?ﬂik(b+f(as))/N‘x> ‘k’>

1
VN k=0

— [)b® f(z))

In a similar way one query to the Fourier phase oracle can be simulated with one

guery to the standard oracle. In summary the following relations holds:

(I®F )oPro(I®F)=5;,(I®F)oSio(I®F ') =Py,

where o represents the composition of operations (or the concatenation of net-

works).

62



3.2 Minimal Oracle

Furthermore iff is a one-to-one function (e.g. a permutation on the8et}"),

then there is a simpler invertible quantum map associatgd to
e theminimaloracle:M; : |z) — |f(x)).

In the following, we examine the minimal and standard oracle in simulating
each other. Figure 3.1 shows a simulation of standard oracle with minimal oracle.
Starting with the initial state_ _.|z) ® |0), the firstn CNOT gates create the
entangled superposition ¢ |z)|x). Then applying the minimal oracle/; on the
second register gives, ¢ |z)| f(x)) and this completes the simulation. In the case
that the initial state i$ " _ [+) ® |b), we can construct; from M, and(M;)~! as

follows:
Sf: (Mf—l ®I)OAO(Mf®[),

where the moduldV adderA is defined byA : |a) ® |b) — |a) ® |a & b) and

(My)™h = M1
X falla}
Zm{_ —
zES . -
LY [ Al
= — zES
|1:-){: —— My —

Figure 3.1: A quantum circuit for simulating standard oracle with minimal oracle.

Note that if M/, is given in the form of a specified complicated quantum circuit,
we may be completely unable to simplify the circuit or deduce a simpler forf of
from it. However, by reversing the circuit gate by gate, we can construct a circuit

for (M;)~*. Hence, by the above construction, we can produce a circuif for

63



3.2 Minimal Oracle

using one copy and one reversed copy of the circuif\fgr This way of looking at

oracles can be formalised as following :

Definition 54 The query complexity of an algorithm involving an oraClgassoci-
ated to a functiory is the number of copies af; and/or()]?1 required to implement

the algorithm in a circuit that, apart from the oracles, is independent.of

In the circuit model, a standard oracle can easily be simulated given a minimal
oracle. Ignoring constant factors, we say that the minimal oracle is at least as strong
as the standard oracle. On the other hand we show that simulatjngequires
exponentially many uses of;.

First, consider the standard oradg-: which maps a basis stafg) |b) to

)b @ f~1(y)). Since

Sy 1|0} = (91 (w)

simulating it allows us to solve the search problem of identifyjifig' (y)) from a
database olV elements. It is known that, using Grover’s search algorithm, one can
simulateS;-1 with O(v/'N) invocations ofS; [18, 47]. In the following we explain
one possible way of doing that.

Prepare the statg)|0)|0)|0), where the first three registers consistodubits
and the last register is a single qubit. Apply Hadamard transformations on the sec-

ond register to get

1
[¢1) = =) Y [2)0))0).

z€{0,1}n

Invoking Sy on the second and third registers now gives

) Y @) @))Io) .

z€{0,1}"

1
VN
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3.2 Minimal Oracle

Using CNOT gates, compare the first and third registers and put the result in the

fourth, obtaining

(X i)+ ().

ze{0,1}"x#f 1 (y)
Now apply(S;)~! on the second and third registers, obtaining
1 -1
() X 210)10)) + (In) 1/ NI )
z€{0,1}" z#f~1(y)

Note that the simulation dfS;) ! givenS; is easy based on the following relation:
(I®R)oSpo(I®R)=(S;)".
whereR = F? is the oarity reflection operator defined by :
R:lj)—1=J).

Taken together, these operations leave the first and third registers unchanged, while
their action on the second and fourth defines an oracle for the search problem.
Applying Grover’s algorithm to this oracle, we obtain the sthtgf~!(y)) after
O(V/N) invocations.

Theorem 55 To simulate the inverse oraclg;—: with a quantum network using

oraclesS; and(S;)!, a total number 0B (v/ V) invocations ofS; are necessary.

Proof. The upper bound of(v/N) is implied by the Grover-based algorithm
just discussed. Ambainis [6] has shown tkHt/N) invocations of the standard
oracleS; are required to invert a general permutatjort

Given Sy and S;-1, Bennett has shown how to simulaté; within classical
reversible computation [12]. Using a quantum version of this construction, we can
establish the following result:

Theorem 56 To simulate the minimal oraclé/; with a quantum network using

oraclesS; and(S;)~!, a total number 0B(v/N) invocations ofS; are necessary.
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3.3 Promise Problems

Proof. Given Sy andS;-1, we can simulaté/; as follows:
M1 = (Sffl)_l OXOSf,

where the swap gat& is defined byX : |a) ® |b) — [b) ® |a). From Theorem
55, S;-1 needsd(v/N) invocations ofS; and(S;)~!. Therefore we get the upper
bound ofO(v/N) for simulation of M.

However this is the optimal simulation. For suppose there is a network which
simulates\/; with less tharf2(+/N) queries. The reversed network simulaiés .
From these two, by our earlier results, we can construct a network that simulates
S;-1 with fewer than2(v/N) queries, which contradicts Theorem 55.

It is worth remarking that we could equally well have carried through our dis-

cussion using variants ¢f; and Py, such as the bitwise acting versions:

e thebit string standardoracle,S}" : |x)[b) — [x)|b @ f(x)).
e thebit string phaseoracle, P : |x)|b) — ¢*™f()P/2|x)[b).

Hereb ¢ x denotes the bitwise sum ma@dof the stringsb andx, andb - x their

inner product moa. Again,S]'?it andP]'?it are equivalent: writing
F=H®H® ---QH,
for the tensor product of Hadamard operators acting on register qubits, we have

( [@F)oSito(I0F ) =Pp",
((I@F )oPo(I®F) =25,

Note also thatsh* = (S5*)~!, PPt = (Pp*)~!. Our results still apply:St* has

essentially the same relation 1d; that.S; does.

3.3 Promise Problems

Intuitively minimal oracles seem at least as strong as standard ones, though it is

not clear how to simulate the latter with the former without also having access to
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3.3 Promise Problems

the inverse oracl€;-1. The question that we consider in this subsection is whether
minimal oracles are more useful than standard ones for some problems. To illustrate
the different behaviour of standard and minimal oracles, we introduce a promise

problem.

Problem 3 Suppose we are given two permutatiamngnd 3, of 7, and a subse$
of Zy. Itis promised that the imageg.S) and3(.S) are either identical or disjoint.

The problem is to determine which.

This problem has been also considered in a different context by Buhrman et al
[20]. For simplicity we takeV = 2", wheren is an integer. We represent elements
x € Zy by computational basis stateswofqubits in the standard way, and write
19) = Y pes ).

Figure 3.2 gives a quantum network with minimal oracles that identifies disjoint
images with probability at leadt/2.

—] >
1§34 — Mo X x
— H
— X
|S> :Mﬁ (i . 4
1y —{] I

Figure 3.2: A quantum circuit for the permutation promise problehd, and/z are mini-

mal oracles for computing the permutatienandg respectively|S) is the superposition of

all the basis stateg{ is the Hadamard transformation, and all the other gates are controlled
swap gates, where circles signify control bits.

Let A = {a(x)|z € S} andB = {f(x)|z € S}. One query to the oracles
M, andMj creates the statés,,_ , |i) and}_, [j) respectively. The state before
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3.3 Promise Problems

applying the controlled gates is:

Y D)@ (o) — 1)

i€A,jeB

After controlled swap gates, the state becomes:

(D Do —=C > 1l

i€A,jEB i€A,jEB

The final Hadamard gate on the ancilla qubit gives:

(D = > o)

i€A,jEB i€A,jEB
HCY B DD I
i€A,jeB i€A,jeB

A |0) outcome shows unambiguously that the images are disjoifit: éutcome
is generated with probability if the images are identical, and with probability
1/2 if the images are disjoint. Repeating the computationimes allows one to
exponentially improve the confidence of the result. If afietrials we get|0) at
least once, we know for certain thatS) # 5(S). When all thekX outcomes were
1), the conclusion that(S) = ((S) has the conditional probability, = 5x
of having been erroneously generated by disjoint input images. Note that
independent of the problem size and decreases exponentially with the number of
repetitions.

Clearly, a naive adaptation of the algorithm to standard oracles does not work.
Replacing)/,, and Mg by S, andSs, and replacing the inputs by) ® |0), results
in output states which are orthogonal if the images are disjoint, but also in general
very nearly orthogonal if the images are identical. Applying a symmetric projection
as above thus almost always fails to distinguish the cases.

By reformulating the above problem, Aaronson showed an exponential gap be-

tween standard and minimal oracle [1].

Problem 4 [1] Suppose we are given two sequencés,= x;...z, andY =
Y1 ---Yn, Such that for each, z;,y; € {1,...,2n}. A query has the forn, ),
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3.3 Promise Problems

whereb € {0,1} andi € {1,...,n}, and produces0, z;) if b = 0 and (1, y;) if
b= 1. SequenceX” andY are both one-to-one; that is;, # x; andy; # y; for all

i # 7 and it is promised that either
(i) X andY are equal as sets (thati$z;,...,z,} = {y1,...,yn}) Or
(i) X andY are far as sets (thatig{zy,...,z,} U{y1,...,yn}| > 1.1n).

The problem is to determine which cases holds.

This problem can be solved with high probability in a constant number of queries
using an minimal oracle, by using a trick similar to that of Watrous [109] for ver-
ifying group non-membership. First, using the oracle, we prepare the uniform su-
perposition

ﬁ{Z} (10) )+ 1) ) -

We then apply a Hadamard gate to the first register, and finally we measure the
first register. IfX andY are equal as sets, then interference occurs between every
(10)|2) , |1} |2)) pair and we observg@) with certainty. But ifX andY are far as
sets, then basis statg$ |z) with no matching1 — b) |z) have probability weight at
least1/10, and hence we obserye) with probability at least /20 [1].

In [1] Aaronson showed that no efficient quantum algorithm using a standard
oracle exists for this problem and proved a lower boung@(@f'/7) for this problem
with standard oracle.

The above promise problems can be generalised to yet another important prob-

lem.

Problem 5 Suppose we are given two graplis, = (V, Ey) and Gy = (14, E»),
represented as sets of vertices and edges in some standard notation. The graph
iIsomorphism (GI) problem is to determine whethgrand G, are isomorphic: that

is, whether there is a bijectiofi : V; — V5 such that( f(u), f(v)) € Es if and only

if (u,v) € Ey. (We assumg/;| = |14, else the problem is trivial.)
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3.3 Promise Problems

Glis a problem which iSNP but not known to b&lP-complete for classical com-
puters, and for which no polynomial time quantum algorithm is currently known.
We are interested in a restricted version (NAGI) of Gl, in which it is given that
and G, are non-automorphic: i.e., they have no non-trivial automorphisms. So far
as we are aware, no polynomial time classical or quantum algorithms are known
for NAGI either. The following observations suggest a possible line of attack in the
guantum case.

First, for any non-automorphic grapi = (V, E), we can define a unitary
map M, that takes permutationsof V' as inputs and outputs the permuted graph
p(G) = (p(V), p(E)), with some standard ordering (e.g. alphabetical) of the ver-
tices and edges, in some standard computational basis representations. That is,
writing |[V| = N, for anyp € Sy 1, Mg maps|p) to |[p(G)). Consider a pair
(G4, G>) of non-automorphic graphs. Given circuits implementiig,, M., we
could input copies of the stat% >_,csy |p) 1o each circuit, and compare the out-
puts|ii) = > g, [p(Gi)). Now, if the graphs are isomorphic, these outputs are
equal; if not, they are orthogonal. These two cases can be distinguished with arbi-
trarily high confidence in polynomial time (as described above), so this would solve
the problem.

Our algorithm for NAGI requires constructing circuits for th&;,, which could
be at least as hard as solving the original problem. On the other hand, it is easy
to devise a circuitSg, which takes two inputslp) and a blank set of states),
and outputgp) and|p(G)). However, simulating a minimal oracle requires expo-
nentially many invocations of a standard oracle. Therefor to solve the NAGI one
should directly construct a polynomial size network defining\énoracle for any
given one-to-one functiorf, which would lead to a polynomial time solution of
NAGI.

1Sy is the set of all permutations dn, 2, ---, N}.
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3.4 Discussion

We have defined the Minimal oracle as an alternative definition for query model.
And we have shown that Minimal oracle is exponentially more powerful than stan-
dard oracle and can solve different promised problems with constant number of
gueries. Constructing a minimal oracle requires exponentially many invocations of
a standard oracle. We have not, however, been able to exclude the possibility of di-
rectly constructing a polynomial size network defining/éi oracle for any given
one-to-one functiorf, which would lead to a polynomial time solution of NAGI.

To finish our discussion on oracle complexity we consider other oracles settings
called states and operators oracle and briefly discuss their relationship with standard

and Minimal oracles.

Definition 57 Suppose a family = {v, }, of states is given, th&tate oracl®g is

defined as

O(5)[2)[0) = |2)|¢z)-

Theunitary oracleOy; for a given familyU = {U,}. of unitary operators, is
defined as

OU)|x)ly) = [)Usly)-

Minimal oracle can be considered to be a sort of unitary oracle. Proposition
43 in Chapter2 shows that a quantum Turing machines with a family of reflection
operators can be efficiently simulated by a quantum Turing machine with a family of
the corresponding states. On the other hand, in [113] Yamakami implicitly suggests

the following fact.

Proposition 58 For any family{|«,)}. of states, there exist a languageand a
polynomial-time quantum Turing machiné with oracle A such thatd/ on inputx
and1' produces the output state’, ) satisfying|||v”, ) — [¢5)|| < 1/1.
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This fact implies that in bounded error setting a quantum Turing machine with
a state oracle can be efficiently simulated by a quantum Turing machine with a
standard oracle. On the other hand, we do not know if quantum Turing machines
with a family of unitary operators can be efficiently simulated by quantum Turing
machine with a language, i.e., quantum Turing machine with standard oracle. If it
is impossible, we will be able to see some complexity theoretical gap between the
general unitary operators and the reflection operators. We showedl/the&innot
be efficiently simulated by usin§;. However, it is open whether a quantum Turing
machine with a standard orac¥e can be efficiently simulated by a quantum Turing
machine with a minimal oracl&/,, where the functiorf and the permutationmay
be different.
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4

Quantum Domain Theory

4.1 Introduction

The first two fundamental models of computation encountered by every computer
scientist are:1) Turing machines introduced by Alan Turing aggdLambda cal-

culus introduced by Alonzo Church. The Turing model is the foundation of von-
Neumann computers, computational complexity analysis, and imperative program-
ming languages. Lambda calculus on the other hand is the proper framework to
study the formal methods and functional programming languages. Both models
have been extensively studied in classical computer science and many other equiv-
alent models of computation have also been introduced to address different aspects
of information processing.

Quantum computation is traditionally studied via quantum circuit models or in
terms of quantum Turing machines, which fit into the first model of computation
[32, 33]. In this approach, one specifies how to build more complicated quantum
processes out of a few basic building blocks. This is a proper foundation to study
the computational complexity and design of new quantum algorithms. It is the
case however that in order to analyse other aspects of quantum computation it is
necessary that alternative models be developed. For example, the one-way quan-

tum computer (a new model in which measurement plays the central role) presents

73
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new aspects of quantum information processing that can not be analysed properly
in other models, such as temporal complexity [89, 88]. As another example, re-
cent developments in quantum programming languages suggest the requirement of
models with higher levels of abstraction [81, 82, 91, 23, 95].

Domain theory provides us with an alternative and more abstract model for com-
putation. Domain theory is traditionally a suitable model for information process-
ing given incompletely specified elements [2, 38]. Furthermore domain theory has
proven to be a proper mathematical framework to describe denotational semantics
for programming languages whilst also being applicable to the study of computabil-
ity of partial functions [2, 38]. In this chapter we outline this model and extend it
to the quantum setting. First we review classical domain theory, and its applica-
tion in the context of programming languages and computability analysis. Subse-
guently, we integrate these ideas and present quantum domain theory. This includes
a rigourous definition of quantum computability for quantum states and operators, a
denotational semantics of quantum computation and a brief review of a recent result

on the application of quantum domain theory to quantum information processing.

4.2 Classical Domain Theory

Domain theory was introduced independently by Scott [94] for the study of deno-
tational semantics and by Ershow [43] as a tool for the study of partial computable
functions. A complete survey of domain theory and its applications can be found in

[2, 38]. Domain Theory has been developed towards the following key applications:

¢ A mathematical theory of computation for the semantics of programming lan-

guages;
e A mathematical theory of computation over partial information;
e An algebraic approach to computability;

In the general picture, a domain may be viewed as a partially ordered set, with
added structures to model information processing. In this picture of computation,

a specific input (output) is represented by a sequence of elements approximating it.
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An algorithm is a function from the input domain to the output domain. In order to
describe this model precisely, first we introduce the standard basic language of the
domain theory.

Definition 59 A partial order sefposet) is a pair( P, C), whereL is a binary rela-

tion on P such that the following conditions are satisfied:
e Reflexibility .Vx € P: z C .
e Transitivity .Vr,y,z€ P: zCy&yCz=2LC 2.
e Anti-symmetry Ve, y € P: zCy&yLCax=x=y.
An elementlL € P is called aleast elemenitf Vx e P: 1 LC .

It is easy to see that if a poset has a least element, then it is unique.

The poset structure appears in many different fields of computer science and
physics and in each context the ordering,is interpreted differently. In this chap-
ter, C refers to a notion of information which will be described more precisely later.
The notion of a sequence of data is captured via the following structures.

Definition 60 A subsetA in a posetP is called achainiff

Ve,ye A: xCy V yCuo.

Assumed is a chain in the poseP. Anupper bounaf A is an element. € P such
that

Vee A: zC I,

Theleast upper boundf A is denoted byl A.

Not every chain in a poset has a least upper bound. Adding this property to a
poset (chain completeness) will result in a structure rich enough to model denota-
tional semantics, as we describe later.
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Definition 61 The partial order sefP is achain-completédCCPO) iff all chainsA
in P have a least upper boundA in P.

We shall be interested in continuous functions:

Definition 62 AssuméP;, ;) and (P, C,) are given posets. A functioh: P, —

P, is calledcontinuousff it is :
e MonotoneVz,y € P, : x Ty y= f(z) Ca f(y).

e It preserves the least upper bounds of the chains, i.e. for all ch&imsP;:
Lo {f(z) | € A} = f(LLA).

For a given functiory, definef* to be the identity function and®*? = fo f".
Now, we can state the fixed-point theorem which is a canonical tool to construct the
mathematical object corresponding to a recursive definition.

Theorem 63 Knaster-Tarski Fixed-Point Theorem Assumef : P — P is a con-

tinuous function on the chain complete poBawith a least element.. Then
Fixf = U{f"(L)[n > 0},

defines an element &f which is the least fixed-point ¢t

Proof First we show thaFixf is well-defined, by showing that the set

{/"(L)|n =0},

is a chain inP. Using induction, we can show that for allandx € P we have
SM(L) E f(x).

e Base stepyf’(L) = L andthereforevz € P: 1 C z.

e Induction step: Assume for alt in P we havef™(Ll) C f"(z), therefore
monotonicity off implies f"+Y (1) C "+ (z).
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Assumen < m and definex = f™ (L), from the above arguments we have
fM(L) C fM(x)sof*(L) C f™(L). Hence{f"(L)|n > 0} is a chain inP.
Next we show thaFix f is indeed a fixed-point of:

f(Fixf) = f{f"(L)|n=0})
= W{s(m(4)In =0}
= Fixf.

The last part is to show thatixf is the least fixed-point. Assume thatis
another fixed-point of’. By definition, L C z, and from continuity off, we have
fM(L) C f*(z) for all n. On the other hand, sinceis a fixed-point for alln, we
haver = f™(x), which then impliesf” L C x for all n. This shows that: is an
upper bound of /(L) |n > 0} and from the definition of least upper bound we
obtainFixf C z. O

A similar structure to a chain in a poset is a directed set:

Definition 64 A non-empty subset C P of a poset P, L) is directediff :

Ve,ye A dz€ A:z,yC 2.

A directed set corresponds to a consistent set of data. We denotd lbiye least

upper boundf a directed set, if it exists.

Definition 65 A partial order set in which every directed subset has a least upper
bound, is called aomain

The notion of approximation in domain theory is described via the following
relation:

Definition 66 Assume that andy belong to a domairD. We say that: is way-
belowy or equivalentlyz approximateg, denoted byr < y, iff for every directed
subsetd C D:

yCUA = da€eA:zCa.
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A constructive structure for a domain can be introduced via basis elements:

Definition 67 A subsefB of the domainD is called abasisiff for eachd € D:
A={be B|bk d} isdirected andd = LUA.

A domain with a basis is called@ntinuousdomain and if the basis is also count-
able the domain is called arrcontinuousdomain.

The following definitions provide a topological structure for a domain.

Definition 68 Anopen setD C D of the Scott topology dP is a set which satisfies
the following conditions:

() zeO&zxzCy=yeO.

(i) For any directed subset of D we havelA € O = dx € A:x € O.
Dually aclosed setC C D is defined with the following conditions:

() zeC&kyCarx=yeC.

(i) For any directed subset C C we have A € C.

In any continuous domain, subsés = {z |b < x} whereb belongs to a given
basis of the domain, forms a basis for the Scott topology.

We denote byD — D’] the set of all continuous functions (with respect to the
Scott topology) between two domaihisand D’, which also forms a domain with

pointwise ordering:
fEyg iff YeeD: f(z)Cg(z).

In summary, in the domain picture of information processing, data are elements
of an w-continuous domairD, and represented as least upper bound of the basis
elements. A program is an element of domain of continuous functjénhsy D]
and can be represented as least upper bound of basis elem@nts+irD]. In what
follows we review the main applications of domain theory in computability analysis
and denotational semantics. As we show in each scenario a suitable domain will be

constructed.
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4.2.1 Computability Analysis

There exist two main approaches to computability analysis in the literature. One
is the machine-oriented framework and the other one is the analysis-oriented ap-
proach [111]. In the former scenario, the computation is performed on a certain
kind of abstract machine. Whereas in the latter, concepts from classical analysis are
extended to develop a computability theory for real numbers or indeed any other
mathematical spaces.

Recently, a new approach to computability has been developed which is based
on domain theory and fits into the aforementioned second framework for com-
putability [112, 48, 17, 40]. In his famous article [94], Scott points out the re-
lationship between continuity versus computability. For most purposes, to detect
whether some construction is computationally feasible - it is sufficient to check that
it is continuous (which is much easier to determine than computability). We de-
scribe briefly how to define computability via domain theory. In the next section we
extend this concept to the quantum setting. We define the notion effectively
givenw-continuous domaiby putting a proper recursive structure on the elements
of a basis of the domain [99, 38].

Definition 69 Assume domai® is w-continuous with a countable basis
B = {boy, b1, bs,---}. We sayD is effectively given with respect t&, if the relation

b, < by, is r.e. (recursively enumerable) tnandm.

The definition of computable elements is:

Definition 70 Assume thatD is effectively given. An element € D is called

computableif the set{n € N|b, < z} isr.e.

We state the following important theorem (without proof) which provides us with a

constructive definition of computability.

Theorem 71 [40] Assume domaim is effectively giveny € D is computable iff it

is the least upper bound of an effective given chain in the basis. iff there exists
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a total recursive functiorf : N — N such that

by0) E by Ebsy -+ and z = | | by
neN
Moreover, the chain can be chosen to becachain, i.e. such thaliy ) < b)) <
bray < -+

Finally the computability of a function is defined as follows.

Definition 72 Assume that domain® and D’ are effectively given with respect to
the basis set® and B’. A continuous functiorf : D — D’ is calledcomputable

if the relationd),, < f(b,) isr.e. inn andm.

4.2.2 Denotational Semantics

The main problem which gave rise to domain theory was that of describing the
meaning of recursive definitions of objects or data-types [94]. An important result
in this direction is the fixed-point theorem (Section 4.2). Traditionally, semantics
studies the meaning of programs, mainly in order to be able to state some correct-
ness properties. The meaning of each phrase in a program is the computation that it
describes. There are two main directions in the area of semantics of programming

languages that differ in the eras they are based on:

e Operational Semantics, basically uses infinite automata, and programs are

studied in terms of the steps or operations by which each program is executed.

¢ Denotational Semantics, where programs are interpreted as mathematical

functions.

Denotational semantics was developed in the eErfy)s by Strachey and Scott
[93]. They aimed to place the semantics of programming languages on a purely
mathematical basis. Denotational semantics assigns a mathematical function not
only to a complete program but also to every phrase in the language. This approach
has important benefits such as the ability of predicting the behaviour of each pro-
gram without actually executing it on a computer or reasoning mathematically about

programs, for example to prove that one program is equivalent to another.
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In this subsection we review a denotational semantics introduced by Kozen for
probabilistic computation [74]. This framework will be the basis of our approach to
guantum semantics. We will show that quantum computation over density matrices
with completely positive maps, has a similar semantical structure as probabilistic
computation over random variables. To this end first we present some standard

basic definitions for vector spaces [16, 74].
Definition 73 A subsefP in a vector spacé&V is calledpositive coneff it satisfies

the following conditions:

Vz,y € P and positive scalarg, b : ax + by € P

VeeP:x,—xeP=2=0.
P induces a partial order ov with the following relation:
xCpy iff y—zeP.

A similar structure to a domain where every directed set has a least upper bound
Is a lattice where every pair of elements has a least upper bound. Vector lattices (see
below) are the main mathematical structure of the Kozen’s denotational semantics

for probabilistic computation.

Definition 74 LetV be a normed vector space aldC V a positive cone(V, P)
is called avector latticeff every pairz,y € V has aCp-least upper bound ifVv.
A vector lattice is calleadtonditionally completef every set of elements &f with

an Cp-upper bound has a least upper bound.

To partially order a measurable space we will consider Banach lattices.

Definition 75 Assume thaB is a normed vector space with notfr|, if

(B, P, |.]|) is both a Banach space and vector lattice such that:
llz]]| = ll=| and Vaz,y € P:azCpy= [z <yl

thenB is called aBanach lattice
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In the semantics introduced by Kozen for probabilistic computation, programs
are interpreted as continuous linear operators on Banach space of distributions [74].
In this framework one could work only with the joint distribution of the program
variables instead of dealing directly with variables. Any simple progPamaps the
input distributiong: to the output distributio (). In his paper Kozen has consid-
ered a probabilistic WHILE programming language over the variables -, z,,.
Syntactically, there are five types of statements in the language described in the

following (from [74]).

Core syntax of probabilistic WHILE:

e simple assignment: z; := f(z1,---,x,), Wheref : X" — X is a measur-

able function.
e random assignment:z; := random.
e composition: S;T.
e conditional: ifBthenSelseT.
e while loop: whileBdoS.

Let (X, M) be a measurable space andBet= B(X™, M") be the set of all
measures on the cartesian prodUkt’, /™). ThenB consists of all possible joint
distributions of the program variables, z», - - -, x,,, plus all their linear combina-
tions. LetP denote the set of all positive measures &rdto be the total variation
norm then(B, P, ||.||) is a conditionally complete Banach lattice [74].

Every programP will map a probability distribution into a subprobability mea-
sure. This can be extended uniquely to a linear transformati® ++ B. More-
over, this extension will bg.||-bounded and therefore continuous. Thus, each pro-
gram will define a continuous linear operatoBn— B [74].

The spacd’ of operators ilB — B forms a Banach space which is condition-

ally complete. The partial order d&' is defined as follows:

SCT iff S(u)TT(n) forall peP.
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Programs will be interpreted as elements of this space. In what follows, we present

the semantics of the probabilistic WHILE programming language introduced above.

e simple assignmentlf P is the program &; := f(xy,---,x,)" where f :
X" — X is a measurable function, then the meanind’ofl P, is the linear
operatorP : B — B such that:

P(p)=po F7H,
wherefl" : X™® — X" is the measurable function

F(alv"'aan): (ala'"aa’i—laf(ala"'7an)7ai+17"'an)'

Sincef is measurable, so iB, thusy o F'~! is indeed a measure.

e random assignmentf P is the program %; := random” then the meaning
of P, [ P, is the linear operataP : B — B such that:

P(p)(By X -+ x Bp) = p(By x -+, By, X, Biyy, -+ Bu)p(B;)

wherep is an arbitrary fixed distribution.

e composition:The meaning of the progrant* 7" is the functional composi-
tion of operatord 77 o [S].

e conditional: Let up denote the measunes(A) = u(A N B). The condi-
tional test checks the membershipaat - - -, x,, in B, which will occur with
probability .(B) and hence5 will be executed on the conditional probabil-
ity distribution pp/u(B). Similarly, with probability.(—B) the progranil’
will be executed onu_z/u(—B). Formally, the semantics of the program
“if BthenS elsel” is the linear operatoP : B — B such that:

A (B)S(un/n(B))(A) + u(~B)T(j1-p/p(~B))(A)
— (S(us) + T(H-8))(A).
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which can be written aSoep+ 7T oe.p Whereey is the operatoes (i) = pup

and+- is addition inB’.

¢ while loop: The meaning of the program “whilg do.S” is equivalent to the

program
if =B thenI elseS;while Bdo S,
therefore the meaning of a “while statement” must be a solution of
W=e.g+WoPoep.

Using well established techniques (which we will see later in this chapter) one
can solve the above equation to derive the following solution. The meaning of
a “while statement” is the fixed-point of the affine transformatiarB’ — B’
defined by

T(W)=e.p+WoSoeg,

which is equal to

4.3 Quantum Setting

In this section we present some applications of domain theory in the framework of
guantum computation. In the first subsection we study the domain computability for
quantum computation. Subsequently a denotational semantics for quantum compu-
tation is given. Finally we review recent work on information aspects of quantum
domain theory by Coecke and Martin [31]. By introducing a domain framework for
guantum computation we aim to address different aspects of information processing

which has not yet been studied in other existing models of quantum computation.
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4.3.1 Computability Analysis

The Church-Turing thesis is about classical computability, (i.e. the computability
which is defined based on a computing machine which obeys classical mechan-
ics). Hence, it might be thought that quantum mechanical computing can violate
the Church-Turing thesis. However, Deutsch [32] and the Jozsa [66] discussed this
problem and showed that the class of functions computable by a deterministic quan-
tum Turing machine is equal to the class of recursive functions (computable by a
classical Turing machine). Ozawa extended this argument to the probabilistic quan-
tum Turing machine [83]. He also distinguished the notation of measurability from
computability to answer the problem that has been alleged by Nielsen in [78].

Apart from these few discussions, there have been no further attempts in this
direction. We believe that, by introducing a rigourous framework for quantum com-
putability, we can address more interesting questions. Furthermore, quantum do-
main theory provides us with a topological structure for quantum computation that
can be useful for the study in other fields of quantum computation.

To develop a computational model to analyse quantum computability, it would
be enough to consider a model for a Hilbert space. Different effective structures for
metric spaces can be found in the literature. We use the domain of the closed balls
[112, 39] to introduce a model for quantum pure states and the power domain of the
former domain [64, 38, 76] will capture the quantum mixed states. It is important
to emphasise main definitions and results of this subsection have already appeared
in [39, 38] under the theory of computability for Metric spaces. We rephrase these
results in order to suit our purposes of defining a mathematical foundation for quan-

tum computability.
Pure quantum states

A standard way to construct a partially ordered set for a given metric space
(X,d) is based on ordering of the set of closed balls [58]. Define a closed ball
C'(z,r) of given metric spacéeX, d) with z € X andr € R to be the following set:

Clz,r)={y € X |d(z,y) <r}.
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The Hilbert spacé{ of the quantum pure state is a metric space by virtue of the
metric induced by the standard scalar product. Denote the poset of all closed balls
of H by C'H with the following partial order:

C(lg),r) EC([9),5) it C(lg),r) 2 C(|¥), ).

This relation reflects a natural notion of informatiati(|¢), r) C C(|¢), s) can be
read as the statement th&b), ) has less information thaf)), s). The quantum
pure staté¢) € H can be identified with the maximal closed ball|¢),0) € C'H,
i.e. the maximal element of the posgt{ is in one-to-one correspondence with
The following results from [39] prove that the pogét{ has the required structure

for the foundation of a computational model.

Theorem 76 [39] Let B be a dense subset of a separable Hilbert splceThen
B x QT is a basis of C'"H whereQ™ is the set of all non-negative rational numbers.

There are many different choices for a dense subsét.ofAny universal set
of quantum gates (Chaptér Subsection.3.2) provides us with a different dense
subset of quantum states of a Hilbert spateTo see this fact consider a discrete
set of universal quantum gateS,(e.g. Hadamard + Phase + CNOTr#8 Rota-
tion), therefore any unitary operator @t can be approximated by a combination
of elements inS. In other word a universal set of gates is a dense subset of the set
of all unitary operators ofi{. Denote by< S > the set of all finite combinations of

elements of5. The following lemma gives a dense subsetf
Lemma 77 The image okS> on state|0) € H is a dense subset &i.

Proof Assume that«) is an arbitrary quantum state iH. Consider a unitary
operatorUU such that/|0) = |¢). From the universality of we derive that/ can
be approximated by a sequence of elememnts)s,---,V, in S. The following

sequence of the states
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belongs to the image of S > on |0) and approximateg)). This finishes the
proof

Theorem 78 [39] The poset of the closed balls of a separable Hilbert space, or-

dered by reversed inclusion, is ancontinuous domain.

It is easy to see that the way-below relation is nothing but

C(lo),r) < ([¢),s) it C(l9), ) D C([¥),s).

The embedding of{ into C'H is defined with the following function:

ep: H — CH
l9) — (l9),0).

Clearly, the elements afH* = {(|¢),0) | |¢) € H} are the maximal elements of
C'H. Following the definitions of Subsection 4.2, we can introduce a topological
structure forC'H. It is easy to check that for any given elemépt), r) € C'H we
have:

ep (1(1¢).7)) = O(I¢). 7).

whereO(|¢), r) is the open ball with centr)) and radius'. The subset$(|¢), )
form a basis for the Scott topology 61, while the open ball®)(|¢), r) are a basis
for metric topology orfH. Hencep is a topological embedding, which mak&s
homomorphic to the subspace of maximal elementsat

Thew-continuity of C’H introduces an effective structure along the lines of Sub-
section 4.2.1. The homomorphism betw&éand maximal elements 6fH derives
an effective structure fo{ and hence it provides a computational framework for
H. In a similar way to the Subsection 4.2.1 we can define a computable pure state

as follows.

Definition 79 A quantum pure statg)) is calledcomputableif its domain image
ep(|1)) = (1), 0) is computable irCH, i.e. iff the sef{n € N|b, < (|1),0)} is
re. (where{b, } are elements of the basts ).
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Mixed quantum states

As we explained in Chaptelr, there exists a correspondence between density
matrices and probability measures sh(Theorem12). Therefore, to present a
computational framework for mixed states, it is enough to construct such a frame-
work for probability measures oK. We use the following notations and results
from [56, 38, 5, 76].

The domain of probability measures will be defined in terms of continuous valu-
ation functions. A continuous valuation function is a finite measure which is defined

on open subsets of a topological space [16, 57, 38].

Definition 80 Assume thak is a topological space. A functianfrom open sets
of X to non-negative real numbéeR ™, is called acontinuous valuatiofunction iff

the following conditions are satisfied:
e Strictnessy()) = 0;
e Monotonicity. A C B = v(A) < v(B);
e Modularity. v(AU B) + v(AN B) = v(A) + v(B);

e Continuity. whenevef is a directed subset of open sets (with respeci o
v(UZ) = supyer v(A).

A continuous valuation on an-continuous domain is a continuous valuation on its

Scott topology.

Definition 81 [64] Assume thaiX is a topological space. Tharobabilistic power
domain PX of X consists of all continuous valuatiomson X with v(X) < 1,

ordered pointwise, i.e.

wC v iff u(O) <v(O) forall open sets inX .

The simple valuation functions provide a basis for the probabilistic power do-

main.

88



4.3 Quantum Setting

Definition 82 [64] For any pointz € X the point valuation 4., is defined as fol-

lows:

5.(0) = 1 ifzeO
: 0 ifxgO

A finite linear combination of point valuations i.€: , r;d,, with z; € X and

positive rational numbers; satisfying) ., r; < 1, is called asimple valuation

Theorem 83 [64] The probabilistic power domain of an-continuous domain is

alsow-continuous with a basis of simple valuation.

Now, we can introduce the domain of quantum mixed states. The set of all
closed subspaces #f is thes-algebra, M, of the measurable sets. Lef(H) de-
note the set of all probability measureskinBased on Gleason’s Theorem (Chapter
1, Theorem12), a mixed state can be considered to be an elemeM @f). We
embedM (H) into the probabilistic power domaiRCH of the closed ball domain
C'H, which forms anu-continuous domain.

The maximal element aPCH is the set of all valuationg such that:
v(0) =1 forall open subsetsO € CH*.
The embedding oM (H) into PC'H is defined with the following function:

€A{ZM(H) — PCH

g poep .

The following result from [38] provides the correspondence betWwdér ) and
PCH™:

Theorem 84 [38] The spaceM (H) is homomorphic with the space of maximal
elements of the-continuous domai?C’H. These maximal elements are charac-
terised byv(C'H"™) = 1. Every mixed state o can be obtained via this homo-
morphism as the least upper bound of an increasing chain of simple valuations on
CH.
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Similarly to the case of pure states, we define the computability of a mixed state
via the computational framework ¢tCH.

Definition 85 A quantum mixed stateis calledcomputableif its corresponding
measuregu, € M(H) is computable i.e. if the domain element(.) is computable
in PCH, i.e. iff the sef{n € N|b, < epn(n)} isre. (where{b,} are elements of
the basisBpcy).

The process of quantum computation over a pure state is described with a uni-
tary operator, and over a mixed state is described with a CP map. As we explained
before, in a domain-picture of computation, programs are functions from the do-
main of the input to the domain of the output. The set of all continuous functions
forms the domain of operators. This is exactly the same in the case of quantum
computation.

Unitary Operators

Following the notation of Subsection 4.2 we denote|@{ — CH|, the do-
main of the all continuous functions @ri+ with pointwise ordering. Every unitary
operatotU : H — ‘H has a Scott-continuous extension to the domain of the closed
ball C'H, i.e. there exists a Scott-continuous functiétin [CH — CH] such that

U(C(|¢),0)) = C(Ulg),0) forall [¢) e H,
and it is explicitly given by
U(C(l¢),r) = C(U¢),r).

The following lemma shows that tHé is well-defined.

Lemma 86 LetU to be a unitary operator oft{. The extension functidi (defined

above), maps a closed ball ¥+ to another closed ball.

Proof Assume the closed ball(|¢), r) is given, then by applying we obtain the
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following set:

U(C(16),m) = {Ul¥) : [¥) € C(lg). )}

U is a unitary operator therefore the angle and distance between vedtd(igin)
and also their length under above transformation do not change and hence the re-

sulting set is another closed ball @. O

We define the computability of a unitary function via domain theory with:

Definition 87 A unitary functionl : H — H is computabléff its extension[J, is

computable iV : H — H (in the terms of Subsection 4.2.1).

CP Maps

For simplicity, we denote b¥), the corresponding operator for a given measure

1 which is derived from Theorem 12:
Vu 3T : p(A) = Tr(T'P4) for all closed subspaces. .

A CP mapA is an operator oveB(H) and can also be considered as a function
in M(H) — M(H) (from Gleason’s Theorem). Denote ByC'H — PCH| the
domain of all continuous functions dAC’H (with pointwise ordering).

Every CP mapA : M(H) — M(H) has a Scott-continuous extension to the
domain of[PCH — PCH|, i.e. there exists a Scott-continuous functidne

[PCH — PCH] such that for every probability measyre= M (H) we have:

The extension functioA for a continuous valuation functione PC'H is explicitly
given as follows. For a Scott open sub&kin C'H define:

A(v)(0) = Tr(Taw) P<o>) ,
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where< O > is the closed subspace &f spanned by vectors i@?. The following

lemma shows that the above definition is well-defined:

Lemma 88 Any CP mapA on M(H), maps a continuous valuation function to

another continuous valuation function.

Proof Assumev is a continuous valuation, we shai(v) is also a continuous
valuation.

e StrictnessA(v)(0) = Tr(Taw)P<p>) = 0.
e Monotonicity. LetO C O’ then
A)(0) = Tr(Txp)P<o0>)

< Te(TawyPeors)
= A(v)(0).

e Modularity.

Aw)(OUO) + Aw)(ONO)
= Tr(Taw)Pcovors) + Tr(Taw)Peonors)
= Tr(Taw)P<os) + Tr(Taw)Por>)
— AW)(0) + AW)(0).

e Continuity. LetZ be a directed subset of open sets

A(V)(UI) = Tr(Taw)Pez>)
= sup Tr(TawyP<o>)
oeT

= supA(v)(0).
o€l

We define the computability of a CP map function via domain theory with:
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Definition 89 A CP mapA : M(H) — M(H) is computable iff its extensioA, is
computable inPC'H — PCH).

Quantum Measurements

At the end of a computation a measurement operator will be applied. A mea-
surement can be viewed as a CP map which takes a density matrix (the final state)
to another density matrix (the probabilistic mixture of the outcomes).

Assumel,, is a collection of measurement operators. The corresponding mea-

surement of this collection can be considered as a CP map{V¢ :

M: B(H) — B(H)
M p M,

P Te(MbM,.p)

Hence, the extension function and computability can be also defined exactly in the
same way that we defined before for a given CP map.

4.3.2 Denotational Semantics

In this subsection we present a denotational semantics for quantum computation
using domain theory, which could be considered as a foundation for designing a
functional programming language for quantum computation. The recent literature
contains several proposals for quantum programming languages. The first contribu-
tion in this direction is Knill's paper on the QRAM model [41]. The other attempts
to define a true quantum programming language are two imperative languages. The
first approach byOmer [81, 82] has a C-like syntax, while a second proposal by
Sanders and Zuliani [91] is based on Dijkstra’s guarded-command language. A
similar approach to the work of this subsection has been developed independently
by Selinger [95]. He has presented the first functional programming language and
discussed the denotational semantics of his proposed language. Our work is based
on the Kozen’s semantics for probabilistic computation [74].

We aim to develop a denotational semantics for a basic programming language,

called Quantum WHILE. In this approach, we show how to define the mathemat-
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ical object corresponding to the language constructors. We will consider a simple

guantum computational machine with quantum memory registers. To develop the

proper foundation for quantum semantics, in the most general setting, we consider
density matrices and CP maps. Aharanov, Kitaev and Nisan in [4] introduced the

first computational model based on mixed state where possible operators are rep-
resented by CP maps. We show in this subsection that the same structure of the
classical probabilistic semantics which has been introduced by Kozen [74] can also

capture the semantics of quantum computation.

To follow the procedure introduced by Kozen [74], we define a measurable space
(X", M™) with the set of all measurd3 = B(H; ® - - - ® H,,, M™) such that the
set of all probability measures in this space is in correspondence with the set of all
density matrices ovel; ® - - - ® H,. In this way, input to a quantum prograhis
represented by a probability measyre B which is the same as the corresponding
density matrix of all input pure statés;) @ - - ® |¢p,) INH; @ - - - @ H,,.

LetH = H; ® - - - ® 'H,, denote the Hilbert space spanned by all the quantum
variables which are involved in the computation. Defitigo be the set of all unit
vectors inH; and X to be the set of all unit vectors i. The set of all closed
subspaces of{ is thec-algebra, M, of the measurable sets. Gleason’s Theorem
determines all measures ovl (Chapterl, Theorem12) and shows a correspon-
dence between operators#{H) and measures oM", we use interchangeably
any of the two notions of measure and operator. In the same way as the classical
case, the set of positive measures (positive self-adjoint operd®ors) B is the
positive cone of the measure spd8e The definition of ordering of measures is

defined as follows

wCviff v—peP.

The spaceaB’ of all CP maps inB(H) — B(H) forms a Banach space (under
the same definition of Subsection 4.2.2). The partial ordering of the set of all CP

maps is defined as follows:

A< B iff A(p) < B(p) forall peP.
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In semantics of the general setting for guantum computation, each program will
be represented by a CP map. For simplicity, in what follows the symb@fers
to both a program and the corresponding CP map. A quantum programaps
distributionsy on (X', M) to distributionP () on (X, M), or equivalently, maps a
density matrixu on H to the density matrix ().

For the completeness of the discussion we will give the full semantics of the
guantum WHILE language in the general setting. The syntax of this Language is
the same as the syntax of the classical probabilistic WHILE language (Subsection
4.2.2). The only difference is that instead of “random assignment” we have “quan-

tum measurement”.

e simple assignmentlf P is the program &; := f(xy,---,x,)” wWhere f :
X — X, is a measurable function, then the meaning’a$ the following CP

map:

po— Pu)
P(p) = poF™,

wherefF' : X — X is the measurable function
F(a'lv"'aan) = (ab"'aaiaf(ab”'7an)7ai+17"'an)'

e measurement assignmerif P is the program #; := measure” then the

meaning ofP is the following CP map:

po— P
P(p)(A) = Tr(p'Pa).

wherey' is a fixed distribution (density matrix) corresponding to the measure-
ment process. To be more precise, assume that the colldétigr} describes
the quantum measurement that has been applied atthtlariable, then

g = ([®"'®Mm®"'®[)Tu([@---@M&@...@[)
T((I® M@ - Q)(I® - @M,®---®I)Tu)
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4.4 Information Theory

e composition The meaning of the progrant* 7™ is the functional composi-
tion of the CP map§ andS, T o S.

e conditional The semantics of the program #thenS elsel™ is the CP map
Soeg+Toep,

whereeg is the CP mapg (1) = pp.

¢ while loop The meaning of the program “whilg@ doS” is the fixed-point of

the affine transformation : B' — B’ defined by
TW)=e.p+WoSoep,

which is equal to

7(0) = Z e.po(Soep)t.

0<k<n—1

In order to present a complete picture of the applications of quantum domain
theory, in the next section we briefly review a domain framework for information

theory.

4.4 Information Theory

Recently a new application of domain theory has been introduced by Coecke and
Martin [31]. One of their main results was to show a domain formulation of ex-
isting results from information theory. They have shown the Shannon entropy and
Von Neumann entropy can be captured as Scott continuous functions over the cor-
responding domain. Here we briefly review their work in order to give a complete
picture of quantum domain theory. All the definitions and results in this subsection
are taken from [31].

Coecke and Martin have constructed a domain structure over mixed states such

that pure sates are the maximal elements. They first order classical states recursively
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4.4 Information Theory

in terms of Bayesian order.

Definition 90 Letn > 2. Theclassical stateare

A" = {xe 0,1]" | ixi—l}

A classical stater € A" is pure whenz; = 1 for somei € 1,---,n. Denote by

{e;|i=1,---,n} the set of all pure states.

A classical state i € A™ can be interpreted as the information that an observer
has about the results of an event in whichdifferent outcomes are possible i.e.
x; indicates the probability of obtaining the outcomelf we know x and after
measuring we determine that outcoirie not possible, our knowledge improves to

1

pl(x) = 1 — i[}'(ml’ oy Lg—1y Lig1, 0 0 71:n> € An—17
)

wherep;(z) is obtained first by removing; from = and then reorganising. The

partial functiong;:
Pt A" —~ A"

with Dom(p;) = A™ \ e;, are called théBayesian projectionsThe classical states

are partially ordered with the following recursive relation.

Definition 91 Assume that andy are in A™; we writex Cp y iff:
Vi: x,y € Dom(p;) = pi(x) Ep pi(y) -
For z,y € A? we have:
rCpy iff (yy <z <1/2)or (1/2< 21 <yy).

The above relation is called tHgayesian order

The Bayesian order leads to a domain of classical states where the pure states

are the maximal elements.
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4.4 Information Theory

Theorem 92 [31] (A", Cp) is a domain with the following set of maximal ele-

ments:

{e;]1<i<n},

and least element = (1/n,---,1/n).

Coecke and Martin have generalised the idea of the Bayesian order to the quan-
tum setting using the spectral order. Informally speaking, to compare the amount
of information of two given mixed states it is enough to consider an observable and
measure both mixed states. The result of measurements are two classical states and
can be ordered via the Bayesian order. Following the notation of [31], we denote
by Q" the set of all density matrices dr™. For simplicity we also consider the
following definition.

Definition 93 Assume tha© is a non-degenerate observable ®fft i.e. it hasn
different eigenvalues with orthogonal eigenvector spades! ,. For a density

matrix p on H" we define:

Spec(p|O) = (Tx(Py - p), -+, Tr(P, - p)) € A"

Definition 94 Letn > 2, for quantum statep,c € ", we havep Cg o iff there
exists a non-degenerate observable H" — H" such that[p, O] = [0,0] = 0
and

Spec(p|O) Cp Spec(a|O) .
This is called thespectral order

Finally the domain of the quantum states can be defined with:

Theorem 95 [31] (2", Cg) is a domain with the following set of pure states as the

maximal elements and least element= [ /n, where! is the identity matrix.
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4.4 Information Theory

The final part of the Coecke and Martin’s work that we review here is concerned
with measuring of information content. To this end we need the following definition
from [31].

Definition 96 A Scott continuous map : D — [0, c0)*! on a domain is said to
measure the content ofe D if

xelU = (Je>0)z € p(x)CU,

whenevel is Scott open iD and

pe(z) ={y € Dly E z & |p(x) — p(y)| <€}
The map: measuresX if it measures the content of eache X.

A map u is a measure of content if it distinguishes the maximal (in content)
elements.

Definition 97 A measuremernis a Scott continuous map : D — [0,00)* on a
domain if it measures the sét € D | u(x) = 0}.

The following results from [31] present the domain picture of the well-known
functions, the Shannon entropy and the von Neumann entropy. As we will discuss
in the next chapter this can provide us with a uniform framework for measuring the
entanglement.

Theorem 98 [31] Shannon entropy

p(x) = — Z x;log(x;) ,

is @ measurement of typ®s” — [0, co)*.
Von Neumann entropy

o(p) = —Tr(plg(p),

1The set0, oo)* is the domain of nonnegative real numbers in their opposite order.
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is a measurement of ty& — [0, co0)*.

4.5 Discussions

In this chapter, we have discussed a new framework for quantum computation via
guantum domain theory. Using domain theory a rigourous framework for quantum
computability has been introduced. Although it is known that the class of quan-
tum computable functions is same as the class of classical computable functions
(Church-Turing Principle [32, 66, 83]), we believe that by considering a proper
framework for quantum computability we may be able to address new and interest-
ing questions. We also presented a topological structure for quantum computation
using domain theory, which may prove to be useful in other aspects of theoret-
ical quantum computation. Furthermore we introduced a denotational semantics
for quantum computation and we showed that quantum computation over density
matrices with completely positive maps, has a similar semantical structure as prob-
abilistic computation over random variables. This could be considered as a foun-
dation for designing a functional programming language for quantum computation.
Finally we reviewed a domain structure for quantum information theory where the
proposed partial order has interesting connections with theory of entanglement [31].
We believe a domain theoretical approach to the theory of entanglement manipula-

tion may provide us with a uniform framework for measuring entanglement.
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Axiomatic Information Theory

5.1 Introduction

In this chapter we will present a general mathematical formalism which, we believe,
can describe key information processing aspects based on different physical theo-
ries. This formulation was originally introduced by Giles for the purpose of giving

a rigourous mathematical framework for classical thermodynamics [49]. In partic-
ular, he wanted to formalise the statement of the Second Law of thermodynamics
and derive a unique quantity, called entropy, which orders thermodynamical states
according to their mutual accessability.

There are many different ways of stating the Second Law. Caratheodory [24]
restated the Second Law by saying that in the neighbourhood of any state there exist
states which are adiabatically inaccessible from it. This allowed him to derive an
entropy function which is able to introduce ordering into the set of physical states.
The Second Law thus tells us that adiabatic processes cannot decrease entropy of
the system itself. The question, then, is whether entropy is the only such function.
To answer this question, however, thermodynamics needed first to be put onto a

more secure mathematical foundation. In the words of Caratheodory himself:

“What Thermodynamics needs is the establishment of logical order, essentially an

101
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intellectual cleanup. This is a problem for a mathematician. The fundamental ideas
and concepts have been introduced by physicists long ago and a mathematician
need not worry about’it

The first such formalisation came from Gilesli®64 [49] and was recently ex-
tended by Lieb and Yngvson [75]. Giles’ mathematical formalism can be presented
in a way which is completely divorced from any underlying physical basis, and this
is what potentially allows us to apply it to scenarios other than thermodynamics.
We first review Giles’ original application to thermodynamics, and then show that
the same formalism can be interpreted to capture entanglement manipulations in
guantum information processing [107, 106]. This allows us to prove in a novel way
the uniqueness of the measure of entanglement for pure bipartite states. Since clas-
sical information processing can be seen as a special case of quantum information
processing, this formalism will also allow us to derive the classical (Shannon) en-
tropy [96] within the same framework, but from the dynamical perspective. This
highlights the close relationship between information processing and statistical me-
chanics in general as we discuss at the end of the chapter, along with other open

problems in this direction.

5.2 Formal Theory

An ideal physical theory should consist of two independent parts: a mathematical
theory and a set of rules of interpretation of various mathematical objects involved
in the theory. By formalising a physical theory in such a way as to divorce it from the
physical interpretation, it is possible to derive a mathematical structure that may be
useful in a completely different physical setting to the original one. We give a brief
summary of Giles’ mathematical theory [49] and then describe how one can capture
thermodynamics and entanglement manipulations with the axioms introduced in
this section. The physical motivation behind the axioms will then become clearer.
We study a non-empty s&, whose elements are called states, in which two
operations,4+ and —, are defined. The goal is to derive a unique ordering over

the states with some particular conditions. In what follows, states are denoted by
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a,b,c,...:
Axioms 1-5
(1) The operationt is associative and commutative.
(2) For all statex we have: a — a.
(3) For all states:, bandcwe have:a —- b & b —c=a — c.
(4) For all states, bandc we have:a — b<=a+c— b+ c.

(5) For all states:, bandc we have:a — b & a —c=b— ¢ or ¢ —b.

Definition 99 A processs an ordered pair of state§:, b). The set of all processes
is denoted byP.

We extend definitions of and— to P as follows :

(a,b) + (cd)=(atcb+d)
(a,b) — (c,d)<=a+d—b+c.
For simplicity, we also define a relatian overS.

Definition 100 Given states andb we writea C b (and say that: is containedn

b), if there exists a positive integerand a state: such that

na+c—nb or nb—na-+c .

Informally, the above definition means that a staiesmaller tham if « requires the
help of another stateto be converted to or derived frobn Now we can introduce
an important class of states, internal states, which server as yardstick for ordering

the states.

Definition 101 A statee is aninternal state if, given any state, there exists a

positive integern such thate C ne.
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5.2 Formal Theory

This definition introduces a reference state, which is the one that can contain any
other physical state given sufficiently many copies of it. The concept of the internal

state is necessary to give a basic metric unit to quantify the physical content of a
state in a unique way (i.e. independent of states). The other important classes of

states are the sets of equilibrium and anti-equilibrium states.

Definition 102 A statea is anequilibrium state if there exists no stabesuch that
a — bandb 4 a. A statex is an anti-equilibrium state if there exists no state

such thate — =z andz /4 a.

Now we can present the remaining axioms of the formal theory:

Axioms 6-8
(6) There exists an internal state.

(7) Given a processy, if there exists a state such that for any positive real
numbere there exists positive integens, n and states, y such thatn/n < e,

xr C me,y C me, and(z,y) + na — 0 thena — 0.

(8) Given a state, there exists an anti-equilibrium statesuch thatr — a. If

andy anti-equilibrium states then so+ y.
To order the states we define the following function.

Definition 103 A real-valued functionf, is anentropyfunction, if it satisfies the

following properties for all stateg andb:
() E(a+b)=E(a)+ E(D).
(i) a = b&b— a<= E(a) = E(b.
(i) a > b& b+ a<= E(a) < E(D).
(iv) For every anti-equilibrium state we haveF(x) = 0.

To present the uniqueness theorem for entropy functions we need to define the
class of following functions. This notion is important as the entropy function will

be unique up to the addition of this function.
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5.3 Thermodynamics

Definition 104 A real-valued functior) is a component of conterftinction if for

all statesa andb we have:
* Qa+b)=Q(a)+Q(b).
e a — b= Qa) =Q(b).

Definition 105 A real-valued functiorf) is a non-equilibrium component of con-
tentif it satisfies the following properties:

(i) @ is a component of content function.

(i) For every anti-equilibrium state we havel)(z) = 0.

Theorem 106 [49] Let E; be an entropy function. ) is a non-equilibrium com-
ponent of content andl a positive real number thekE; + () is an entropy function.

Moreover, any entropy functiof may be written in this form.

This theorem, proved by Giles, states that the measure of order is unique up to
an affine transformation. With this we complete the formal part of the theory and
turn our attention to the applications. Note that the main point of the formalism is

to give conditions under which we can uniquely order states of a certain set.

5.3 Thermodynamics

In this section, we briefly discuss how the formal model introduced in Section 5.2
describes the structure of thermodynamics. Consider be the set of all thermo-
dynamical states (e.g. a state of a simple gas is defined once its tempé&taiuale
volume V' are known, therefore we can say that= (7,,V,)). The operator
represents the physical operation of considering two systems together. Therefore it
must naturally be associative and commutative. On the other hand, the operator
represents an adiabatic process which is meant to convert different physical states
into each other. Therefore, like any other physical process, it should naturally be
reflective and transitive as in axiordand3.
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Axiom 4 is the first non-intuitive property linking the operatersand—. In the
forward direction it is clear that if statecan be converted intbthen the presence
of another state should not alter this fact, i.e. we can converndc into b andc
by convertingz into b while doing nothing ta. In the backward direction, however,
this axiom is not completely obvious. It says that if a process is possible with the
aid of another state, then we, in fact, do not need this other state for the process.
Thermodynamics deals with macroscopic systems with a large number of degrees
of freedom (subsystems). It is in the “asymptotic” limit that this axiom becomes
more natural.

Finally, axiom5 is the key property which allows us to compare different states
and processes. It says that any two states that are accessible from a third state must
be accessible to each other at least in one direction. Not being able to do so would
lead to states which would be incomparable as there would be no physical way of
connecting them. Thus, a unique way of ordering states would be impossible.

Axiom 6 is necessary if we are to compare contents of different states in a unique
way. Axiom 7 is the most complex axiom in the theory, although it is strongly
motivated by the logic of thermodynamical reasoning. Loosely speaking, it states
that if we can transform into b with an arbitrarily small environmental influence,
then this influence can be ignored. This, in some sense, introduces continuity into
thermodynamical properties. Axiofis self evident in thermodynamics. A more

detailed on physical interpretation of the axioms can be found in Giles’ book [49].

5.4 Entanglement Manipulation

Understanding of entanglement and its characterisation form the cornerstone of the
new and rapidly growing filed of quantum information and computation [67, 105].
We need to know how much entanglement is at our disposal since entanglement is
a form of resource that can enhance information processing [86].

Although a great deal of work has recently been performed in this direction
[61], it is widely acknowledged that we do not have a complete understanding of
even the bipartite entanglement for mixed states. There is a number of measures

to quantify entanglement which apply in different settings and have different prop-
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erties [61]. The consensus, however, is that local operations aided with classical
communication (LOCC) are the key to explaining entanglement [10, 87, 102].

The LOCC maps separate disentangled states from entangled states and thus
introduce adirectionality to entanglement manipulation processes: an entangled
state can always be converted to a disentangled one by LOCC, but not vice versa.

A comparison with thermodynamics will be very helpful at this point. The Sec-
ond Law of thermodynamics tells us which (energy conserving) processes are al-
lowed in nature, without any reference to the underlying physical structure. The
central role is played by adiabatic processes and entropy is used to separate the pos-
sible from the impossible processes according to a very simple principle: if a state
A has more entropy thaR, then there is an adiabatic process to go frBrno A,
but not vice versa.

In order to describe entanglement manipulations [61, 105] within Giles’ for-
mal theory, conside§ to be the set of all quantum bipartite pure states and the
operation+ to be the tensor product. The arrow will be defined in terms of
transformations which convert bipartite states by only using local operations on the
subsystems separately aided with classical communication between the subsystems
(LOCC) [61, 105]. First, we give the definition af in the quantum setting and

then give the precise definition of arrow in the spirit of axidm

Definition 107 We say that a pure stateis containedn a pure stateh, denoted by
a C b, iff there exists an integer and a state: such that either of the following two
cases is valid

) (Ve)(3P € LOCC) : ||8(a®" @ ¢) — b°"|| < ¢
i) (Ve)(3D € LOCC) : [|(b°") — a®" @ c|| < .

In other words, a quantum statas contained within a stateif, with the help of
some other state a can be transformed by LOCC into Now we define what we

mean by a transformation of one quantum state into another.

Definition 108 We say that a pure state can beconvertedinto a pure statep,
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designated as — b, iff

(Ve)(3e)(Vd)(In,m € N, & € LOCC and z,y € S)
suchthatm/n <¢é , * Cme , y C me and

|®(a®" @z) — b @ y|| <e.

Product states act as equilibrium states in the sense that LOCCs cannot create
entanglement out of them and the space of product (disentangled) states is invariant
under LOCCs. Likewise, maximally entangled states act as anti-equilibrium states,
in the sense that LOCCs naturally tend to destroy entanglement and therefore move
away from this set. Now we define an entanglement measure in a similar way that

to an entropy function.

Definition 109 A real-valued functiort’ defined oveS is a called arentanglement

measureif
e For all statea andb we have :E(a ® b) = E(a) + E(b) .
e lfa—0b & b— a,thenE(a) = E(b).
e lfa—0b & b4 a,thenE(a) > E(b).

e E(a) = 1if ais a maximally entangled sate.

Giles’ proof of uniqueness of an ordering function is constructive and can be
found in [49]. In case of entanglement manipulations this leads to a definition for a

measure of entanglement as following:
E(a) = ian{m/n |z, yeS yCe®" &y —a® @1},
mne

wheree is any maximally entangled state.

Our abstract approach to entanglement is different to the existing method where
one looks for a minimal number of conditions for a measure of entanglement that
would single out a unique one [102, 62, 90, 35]. The existing method has a strong

flavour of Shannon’s pioneering approach to information theory [96]. Shannon
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considered functions on the set of probability distribution which would describe
their information content. By introducing three natural conditions that this function
should satisfy he arrived at a uniqgue measure, called the Shannon entropy. These
conditions are remarkably similar to the conditions leading to a unique measure of
entanglement for pure bipartite states [90]. This, of course, is not surprising. It
is well known that the Shannon entropy of the probabilities derived from Schmidt
coefficients in the Schmidt decomposition [92] of a pure bipartite state is a good
measure of entanglement [10].

5.5 Elementary Classical Information

As a very simple realisation of Giles’ theory we comment on how to capture the
most elementary notion of classical information, namely that the information car-
ried by an event happening with probabiljiyis log p. For this, the states are real
numberd) < r < 1, 4 represents multiplication of real numbers, and the arrow is
the relation “less then or equal”. It is very simple to check that all the axioms are
satisfied. Following Giles’ construction, we can derive a unique measure for this
case which is then proportional keg p. An open question now is to find dynamical

processes that naturally lead to this realisation and derive the more general Shannon

entropy— 3, p; log pi.

5.6 Discussion

We show in this chapter that the Giles’ formal theory not only describes the mathe-
matical foundation of thermodynamics but can also describe entanglement manipu-
lations. This approach to uniqueness of measure of entanglement for pure bipartite
states is different to the existing method where one looks for a minimal number
of conditions for a measure to satisfy such that one could single out a unique one
[90, 35].

A natural question to ask is whether the same model can be applied to classical
information theory and derive the classical entropy from the dynamical perspec-

tive, rather than the usual axioms of Shannon [96]. This could be done by defining
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the states to be probability distributions (much like in statistical mechanics, where
these would correspond to occupational probabilities of different energy levels). In
addition, the arrow would be defined by a stochastic map taking one probability
distribution into another one. This is in the same spirit as Penrose’s formulation of
statistical mechanics [85]. However, in order to derive a unique measure, the no-
tion of arrow needs to be generalised to satisfy all the axioms. We believe this can
be done in an asymptotic way by converting multiple copies of the same probabil-
ity distribution with the aid of another (arbitrary) catalyser probability distribution.
This conjecture remains to be proven. This would not only show that there are deep
mathematical connections between thermodynamics, statistical mechanics and in-
formation theory, both classical and quantum, but also that they all in fact arise from

the same mathematical framework presented here.
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