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Abstract

This thesis focuses on two different aspects of quantum computation: quantum

complexity and quantum semantics. In the first part, I study the quantum com-

plexity mainly within the quantum query model. Together with my colleagues, I

introduce a new framework for quantum query complexity, phrased in terms of the

minimal oracle and analyse limits and strengths of this new model in comparison to

their classical and quantum counterparts. Working within the query model I study

quantum one-way functions. I show that in the quantum setting, the problem of the

existence of a quantum one-way permutation can be reduced to the problem of con-

structing polynomial size networks for performing the specific task of the reflection

about a sequence of states. Furthermore, I extend these results to the domain of the

state and operator complexity. I show that if a quantum one-way function exists,

then we can construct a sequence of so called “hard” states with the property that

the reflection operators about those states are efficiently implementable.

In the second part, I study the extension of domain theory to the quantum setting

and develop the semantics of quantum computation. By defining a quantum domain

I introduce a rigourous definition of quantum computability for quantum states and

operators. Furthermore I show that the denotational semantics of quantum compu-

tation has the same semantical structure as the denotational semantics of classical

probabilistic computation introduced by Kozen. This could be considered as a foun-

dation for designing functional programming languages for quantum computation.

Finally, I continue with an abstract mathematical approach to study a general for-

malism for describing entanglement manipulation and introduce a new approach to

derive a unique measure of entanglement for bipartite quantum pure states.
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1

Preliminary Materials

The topic of this thesis lies in the new and rapidly growing field of quantum comput-

ing, which explores connections between physics and computing in general. Quan-

tum information processing is a cross-disciplinary field and is of great importance

from both a fundamental, as well as technological perspective [79]. From the fun-

damental perspective we have deepened our understanding of the relationship be-

tween physics, information and computation in general, and have also gained a

deeper understanding of the fundamental aspects of quantum theory - non-locality

and entanglement in particular [105]. From the technological perspective we have

manipulated larger and larger quantum systems and obtained powerful practical

applications in the domain of communication and cryptography such as the uncon-

ditionally secure quantum cryptography (key exchange) and quantum teleportation

[19, 42, 13].

Historically, the greater potential of the quantum computer was first realised by

Feynman, who noted that quantum systems appear to be exponentially hard to sim-

ulate with classical computers [45]. He speculated that, therefore, quantum com-

puters could potentially be much more powerful than their classical counterparts.

This intuition has been proven to be correct for some tasks, such as factoring large

numbers and searching unstructured databases. Every computer is fundamentally

a physical system, and any computation is just a physical process undergone by
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1.1 Mathematical Structures

this system. Quantum physics is the most accurate way of describing physical sys-

tems and their behaviour in general. Encoding information into quantum systems

and processing it according to the laws of quantum physics results in new features

which do not exist in the classical computation.

Large scale quantum computation is still hypothetical. However, Moore’s law1

predicts that technology will reach the level where the quantum effects become im-

portant in near future. Parallel to this there is a growing effort to build quantum

computers by manipulating larger numbers of quantum systems. Steady progress

has now led to ion trap quantum computers with4 qubits [101], Nuclear Magnetic

Resonance (NMR) schemes with7 qubits [65, 26] and realistic proposals for quan-

tum computing in solid state environments [70]. Simple quantum algorithms such

as the Deutsch-Jozsa algorithm [34] or quantum database search algorithms [53]

have been experimentally demonstrated in NMR schemes and further progress to-

wards higher numbers of qubits (10) seems likely in the foreseeable future.

Either way, we will enter the quantum realm where every aspect of computing,

including storing information, loading and running of programs and reading the

output will be governed by laws of quantum physics which are completely different

from those of classical physics. Therefore there is a great need for theoretical study

of quantum computation. The aim of this thesis is to study the quantum effects on

computational complexity and semantics of computation.

In this chapter we present all the required preliminary materials for this thesis.

First we briefly review the mathematical structures which we will refer to later in

this thesis. Subsequently, we describe the mathematical foundation of quantum

mechanics and finally, we discuss the basis of the theory of quantum computation.

1.1 Mathematical Structures

We will use the notation and terminology of the following books:Measure Theory

by Halmos [55];Probability Theoryby Feller [44] and Chung [27];Linear Analysis

1Gordon Moore, one of the founders of the Intel, observed in mid 1960’s that the memory ca-
pacity of a typical chip doubles roughly every eighteen months while its physical size remains the
same.
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1.1 Mathematical Structures

by Dunford and Schwartz [37]. In addition Thirring [100] is an excellent introduc-

tion toMathematical Physics.

We begin by recollecting the basic definitions and theorems in linear spaces.

1.1.1 Linear Spaces

The linear spaces are the mathematical structure of quantum mechanics as we will

describe in the next section.

Definition 1 A vector spaceover complex numbersC is a setV equipped with a

sum operatorV × V → V : (u, v) 7→ u + v = v + u and a scaler product

V × C→ V : (u, α) 7→ αu such that the following conditions are satisfied:

(i) (V, +) is an Abelian group.

(ii) α1(α2v) = (α1α2)v.

(iii) α(u + v) = αu + αv.

(iv) (α1 + α2)v = α1v + α2v.

(v) 1v = v.

(iv) 1v = v.

A subsetV1 ⊂ V which is also a vector space is called asubspaceof V .

By the axiom of choice, it is always possible to find aHamel basis{eγ}, γ ∈ I,

such that every vector can be written uniquely as

v =
∑

finite

αieγi
, αi ∈ C .

The cardinality ofI is known as thealgebraic dimensionof the space.

Definition 2 A normon a vector spaceV is a map‖‖ : V → R+ such that:

• ‖v‖ = 0 iff v = 0.

10



1.1 Mathematical Structures

• ‖αv‖ = |α|‖v‖ for all scalarsα.

• ‖u + v‖ ≤ ‖u‖+ ‖v‖.

The norm induces a metric onV where the distance betweenu andv is ‖u− v‖. If

V is complete with respect to this metric, thenV is called aBanach space.

Definition 3 A scalar product(or inner product) on a complex vector spaceV is a

map〈 | 〉 : V × V → C such that:

• 〈u|(α1v1 + α2v2)〉 = α1〈u|v1〉+ α2〈u|v2〉.

• 〈u|v〉∗ = 〈v|u〉.

• 〈v|v〉 ≥ 0 with 〈v|v〉 = 0 iff v = 0.

The scalar product induces a norm onV where the‖v‖2 = 〈v|v〉. If V is complete

with respect to this norm, thenV is called aHilbert space.

Remark.

1. It is possible to introduce a smaller basis than the Hamel basis for complete

normed spacesV (e.g. Banach and Hilbert spaces). A set of vectors{eγ},
whereγ ∈ I, is said to betotal whenever the set of its finite linear combina-

tions is dense inV . If I is countable, thenV is separable(as a topological

space).

2. By the axiom of choice, theeγ can even be chosen to be orthonormal in a

Hilbert space. If this has been done andv =
∑

γ∈I cγeγ, cγ = 〈eγ|v〉 then

‖v‖2 =
∑

γ∈I |cγ|2, and the Hilbert space can be considered asL2(I, µ) where

µ assigns every element ofI the measure1. If I is countable, then the Hilbert

space is isomorphic to anl2 space.

Definition 4 A linear mapbetween two vector spacesU andV is a mappingA :

U → V such that:

A(αu1 + βu2) = αA(u1) + βA(u2) for all α, β ∈ C and u1, u2 ∈ V1 .

11



1.1 Mathematical Structures

The set of all linear mapsA : U → V , denoted byL(U, V ), is itself a vector space,

andB(V ) = L(V, V ). The elementsA ∈ L(U, V ) are also calledoperators.

A linear functionalon a vector spaceV is a linear map betweenV andC. The

vector space of all linear functionals onV is called itsdual space, and is denoted

byV ∗.

In a vector spaceV with scalar product〈 | 〉, a natural map betweenV and its

dual spaceV ∗ can be defined as follows. To each vectorv ∈ V associate a map

Av : V → C defined by:

Av(u) = 〈v|u〉 .

1.1.2 Measure and Probability

The following definitions from measure theory are required for the discussion of the

semantics of quantum computation in Chapter4.

A measurable spaceis a pair(X, M) whereX is a set andM is aσ-algebra of

subsets ofX, i.e. M is a Boolean algebra of subsets ofX closed under countable

union. Elements ofM are calledmeasurable setsor eventsand are denoted by

B, C, · · · and¬B denotes the complement ofB in X.

Definition 5 A functionf : (X,M) → (Y,N) is measurableiff for all B ∈ N we

havef−1(B) ∈ M .

Let (Xn,Mn) be a sequence of measurable spaces and let
∏

n Xn be the di-

rect product of theXn with projectionπi :
∏

n Xn → Xi. Thecartesian product
∏

n(Xn,Mn) is the space(
∏

n Xn,M), whereM is the smallestσ-algebra contain-

ing all cylindersπ−1
i (B), B ∈ Mi.

Definition 6 A measureor distributionµ on (X,M) is a function inM → R that

is countably additive, i.e.,µ(∪nBn) =
∑

n µ(Bn) where{Bn} is a countable set of

pairwise disjoint elements ofM .

A measure ispositiveiff ∀B ∈ M : µ(b) ≥ 0. It is a probability measureif it is

positive andµ(X) = 1 and a subprobability measure if it is positive andµ(X) ≤ 1.

12



1.1 Mathematical Structures

If X andY are two measurable spaces andµ andν are measures over them,

then theproductof µ andν, denoted byµ× ν is a measure on the cartesian product

X × Y defined with:

(µ× ν)(B × C) = µ(B)× ν(C) .

Definition 7 Assumeµ is a measure andB ∈ M is given. Theconditional proba-

bility of µ relative toB is defined withµB/µ(B) whereµB(A) = µ(A ∩B).

Every measure can be decomposed into its positive and negative parts: to ev-

ery measureµ there correspond unique positive measuresµ+ andµ− such that for

someB ∈ M we haveµ+ = µB andµ− = −µ¬B. This is called theJordan

decompositionof µ.

Definition 8 Thetotal variationor absolute valueofµ is the measure|µ| = µ++µ−.

Thetotal variation normis a map‖‖ : B → R+ associating with each measureµ

the non-negative real number‖µ‖ = |µ|(X).

A measure space(X,M, µ) is a measurable space equipped with a measure. A

probability spaceis a measure space(X, M, µ) whereµ is a probability measure.

A random variableis a partial measurable function whose domain is a probability

space.

A random variablex : (X, M, µ) → (Y,N) induces a subprobability measure

µ ◦ x−1 on (Y,N):

µ ◦ x−1(B) = µ(x−1(B)) .

If x is total thenµ ◦x−1 is a probability measure. When the domain ofx is clear we

denote the value ofµ ◦ x−1(A) by Prob(x ∈ A).

A random vector is a list of random variables

xi : (X, M, µ) → (Yi, Ni)

with the same domain. Equivalently, arandom vectoris a random variable from

(X, M, µ) into the cartesian product
∏

i(Yi, Ni).
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1.2 Quantum Mechanics

Definition 9 The joint distributionof the random variablesx = x1, x2, · · · is the

subprobability measureµ ◦ x−1 on
∏

i(Yi, Ni) induced byx.

1.2 Quantum Mechanics

Plank, Einstein and Bohr obtained the early great success in the quantum theory

in the period from1900 to 1925. Nevertheless, up to this time there existed no

complete mathematical system for quantum theory to capture everything known up

to that time in a unified picture. The year 1925 brought the resolution. A procedure

initiated by Heisenberg was developed by Born, Heisenberg, Jordan and a little later

by Dirac, into a new system of quantum theory. A little later Schrödinger developed

the wave mechanics from an entirely different starting point. These two procedures,

known as Heisenberg’s and Schrödinger’s pictures , soon proved to be equivalent.

There are two main mathematical frameworks within which quantum theory

can be developed. One takes as its central object a certain algebraic structure (aC*

algebra) on the set of physical observables. States are then defined in relation to this

algebra. On the other hand in the well-known Hilbert space approach the primary

object is the vector space of states, with observables being defined in relation to

this space. In this thesis we only work within the latter frameworks. A brief review

of the Hilbert space framework for quantum mechanics has been described in what

follows.

We will use the notation and terminology of the following books: Quantum

Theory by Isham [63]; Quantum Computation and Quantum Information by Nielsen

and Chuang [79]; and Mathematical Foundation of Quantum Mechanics by von

Neumann [108].

1.2.1 Hilbert Space Framework

In 1925 Schr̈odinger proposed one of the first formulations of quantum mechan-

ics. His structure, known aswave mechanics, can be generalised within the Hilbert

Space framework where the mathematical tool to describe the physical postulates

is linear algebra. The standard notation of quantum mechanics for linear algebraic
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1.2 Quantum Mechanics

concepts was introduced by Dirac in 1920.

In Dirac’s notation, a vector in the state space is represented with|ψ〉. The state

space of a physical system is a Hilbert space. Postulates1 below will formalise this

fact. The dual of the vector|ψ〉 ∈ H is the function

〈ψ| : H → C

|φ〉 7→ 〈ψ|φ〉 ,

where〈.|.〉 is the inner product of the two vectors. A linear map (operator, transfor-

mation) is always represented by a matrix,A. The following tables gives a summary

of the Dirac’s notation.

Notation Description

z∗ Complex conjugate of the complex numberz.

|ψ〉 Vector. Also known as aket.

〈ψ| Vector dual to|ψ〉. Also known as abra.

〈φ|ψ〉 Inner vector product.

|φ〉 ⊗ |ψ〉 Tensor vector product. For simplicity we

omit⊗ and just write|φ〉|ψ〉 or |φ, ψ〉.
A∗ Complex conjugate of the matrixA.

AT Transpose of the matrixA.

A† Hermitian conjugate of the matrixA, A† = (AT )∗.

A|ψ〉 Application of operatorA on vector|ψ〉.
〈φ|A|ψ〉 The inner product of|φ〉 andA|ψ〉, 〈φ|(A|ψ〉).

The four postulates that follow deal with the general mathematical framework

within which it has been found possible so far to describe all quantum mechanical

systems.

The first postulate sets up the state space in which quantum mechanics takes

place.

Postulate 1.The predictions of results of measurements of an isolated system are

probabilistic in nature. In situations where the maximum amount of information is

15



1.2 Quantum Mechanics

available, this probabilistic information is represented mathematically by a vector

in a complex Hilbert spaceH that forms the state space of the quantum theory. This

vector is thought to be the mathematical representative of the physical notion of

stateof the system. In this framework, a physical observable is represented by a

Hermitian matrix.

The following postulate is concerned with the evolution of the system.

Postulate 2.In aclosedsystem, the evolution of the system is described by aunitary

transformation. That is, the state|ψ1〉 of the system at timet1 is related to the state

|ψ2〉 at timet2 by a unitary operatorU which depends only on the timet1 andt2,

|ψ2〉 = U |ψ1〉 .

A refined version of this postulates describes the continuous time evolution of

the system as follows.

Postulate 2′. The state vector|ψ(t)〉 of a closed system changes smoothly in timet

according to the time-dependent Schrödinger equation

i~
d|ψ(y)〉

dt
= Ĥ|ψ(y)〉 .

In the above formula,~ is the Planck’s constant~ ≈ 6.63 × 10−34 Joule-second

divided bytπ andĤ is the Hamiltonian operator which is described by a Hermitian

matrix.

The next postulate describes the effect of observing (measurement) a quantum

system.

Postulate 3. Quantum measurements are described by a collectionMm of mea-

surements operators. These are operators acting on the state space of the system

being measured. The indexm refers to the measurements outcome that may occur

in the experiment. If the state of the quantum system is|ψ〉 immediately before the

16



1.2 Quantum Mechanics

measurement then the probability that the resultm occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉 ,

and the state of the system after the measurement is

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
.

The measurements operators satisfy thecompleteness equation,

∑
m

M †
mMm = I .

The last postulate deals with composite quantum system.

Postulate 4.The state space of a composite physical system is the tensor product of

the state spaces of the component physical systems. Moreover, if we have systems

numbered1 to n, and systemi is prepared in the state|ψi〉, then the joint state of

the total system is|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.
In other word, the first postulate describes the encoding of the information, the

second postulates explains the process of information, the third postulate deals with

retrieving the information and finally the last postulates speaks about combining

different systems.

Mixed statesarise when we do not have complete information about the state

of the physical system. This is always the case in experiments, since the system

we are trying to prepare in a pure state interacts with an uncontrolled environment.

A mixed state is a probabilistic mixture of pure states, denoted by{pi, |ψi〉} or

alternatively with adensity matrix

ρ ≡
∑

i

pi|ψi〉〈ψi| .

A density matrixρ ∈ B(H is a hermitian (i.e. ρ = ρ†) semi positive definite

operator withTr(ρ) = 1 (whereTr(.) indicates the trace of.). Note that a given
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1.2 Quantum Mechanics

pure state|ψ〉 can also be represented with the density matrix|ψ〉〈ψ|.
The most general operation on quantum states are the transformations of density

matrices i.e. linear operators on operators (super-operator). The physically allowed

super-operators are linear completely positive and trace-preserving operators, called

CP mapsfor short. A super-operatorT is positive if it sends positive semi-definite

Hermitian matrices to positive semi-definite Hermitian matrices; it is completely

positive if T ⊗ Id is positive, whereId is the identity operator on ad-dimensional

Hilbert space.

In what follows we reformulate the postulates of quantum mechanics in terms

of density matrices.

Postulate 1.The predictions of results of measurements of an isolated system are

probabilistic in nature. This probabilistic information is represented mathematically

by a density operator, which is a positive operatorρ with trace one, acting on a

complex Hilbert spaceH that forms the state space of the quantum theory. If a

quantum system is in the stateρi with probability pi, the denisty operator for the

system is
∑

i piρi.

Postulate 2.In aclosedsystem, the evolution of the system is described by aunitary

transformation. That is, the stateρ1 of the system at timet1 is related to the stateρ2

at timet2 by a unitary operatorU which depends only on the timet1 andt2,

ρ2 = Uρ1U
† .

Postulate 3. Quantum measurements are described by a collectionMm of mea-

surements operators. These are operators acting on the state space of the system

being measured. The indexm refers to the measurements outcome that may occur

in the experiment. If the state of the quantum system isρ immediately before the

measurement then the probability that the resultm occurs is given by

p(m) = Tr(M †
mMmρ) ,

18



1.2 Quantum Mechanics

and the state of the system after the measurement is

MmρM †
m

Tr(M †
mMmρ)

.

The measurements operators satisfy thecompleteness equation,

∑
m

M †
mMm = I .

Postulate 4.The state space of a composite physical system is the tensor product of

the state spaces of the component physical systems. Moreover, if we have individual

systems numbered1 to n, and systemi is prepared in the stateρi (independently

from other systems), then the joint state of the total system isρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

1.2.2 Technical Developments

In this subsection we discuss some technical developments of the quantum rules

presented in the previous subsection. First we briefly review the notation ofentan-

gled statesandLOCC mapswhich will be the topic of Chapter5. Then Gleason’s

Theorem for determining all the measures on a Hilbert space will be presented. This

is required for our discussion on semantics of quantum computing in Chapter4.

Entanglement is a uniquely quantum resource that plays a key role in most of

the applications of quantum computation and information theory [67, 105].

Definition 10 A pure state of a composite system that cannot be written as a prod-

uct of states of its component systems is called anentangledstate.

We are also interested in the manipulation of entanglement, by which we mean:

Given an entangled state of a composite system, what other entangled states can be

prepared using arbitrary operations only on the local systems, including measure-

ment, and classical communications between components of the system? In other

word the class of transformations which are allowed to be performed are:

Definition 11 LOCC (local operations and classical communication) consists of

arbitrary quantum operations acting separately on individual parts of a composite
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system, assisted by classical communications between the individual parts.

In terms of understanding entanglement both in a phenomenological sense and

as a resource, it would be useful to be able to measure the amount of entanglement

for a given state. To this end, a measure of entanglement is required to order states

according to the amount of entanglement they contain. This issue will be discussed

in more detail in Chapter5.

In the remaining part of this subsection we present the following important the-

orem by Gleason [50], which provides a correspondence between density operators

and probability measures on measurable sets of the corresponding Hilbert space.

Theorem 12 [50] Let µ be a probability measure on the closed subspaces of a

separable Hilbert spaceH of dimension at least three. There exists a positive semi-

definite self-adjoint operatorT of the trace class (density matrix) such that for all

closed subspacesA ofH

µ(A) = Tr(TPA) ,

wherePA is the orthogonal projection ofH ontoA.

We omit the proof as it needs special treatment and it can be found in [50]. The

following lemmas can be also proven in the same way.

Lemma 13 Let µ be a positive measure on the closed subspaces of a separable

Hilbert spaceH of dimension at least three. There exists a positive semi-definite

self-adjoint operatorT such that for all closed subspacesA ofH

µ(A) = Tr(TPA) ,

wherePA is the orthogonal projection ofH ontoA.

Lemma 14 Let µ be a measure on the closed subspaces of a separable Hilbert

spaceH of dimension at least three. There exists a self-adjoint operatorT such

that for all closed subspacesA ofH

µ(A) = Tr(TPA) ,
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wherePA is the orthogonal projection ofH ontoA.

1.3 Quantum Computation

The bounds on encoding and the speed of information processing using quantum

systems are different to those based on the laws of classical physics. Since classical

laws can be consider as a special case of the more general quantum laws it is clear

that a quantum computer will be at least as efficient as the classical computer. In

other word a quantum computer can efficiently simulate any classical processing

with the same computational costs on a classical computer. The exciting discov-

ery was that quantum computer is in fact provably more efficient than any classical

computer [9]. One of the key effects leading to this efficiency is the quantum super-

position phenomenon which allows a quantum computer to perform a given tasks

simultaneously (in parallel) on multiple data.

There are few distinct algorithms which show that a quantum computer can be

more efficient than its classical counterpart. These include factoring of numbers

[97], database search [53], solution to the Pell’s equation [54, 69], computing or-

ders for solvable groups [110] to name a few [29]. There are also a number of

quantum communication protocols that can be viewed as elementary quantum com-

putations, such as the cryptographic key exchange [19], quantum teleportation [13]

and dense coding [11]. The clearest advantage of using quantum systems is seen

in factorisation which is an NP problem on the classical computer [97], whereas on

the quantum computer it can be performed in polynomial time [46]. Factorisation

is also potentially of great importance for the field of cryptography. It is known

that this algorithm is a special case of a general problem, the hidden sub-group

problem (HSP) [68]. HSP has been studied recently and for the Abelian case the

general solution is known [77]. The other key example for the quantum speed-up

is Grover’s database search [53], which can achieve a quadratic speed-up over its

classical counter-part. Grover’s search idea has been generalised to the amplitude

amplification method which can be applied to speed up a number of other algorithms

[47]. Search itself lies at the root of many other important difficult computational

tasks so that this algorithm has a wide applicability. All these indicate that there is
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1.3 Quantum Computation

an enormous potential in using quantum systems to encode and process information

which is much more powerful than the present classical computers.

In this section we present the two models of quantum computation, quantum

Turing machine and quantum circuit model. Subsequently we review the basic def-

initions of quantum complexity analysis.

1.3.1 Quantum Turing Machine

Here we give the formal definition of quantum Turing Machine; more details can

be found in [32, 14, 80]. The quantum Turing machine was introduced by Benioff

[8]. Afterward Deutsch described a universal simulator for QTMs with exponential

overhead [32]. And finally Bernstein and Vazirani constructed a universal QTM

with polynomial overhead [14].

A quantum Turing machine (QTM),M , consists of a processor, a two-way in-

finite tape and a head. We denote the set of processor configurations, a finite set

of symbols, withQ and the set of finite alphabet withΣ. Σ always contains the

special symbol[, the blank symbol. The sets of initial (I) and final (F ) states

are proper subsets ofQ. Then the system configuration is represented by a triple

(q, S, n) ∈ Q×Σω × Z whereq is the current state,S the infinite string of the tape

andn the head position. The quantum state ofM is represented by a unit vector in

H, the Hilbert space spanned by vectors inQ× Σω × Z. The transition function of

M is a complex-valued function,

δ : Q× Σ×Q× Σ× {−1, 1} → C .

The quantum Turing machineM defines a linear operator (the unitary time evolu-

tion):

UM : H → H ,

such that

UM |q, S, n〉 = Σp∈Q,s∈Σ,d∈{−1,1}δ(q, S(n), p, s, d)|p, Ss
n, n + d〉 ,
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where

Ss
n(i) =





s if i = n

S(i) if i 6= n

A final configuration of a QTM is any configuration in stateqf . If when QTM

M is run with inputx, at timeT the superposition contains only final configurations

and at any time less thanT the superposition contains no final configuration, then

M haltswith running timeT on inputx. The superposition ofM at timeT is called

the finalfinal superposition.

Definition 15 A QTM is calledwell-behavedif it halts on all input strings in a final

superposition where each configuration has the tape head in the same cell. If this

cell is always the start cell, we call the machinestationary. A well-behaved QTM is

in normal formif qf always leads back toq0.

Despite its simple appearance, the Turing Machine can efficiently simulate ar-

bitrary algorithms. The concept ofLanguagesin Turing model is defined in the

following way.

Definition 16 We defineL ⊂ (Σ \ {[})∗ to be aLanguage, i.e. a language is a

set of strings of symbols. LetM be a Turing machine such that, for any string

x ∈ (Σ \ {[})∗ , if x ∈ L, thenM(x) =“yes” (i.e. M on inputx halts at the “yes”

state), and ifx 6∈ L, thenM(x) =“no”. Then we say thatM decidesL.

The following notation of recursive language is required for our discussion on

computability (Chapter4).

Definition 17 If a languageL is decided by some Turing machineM , thenL is

calledrecursive. We say thatM acceptsL whenever, for any stringx ∈ (Σ \ {[})∗,
if x ∈ L thenM(x) =“yes”; however for x 6∈ L, thenM does not halt. IfL is

accepted by some Turing machineM , thenL is calledrecursively enumerable.

It is clear that, if a languageL is recursive, then it is also recursively enumerable.

We shall not only deal with the decision and acceptance languages, but also

occasionally with the computation of string of functions.
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Definition 18 Suppose thatf is a function from(Σ \ {[})∗ to Σ∗, and letM be

a Turing machine with alphabetΣ. We say thatM computesf if, for any string

x ∈ (Σ \ {[})∗, M(x) = f(x). If such anM exists,f is called arecursivefunction.

In quantum computation, we will consider the probabilistic analogue of the

above definitions.

Definition 19 LetM be a stationary, normal forma, multi track QTM. We say that

M acceptsx with probabilityp and rejectsx with probability1− p, if when we run

M with stringx on the first track and empty string elsewhere, afterM halts 2 we

observe1 with probabilityp on the last track of the start cell.

We define two different settings for accepting a languageL with a quantum

Turing machine.

Definition 20 We say that QTMM acceptsL exactly if M accepts every string

x ∈ L with probability1 and rejects every stringx ∈ (Σ\{[})∗ \L with probability

1. In thebounded errorsetting,M accepts with probability at leastp every string

x ∈ L and rejects with probability at leastp every stringx ∈ (Σ \ {[})∗ \ L.

1.3.2 Quantum Circuit Model

Here we discuss the quantum circuit model for quantum computation which will

be the main framework for all the discussions in this thesis [33, 114]. In analogy

with a classical bit, a two-state quantum system is called aqubit or aquantum bit.

Mathematically, a qubit takes a value in the vector spaceC2. We single out two

orthogonal basis vectors,|0〉 and|1〉, to denote the computational basis. A quantum

circuit is built out of logical quantum wires carrying qubits, and quantum gates

acting on these qubits.

Definition 21 A quantum gate,U , of orderk is a unitary linear map onk qubits.

Its action on a state|ψ〉 is denoted asU |ψ〉.
2This can be accomplished by performing a partial measurement to check whether the machine

is in the final state.
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The matrix representations of the quantum operations used in this thesis are:

Hadamard H =
1√
2


 1 1

1 −1


 ,

Pauli-X X =


 0 1

1 0


 ,

Pauli-Y Y =


 0 −i

i 0


 ,

Pauli-Z Z =


 1 0

0 −1


 ,

Phase P =


 1 0

0 i


 ,

Rotation-π/8 T =


 1 0

0 eiπ/4


 ,

controlled-Not CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




,

swap S =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




.

A set of quantum gates is said to beuniversal for quantum computationif any

unitary operation can be approximated to arbitrary accuracy by a quantum circuit

involving only those gates. in the literature, there exists many examples of universal

set of gates [79]:

• The Hadamard, Phase, CNOT andπ/8 Rotation gates,

• Single qubit and CNOT gates.
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In quantum circuit model, measurements can always be moved to the end of the

circuit and this process is performed in the computational basis of one or more of

the qubits of the circuit.

All the different settings ofexact, zero-errorandtwo-sided bounded errorcan

be also considered for the computation of a function with a quantum circuit model.

In the remaining part of this subsection we present the quantum circuits model

in the most general setting, with mixed state, which was introduced by Aharonov et

al. in [4]. They also showed that this model is polynomially equivalent in computa-

tional power to the standard unitary quantum circuit model, introduced by Deutsch

[33].

We start by definition of the building blocks of a network i.e. gates.

Definition 22 A quantum gate,g, of order(k, l) is a trace preserving, completely

positive, linear map from density matrices onk qubits to density matrices onl

qubits. Its action on a density matrixρ is denoted asg ◦ ρ.

The definition of a quantum network in the general setting of working with

mixed states and CP maps is:

Definition 23 Let G be a family of quantum gates. A quantum circuit that uses

gates fromG is a directed acyclic graph. Each nodev in graph is labeled by a

gategv ∈ G of order (kv, lv). The in-degree and out-degree ofv are equalkv and

lv, respectively. An arbitrary subset of the inputs are labeled blank. An arbitrary

subset of the outputs are labeled result.

The final definition describes the function computed by a quantum network:

Definition 24 Let Q be a quantum circuit, withn inputs andr result outputs. The

probabilistic function computed byQ, fQ : {0, 1}n → [0, 1]{0,1}r
is defined as

follows: For inputi, the probability for getting the outputj is

fi,j = 〈j|(Q ◦ |i〉〈i|)|A|j〉 ,

whereA is the set of the result outputs.
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1.3.3 Complexity Analysis

Complexity theory studies the required cost of solving computational problems

[84]. The cost is measured in terms of different well-defined resources e.g. ele-

mentary operations, memory usage, amount of communication. Acomputational

problemcan be thought of as a function whose input is aprogram instanceand

whose corresponding output is thesolutionto it. A decision problemdeals with a

question that requires either a “yes” or “no” answer and can be represented with a

function f : {0, 1}∗ → {0, 1}. Decision problems are simple tools for develop-

ing a rigourous mathematical theory for complexity analysis and they are general as

many other problems can be recast in terms of decision problems that are essentially

equivalent to the original problem.

In complexity theory, it is common to use the following asymptotic notation.

Definition 25 Assumef and g are functions fromN to N. We sayf is bounded

abovewith g, denoted byf(n) = O(g(n)), iff

∃ positive integersc, n0 : (∀n ≥ n0 : f(n) ≤ cg(n)) .

Alsof is bounded belowwith g, denoted byf(n) = Ω(g(n)), iff g(n) = O(f(n)).

Finally f(n) = Θ(g(n)) means thatf(n) = O(g(n)) andf(n) = Ω(g(n)).

There are different known frame-works for quantum complexity analysis: com-

putational complexity, query complexity and communication complexity [14, 28].

In the first scenario the complexity involves the number of elementary gates that

need to be applied to execute the problem, as well as the number of qubits used in

the computation. In the query complexity we assume that in addition to elementary

gates we are given a black-box performing a special computational task which we

can query as many times as needed to solve the problem. The complexity is now the

number of times we have to query the black box. In the final scenario we consider

the number of qubits needed for communication between the two parties who wants

to perform a computational tasks.

Despite the differences between these models, there are also some intimate re-

lationships between them [28]. The query model is a simple model to compare the
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computational power of quantum and classical computer (see below). Quantum al-

gorithms in the query complexity model can also be transformed into protocols in

communication complexity model and most of the currently known quantum algo-

rithms evolved from algorithms in the query model.

In this thesis we mainly use query model (next section) for complexity analysis.

1.3.4 Quantum Query Model

One important way of comparing the efficiencies of quantum and classical algo-

rithms is by analysingquery complexity, which measures the number of invocations

of anoracle— which may be a standard circuit (or a Turing machine) implementing

a useful sub-routine, a physical device, or a purely theoretical construct — needed

to complete a task.

In this thesis we mainly consider an oracle to be a given quantum circuit which

efficiently implements a boolean functionf : {0, 1}n → {0, 1}. Equivalently,

an oracle (black-box) contains anN -tuple (N = 2n) of Boolean variablesX =

(x0, x1, · · · , xN−1). The box is equipped to outputxi on input i. The goal is to

determine some property ofX accessing thexi only through the black box. Such

a black-box access is called aqueryand assumes to have a unit cost of evaluation.

A property ofX is any Boolean function that depends onX. AssumeN = 2n, a

property can be represented with a function of the following type:

F : {0, 1}N → {0, 1} .

As mentioned before we can consider different settings for computingF on

{0, 1}N in the query model. The minimum number of queries required by a quantum

circuit to computeF in the exact, zero-error, and bounded-error settings, is denoted

by QE(F ), Q0(F ) andQ2(F ), respectively.

A number of general results show the limitations and advantages of quantum

computers using the query complexity models [34, 15, 9, 7, 103, 22, 28]. It is

clear that upper bounds in the query model implies upper bounds for computational

complexity, i.e. for the circuit description model in which the functionX is suc-
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cinctly described as a(log N)O(1)-sized circuit computingxi from i. On the other

hand, lower bounds in the black-box model do not imply lower bounds in the circuit

model, though they can provide useful guidance, indicating what certain algorith-

mic approaches are capable of accomplishing. In [7], some general lower bounds

for query complexity of computing an arbitrary Boolean functionF are given. In

Chapter3 we discuss the quantum oracles in more detail.

Complexity Classes

A complexity classis a set of languages representing a set of decision problems.

All the languages in a complexity class can be decided within some bound on some

aspect of their performance [84]. In what follows we give the definitions of standard

complexity classes that we will refer to, in this thesis.

• P. The class of decision problems that can be solved in polynomial time by

deterministic Turing machines.

• NP. The class of decision problems that can be solved in polynomial time by

nondeterministic Turing machines.

• PSPACE. The class of decision problems that can be solved in polynomial

space by deterministic Turing machines.

• BPP. The class of decision problems that can be solved in polynomial time

by probabilistic Turing machines with error probability bounded1/3 (for all

inputs).

• BQP. The class of decision problems that can be solved in polynomial time by

quantum Turing machines with error probability bounded1/3 (for all inputs).

We presented in this chapter all the basic definitions and structures which are

required for the rest of our discussion throughout this thesis. In the first part, we

present complexity analysis of different scenarios in quantum computation frame-

work. We work mainly within the quantum query model, which offers an elegant

way of putting bounds on the efficiency of quantum algorithms. Furthermore we
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consider the notions of states and operators complexity as a key way to find the

relationship between physical complexity and computational complexity.

In the second part of this thesis we study semantics of quantum computation.

Semantics studies the meaning of programs, mainly in order to be able to state

correctness properties of the instructions within them. Domain theory has proven

to be a proper mathematical structure to describe denotational semantics for pro-

gramming languages. We extend this structure to the quantum setting and derive a

denotational semantics for quantum computing.
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Quantum One-way Function

2.1 Introduction

The existence of one-way functions is one of the most important open problems

in classical computation. It is also well-known that one-way functions have appli-

cations in cryptography [84]. Loosely speaking, a one-way function is one that is

easy to compute but hard to invert (the precise definition of one-way function will

be given later). The existence of one-way functions is linked to the complexity class

UP, the class of languages accepted by a special, calledunambiguous, polynomial

time bounded nondeterministic Turing machines and the following relationship is

well-known,P⊆ UP⊆ NP [84]. Furthermore the existence of one-way functions

is equivalent to the separation between the complexity classesP andUP [52], and

henceP andNP which indicates the difficulty of the problem of the existence of

one-way functions.

In this chapter we consider the quantum one-way permutations which is a re-

stricted class of quantum one-way functions. We prove a necessary and suffi-

cient condition for inverting efficiently a polynomial time computable permutation

[72, 73]. In the classical case, Hemaspaandra and Rothe [59] presented a necessary

and sufficient condition for the existence of one-way permutations. We show that in

the quantum setting, the problem of inverting a permutation in polynomial time is
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equivalent to the problem of constructing polynomial size quantum networks for the

reflection about a class of quantum states that we will define later. In the proof of

this equivalence, we present a quantum algorithm for inverting a permutation effi-

ciently under the condition that reflections about their quantum states are efficiently

implementable. Furthermore, we consider the relationship between the complexity

of preparing a state and the reflection about that state.

Through out this chapter we will refer to the search and invert problems.

Problem 1 For a given boolean function onn-bit strings,f : {0, 1}n → {0, 1},
let Uf denote the unitary operator mapping the basis state|x〉|y〉 to |x〉|f(x)⊕ y〉,
where|x〉 consist ofn qubits and|y〉 is a single qubit. GivenUf as an oracle, the

goal is to findx0 = f−1(1). We assume that there exists a uniquex0. This problem

is calledSEARCH.

Grover’s algorithm [53] for SEARCH consists of the following steps.

ALGORITHM A

Step1 (Preparation).

Prepare the uniform superposition

|ψ〉 =
1√
2n

∑

x∈{0,1}n

|x〉 .

Step2 (Iteration).

Iterate Step2.1 and Step2.2.

Step2.1. Perform the tagging operator given by

I − 2|f−1(1)〉〈f−1(1)| .

Step2.2. Perform the reflection operator about the state|ψ〉 given by

I − 2|ψ〉〈ψ| .
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The state in Step1 is prepared by performingn Hadamard gates onn qubits

with initial state|0〉:

H⊗n|0 · · · 0〉 =
1√
2n

∑

x∈{0,1}n

|x〉 .

Step2.1 is implemented by querying the oracleUf twice:

{(I − 2|f−1(1)〉〈f−1(1)|)⊗ I}|x〉|0〉 = {Uf (I ⊗ (I − 2|1〉〈1|))Uf}|x〉|0〉.

And finally Step2.2 is implemented usingn Hadamard gates and CNOT gates:

I − 2|ψ〉〈ψ| = H⊗n(I − 2|0〉〈0|)H⊗n .

Problem 2 For a given one-to-one function onn-bit strings,g : {0, 1}n → {0, 1}n,

let Ug denote the unitary operator mapping the basis state|x〉|y〉 to |x〉|g(x) ⊕ y〉,
where|x〉 and |y〉 each consist ofn qubits and⊕ is addition modulo2n. Given

Ug as an oracle, the goal is to findx0 = g−1(y) for any giveny ∈ {0, 1}n. This

problem is calledINVERT.

An algorithm for INVERT (AlgorithmB below) is as follows [18].

ALGORITHM B

Step1 (Preparation).

Prepare the uniform superposition

|ψ〉 =
1√
2n

∑

y∈{0,1}n

|y〉.

Step2 (Iteration).

Iterate Step2.1 and Step2.2.

Step2.1 Perform the tagging operator given by

I − 2|g−1(y)〉〈g−1(y)| .
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Step2.2. Perform the reflection operator about the state|ψ〉 given by

I − 2|ψ〉〈ψ| .

Step1 and Step2.2 are implemented similar to AlgorithmA and Step2.1 is

implemented using two queries to the oracleUg:

{(I − 2|g−1(y)〉〈g−1(y)|)⊗ I}|y〉|0〉 = Ug(I ⊗ (I − 2|y〉〈y|))Ug|y〉|0〉 . (2.1)

2.2 Worst Case Complexity

In this section we consider “one-wayness” in the worst case complexity, i.e. the

highest computational cost among all the possible inputs. The following definitions

give the precise description of quantum one-way permutation in the worst case sce-

nario. We consider permutation functions in the following setting.

Definition 26 A functionf : {0, 1}∗ → {0, 1}∗ is called apermutationif it satisfies

the following conditions

(i) f is one-to-one and length preserving.

(ii) For some strictly increasing functiona : N→ N we have:

Dom(f) =
⋃
n∈N

{0, 1}a(n) .

These conditions imply that the restriction off to {0, 1}n ⊆ Dom(f) is a permuta-

tion on{0, 1}n. The definition of one-way function in the worst case complexity is

as follows.

Definition 27 A functionf is a worst case quantum one-way function, if the fol-

lowing conditions are satisfied:

(i) f is one-to-one, and for allx ∈ {0, 1}∗, |x| 1k ≤ |f(x)| ≤ |x|k 1 for some

k > 0. That is,f(x) is at most polynomially longer or shorter thanx.

1Here|x| denotes the length of the stringx.
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(ii) f can be computed by a uniform polynomial size classical network.

(iii) f−1 cannot be computed by any polynomial size quantum network.

Note that condition(i) is naturally satisfied for one-way permutations.

As we saw in the introduction AlgorithmB for INVERT uses the tagging op-

eratorO (defined below) which can be simulated by two applications ofUf andn

controlled-not gates (Equation 2.1).

O|x〉|y〉 =




−|x〉|y〉 if f(y) = x

|x〉|y〉 if f(y) 6= x
(2.2)

Moreover, iff is polynomial time computable, then it is also possible to efficiently

construct the unitary operatorO[k] defined by

O[k]|x〉|y〉 =




−|x〉|y〉 if f(y)(k,k+1) = x(k,k+1)

|x〉|y〉 if f(y)(k,k+1) 6= x(k,k+1)

wheres(i,j) denotes the bit string fromi-th bit to j-th bit of the bit strings. The op-

eratorsO[k]’s will enable us to mark all the states|y〉 such that2 qubits of|f(y)〉 are

equal to the corresponding qubits of|x〉. Geometrically,O[k] can be considered to

be the reflection about the hyper-plane spanned by the vectors{|y〉 : f(y)(k,k+1) 6=
x(k,k+1)}. We will show that if we can efficiently implementO[k]’s and the set of

unitary operators

Qj =
∑

x∈{0,1}n

|x〉〈x| ⊗ (2|ψj,x〉〈ψj,x| − I) ,

where

|ψj,x〉 =
1√

2n−2j

∑

y:f(y)(1,2j)=x(1,2j)

|y〉 ,

then we can efficiently invertf by a polynomial size network. Conversely, we will

also prove that iff is difficult to invert, thenQj ’s are also difficult to construct. Now

we state and prove this result formally. We say that a setF of unitary operators is
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easyif everyU ∈ F is easy i.e. it can be implemented with a quantum polynomial

size network. The precise definition of easy operator is given in Section 2.5.

Theorem 28 Supposef satisfies condition(i) and(ii) of definition 27. Thenf is a

worst case quantum one-way permutation if and only if the setFn = {Qj}j=0,1,..., n
2
−1

of unitary operators is not easy.

Proof Without loss of generality, we can assume thatn is even.

(⇒) Suppose thatFn is easy. Then we show thatf−1 is computable by a poly-

nomial size quantum network. A quantum algorithm computingf−1 is as follows

(Algorithm C below). Assume thatx is given as the input in the first register of the

quantum network to be constructed.

ALGORITHM C

Step1 (Preparation).

Prepare the second register in the uniform superposition

|ψ0〉 =
1√
2n

∑

y∈{0,1}n

|y〉.

Step2 (Iteration).

For j = 0 to n
2
− 1, implement the following steps2.j.1–2.j.2.

Step2.j.1 Perform the operatorO[2j + 1] on the first and the second registers.

Step2.j.2 Perform the operatorQj on the first and the second registers.

Step2.j.1 can be implemented through the following three steps:(1) Perform

the operatorUf : |y〉|z〉 7→ |y〉|f(y) ⊕ z〉 on the second and third registers.(2)

Compare the2j + 1-th and the2j + 2-th qubits of the first register with the corre-

sponding qubits of the third register, and apply a phase shift of−1 if they are same;

otherwise do nothing.(3) Perform the operatorUf on the second and third registers

(Figure 2.1).
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Figure 2.1: A quantum circuit for tagging operator.

Now we show that AlgorithmC computesf−1. After Step1, the state of the

system is

1√
2n
|x〉

∑

y∈{0,1}n

|y〉.

We show that after Step2.j.2 the state of the system is

2j+1

√
2n
|x〉

∑

y:f(y)(1,2j+2)=x(1,2j+2)

|y〉 ,

which means that AlgorithmC computesf−1 after n
2

iterations. In the casej = 0,

the state evolves as follows (note that for anyx we have|ψ0,x〉 = |ψ0〉):

1√
2n
|x〉

∑

y∈{0,1}n

|y〉

2.0.1−→ 1√
2n
|x〉


 ∑

y:f(y)(1,2) 6=x(1,2)

|y〉 −
∑

y:f(y)(1,2)=x(1,2)

|y〉



=
1√
2n
|x〉


√2n|ψ0〉 − 2

∑

y:f(y)(1,2)=x(1,2)

|y〉


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2.0.2−→ 1√
2n
|x〉(2|ψ0〉〈ψ0| − I)


√2n|ψ0〉 − 2

∑

y:f(y)(1,2)=x(1,2)

|y〉



=
1√
2n
|x〉


2
√

2n|ψ0〉 −
√

2n|ψ0〉 − 4|ψ0〉
∑

y:f(y)(1,2)=x(1,2)

〈ψ0|y〉



+2
∑

y:f(y)(1,2)=x(1,2)

|y〉

=
2√
2n
|x〉

∑

y:f(y)(1,2)=x(1,2)

|y〉.

On the other hand, suppose that the casej = k − 1 holds. Then, following Steps

2.k.1–2.k.2, the state evolves as follows:

2k

√
2n
|x〉

∑

y:f(y)(1,2k)=x(1,2k)

|y〉

2.k.1−→ 2k

√
2n
|x〉


 ∑

y:f(y)(1,2k)=x(1,2k)

|y〉 −
∑

y:f(y)(1,2k+2)=x(1,2k+2)

|y〉



=
2k

√
2n
|x〉


√2n−2k|ψk,x〉 − 2

∑

y:f(y)(1,2k+2)=x(1,2k+2)

|y〉



2.k.2−→ 2k

√
2n
|x〉(2|ψk,x〉〈ψk,x| − I)


√2n−2k|ψk,x〉 − 2

∑

y:f(y)(1,2k+2)=x(1,2k+2)

|y〉



=
2k

√
2n
|x〉


2
√

2n−2k|ψk,x〉 −
√

2n−2k|ψk,x〉 − 4|ψk,x〉
∑

y:f(y)(1,2k+2)=x(1,2k+2)

〈ψk,x|y〉



+
2k

√
2n
|x〉


2

∑

y:f(y)(1,2k+2)=x(1,2k+2)

|y〉



=
2k+1

√
2n
|x〉

∑

y:f(y)(1,2k+2)=x(1,2k+2)

|y〉 .

Thus, the casej = k holds. From the assumption that{Qj} is easy, it is simple to

see that AlgorithmB can be implemented by a polynomial size quantum network.

(⇐) Suppose thatf is not a worst-case one-way permutation. Then we show

that{Qj}j=0,1,..., n
2
−1 can be implemented by a polynomial size quantum network.
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According to the assumption,f andf−1 are quantum polynomial time computable.

The following operator

Mf : |x〉 7→ |f(x)〉

can be implemented by a polynomial size quantum network [12, 71] (Chapter3).

To see why note that, for anyx ∈ {0, 1}n we have

[Mf ⊗ I]|x〉|0〉 = [(Uf−1)−1SUf ]|x〉|0〉 ,

where the swap gateS is defined asS : |a〉 ⊗ |b〉 7→ |b〉 ⊗ |a〉.
In the following we show that the unitary operatorQ′

j = (I ⊗Mf )Qj(I ⊗Mf )
†

can be implemented by a polynomial size quantum network, which means thatQj

can also be implemented by a polynomial size quantum network. The operatorQ′
j

can be rewritten as follows:

Q′
j = (I ⊗Mf )





∑

x∈{0,1}n

|x〉〈x| ⊗

2


 1

2n−2j

∑

y,y′

∗|y〉〈y′|

− I






 (I ⊗Mf )†

=
∑

x∈{0,1}n

|x〉〈x| ⊗

2

1
2n−2j

∑

y,y′

∗|f(y)〉〈f(y′)| − I




=
∑

x∈{0,1}n

|x〉〈x| ⊗

2|x(1,2j)〉〈x(1,2j)|

1
2n−2j

∑

y,y′

∗|f(y)(2j+1,n)〉〈f(y′)(2j+1,n)| − I




=
∑

x∈{0,1}n

|x〉〈x| ⊗ (
2|x(1,2j)〉〈x(1,2j)| ⊗ |ψj〉〈ψj | − I

)

=
∑

x∈{0,1}n

|x〉〈x| ⊗

|x(1,2j)〉〈x(1,2j)| ⊗ (2|ψj〉〈ψj | − I) +

∑

y:y 6=x(1,2j)

|y〉〈y| ⊗ I


 .

Here,
∑∗

y,y′ denotes
∑

y,y′:f(y)(1,2j)=f(y′)(1,2j)=x(1,2j)
and|ψj〉 denotes

|ψj〉 =
1√

2n−2j

∑

i∈{0,1}n−2j

|i〉 .
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Thus, we can implementQ′
j by comparing the first2j qubits of the first register

with the corresponding qubits of the second register and applying2|ψj〉〈ψj| − I if

they are the same and applying the identity otherwise (i.e. conditional-(2|ψj〉〈ψj|−
I)). The operator2|ψj〉〈ψj| − I is easy, since2|ψj〉〈ψj| − I = H⊗n−2j(2|0〉〈0| −
I)H⊗n−2j, whereH is the Hadamard gate and the superscriptn− 2j indicates that

the Hadamard gate is applied to the lastn − 2j qubits. Therefore,Q′
j is easy and

this completes the proof.ut

Note that all unitary operatorsUk are easy if and only if the operation

∑

k

|k〉〈k| ⊗ Uk ,

which implementsUk conditionally, is easy. The operatorQj implements the re-

flection about the state|ψj,x〉 conditionally, therefore Theorem 28 gives a necessary

and sufficient condition for quantum one-way permutations in terms of the reflec-

tion about a quantum state.

Using quantum amplitude amplification method [47] we can generalise the def-

inition of operatorsO[k] andQj in the AlgorithmC as follows. In each step of

Algorithm C we are concerned with only2 qubits of input, i.e. the tagging operator

O[k] works only with thekth and(k + 1)th qubits of its input register. However,

one can consider the more general operatorsO[k, l] as follows

O[k, l]|x〉|y〉 =




−|x〉|y〉 if f(y)(k,k+l−1) = x(k,k+l−1)

|x〉|y〉 if f(y)(k,k+l−1) 6= x(k,k+l−1),

wherel is any integer satisfying2 ≤ l ≤ O(log(n)). The corresponding reflection

operatorsQj,l are

Qj,l =
∑

x∈{0,1}n

|x〉〈x| ⊗ (2|ψj,l,x〉〈ψj,l,x| − I) ,
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where

|ψj,l,x〉 =
1√

2n−lj

∑

y:f(y)(1,lj)=x(1,lj)

|y〉 .

Now the generalised AlgorithmC′ has the same structure as AlgorithmC, but

in Algorithm C′ steps2.j.1 and2.j.2 will be iteratedTl = O(
√

2l) times, where

the integerTl is known in advance. Note thatTl is a polynomial inn. Intuitively,

Step2 of Algorithm C is an analogue of Grover’s algorithm for the search problem

where the number of the required items is1
4

of the total number of items. On the

other hand, Step2 of Algorithm C′ is also an analogue of Grover’s algorithm for

the search problem where the number of required items is1
2l of the total number of

items. After applying steps2.j.1 and2.j.2 (for j = k) of Algorithm C′, we obtain

the state

|x〉

 ∑

y∈Sk+1

Al|y〉+
∑

y∈Sk+1\Sk

Bl|y〉

 ,

whereSk = {y : f(y)(1,lk) = x(1,lk)} and positive numbersAl andBl are known in

advance. Thus, using the quantum amplitude amplification process [47], we obtain

the desired state:

1√
2n−l(k+1)

|x〉
∑

y:f(y)(1,l(k+1))=x(1,l(k+1))

|y〉

and hence we can proceed to the next step.

2.3 Average Case Complexity

In order to apply our result to a realistic cryptographic scenario we need to consider

also the average case complexity domain. This is because a realistic cryptographic

protocol should be secure in “most” cases, which implies that it is hard to break

on the average. We define two types of one-wayness in the average case setting.

In what follows, for a propertyP defined onN, we say thatP (n) holds for all
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sufficiently largen if the set{n ∈ N |P (n) does not hold} is finite.

Definition 29 A permutationf is a weakly quantum one-way, if the following con-

ditions are satisfied:

(i) f can be computed by a polynomial size network.

(ii) There exists a polynomialp such that for any polynomial size quantum net-

workA and all sufficiently largen ∈ N,

1

2n

∑

x∈{0,1}n

Prob[A(f(x)) 6= x] >
1

p(n)
,

whereProb: {0, 1}n → [0, 1] is a probability distribution induced by the measure-

ment in the standard basis on the output register of the networkA given the input

x, andA(x) is a random variable distributed with the functionProb.

In other words, a weakly quantum one-way permutation is easy to compute but the

probability that any quantum algorithm fails to invert it is not negligible.

Definition 30 A permutationf is a strongly quantum one-way, if the following con-

ditions are satisfied

(i) f can be computed by a polynomial size network.

(ii) For any quantum polynomial size networkA, any polynomialp, all sufficiently

largen,

1

2n

∑

x∈{0,1}n

Prob[A(f(x)) = x] <
1

p(n)
,

whereA(x) is a random variable given as the output of the quantum algorithmA

with the inputx.

Again, in simple terms, a strongly quantum one-way permutation is easy to compute

but the probability that any quantum algorithm succeeds in inverting it is negligible.

From the above definitions, it is easy to check the following relations.
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Proposition 31 In general we have

(i) Every strongly quantum one-way permutation is also a weakly quantum one-

way permutation.

(ii) Every weakly quantum one-way permutation is also a worst case quantum

one-way permutation.

In the applications to cryptography, the existence of strongly quantum one-way

permutations is the main concern. However, the following proposition shows that it

is sufficient to characterise the existence of weakly quantum one-way permutations.

We omit the proof as it is the same as the proof of Theorem2.8 in [51].

Proposition 32 Weakly quantum one-way permutations exist if and only if strongly

quantum one-way permutations exist.

For the rest of this section we discuss the relationships between weakly quantum

one-way permutations and reflection operators, as we did in the worst case setting.

We give a weaker analogue of Theorem 28 in the average case and finish the section

with an open conjecture regarding the characterisation of weakly quantum one-way

permutations. In order to carry out our discussion in the average case setting we

need to introduce an approximation of the identity operator as follows:

Definition 33 Let d: N → N be a function satisfyingd(n) ≥ n. A d(n) qubit

unitary operatorJn is called(a(n), b(n))-pseudo identity, if there exists a setXn

with |Xn|/2n ≤ b(n) such that fori ∈ {0, 1}n \Xn,

|1− (〈i|1〈0|2)Jn(|i〉1|0〉2)| ≤ a(n) ,

where|·〉1 and|·〉2 denote the firstn qubit state and the lastd(n)− n qubit state.

In what follows,Ij denotes thej-qubit identity operator, and|ψ〉i1···il means that

the system consists of the registersi1, . . . , il and its state is|ψ〉. For a vectorv, we

denote the length ofv by |v|. Now we can give the first result on the link between

average case one-wayness and the reflections about quantum states.
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Theorem 34 Let f : {0, 1}∗ → {0, 1}∗ be a permutation that can be computed by

a classical polynomial size network. Iff is not weakly quantum one-way, then for

any polynomialp and infinitely manyn, there exist a polynomialrp andrp(n)-qubit

(1/2p(n), 1/p(n))-pseudo identity operatorsJp(n) such that the family

Fp,n = {(In ⊗ Jp(n))
†(Qj ⊗ Irp(n)−n)(In ⊗ Jp(n))}j=0,1,..., n

2
−1

is easy, whereQj is the same reflection operator defined in Section3.

Proof Assume thatf is not weakly quantum one-way. Then, for any polynomialp,

there exist a polynomial size quantum networkA and infinitely manyn such that

1

2n

∑

y∈{0,1}n

Prob[A(y) = f−1(y)] > 1− 1

p(n)
. (2.3)

Let X ′
n = {y ∈ {0, 1}n| Prob[A(y) = f−1(y)] ≤ 1

2
} andY ′

n = {0, 1}n \X ′
n. From

Equation (2.3) we have

1

2n

(
|Y ′

n| · 1 + |X ′
n| ·

1

2

)
> 1− 1

p(n)
,

and hence we obtain|X ′
n| < 2

p(n)
2n. Defineq(n) = 1

4
p(n), then|Y ′

n| ≥ (1− 1
2q(n)

)2n.

Now assumey ∈ Y ′
n. The final state of the networkA for inputy is:

αy|y〉1|f−1(y)〉2|ψa
y〉3 + |y〉1|w(y)〉2|φa

y〉3 , (2.4)

whereαy ∈ R, |1 − αy| ≤ 1
2
, |f−1(y)〉2 ⊥ |w(y)〉2, and||ψa

y〉3| = ||w(y)〉2| = 1

(note that|φa
y〉3 is not a unit vector). By repeating the networkA at mostO(q(n))

times, we can easily construct a polynomial size quantum networkB whose final

state has the same form as Equation (2.4), where now|1 − αy| ≤ 1
2q(n)+1 . Denote

by C the quantum network constructed fromB by the approximate clean garbage

method [9] as follows:(1) Apply B, (2) copy the contents of the second register

(which is the output register ofB) to an extra register,(3) apply the inverse ofB

and change the contents of the second and the extra registers. Then, we can see that
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the final state ofC ony is written in the following form:

βy|y〉1|f−1(y)〉2|0〉3 + |φb
y〉123,

whereβy ∈ R, |1− βy| ≤ 1
2q(n) and|y〉1|f−1(y)〉2|0〉3 ⊥ |φb

y〉123.

To establish the analogue result of Theorem 28 we define the following two ap-

proximation operators. First, the approximation of the operatorMf from Theorem

28 for the average case is defined as follows

M̃f = (UC)−1(S ⊗ I)(Uf ⊗ I) , (2.5)

whereS denotes the swap operator on the first and the second registers andUC is a

unitary operator corresponding to the networkC. The operatorM̃f can be written

in more detail as follows:

M̃f =
∑
x∈Yn

(βf(x)|f(x)〉1|0〉23 + |φc
x〉123)〈x|1〈0|23

+
∑
x∈Xn

|ψc
x〉123〈x|1〈0|23 +

∑
x

∑

z:z 6=0

|ψc
x,z〉123〈x|1〈z|23,

where|1 − βf(x)| ≤ 1
2q(n) for anyx ∈ Yn = {x ∈ Y ′

n|f(x) ∈ Y ′
n}, |f(x)〉1|0〉23 ⊥

|φc
x〉123, Xn = {0, 1}n \ Yn, and||ψc

x〉123| = ||ψc
x,z〉123| = 1. The above form can be

obtained by replacing the following forms of the operators(UC)−1 and(S⊗I)(Uf⊗
I) in the Equation (2.5):

(UC)−1 =
∑

y∈Y ′n

|y, 0, 0〉123(βy〈y, f−1(y), 0|123 + 〈φb
y|123)

+
∑

y∈X′
n

|y, 0, 0〉123〈y, 0, 0|123U
−1
C

+
∑

y

∑

(z,z′)6=(0,0)

|y, z, z′〉123〈y, z, z′|123U
−1
C

and

(S ⊗ I)(Uf ⊗ I) =
∑

x∈Y ′n

|f(x), x, 0〉123〈x, 0, 0|123

45



2.3 Average Case Complexity

+
∑

x∈X′
n

|f(x), x, 0〉123〈x, 0, 0|123

+
∑

x

∑

(z,z′) 6=(0,0)

|f(x)⊕ z, x, z′〉123〈x, z, z′|123 .

Next, the approximation of the reflection operatorsQj ’s from Theorem 28 is

defined as follows

Q̃j = (I ⊗ M̃f )
†(Q′

j ⊗ I)(I ⊗ M̃f )

= (I ⊗M−1
f M̃f )

†(Qj ⊗ I)(I ⊗M−1
f M̃f ),

whereQ′
j is the same unitary operator defined in the proof of Theorem 28. The

family {Q̃j}j satisfies the required conditions of Theorem 34. First,Q̃j is easy,

sinceQ′
j, Mf andM̃f can be implemented by polynomial size quantum networks.

Next, we check thatM−1
f M̃f is (1/2q(n), 1/q(n))-pseudo identity. Indeed, from

|Y ′
n| ≥ (1− 1/2q(n))2n and|X ′

n| ≤ (1/2q(n))2n, we have that

|Yn| = |Y ′
n| − |{x ∈ Yn|f(x) ∈ Xn}|

≥ (1− 1

2q(n)
)2n − |X ′

n|

≥ (1− 1

q(n)
)2n

and hence|Xn| ≤ ( 1
q(n)

)2n. Thus, it is sufficient to check that forx ∈ Yn we have

|1− (〈x|1〈0|23)M
−1
f M̃f (|x〉1|0〉23)| ≤ 1

2q(n)
. (2.6)

This relation can be checked as follows. Forx ∈ Yn we have

M̃f |x〉1|0〉23 =
∑
x∈Yn

(βf(x)|f(x)〉1|0〉23 + |φc
x〉123)

and

〈x|1〈0|23M
−1
f = 〈f(x)|1〈0|23.
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Thus, forx ∈ Yn we have

(〈x|1〈0|23)M
−1
f M̃f (|x〉1|0〉23) = βf(x)

and hence from|1 − βf(x)| ≤ 1
2q(n) we obtain Equation (2.6), which completes the

proof.ut

It is an open problem whether the converse of the above theorem holds. How-

ever, by restricting the second parameters of pseudo identity operators, we can prove

the following restricted version of the converse of Theorem 34.

Theorem 35 Let f :{0, 1}∗ → {0, 1}∗ be a permutation that can be computed by

a classical polynomial size network. If for any polynomialp and infinitely manyn

there exist a polynomialrp and anrp(n)-qubit (1/2p(n), p(n)/2n)-pseudo identity

operatorJp(n) such that the family

Fn,p = {Q̃j}j = {(In ⊗ Jp(n))
†(Qj ⊗ Irp(n)−n)(In ⊗ Jp(n))}j=0,1,..., n

2
−1

is easy, thenf is not weakly quantum one-way.

Proof Assume that for a fixed polynomialp, infinitely manyn, and some

(1/2p(n), p(n)/2n)-pseudo identity operatorJp(n) the familyFn,p is easy. To show

that f is not a weakly quantum one-way permutation we give a polynomial size

algorithm for invertingf . Algorithm C̃ has the same steps as AlgorithmC except

the following two changes:

(i) The number of iterations of Step2 is now n
2
− d2 log p(n)e.

(ii) The operatorQj is now replaced bỹQj.

A quantum network implementation for Algorithm̃C consists of three registers.

The first and the second registers consist ofn qubits similar to the network for

Algorithm C. The third register consists ofrp(n) − n qubits. From the definition

of pseudo identity operators, there exists a setXn with |Xn| ≤ p(n) such that if

y ∈ Yn = {0, 1}n \Xn,

Jp(n)|y〉2|0〉3 = αy|y〉2|0〉3 + |ψy〉23, (2.7)
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where|ψy〉23 ⊥ |y〉2|0〉3 and|1− αy| ≤ 1
2p(n) .

In Algorithm C̃, we applyJp(n) before and after Step2.j.2 for eachj. The

application ofJp(n) creates an error in computation off−1. We call the vector

Jp(n)|ψ〉 − |ψ〉, the error associated to|ψ〉. To measure the effect of this error, we

use the following lemmas (the proof is given later).

Lemma 36 Assume thatT ⊆ S ⊆ {0, 1}n. Then lengthl(S, T ) of the error asso-

ciated to the state

|ψ(S, T )〉 =
1√
|S|


 ∑

y∈S\T
|y〉|0〉 −

∑
y∈T

|y〉|0〉

 ,

satisfies the following relation

l(S, T ) ≤
2

2
p(n)

2

· |S ∩ Yn|+ 2|S ∩Xn|
√
|S| .

From Lemma 36 one can easily check the following lemma.

Lemma 37 Let Jp(n)|ψ(S, T )〉 = α|ψ(S, T )〉 + |ψ(S, T )⊥〉, where|ψ(S, T )〉 ⊥
|ψ(S, T )⊥〉. Then||ψ(S, T )⊥〉| ≤ l(S, T ).

First, suppose that for somej = k all steps before step2.k.2 of Algorithm

C̃ have been implemented as AlgorithmC. By a similar argument to the proof of

Theorem 28 we get the state

|x〉1|ψ(S, T )〉23 = |x〉1 2k

√
2n


 ∑

y∈S\T
|y〉2 −

∑
y∈T

|y〉2


 |0〉3,

whereS = {y : f(y)(1,2k) = x(1,2k)} andT = {y : f(y)(1,2k+2) = x(1,2k+2)}. In

Algorithm C̃, Jp(n) is applied for the state|ψ(S, T )〉23. Fork ≤ n/2−d2 log p(n)e,
from Lemma 36 we have

l(S, T ) ≤
2

2
p(n)

2

· |S ∩ Yn|+ 2|S ∩Xn|
√
|S|
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≤
2

2
p(n)

2

· |S|+ 2|Xn|
√
|S|

≤
2

2
p(n)

2

× 2n−2k + 2p(n)
√

2n−2k
≤ 2n+1− p(n)

2 + 2p(n)√
2n−2k

≤ 4p(n)

2
n
2
−k

≤ 4p(n)

2d2 log p(n)e

≤ 4

p(n)
.

Therefore, fork ≤ n/2−d2 log p(n)e, from Lemma 37 we get a vectorv = v1 + v2

where v1

|v1| is the unit vector corresponding to the state before Step2.k.2 (up to a

total phase) andv2 is a vector of length at most4
p(n)

orthogonal tov1. The vectorv2

corresponds to an error which happens whenJp(n) is applied before Step2.k.2.

Next, assume that for somej = k all steps before Step2.k.2 and Step2.k.2

itself have been implemented in the same way as for AlgorithmC. We obtain the

state

|x〉1|ψ(S, T )〉23 = |x〉1 2k+1

√
2n

∑
y∈S

|y〉2|0〉3,

whereS = {y : f(y)(1,2k+2) = x(1,2k+2)} andT = ∅. By a similar argument to the

above, we get a vectorv = v1 + v2, where v1

|v1| is the unit vector corresponding to

the state after Step2.k.2 andv2 is a vector of length at most4
p(n)

orthogonal tov1.

The vectorv2 corresponds to an error which occurs whenJp(n) is applied after Step

2.k.2.

Now, from the above analysis, we can see that after the completion of Algorithm

C̃ on inputx the final state isv = v1 + v2, wherev1 is parallel to

|x〉1 1√
22d2 log p(n)e

∑

y:f(y)(1,n−2d2 log p(n)e)=x(1,n−2d2 log p(n)e)

|y〉2|0〉3

andv2 is a vector of length at most2(n/2 − d2 log p(n)e)(4/p(n)) orthogonal to

v1. Thus,|v2| ≤ 1/q(n) for some polynomialq. We know in advance that for any

x the probability of obtainingf−1(x) upon measuring the second register in the

statev1 is 1/22d2 log p(n)e. Now, using the algorithm in [47] (the quantum amplitude
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2.3 Average Case Complexity

amplification when the success probability is known), we can change the statev

into w = w1 + w2, wherew1 is parallel to|x〉1|f−1(x)〉2|0〉3, w1 ⊥ w2, and|w2|2 =

|v2|2 ≤ 1
q2(n)

. Therefore, there exist a polynomial size quantum networkB and

infinitely manyn such that

1

2n

∑

x∈{0,1}n

Prob[B(x) = f−1(x)] > 1− 1

q2(n)
.

We can give any large polynomialq2(n) by taking any large polynomialp. Thus,f

is not weakly quantum one-way.ut

Finally, we give the proof of Lemma 36.

Proof Lemma 36First, we show that the length of the error associated to the state

|y〉|0〉 is at most 2

2
p(n)

2

if y ∈ Yn, and is at most2 if y ∈ Xn. For y ∈ Yn, from

Equation (2.7) we have1− |αy| ≤ |1− αy| ≤ 1
2p(n) , and hence

||ψy〉23|2 = 1− |αy|2 = (1 + |αy|)(1− |αy|) ≤ 2

2p(n)
.

Thus, for the length of the error associated to|y〉|0〉we obtain the following relation

|Jp(n)|y〉2|0〉3 − |y〉2|0〉3| = |(αy − 1)|y〉2|0〉3 + |ψy〉23|
=

√
|αy − 1|2 + ||ψy〉23|2

≤
√

(
1

2p(n)
)2 +

2

2p(n)

≤
√

4

2p(n)
=

2

2
p(n)

2

.

On the other hand, ify ∈ Xn, we have

|Jp(n)|y〉|0〉 − |y〉|0〉| ≤ |Jp(n)|y〉|0〉|+ ||y〉|0〉| ≤ 2.

Finally, for the lengthl(S, T ) of the error associated to the state|ψ(S, T )〉 we have

l(S, T ) = |Jp(n)|ψ(S, T )〉 − |ψ(S, T )〉|
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≤ 1√
|S|


 ∑

y∈S\T
|(Jp(n) − I)|y〉|0〉|+

∑
y∈T

|(Jp(n) − I)|y〉|0〉|



=
1√
|S|

∑
y∈S

|(Jp(n) − I)|y〉|0〉|

=
1√
|S|

( ∑
y∈S∩Yn

|(Jp(n) − I)|y〉|0〉|+
∑

y∈S∩Xn

|(Jp(n) − I)|y〉|0〉|
)

≤ 1√
|S|

(
2

2
p(n)

2

|S ∩ Yn|+ 2|S ∩Xn|
)

.ut

From Proposition 32, Theorem 34 and Theorem 35, we obtain the following

relationship between the existence of quantum one-way permutations and the re-

flection operators about a particular class of quantum states.

Theorem 38 The following relations hold.

(i) There exists a polynomial time computable functionf such that: there exists

a polynomialp such that for all sufficiently largen and all (1/2p(n), 1/p(n))-

pseudo identity operatorsJp(n),

Fn,p(f) = {(In ⊗ Jp(n))
†(Qj(f)⊗ Irp(n)−n)(In ⊗ Jp(n))}j=0,1,..., n

2
−1.

is not easy.

⇒ (ii) There exists a weakly quantum one-way permutation.

⇔ (iii) There exists a strongly quantum one-way permutation.

⇒ (iv) There exists a polynomial time computable functionf such that: there exists a

polynomialp such that for all sufficiently largen and all (1/2p(n), p(n)/2n)-

pseudo identity operatorsJp(n),

Fn,p(f) = {(In ⊗ Jp(n))
†(Qj(f)⊗ Irp(n)−n)(In ⊗ Jp(n))}j=0,1,..., n

2
−1.

is not easy.
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2.4 Complexity Classes

On the other hand, for the bounded-error setting in the worst case complexity,

we can prove the following necessary and sufficient condition by a similar argument

to the proofs of Theorems 34 and 35 (the proof is therefore omitted).

Theorem 39 The following statements are equivalent.

(i) Worst case quantum one-way permutations exist in the bounded error setting.

(ii) There exists a polynomially computable functionf satisfying the condition:

there exists a polynomialp such that forinfinitely manyn and all

(1/2p(n), p(n)/2n)-pseudo identity operatorsJp(n),

Fn,p(f) = {Q̃j}j

= {(In ⊗ Jp(n))
†(Qj(f)⊗ Irp(n)−n)(In ⊗ Jp(n))}j=0,1,..., n

2
−1.

is not easy.

Comparing Theorem 39 with Theorem 38, we can see that condition (iv) of

Theorem 38 is given essentially to characterise the existence of worst case quantum

one-way permutation in the bounded-error setting (the only different part is the

condition “all sufficient large” and “infinitely many”). We conjecture that condition

(i) of Theorem 38 gives a necessary and sufficient condition for the existence of

weakly (and strongly) quantum one-way permutations.

2.4 Complexity Classes

In this section we give the relationship between the existence of one-way functions

and well-known complexity classesUP andEQP. To this end we recall some def-

initions given in [52]. Assume thatC is a complexity class; then we define the

complexity classCg as follows:

Cg = {f ∈ C |Graph(f) ∈ P} ,
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2.4 Complexity Classes

where

Graph(f) = {(x, y) |x ∈ Dom(f) & y = f(x)} .

Denote byQPSV, the class of all single valued functions which can be computed

exactly by polynomial time quantum Turing machines;NPSV, the class of all sin-

gle valued non-deterministic polynomial time computable function; andUPSV, the

class of all functionsf in NPSV such that for everyx in domain off there ex-

ists a unique accepting computational path. The following lemma introduces two

relationships between the quantum and classical complexity classes.

Lemma 40 The following relations hold:

(i) UP⊆ EQP

⇒ (ii) UPSV⊆ QPSV

⇒ (iii) UPSVg ⊆ QPSV.

Proof The proof of (ii)⇒ (iii) is trivial. We give a sketch of the proof of (i)⇒ (ii)

[52]. Assume thatf is in UPSVand defineRf to be the following language:

Rf = {(x, y)|x ∈ Dom(f) & y ≤ f(x)} .

Sincef ∈ UPSV, given input(x, y) one can computef(x) unambiguously and then

check from the output whethery ≤ f(x). This shows thatRf belongs toUP and by

assumption also belongs toEQP. Therefore using binary search one can show that

f ∈ QPSV. ut

Now using a similar method to [52] we can prove the following theorem.

Theorem 41 There exists a worst case quantum one-way function if and only if

UP 6⊆ EQP .
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2.5 State and Operator Complexity

Proof (⇒) Assume thatf is a worst case quantum one-way function. Then by

definition we havef−1 ∈ UPSVg. Howeverf−1 /∈ QPSV therefore from Lemma

40 we deriveUP 6⊆ EQP.

(⇐) AssumeL to be a language inUP \ EQP andM to be an unambiguous

Turing machine acceptingL. Then, the total functionf defined below is a worst

case one-way function:

f(x) =





y0 if x = CompM(y)

x1 otherwise,

where CompM(y) denote the unique accepting computation ofM on inputy. ut

2.5 State and Operator Complexity

The study of states and operators complexity is an important way to find the rela-

tionship between physical complexity and computational complexity. As we show

in the following, the special case of the relationship between the complexity of

preparing a state and the complexity of performing the operator of reflection about

that state, has a close connection with the question of the existence of quantum one-

way functions. We introduce a notion of complexity of preparing quantum states

and constructing unitary transformations. We consider families of the states and

unitary operators, and introduce the complexity classes similar to classical com-

putation. DefineS to be the set of all familiesSA
p = {|ψx〉}x∈A wherep is an

increasing function,A is a language, and|ψx〉 is an arbitraryp(|x|)-qubits state. We

also defineO to be the set of all familiesUA
p = {Ux}x∈A, wherep is an increasing

function,A is a language, andUx is an arbitrary unitary transformation acting on

p(|x|)-qubits andp is a polynomial. In what follows, we omit the symbolsp andA

for the simplicity. (We considerA = {0, 1}∗ andp(x) = |x| in most of the cases.)

Definition 42 A family{|ψx〉}x ∈ S of states is defined to becomputable, if there

exists a uniform quantum network familyN = {Nx} such that on inputx, Nx

produces exactly the output state|ψx〉. We denote by CS the set of allcomputable

families of states.
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2.5 State and Operator Complexity

Definition 43 A family {Ux}x ∈ O of unitary operators is defined to becom-

putable, if there exists a uniform quantum network familyN = {Nx} such that

on inputx and |ψ〉, Nx produces exactly the outputUx(|ψ〉). We denote by CO the

set of allcomputable families of unitary operators.

The analogue of the complexity classes of families of states and unitary opera-

tors corresponding toP andPSPACEcan also be defined in a similar fashions.

Definition 44 A family{|ψx〉}x ∈ S of states ispolynomial-time (or space) com-

putable, if there exists a polynomial-time (or space) uniform quantum network fam-

ily N = {Nx} such that on inputx, Nx produces exactly the output state|ψx〉. We

denote byPS (or PSPACES) the set of all polynomial-time (or space) computable

families of states.

Definition 45 A family {Ux}x ∈ O of unitary operators is polynomial-time (or

space) computable, if there exists a polynomial-time (or space) uniform quantum

network familyN = {Nx} such that on inputx and |ψ〉, Nx produces exactly the

outputUx(|ψ〉). We denote byPO (or PSPACEO) the set of all polynomial-time

(or space) computable families of unitary operators.

In what follows, we consider the relationship between states and reflection op-

erators about those states. The reflection operator about a given state|ψ〉 is defined

to be

2|ψ〉〈ψ| − I .

The reflection operators have many interesting properties. Here we mainly study

them from the complexity theoretic point of view. It is well-known that if a state

is preparable in polynomial time, then the reflection about that state can implement

in polynomial time (Problem6.2(1) in [79]). To see this, without loss of generality

assume that{|ψx〉}x is a polynomial-time computable family of states and

N = {Nx}x is a uniform polynomial size network family implementing a family

{Ux}x of unitary operators, whereUx|0〉⊗n = |ψx〉. Therefore, we have:

Ux(2|0〉〈0| − I)U †
x = 2|ψx〉〈ψx| − I ,
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2.5 State and Operator Complexity

which can be implemented by a uniform polynomial size network family. This

arguments can be easily applicable to the case of a computable, polynomial-time or

polynomial-space computable family:

Proposition 46 If {|φx〉}x is in CS (resp.PSPACES, PS), then the sequence of

reflection operators:

{2|φx〉〈φx| − I}x ,

is in CO (resp.PSPACEO, PO).

Does the inverse hold? In particular, we consider the inverse of the above proposi-

tion for the polynomial-time case

Reflection Assumption: Assume that{|φx〉}x is in CS is given such that the

family of reflection operators{2|φx〉〈φx| − I}x is polynomial-time computable.

Then,{|φx〉}x is also polynomial-time computable.

We shall relate the Reflection Assumption to the existence of quantum one-

way permutation by revisiting INVERT problem. Letf be a permutation onn-bit

strings, andUf the unitary operator mapping the basis state|x〉|y〉 to |x〉|f(x)⊕ y〉,
where|x〉 and |y〉 each consist ofn qubits. GivenUf as an oracle, AlgorithmB

for INVERT computesf−1(x) with high probability inO(
√

2n) queries and this

algorithm is shown to be optimal [6]. Note that the operator

2|f−1(x)〉〈f−1(x)| − I ,

is performing the reflection about the state|f−1(x)〉. Thus, AlgorithmB shows

that even if the reflection about the state|f−1(x)〉 is assumed to bepolynomial-

time computable (Equation 2.1), the state itself is not necessarily computable by a

polynomial-time quantum Turing machine with oracleUf .

Now consider a family of unitary operators{Ufn}n, whereUfn is the unitary

operator implementingfn exactly. By condition (ii) of Definition 27,{Ufn}n is
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2.5 State and Operator Complexity

polynomial-time computable. Therefore using Equation 2.1 we obtain the follow-

ing:

Lemma 47 Assume thatf is a quantum one-way permutation, the following family

of unitary operators is inPO:

{2|f−1(x)〉〈f−1(x)| − I}x .

On the other hand, by condition (iii), the family of states{|f−1(x)〉}x is not

easy. This implies the following interesting fact:

Proposition 48 If there exists a quantum one-way permutation, then we can con-

struct a counter-example to the Reflection Assumption.

We can make sure that by a minor modification the above proposition holds

under the existence of a quantum one-way function, which is equivalent to the open

problem thatUP is not included inEQP. Can we make this assumption weaker, for

example, based on the separation betweenEQP andPSPACE? This is still open.

Instead, we present the following simple facts.

Theorem 49 If EQP 6= PSPACE, thenPSPACES \ PS 6= ∅.

Proof Consider aPSPACE-complete languageL, therefore

L ∈ PSPACE\ EQP .

We identifyL with its characteristic function. Clearly,{|x, L(x)〉}x ∈ PSPACES.

Now assume that{|x, L(x)〉}x is in PS. Then,{I−2|x, L(x)〉〈x, L(x)|}x is in PO.

We have:

(I − 2|x, L(x)〉〈L(x), x|)(|x, 0〉+ |x, 1〉+ |x, 2〉+ |x, 3〉)

=




|x, 0〉 − |x, 1〉+ |x, 2〉+ |x, 3〉 if L(x) = 1

−|x, 0〉+ |x, 1〉+ |x, 2〉+ |x, 3〉 if L(x) = 0
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2.5 State and Operator Complexity

and hence one can design an exact quantum polynomial algorithm for acceptingL

on inputx. This contradicts the assumption and we derive that

{|x, L(x)〉}x ∈ PSPACES \ PS .

ut

Corollary 50 S \ CS 6= ∅.

Proof Define the family{|x, L(x)〉}x of states similar to the proof of Theorem 49,

whereL is the halting function.ut

Corollary 51 If EQP 6= PSPACE, then there exists a family of states

{|ψx〉}x ∈ PSAPCES \ PS 6= ∅ ,

such that the family of reflection operators{I−2|ψx〉〈ψx|}n is in PSPACEO\PO.

Proof The family in the proof of Theorem 49 will work.ut

Note that in Theorem 49 and Corollary 51, the complexity classPSPACE can be

replaced with any other complexity classA having a complete languageL, as far as

the following condition is satisfied:{|x, L(x)〉}x (or {I − 2|x, L(x)〉〈x, L(x)|}x) is

in the class of states (or unitary operators) corresponding to the classA of languages.

The notion of Turing reducibility can also be generalized to the setting of the

state and operator complexity as follows.

Definition 52 Assume that the two families{|φx〉}x and{|ψx〉}x of states are given,

we define{|φx〉}x to bepolynomial-time Turing reducibleto {|ψx〉}x (denoted by

{|φx〉}x 6p
T {|ψx〉}x), if {|φx〉}x can be prepared by a polynomial-time quantum

Turing machine given oracle|x〉|0〉 7→ |x〉|ψx〉.

Definition 53 Assume the two families{Ux}x and{Vx}x of unitary operators are

given, we define{Ux}x to bepolynomial-time Turing reducibleto {Vx}x (denoted

by {Ux}x 6p
T {Vx}x), if {Ux}x can be implemented by a polynomial-time quantum

Turing machine given oracle|x〉|y〉 7→ |x〉Vx|y〉.
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We end this section with the following two conjectures which seem to hold

intuitively.

Conjecture 1 For given states|φ〉 and |ψ〉 we have the following relationship be-

tween states and reflection operators:

{|φx〉}x 6p
T {|ψx〉}x ⇔ {I − 2|φx〉〈φx|}x 6p

T {I − 2|ψx〉〈ψx|}x .

Conjecture 2 If EQP 6= PSPACE, then we can construct a counter-example to the

Reflection Assumption.

2.6 Discussion

We have reduced the problem of the existence of a quantum one-way permutation

to the problem of constructing a polynomial size network for performing the spe-

cific task of the reflection about a given state. Ambainis [6] proved that inverting

a permutation on then-bit strings in the standard query model requiresΩ(
√

2n)

queries. In the standard query model [7], a quantum computation withT queries is

a sequence of unitary operators

U0 → O → U1 → O · · · → UT−1 → O → UT ,

whereUj ’s are arbitrary unitary operators independent of a database to be searched

or a permutation to be computed, andO is the standard query operator. However,

our algorithm is consistent with Ambainis’ result, since we consider the case that

Uj ’s depend on a permutation to be computed and this does not fit his model.

Another related issue is the work of Chen and Diao [25] where they attempted

to present an efficient quantum algorithm for the problem SEARCH, which is sim-

ilar to our algorithm for the problem INVERT. They mentioned that the tagging

operation and the reflection about a given state which varies dynamically can be

constructed by polynomial size networks, but they did not show the construction for

their operations. (This construction is, of course, impossible given Grover’s black

box, since it would violate the optimality proof of Grover’s algorithm [18, 115, 6].)
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For the problem INVERT we have given a polynomial size network for the tagging

operation and we have shown that the difficulty of the construction of the reflec-

tion operation is equivalent to the existence of the quantum one-way permutation.

Furthermore it is an interesting open problem whether there exists a reduction from

other types of one-way functions to constructing a polynomial size network for per-

forming the reflection about a given state.

On the other hand, we have seen that Grover’s algorithm gives us an example

of states that are difficult to prepare but the reflections about these states are easy,

i.e., it provides a counter-example to Reflection Assumption assuming the existence

of one-way permutations. This investigation of Reflection Assumption seems to be

useful for cryptographic applications since recently, quantum bit commitment pro-

tocols based on quantum one-way permutations have been proposed [36, 3]. More-

over, it is interesting to find such a concrete counter-example without the existence

of quantum one-way permutations. Presenting such examples of states may provide

us with more ideas for constructing novel quantum algorithms.
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3

Quantum Oracle

3.1 Introduction

Query complexity is a simple framework to study the power of oracles to separates

quantum complexity classes from classical one. The query complexity of a function

is the minimum number of queries to some oracle that are needed to compute one

value of this function (Chapter1). Most quantum algorithms are defined in this

simple setting. Examples of quantum oracle algorithms that are provably better

than any classical algorithms can be found in [34, 53, 98, 14, 104, 30, 7, 21]. In this

chapter we introduce an alternative definitions for quantum oracle and compare its

computational power with the standard oracle.

3.2 Minimal Oracle

In this section we compare the query complexity analysis of quantum algorithms

given two different ways of representing a permutation in terms of a black box

quantum oracle. Consider the following oracles, defined for a permutation function

f : {0, 1}n → {0, 1}n
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• thestandardoracle,Sf : |x〉|b〉 → |x〉|b⊕ f(x)〉.

• theFourier phaseoracle,Pf : |x〉|b〉 → e2πif(x)b/2n|x〉|b〉.

Herex andb are strings ofn bits, represented as numbers moduloN = 2n, |x〉 and

|b〉 are the corresponding computational basis states, and⊕ is addition modulo2n.

Note that the oraclesPf andSf are equivalent, in the sense that each can be

constructed by anf -independent quantum circuit containing just one copy of the

other. To see this, define the quantum Fourier transform operationF by

F : |j〉 → 1√
N

2n−1∑

k=0

e2πijk/N |k〉 .

Then one query to the standard oracle can be simulated with one query to the Fourier

phase oracle as following:

|x〉|b〉 F−→ 1√
N

2n−1∑

k=0

e2πibk/N |x〉|k〉

Pf−→ 1√
N

2n−1∑

k=0

e2πibk/Ne2πikf(x)/N |x〉|k〉

=
1√
N

2n−1∑

k=0

e2πik(b+f(x))/N |x〉|k〉

F−1−→ |x〉|b⊕ f(x)〉

In a similar way one query to the Fourier phase oracle can be simulated with one

query to the standard oracle. In summary the following relations holds:

(I ⊗ F−1) ◦ Pf ◦ (I ⊗ F ) = Sf , (I ⊗ F ) ◦ Sf ◦ (I ⊗ F−1) = Pf ,

where◦ represents the composition of operations (or the concatenation of net-

works).
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Furthermore iff is a one-to-one function (e.g. a permutation on the set{0, 1}n),

then there is a simpler invertible quantum map associated tof :

• theminimaloracle:Mf : |x〉 → |f(x)〉.

In the following, we examine the minimal and standard oracle in simulating

each other. Figure 3.1 shows a simulation of standard oracle with minimal oracle.

Starting with the initial state
∑

x∈S |x〉 ⊗ |0〉, the firstn CNOT gates create the

entangled superposition
∑

x∈S |x〉|x〉. Then applying the minimal oracleMf on the

second register gives
∑

x∈S |x〉|f(x)〉 and this completes the simulation. In the case

that the initial state is
∑

x∈S |x〉 ⊗ |b〉, we can constructSf from Mf and(Mf )
−1 as

follows:

Sf = (Mf−1 ⊗ I) ◦ A ◦ (Mf ⊗ I) ,

where the moduloN adderA is defined byA : |a〉 ⊗ |b〉 → |a〉 ⊗ |a⊕ b〉 and

(Mf )
−1 = Mf−1 .

Figure 3.1: A quantum circuit for simulating standard oracle with minimal oracle.

Note that ifMf is given in the form of a specified complicated quantum circuit,

we may be completely unable to simplify the circuit or deduce a simpler form off

from it. However, by reversing the circuit gate by gate, we can construct a circuit

for (Mf )
−1. Hence, by the above construction, we can produce a circuit forSf ,
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3.2 Minimal Oracle

using one copy and one reversed copy of the circuit forMf . This way of looking at

oracles can be formalised as following :

Definition 54 The query complexity of an algorithm involving an oracleOf associ-

ated to a functionf is the number of copies ofOf and/orO−1
f required to implement

the algorithm in a circuit that, apart from the oracles, is independent off .

In the circuit model, a standard oracle can easily be simulated given a minimal

oracle. Ignoring constant factors, we say that the minimal oracle is at least as strong

as the standard oracle. On the other hand we show that simulatingMf requires

exponentially many uses ofSf .

First, consider the standard oracleSf−1 which maps a basis state|y〉|b〉 to

|y〉|b⊕ f−1(y)〉. Since

Sf−1 : |y〉|0〉 → |y〉|f−1(y)〉 ,

simulating it allows us to solve the search problem of identifying|f−1(y)〉 from a

database ofN elements. It is known that, using Grover’s search algorithm, one can

simulateSf−1 with O(
√

N) invocations ofSf [18, 47]. In the following we explain

one possible way of doing that.

Prepare the state|y〉|0〉|0〉|0〉, where the first three registers consist ofn qubits

and the last register is a single qubit. Apply Hadamard transformations on the sec-

ond register to get

|φ1〉 =
1√
N
|y〉

∑

x∈{0,1}n

|x〉|0〉|0〉 .

InvokingSf on the second and third registers now gives

1√
N
|y〉(

∑

x∈{0,1}n

|x〉|f(x)〉)|0〉 .
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Using CNOT gates, compare the first and third registers and put the result in the

fourth, obtaining

1√
N

((
|y〉

∑

x∈{0,1}n,x 6=f−1(y)

|x〉|f(x)〉|0〉
)

+
(
|y〉|f−1(y)〉|y〉|1〉

))
.

Now apply(Sf )
−1 on the second and third registers, obtaining

1√
N

((
|y〉

∑

x∈{0,1}n,x6=f−1(y)

|x〉|0〉|0〉
)

+
(
|y〉|f−1(y)〉|0〉|1〉

))
.

Note that the simulation of(Sf )
−1 givenSf is easy based on the following relation:

(I ⊗R) ◦ Sf ◦ (I ⊗R) = (Sf )
−1 .

whereR = F 2 is the oarity reflection operator defined by :

R : |j〉 → | − j〉 .

Taken together, these operations leave the first and third registers unchanged, while

their action on the second and fourth defines an oracle for the search problem.

Applying Grover’s algorithm to this oracle, we obtain the state|y〉|f−1(y)〉 after

O(
√

N) invocations.

Theorem 55 To simulate the inverse oracleSf−1 with a quantum network using

oraclesSf and(Sf )
−1, a total number ofΘ(

√
N) invocations ofSf are necessary.

Proof. The upper bound ofO(
√

N) is implied by the Grover-based algorithm

just discussed. Ambainis [6] has shown thatΩ(
√

N) invocations of the standard

oracleSf are required to invert a general permutationf . ut
Given Sf andSf−1, Bennett has shown how to simulateMf within classical

reversible computation [12]. Using a quantum version of this construction, we can

establish the following result:

Theorem 56 To simulate the minimal oracleMf with a quantum network using

oraclesSf and(Sf )
−1, a total number ofΘ(

√
N) invocations ofSf are necessary.
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Proof. GivenSf andSf−1, we can simulateMf as follows:

Mf ⊗ I = (Sf−1)−1 ◦X ◦ Sf ,

where the swap gateX is defined byX : |a〉 ⊗ |b〉 → |b〉 ⊗ |a〉. From Theorem

55,Sf−1 needsΘ(
√

N) invocations ofSf and(Sf )
−1. Therefore we get the upper

bound ofO(
√

N) for simulation ofMf .

However this is the optimal simulation. For suppose there is a network which

simulatesMf with less thanΩ(
√

N) queries. The reversed network simulatesMf−1.

From these two, by our earlier results, we can construct a network that simulates

Sf−1 with fewer thanΩ(
√

N) queries, which contradicts Theorem 55.ut
It is worth remarking that we could equally well have carried through our dis-

cussion using variants ofSf andPf , such as the bitwise acting versions:

• thebit string standardoracle,Sbit
f : |x〉|b〉 → |x〉|b⊕ f(x)〉.

• thebit string phaseoracle,P bit
f : |x〉|b〉 → e2πif(x)·b/2|x〉|b〉.

Hereb ⊕ x denotes the bitwise sum mod2 of the stringsb andx, andb · x their

inner product mod2. Again,Sbit
f andP bit

f are equivalent: writing

F = H ⊗H ⊗ · · · ⊗H ,

for the tensor product ofn Hadamard operators acting on register qubits, we have

( I ⊗F) ◦ Sbit
f ◦ (I ⊗F−1) = P bit

f ,

( I ⊗F−1) ◦ P bit
f ◦ (I ⊗F) = Sbit

f .

Note also thatSbit
f = (Sbit

f )−1, P bit
f = (P bit

f )−1. Our results still apply:Sbit
f has

essentially the same relation toMf thatSf does.

3.3 Promise Problems

Intuitively minimal oracles seem at least as strong as standard ones, though it is

not clear how to simulate the latter with the former without also having access to
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the inverse oracleSf−1. The question that we consider in this subsection is whether

minimal oracles are more useful than standard ones for some problems. To illustrate

the different behaviour of standard and minimal oracles, we introduce a promise

problem.

Problem 3 Suppose we are given two permutations,α andβ, ofZN , and a subsetS

of ZN . It is promised that the imagesα(S) andβ(S) are either identical or disjoint.

The problem is to determine which.

This problem has been also considered in a different context by Buhrman et al

[20]. For simplicity we takeN = 2n, wheren is an integer. We represent elements

x ∈ ZN by computational basis states ofn qubits in the standard way, and write

|S〉 =
∑

x∈S |x〉.
Figure 3.2 gives a quantum network with minimal oracles that identifies disjoint

images with probability at least1/2.

Figure 3.2: A quantum circuit for the permutation promise problem.Mα andMβ are mini-
mal oracles for computing the permutationsα andβ respectively,|S〉 is the superposition of
all the basis states,H is the Hadamard transformation, and all the other gates are controlled
swap gates, where circles signify control bits.

Let A = {α(x)|x ∈ S} andB = {β(x)|x ∈ S}. One query to the oracles

Mα andMβ creates the states
∑

i∈A |i〉 and
∑

j∈B |j〉 respectively. The state before
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applying the controlled gates is:

∑
i∈A,j∈B

|i〉|j〉 ⊗ (|0〉 − |1〉)

After controlled swap gates, the state becomes:

(
∑

i∈A,j∈B

|i〉|j〉)|0〉 − (
∑

i∈A,j∈B

|j〉|i〉)|1〉 .

The final Hadamard gate on the ancilla qubit gives:

(
∑

i∈A,j∈B

|i〉|j〉 −
∑

i∈A,j∈B

|j〉|i〉)|0〉

+(
∑

i∈A,j∈B

|i〉|j〉+
∑

i∈A,j∈B

|j〉|i〉)|1〉 .

A |0〉 outcome shows unambiguously that the images are disjoint. A|1〉 outcome

is generated with probability1 if the images are identical, and with probability

1/2 if the images are disjoint. Repeating the computationK times allows one to

exponentially improve the confidence of the result. If afterK trials we get|0〉 at

least once, we know for certain thatα(S) 6= β(S). When all theK outcomes were

|1〉, the conclusion thatα(S) = β(S) has the conditional probabilitypK = 1
2K

of having been erroneously generated by disjoint input images. Note thatpK is

independent of the problem size and decreases exponentially with the number of

repetitions.

Clearly, a naive adaptation of the algorithm to standard oracles does not work.

ReplacingMα andMβ by Sα andSβ, and replacing the inputs by|S〉 ⊗ |0〉, results

in output states which are orthogonal if the images are disjoint, but also in general

very nearly orthogonal if the images are identical. Applying a symmetric projection

as above thus almost always fails to distinguish the cases.

By reformulating the above problem, Aaronson showed an exponential gap be-

tween standard and minimal oracle [1].

Problem 4 [1] Suppose we are given two sequences,X = x1 . . . xn and Y =

y1 . . . yn, such that for eachi, xi, yi ∈ {1, . . . , 2n}. A query has the form(b, i),
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whereb ∈ {0, 1} and i ∈ {1, . . . , n}, and produces(0, xi) if b = 0 and (1, yi) if

b = 1. SequencesX andY are both one-to-one; that is,xi 6= xj andyi 6= yj for all

i 6= j and it is promised that either

(i) X andY are equal as sets (that is,{x1, . . . , xn} = {y1, . . . , yn}) or

(ii) X andY are far as sets (that is,|{x1, . . . , xn} ∪ {y1, . . . , yn}| ≥ 1.1n).

The problem is to determine which cases holds.

This problem can be solved with high probability in a constant number of queries

using an minimal oracle, by using a trick similar to that of Watrous [109] for ver-

ifying group non-membership. First, using the oracle, we prepare the uniform su-

perposition

1√
2n

∑

i∈{1,...,n}
(|0〉 |xi〉+ |1〉 |yi〉) .

We then apply a Hadamard gate to the first register, and finally we measure the

first register. IfX andY are equal as sets, then interference occurs between every

(|0〉 |z〉 , |1〉 |z〉) pair and we observe|0〉 with certainty. But ifX andY are far as

sets, then basis states|b〉 |z〉 with no matching|1− b〉 |z〉 have probability weight at

least1/10, and hence we observe|1〉 with probability at least1/20 [1].

In [1] Aaronson showed that no efficient quantum algorithm using a standard

oracle exists for this problem and proved a lower bound ofΩ(n1/7) for this problem

with standard oracle.

The above promise problems can be generalised to yet another important prob-

lem.

Problem 5 Suppose we are given two graphs,G1 = (V1, E1) andG2 = (V2, E2),

represented as sets of vertices and edges in some standard notation. The graph

isomorphism (GI) problem is to determine whetherG1 andG2 are isomorphic: that

is, whether there is a bijectionf : V1 → V2 such that(f(u), f(v)) ∈ E2 if and only

if (u, v) ∈ E1. (We assume|V1| = |V2|, else the problem is trivial.)
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GI is a problem which isNPbut not known to beNP-complete for classical com-

puters, and for which no polynomial time quantum algorithm is currently known.

We are interested in a restricted version (NAGI) of GI, in which it is given thatG1

andG2 are non-automorphic: i.e., they have no non-trivial automorphisms. So far

as we are aware, no polynomial time classical or quantum algorithms are known

for NAGI either. The following observations suggest a possible line of attack in the

quantum case.

First, for any non-automorphic graphG = (V,E), we can define a unitary

mapMG that takes permutationsρ of V as inputs and outputs the permuted graph

ρ(G) = (ρ(V ), ρ(E)), with some standard ordering (e.g. alphabetical) of the ver-

tices and edges, in some standard computational basis representations. That is,

writing |V | = N , for any ρ ∈ SN
1, MG maps|ρ〉 to |ρ(G)〉. Consider a pair

(G1, G2) of non-automorphic graphs. Given circuits implementingMG1, MG2, we

could input copies of the state1√
N !

∑
ρ∈SN

|ρ〉 to each circuit, and compare the out-

puts |ψi〉 =
∑

ρ∈SN
|ρ(Gi)〉. Now, if the graphs are isomorphic, these outputs are

equal; if not, they are orthogonal. These two cases can be distinguished with arbi-

trarily high confidence in polynomial time (as described above), so this would solve

the problem.

Our algorithm for NAGI requires constructing circuits for theMGi
, which could

be at least as hard as solving the original problem. On the other hand, it is easy

to devise a circuit,SG, which takes two inputs,|ρ〉 and a blank set of states|0〉,
and outputs|ρ〉 and|ρ(G)〉. However, simulating a minimal oracle requires expo-

nentially many invocations of a standard oracle. Therefor to solve the NAGI one

should directly construct a polynomial size network defining anMf oracle for any

given one-to-one functionf , which would lead to a polynomial time solution of

NAGI.
1SN is the set of all permutations on{1, 2, · · · , N}.
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3.4 Discussion

We have defined the Minimal oracle as an alternative definition for query model.

And we have shown that Minimal oracle is exponentially more powerful than stan-

dard oracle and can solve different promised problems with constant number of

queries. Constructing a minimal oracle requires exponentially many invocations of

a standard oracle. We have not, however, been able to exclude the possibility of di-

rectly constructing a polynomial size network defining anMf oracle for any given

one-to-one functionf , which would lead to a polynomial time solution of NAGI.

To finish our discussion on oracle complexity we consider other oracles settings

called states and operators oracle and briefly discuss their relationship with standard

and Minimal oracles.

Definition 57 Suppose a familyS = {ψx}x of states is given, thestate oracleOS is

defined as

O(S)|x〉|0〉 = |x〉|ψx〉.

Theunitary oracleOU for a given familyU = {Ux}x of unitary operators, is

defined as

O(U)|x〉|y〉 = |x〉Ux|y〉.

Minimal oracle can be considered to be a sort of unitary oracle. Proposition

43 in Chapter2 shows that a quantum Turing machines with a family of reflection

operators can be efficiently simulated by a quantum Turing machine with a family of

the corresponding states. On the other hand, in [113] Yamakami implicitly suggests

the following fact.

Proposition 58 For any family{|ψx〉}x of states, there exist a languageA and a

polynomial-time quantum Turing machineM with oracleA such thatM on inputx

and1l produces the output state|ψ′x,l〉 satisfying|||ψ′x,l〉 − |ψx〉|| ≤ 1/l.
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This fact implies that in bounded error setting a quantum Turing machine with

a state oracle can be efficiently simulated by a quantum Turing machine with a

standard oracle. On the other hand, we do not know if quantum Turing machines

with a family of unitary operators can be efficiently simulated by quantum Turing

machine with a language, i.e., quantum Turing machine with standard oracle. If it

is impossible, we will be able to see some complexity theoretical gap between the

general unitary operators and the reflection operators. We showed thatMf cannot

be efficiently simulated by usingSf . However, it is open whether a quantum Turing

machine with a standard oracleSf can be efficiently simulated by a quantum Turing

machine with a minimal oracleMg, where the functionf and the permutationg may

be different.
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4

Quantum Domain Theory

4.1 Introduction

The first two fundamental models of computation encountered by every computer

scientist are:1) Turing machines introduced by Alan Turing and2) Lambda cal-

culus introduced by Alonzo Church. The Turing model is the foundation of von-

Neumann computers, computational complexity analysis, and imperative program-

ming languages. Lambda calculus on the other hand is the proper framework to

study the formal methods and functional programming languages. Both models

have been extensively studied in classical computer science and many other equiv-

alent models of computation have also been introduced to address different aspects

of information processing.

Quantum computation is traditionally studied via quantum circuit models or in

terms of quantum Turing machines, which fit into the first model of computation

[32, 33]. In this approach, one specifies how to build more complicated quantum

processes out of a few basic building blocks. This is a proper foundation to study

the computational complexity and design of new quantum algorithms. It is the

case however that in order to analyse other aspects of quantum computation it is

necessary that alternative models be developed. For example, the one-way quan-

tum computer (a new model in which measurement plays the central role) presents
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new aspects of quantum information processing that can not be analysed properly

in other models, such as temporal complexity [89, 88]. As another example, re-

cent developments in quantum programming languages suggest the requirement of

models with higher levels of abstraction [81, 82, 91, 23, 95].

Domain theory provides us with an alternative and more abstract model for com-

putation. Domain theory is traditionally a suitable model for information process-

ing given incompletely specified elements [2, 38]. Furthermore domain theory has

proven to be a proper mathematical framework to describe denotational semantics

for programming languages whilst also being applicable to the study of computabil-

ity of partial functions [2, 38]. In this chapter we outline this model and extend it

to the quantum setting. First we review classical domain theory, and its applica-

tion in the context of programming languages and computability analysis. Subse-

quently, we integrate these ideas and present quantum domain theory. This includes

a rigourous definition of quantum computability for quantum states and operators, a

denotational semantics of quantum computation and a brief review of a recent result

on the application of quantum domain theory to quantum information processing.

4.2 Classical Domain Theory

Domain theory was introduced independently by Scott [94] for the study of deno-

tational semantics and by Ershow [43] as a tool for the study of partial computable

functions. A complete survey of domain theory and its applications can be found in

[2, 38]. Domain Theory has been developed towards the following key applications:

• A mathematical theory of computation for the semantics of programming lan-

guages;

• A mathematical theory of computation over partial information;

• An algebraic approach to computability;

In the general picture, a domain may be viewed as a partially ordered set, with

added structures to model information processing. In this picture of computation,

a specific input (output) is represented by a sequence of elements approximating it.
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An algorithm is a function from the input domain to the output domain. In order to

describe this model precisely, first we introduce the standard basic language of the

domain theory.

Definition 59 A partial order set(poset) is a pair(P,v), wherev is a binary rela-

tion onP such that the following conditions are satisfied:

• Reflexibility .∀x ∈ P : x v x.

• Transitivity .∀x, y, z ∈ P : x v y & y v z ⇒ x v z.

• Anti-symmetry .∀x, y ∈ P : x v y & y v x ⇒ x = y.

An element⊥ ∈ P is called aleast elementiff ∀x ∈ P : ⊥ v x.

It is easy to see that if a poset has a least element, then it is unique.

The poset structure appears in many different fields of computer science and

physics and in each context the ordering,v, is interpreted differently. In this chap-

ter,v refers to a notion of information which will be described more precisely later.

The notion of a sequence of data is captured via the following structures.

Definition 60 A subsetA in a posetP is called achainiff

∀x, y ∈ A : x v y ∨ y v x .

AssumeA is a chain in the posetP . Anupper boundof A is an elementu ∈ P such

that

∀x ∈ A : x v l ;

Theleast upper boundof A is denoted bytA.

Not every chain in a poset has a least upper bound. Adding this property to a

poset (chain completeness) will result in a structure rich enough to model denota-

tional semantics, as we describe later.
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Definition 61 The partial order setP is a chain-complete(CCPO) iff all chainsA

in P have a least upper boundtA in P .

We shall be interested in continuous functions:

Definition 62 Assume(P1,v1) and(P2,v2) are given posets. A functionf : P1 →
P2 is calledcontinuousiff it is :

• Monotone:∀x, y ∈ P1 : x v1 y ⇒ f(x) v2 f(y).

• It preserves the least upper bounds of the chains, i.e. for all chainsA in P1:

t2{f(x) | x ∈ A} = f(t1A) .

For a given functionf , definef 0 to be the identity function andf (n+1) = f ◦fn.

Now, we can state the fixed-point theorem which is a canonical tool to construct the

mathematical object corresponding to a recursive definition.

Theorem 63 Knaster-Tarski Fixed-Point Theorem Assumef : P → P is a con-

tinuous function on the chain complete posetP with a least element⊥. Then

Fixf = t{fn(⊥) |n ≥ 0} ,

defines an element ofP which is the least fixed-point off .

Proof First we show thatFixf is well-defined, by showing that the set

{fn(⊥) |n ≥ 0} ,

is a chain inP . Using induction, we can show that for alln andx ∈ P we have

fn(⊥) v fn(x).

• Base step:f 0(⊥) = ⊥ and therefore∀x ∈ P : ⊥ v x.

• Induction step: Assume for allx in P we havefn(⊥) v fn(x), therefore

monotonicity off impliesf (n+1)(⊥) v f (n+1)(x).
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Assumen ≤ m and definex = fm−n(⊥), from the above arguments we have

fn(⊥) v fn(x) sofn(⊥) v fm(⊥). Hence{fn(⊥) |n ≥ 0} is a chain inP .

Next we show thatFixf is indeed a fixed-point off :

f(Fixf) = f(t{fn(⊥) |n ≥ 0})
= t{f(fn(⊥)) |n ≥ 0}
= Fixf .

The last part is to show thatFixf is the least fixed-point. Assume thatx is

another fixed-point off . By definition,⊥ v x, and from continuity off , we have

fn(⊥) v fn(x) for all n. On the other hand, sincex is a fixed-point for alln, we

havex = fm(x), which then impliesfn⊥ v x for all n. This shows thatx is an

upper bound of{fn(⊥) |n ≥ 0} and from the definition of least upper bound we

obtainFixf v x. ut

A similar structure to a chain in a poset is a directed set:

Definition 64 A non-empty subsetA ⊂ P of a poset(P,v) is directediff :

∀x, y ∈ A ∃z ∈ A : x, y v z .

A directed set corresponds to a consistent set of data. We denote bytA the least

upper boundof a directed set, if it exists.

Definition 65 A partial order set in which every directed subset has a least upper

bound, is called adomain.

The notion of approximation in domain theory is described via the following

relation:

Definition 66 Assume thatx andy belong to a domainD. We say thatx is way-

belowy or equivalentlyx approximatesy, denoted byx ¿ y, iff for every directed

subsetA ⊂ D:

y v tA ⇒ ∃a ∈ A : x v a .
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A constructive structure for a domain can be introduced via basis elements:

Definition 67 A subsetB of the domainD is called abasisiff for eachd ∈ D:

A = {b ∈ B | b ¿ d} is directed andd = tA .

A domain with a basis is called acontinuousdomain and if the basis is also count-

able the domain is called anω-continuousdomain.

The following definitions provide a topological structure for a domain.

Definition 68 Anopen setO ⊂ D of the Scott topology ofD is a set which satisfies

the following conditions:

(i) x ∈ O & x v y ⇒ y ∈ O.

(ii) For any directed subsetA of D we havetA ∈ O ⇒ ∃x ∈ A : x ∈ O.

Dually aclosed setC ⊂ D is defined with the following conditions:

(i) x ∈ C & y v x ⇒ y ∈ C.

(ii) For any directed subsetA ⊂ C we havetA ∈ C.

In any continuous domain, subsets↑↑b = {x | b ¿ x} whereb belongs to a given

basis of the domain, forms a basis for the Scott topology.

We denote by[D → D′] the set of all continuous functions (with respect to the

Scott topology) between two domainsD andD′, which also forms a domain with

pointwise ordering:

f v g iff ∀x ∈ D : f(x) v g(x) .

In summary, in the domain picture of information processing, data are elements

of an ω-continuous domainD, and represented as least upper bound of the basis

elements. A program is an element of domain of continuous functions,[D → D]

and can be represented as least upper bound of basis elements in[D → D]. In what

follows we review the main applications of domain theory in computability analysis

and denotational semantics. As we show in each scenario a suitable domain will be

constructed.
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4.2.1 Computability Analysis

There exist two main approaches to computability analysis in the literature. One

is the machine-oriented framework and the other one is the analysis-oriented ap-

proach [111]. In the former scenario, the computation is performed on a certain

kind of abstract machine. Whereas in the latter, concepts from classical analysis are

extended to develop a computability theory for real numbers or indeed any other

mathematical spaces.

Recently, a new approach to computability has been developed which is based

on domain theory and fits into the aforementioned second framework for com-

putability [112, 48, 17, 40]. In his famous article [94], Scott points out the re-

lationship between continuity versus computability. For most purposes, to detect

whether some construction is computationally feasible - it is sufficient to check that

it is continuous (which is much easier to determine than computability). We de-

scribe briefly how to define computability via domain theory. In the next section we

extend this concept to the quantum setting. We define the notion of aneffectively

givenω-continuous domainby putting a proper recursive structure on the elements

of a basis of the domain [99, 38].

Definition 69 Assume domainD is ω-continuous with a countable basis

B = {b0, b1, b2, · · ·}. We sayD is effectively given with respect toB, if the relation

bn ¿ bm is r.e. (recursively enumerable) inn andm.

The definition of computable elements is:

Definition 70 Assume thatD is effectively given. An elementx ∈ D is called

computable, if the set{n ∈ N | bn ¿ x} is r.e.

We state the following important theorem (without proof) which provides us with a

constructive definition of computability.

Theorem 71 [40] Assume domainD is effectively given,x ∈ D is computable iff it

is the least upper bound of an effective given chain in the basisB i.e. iff there exists
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a total recursive functionf : N→ N such that

bf(0) v bf(1) v bf(2) v · · · and x =
⊔

n∈N
bf(n) .

Moreover, the chain can be chosen to be a¿-chain, i.e. such thatbf(0) ¿ bf(1) ¿
bf(2) ¿ · · ·.

Finally the computability of a function is defined as follows.

Definition 72 Assume that domainsD andD′ are effectively given with respect to

the basis setsB andB′. A continuous functionf : D → D′ is calledcomputable,

if the relationb′m ¿ f(bn) is r.e. inn andm.

4.2.2 Denotational Semantics

The main problem which gave rise to domain theory was that of describing the

meaning of recursive definitions of objects or data-types [94]. An important result

in this direction is the fixed-point theorem (Section 4.2). Traditionally, semantics

studies the meaning of programs, mainly in order to be able to state some correct-

ness properties. The meaning of each phrase in a program is the computation that it

describes. There are two main directions in the area of semantics of programming

languages that differ in the eras they are based on:

• Operational Semantics, basically uses infinite automata, and programs are

studied in terms of the steps or operations by which each program is executed.

• Denotational Semantics, where programs are interpreted as mathematical

functions.

Denotational semantics was developed in the early1970s by Strachey and Scott

[93]. They aimed to place the semantics of programming languages on a purely

mathematical basis. Denotational semantics assigns a mathematical function not

only to a complete program but also to every phrase in the language. This approach

has important benefits such as the ability of predicting the behaviour of each pro-

gram without actually executing it on a computer or reasoning mathematically about

programs, for example to prove that one program is equivalent to another.
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In this subsection we review a denotational semantics introduced by Kozen for

probabilistic computation [74]. This framework will be the basis of our approach to

quantum semantics. We will show that quantum computation over density matrices

with completely positive maps, has a similar semantical structure as probabilistic

computation over random variables. To this end first we present some standard

basic definitions for vector spaces [16, 74].

Definition 73 A subsetP in a vector spaceV is calledpositive coneiff it satisfies

the following conditions:

∀x, y ∈ P and positive scalarsa, b : ax + by ∈ P

∀x ∈ P : x,−x ∈ P ⇒ x = 0 .

P induces a partial order onV with the following relation:

x vP y iff y − x ∈ P .

A similar structure to a domain where every directed set has a least upper bound

is a lattice where every pair of elements has a least upper bound. Vector lattices (see

below) are the main mathematical structure of the Kozen’s denotational semantics

for probabilistic computation.

Definition 74 LetV be a normed vector space andP ⊂ V a positive cone,(V,P)

is called avector latticeiff every pairx, y ∈ V has avP-least upper bound inV.

A vector lattice is calledconditionally completeif every set of elements ofV with

anvP-upper bound has a least upper bound.

To partially order a measurable space we will consider Banach lattices.

Definition 75 Assume thatB is a normed vector space with norm‖.‖, if

(B,P, ‖.‖) is both a Banach space and vector lattice such that:

‖|x|‖ = ‖x‖ and ∀x, y ∈ P : x vP y ⇒ ‖x‖ ≤ ‖y‖ ,

thenB is called aBanach lattice.
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In the semantics introduced by Kozen for probabilistic computation, programs

are interpreted as continuous linear operators on Banach space of distributions [74].

In this framework one could work only with the joint distribution of the program

variables instead of dealing directly with variables. Any simple programP maps the

input distributionsµ to the output distributionP (µ). In his paper Kozen has consid-

ered a probabilistic WHILE programming language over the variablesx1, · · · , xn.

Syntactically, there are five types of statements in the language described in the

following (from [74]).

Core syntax of probabilistic WHILE:

• simple assignment: xi := f(x1, · · · , xn), wheref : Xn → X is a measur-

able function.

• random assignment:xi := random.

• composition: S; T .

• conditional: ifB thenS elseT .

• while loop: whileB doS.

Let (X, M) be a measurable space and letB = B(Xn,Mn) be the set of all

measures on the cartesian product(Xn,Mn). ThenB consists of all possible joint

distributions of the program variablesx1, x2, · · · , xn, plus all their linear combina-

tions. LetP denote the set of all positive measures and‖.‖ to be the total variation

norm then(B,P, ‖.‖) is a conditionally complete Banach lattice [74].

Every programP will map a probability distribution into a subprobability mea-

sure. This can be extended uniquely to a linear transformation inB → B. More-

over, this extension will be‖.‖-bounded and therefore continuous. Thus, each pro-

gram will define a continuous linear operator inB → B [74].

The spaceB′ of operators inB → B forms a Banach space which is condition-

ally complete. The partial order onB′ is defined as follows:

S v T iff S(µ) v T (µ) for all µ ∈ P .
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Programs will be interpreted as elements of this space. In what follows, we present

the semantics of the probabilistic WHILE programming language introduced above.

• simple assignment:If P is the program “xi := f(x1, · · · , xn)” where f :

Xn → X is a measurable function, then the meaning ofP , [[P ]] , is the linear

operatorP : B → B such that:

P (µ) = µ ◦ F−1 ,

whereF : Xn → Xn is the measurable function

F (a1, · · · , an) = (a1, · · · , ai−1, f(a1, · · · , an), ai+1, · · · an) .

Sincef is measurable, so isF , thusµ ◦ F−1 is indeed a measure.

• random assignment:If P is the program “xi := random” then the meaning

of P , [[P ]] , is the linear operatorP : B → B such that:

P (µ)(B1 × · · · ×Bn) = µ(B1 × · · · , Bi, X, Bi+1, · · ·Bn)ρ(Bi) ,

whereρ is an arbitrary fixed distribution.

• composition:The meaning of the program “S; T ” is the functional composi-

tion of operators[[T ]] ◦ [[S]] .

• conditional: Let µB denote the measureµB(A) = µ(A ∩ B). The condi-

tional test checks the membership ofx1, · · · , xn in B, which will occur with

probabilityµ(B) and henceS will be executed on the conditional probabil-

ity distributionµB/µ(B). Similarly, with probabilityµ(¬B) the programT

will be executed onµ¬B/µ(¬B). Formally, the semantics of the program

“if B thenS elseT ” is the linear operatorP : B → B such that:

A 7→ µ(B)S(µB/µ(B))(A) + µ(¬B)T (µ¬B/µ(¬B))(A)

= (S(µB) + T (µ¬B))(A) ,
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which can be written asS◦eB +T ◦e∼B whereeB is the operatoreB(µ) = µB

and+ is addition inB′.

• while loop: The meaning of the program “whileB doS” is equivalent to the

program

if ¬B thenI elseS; whileB doS ,

therefore the meaning of a “while statement” must be a solution of

W = e∼B + W ◦ P ◦ eB .

Using well established techniques (which we will see later in this chapter) one

can solve the above equation to derive the following solution. The meaning of

a “while statement” is the fixed-point of the affine transformationτ : B′ → B′

defined by

τ(W ) = e∼B + W ◦ S ◦ eB ,

which is equal to

τn(0) =
∑

0≤k≤n−1

e∼B ◦ (S ◦ eB)k .

4.3 Quantum Setting

In this section we present some applications of domain theory in the framework of

quantum computation. In the first subsection we study the domain computability for

quantum computation. Subsequently a denotational semantics for quantum compu-

tation is given. Finally we review recent work on information aspects of quantum

domain theory by Coecke and Martin [31]. By introducing a domain framework for

quantum computation we aim to address different aspects of information processing

which has not yet been studied in other existing models of quantum computation.
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4.3.1 Computability Analysis

The Church-Turing thesis is about classical computability, (i.e. the computability

which is defined based on a computing machine which obeys classical mechan-

ics). Hence, it might be thought that quantum mechanical computing can violate

the Church-Turing thesis. However, Deutsch [32] and the Jozsa [66] discussed this

problem and showed that the class of functions computable by a deterministic quan-

tum Turing machine is equal to the class of recursive functions (computable by a

classical Turing machine). Ozawa extended this argument to the probabilistic quan-

tum Turing machine [83]. He also distinguished the notation of measurability from

computability to answer the problem that has been alleged by Nielsen in [78].

Apart from these few discussions, there have been no further attempts in this

direction. We believe that, by introducing a rigourous framework for quantum com-

putability, we can address more interesting questions. Furthermore, quantum do-

main theory provides us with a topological structure for quantum computation that

can be useful for the study in other fields of quantum computation.

To develop a computational model to analyse quantum computability, it would

be enough to consider a model for a Hilbert space. Different effective structures for

metric spaces can be found in the literature. We use the domain of the closed balls

[112, 39] to introduce a model for quantum pure states and the power domain of the

former domain [64, 38, 76] will capture the quantum mixed states. It is important

to emphasise main definitions and results of this subsection have already appeared

in [39, 38] under the theory of computability for Metric spaces. We rephrase these

results in order to suit our purposes of defining a mathematical foundation for quan-

tum computability.

Pure quantum states

A standard way to construct a partially ordered set for a given metric space

(X, d) is based on ordering of the set of closed balls [58]. Define a closed ball

C(x, r) of given metric space(X, d) with x ∈ X andr ∈ R to be the following set:

C(x, r) = {y ∈ X | d(x, y) ≤ r} .
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The Hilbert spaceH of the quantum pure state is a metric space by virtue of the

metric induced by the standard scalar product. Denote the poset of all closed balls

of H by CH with the following partial order:

C(|φ〉, r) v C(|ψ〉, s) iff C(|φ〉, r) ⊇ C(|ψ〉, s).

This relation reflects a natural notion of information:C(|φ〉, r) v C(|ψ〉, s) can be

read as the statement that(|φ〉, r) has less information than(|ψ〉, s). The quantum

pure state|φ〉 ∈ H can be identified with the maximal closed ballC(|φ〉, 0) ∈ CH,

i.e. the maximal element of the posetCH is in one-to-one correspondence withH.

The following results from [39] prove that the posetCH has the required structure

for the foundation of a computational model.

Theorem 76 [39] Let B be a dense subset of a separable Hilbert spaceH. Then

B×Q+ is a basis ofCH whereQ+ is the set of all non-negative rational numbers.

There are many different choices for a dense subset ofH. Any universal set

of quantum gates (Chapter1, Subsection1.3.2) provides us with a different dense

subset of quantum states of a Hilbert spaceH. To see this fact consider a discrete

set of universal quantum gates,S (e.g. Hadamard + Phase + CNOT +π/8 Rota-

tion), therefore any unitary operator onH can be approximated by a combination

of elements inS. In other word a universal set of gates is a dense subset of the set

of all unitary operators onH. Denote by< S > the set of all finite combinations of

elements ofS. The following lemma gives a dense subset ofH.

Lemma 77 The image of<S> on state|0〉 ∈ H is a dense subset ofH.

Proof Assume that|ψ〉 is an arbitrary quantum state inH. Consider a unitary

operatorU such thatU |0〉 = |ψ〉. From the universality ofS we derive thatU can

be approximated by a sequence of elements,V1, V2, · · · , Vn in S. The following

sequence of the states

V1|0〉, V2|0〉, · · · , Vn|0〉 ,
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belongs to the image of< S > on |0〉 and approximates|ψ〉. This finishes the

proof.ut

Theorem 78 [39] The poset of the closed balls of a separable Hilbert space, or-

dered by reversed inclusion, is anω-continuous domain.

It is easy to see that the way-below relation is nothing but

C(|φ〉, r) ¿ (|ψ〉, s) iff C(|φ〉, r) ⊃ C(|ψ〉, s).

The embedding ofH into CH is defined with the following function:

eP : H → CH
|φ〉 7→ (|φ〉, 0) .

Clearly, the elements ofCH+ = {(|φ〉, 0) | |φ〉 ∈ H} are the maximal elements of

CH. Following the definitions of Subsection 4.2, we can introduce a topological

structure forCH. It is easy to check that for any given element(|φ〉, r) ∈ CH we

have:

e−1
P (↑↑(|φ〉, r)) = O(|φ〉, r) ,

whereO(|φ〉, r) is the open ball with centre|ψ〉 and radiusr. The subsets↑↑(|φ〉, r)
form a basis for the Scott topology onCH, while the open ballsO(|φ〉, r) are a basis

for metric topology onH. Hence,eP is a topological embedding, which makesH
homomorphic to the subspace of maximal elements ofCH.

Theω-continuity ofCH introduces an effective structure along the lines of Sub-

section 4.2.1. The homomorphism betweenH and maximal elements ofCH derives

an effective structure forH and hence it provides a computational framework for

H. In a similar way to the Subsection 4.2.1 we can define a computable pure state

as follows.

Definition 79 A quantum pure state|ψ〉 is calledcomputable, if its domain image

eP (|ψ〉) = (|ψ〉, 0) is computable inCH, i.e. iff the set{n ∈ N | bn ¿ (|ψ〉, 0)} is

r.e. (where{bn} are elements of the basisBCH).
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Mixed quantum states

As we explained in Chapter1, there exists a correspondence between density

matrices and probability measures onH (Theorem12). Therefore, to present a

computational framework for mixed states, it is enough to construct such a frame-

work for probability measures onH. We use the following notations and results

from [56, 38, 5, 76].

The domain of probability measures will be defined in terms of continuous valu-

ation functions. A continuous valuation function is a finite measure which is defined

on open subsets of a topological space [16, 57, 38].

Definition 80 Assume thatX is a topological space. A functionν from open sets

of X to non-negative real number,R+, is called acontinuous valuationfunction iff

the following conditions are satisfied:

• Strictness.ν(∅) = 0;

• Monotonicity.A ⊆ B ⇒ ν(A) ≤ ν(B);

• Modularity. ν(A ∪B) + ν(A ∩B) = ν(A) + ν(B);

• Continuity. wheneverI is a directed subset of open sets (with respect to⊆),

ν(
⋃ I) = supA∈I ν(A).

A continuous valuation on anω-continuous domain is a continuous valuation on its

Scott topology.

Definition 81 [64] Assume thatX is a topological space. Theprobabilistic power

domainPX of X consists of all continuous valuationsν on X with ν(X) ≤ 1,

ordered pointwise, i.e.

µ v ν iff µ(O) ≤ ν(O) for all open sets inX .

The simple valuation functions provide a basis for the probabilistic power do-

main.
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Definition 82 [64] For any pointx ∈ X thepoint valuation, δx, is defined as fol-

lows:

δx(O) =





1 if x ∈ O

0 if x 6∈ O

A finite linear combination of point valuations i.e.
∑n

i=1 riδxi
with xi ∈ X and

positive rational numbersri satisfying
∑n

i=1 ri ≤ 1, is called asimple valuation.

Theorem 83 [64] The probabilistic power domain of anω-continuous domain is

alsoω-continuous with a basis of simple valuation.

Now, we can introduce the domain of quantum mixed states. The set of all

closed subspaces ofH is theσ-algebra,M, of the measurable sets. LetM(H) de-

note the set of all probability measures onH. Based on Gleason’s Theorem (Chapter

1, Theorem12), a mixed state can be considered to be an element ofM(H). We

embedM(H) into the probabilistic power domainPCH of the closed ball domain

CH, which forms anω-continuous domain.

The maximal element ofPCH is the set of all valuationsν such that:

ν(O) = 1 for all open subsetsO ∈ CH+ .

The embedding ofM(H) into PCH is defined with the following function:

eM : M(H) → PCH
µ 7→ µ ◦ e−1

P .

The following result from [38] provides the correspondence betweenM(H) and

PCH+:

Theorem 84 [38] The spaceM(H) is homomorphic with the space of maximal

elements of theω-continuous domainPCH. These maximal elements are charac-

terised byν(CH+) = 1. Every mixed state onH can be obtained via this homo-

morphism as the least upper bound of an increasing chain of simple valuations on

CH.
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Similarly to the case of pure states, we define the computability of a mixed state

via the computational framework ofPCH.

Definition 85 A quantum mixed stateρ is calledcomputable, if its corresponding

measureµρ ∈ M(H) is computable i.e. if the domain elementeM(µ) is computable

in PCH, i.e. iff the set{n ∈ N | bn ¿ eM(µ)} is r.e. (where{bn} are elements of

the basisBPCH).

The process of quantum computation over a pure state is described with a uni-

tary operator, and over a mixed state is described with a CP map. As we explained

before, in a domain-picture of computation, programs are functions from the do-

main of the input to the domain of the output. The set of all continuous functions

forms the domain of operators. This is exactly the same in the case of quantum

computation.

Unitary Operators

Following the notation of Subsection 4.2 we denote by[CH → CH], the do-

main of the all continuous functions onCH with pointwise ordering. Every unitary

operatorU : H → H has a Scott-continuous extension to the domain of the closed

ball CH, i.e. there exists a Scott-continuous functionŨ in [CH → CH] such that

Ũ(C(|φ〉, 0)) = C(U |φ〉, 0) for all |φ〉 ∈ H ,

and it is explicitly given by

Ũ(C(|φ〉, r)) = C(U |φ〉, r) .

The following lemma shows that thẽU is well-defined.

Lemma 86 LetU to be a unitary operator onH. The extension functioñU (defined

above), maps a closed ball inCH to another closed ball.

Proof Assume the closed ballC(|φ〉, r) is given, then by applying̃U we obtain the
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following set:

Ũ(C(|φ〉, r)) = {U |ψ〉 : |ψ〉 ∈ C(|φ〉, r)} .

U is a unitary operator therefore the angle and distance between vectors inC(|φ〉, r)
and also their length under above transformation do not change and hence the re-

sulting set is another closed ball inCH. ut

We define the computability of a unitary function via domain theory with:

Definition 87 A unitary functionU : H → H is computableiff its extension,̃U , is

computable inU : H → H (in the terms of Subsection 4.2.1).

CP Maps

For simplicity, we denote byTµ the corresponding operator for a given measure

µ which is derived from Theorem 12:

∀µ ∃T : µ(A) = Tr(TPA) for all closed subspacesA .

A CP mapA is an operator overB(H) and can also be considered as a function

in M(H) → M(H) (from Gleason’s Theorem). Denote by[PCH → PCH] the

domain of all continuous functions onPCH (with pointwise ordering).

Every CP mapA : M(H) → M(H) has a Scott-continuous extension to the

domain of [PCH → PCH], i.e. there exists a Scott-continuous functionÃ ∈
[PCH → PCH] such that for every probability measureµ ∈ M(H) we have:

Ã(µ) = A(µ) .

The extension functioñA for a continuous valuation functionν ∈ PCH is explicitly

given as follows. For a Scott open subsetO in CH define:

Ã(ν)(O) = Tr(TA(ν)P<O>) ,
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where< O > is the closed subspace ofH spanned by vectors inO. The following

lemma shows that the above definition is well-defined:

Lemma 88 Any CP mapA on M(H), maps a continuous valuation function to

another continuous valuation function.

Proof Assumeν is a continuous valuation, we showA(ν) is also a continuous

valuation.

• Strictness.A(ν)(∅) = Tr(TA(ν)P<∅>) = 0 .

• Monotonicity. LetO ⊆ O′ then

A(ν)(O) = Tr(TA(ν)P<O>)

≤ Tr(TA(ν)P<O′>)

= A(ν)(O′) .

• Modularity.

A(ν)(O ∪O′) + A(ν)(O ∩O′)

= Tr(TA(ν)P<O∪O′>) + Tr(TA(ν)P<O∩O′>)

= Tr(TA(ν)P<O>) + Tr(TA(ν)P<O′>)

= A(ν)(O) + A(ν)(O′) .

• Continuity. LetI be a directed subset of open sets

A(ν)(
⋃
I) = Tr(TA(ν)P<I>)

= sup
O∈I

Tr(TA(ν)P<O>)

= sup
O∈I

A(ν)(O) .

ut

We define the computability of a CP map function via domain theory with:
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Definition 89 A CP mapA : M(H) → M(H) is computable iff its extension,̃A, is

computable in[PCH → PCH].

Quantum Measurements

At the end of a computation a measurement operator will be applied. A mea-

surement can be viewed as a CP map which takes a density matrix (the final state)

to another density matrix (the probabilistic mixture of the outcomes).

AssumeMm is a collection of measurement operators. The corresponding mea-

surement of this collection can be considered as a CP map overB(H) :

M : B(H) → B(H)

ρ 7→ MmρM †
m

Tr(M †
mMmρ)

.

Hence, the extension function and computability can be also defined exactly in the

same way that we defined before for a given CP map.

4.3.2 Denotational Semantics

In this subsection we present a denotational semantics for quantum computation

using domain theory, which could be considered as a foundation for designing a

functional programming language for quantum computation. The recent literature

contains several proposals for quantum programming languages. The first contribu-

tion in this direction is Knill’s paper on the QRAM model [41]. The other attempts

to define a true quantum programming language are two imperative languages. The

first approach bÿOmer [81, 82] has a C-like syntax, while a second proposal by

Sanders and Zuliani [91] is based on Dijkstra’s guarded-command language. A

similar approach to the work of this subsection has been developed independently

by Selinger [95]. He has presented the first functional programming language and

discussed the denotational semantics of his proposed language. Our work is based

on the Kozen’s semantics for probabilistic computation [74].

We aim to develop a denotational semantics for a basic programming language,

called Quantum WHILE. In this approach, we show how to define the mathemat-
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ical object corresponding to the language constructors. We will consider a simple

quantum computational machine with quantum memory registers. To develop the

proper foundation for quantum semantics, in the most general setting, we consider

density matrices and CP maps. Aharanov, Kitaev and Nisan in [4] introduced the

first computational model based on mixed state where possible operators are rep-

resented by CP maps. We show in this subsection that the same structure of the

classical probabilistic semantics which has been introduced by Kozen [74] can also

capture the semantics of quantum computation.

To follow the procedure introduced by Kozen [74], we define a measurable space

(X n,Mn) with the set of all measuresB = B(H1 ⊗ · · · ⊗ Hn,Mn) such that the

set of all probability measures in this space is in correspondence with the set of all

density matrices overH1⊗ · · · ⊗Hn. In this way, input to a quantum programP is

represented by a probability measureρ ∈ B which is the same as the corresponding

density matrix of all input pure states|φ1〉 ⊗ · · · ⊗ |φn〉 in H1 ⊗ · · · ⊗ Hn.

LetH = H1 ⊗ · · · ⊗ Hn denote the Hilbert space spanned by all the quantum

variables which are involved in the computation. DefineXi to be the set of all unit

vectors inHi andX to be the set of all unit vectors inH. The set of all closed

subspaces ofH is theσ-algebra,M, of the measurable sets. Gleason’s Theorem

determines all measures onM (Chapter1, Theorem12) and shows a correspon-

dence between operators inB(H) and measures onMn, we use interchangeably

any of the two notions of measure and operator. In the same way as the classical

case, the set of positive measures (positive self-adjoint operators)P ⊂ B is the

positive cone of the measure spaceB. The definition of ordering of measures is

defined as follows

µ v ν iff ν − µ ∈ P .

The spaceB′ of all CP maps inB(H) → B(H) forms a Banach space (under

the same definition of Subsection 4.2.2). The partial ordering of the set of all CP

maps is defined as follows:

A ≤ B iff A(ρ) ≤ B(ρ) for all ρ ∈ P .
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In semantics of the general setting for quantum computation, each program will

be represented by a CP map. For simplicity, in what follows the symbolP refers

to both a program and the corresponding CP map. A quantum programP maps

distributionsµ on (X ,M) to distributionP (µ) on (X ,M), or equivalently, maps a

density matrixµ onH to the density matrixP (µ).

For the completeness of the discussion we will give the full semantics of the

quantum WHILE language in the general setting. The syntax of this Language is

the same as the syntax of the classical probabilistic WHILE language (Subsection

4.2.2). The only difference is that instead of “random assignment” we have “quan-

tum measurement”.

• simple assignment: If P is the program “xi := f(x1, · · · , xn)” where f :

X → Xi is a measurable function, then the meaning ofP is the following CP

map:

µ 7→ P (µ)

P (µ) = µ ◦ F−1 ,

whereF : X → X is the measurable function

F (a1, · · · , an) = (a1, · · · , ai, f(a1, · · · , an), ai+1, · · · an) .

• measurement assignment: If P is the program “xi := measure” then the

meaning ofP is the following CP map:

µ 7→ P (µ)

P (µ)(A) = Tr(ρ′PA).

whereρ′ is a fixed distribution (density matrix) corresponding to the measure-

ment process. To be more precise, assume that the collection{Mm} describes

the quantum measurement that has been applied on theith variable, then

ρ′ =
(I ⊗ · · · ⊗Mm ⊗ · · · ⊗ I) Tµ (I ⊗ · · · ⊗M †

m ⊗ · · · ⊗ I)

Tr((I ⊗ · · · ⊗M †
m ⊗ · · · ⊗ I) (I ⊗ · · · ⊗Mm ⊗ · · · ⊗ I) Tµ)

.
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• composition: The meaning of the program “S; T ” is the functional composi-

tion of the CP mapsT andS, T ◦ S.

• conditional: The semantics of the program “ifB thenS elseT ” is the CP map

S ◦ eB + T ◦ e∼B ,

whereeB is the CP mapeB(µ) = µB.

• while loop: The meaning of the program “whileB doS” is the fixed-point of

the affine transformationτ : B′ → B′ defined by

τ(W ) = e∼B + W ◦ S ◦ eB ,

which is equal to

τn(0) =
∑

0≤k≤n−1

e∼B ◦ (S ◦ eB)k .

In order to present a complete picture of the applications of quantum domain

theory, in the next section we briefly review a domain framework for information

theory.

4.4 Information Theory

Recently a new application of domain theory has been introduced by Coecke and

Martin [31]. One of their main results was to show a domain formulation of ex-

isting results from information theory. They have shown the Shannon entropy and

Von Neumann entropy can be captured as Scott continuous functions over the cor-

responding domain. Here we briefly review their work in order to give a complete

picture of quantum domain theory. All the definitions and results in this subsection

are taken from [31].

Coecke and Martin have constructed a domain structure over mixed states such

that pure sates are the maximal elements. They first order classical states recursively
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in terms of Bayesian order.

Definition 90 Letn ≥ 2. Theclassical statesare

∆n =

{
x ∈ [0, 1]n |

n∑
i=1

xi = 1

}

A classical statex ∈ ∆n is pure, whenxi = 1 for somei ∈ 1, · · · , n. Denote by

{ei | i = 1, · · · , n} the set of all pure states.

A classical state inx ∈ ∆n can be interpreted as the information that an observer

has about the results of an event in whichn different outcomes are possible i.e.

xi indicates the probability of obtaining the outcomei. If we know x and after

measuring we determine that outcomei is not possible, our knowledge improves to

pi(x) =
1

1− xi

(x1, · · · , xi−1, xi+1, · · · , xn) ∈ ∆n−1 ,

wherepi(x) is obtained first by removingxi from x and then reorganising. The

partial functionspi:

pi : ∆n ⇀ ∆n−1 ,

with Dom(pi) = ∆n \ ei, are called theBayesian projections. The classical states

are partially ordered with the following recursive relation.

Definition 91 Assume thatx andy are in∆n; we writex vB y iff:

∀i : x, y ∈ Dom(pi) ⇒ pi(x) vB pi(y) .

For x, y ∈ ∆2 we have:

x vB y iff (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) .

The above relation is called theBayesian order.

The Bayesian order leads to a domain of classical states where the pure states

are the maximal elements.
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Theorem 92 [31] (∆n,vB) is a domain with the following set of maximal ele-

ments:

{ei | 1 ≤ i ≤ n} ,

and least element⊥ = (1/n, · · · , 1/n).

Coecke and Martin have generalised the idea of the Bayesian order to the quan-

tum setting using the spectral order. Informally speaking, to compare the amount

of information of two given mixed states it is enough to consider an observable and

measure both mixed states. The result of measurements are two classical states and

can be ordered via the Bayesian order. Following the notation of [31], we denote

by Ωn the set of all density matrices onHn. For simplicity we also consider the

following definition.

Definition 93 Assume thatO is a non-degenerate observable onHn i.e. it hasn

different eigenvalues with orthogonal eigenvector spaces{Pi}n
i=1. For a density

matrixρ onHn we define:

Spec(ρ|O) = (Tr(P1 · ρ), · · · , Tr(Pn · ρ)) ∈ ∆n .

Definition 94 Let n ≥ 2, for quantum statesρ, σ ∈ Ωn, we haveρ vS σ iff there

exists a non-degenerate observableO : Hn → Hn such that[ρ,O] = [σ,O] = 0

and

Spec(ρ|O) vB Spec(σ|O) .

This is called thespectral order.

Finally the domain of the quantum states can be defined with:

Theorem 95 [31] (Ωn,vS) is a domain with the following set of pure states as the

maximal elements and least element⊥ = I/n, whereI is the identity matrix.
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The final part of the Coecke and Martin’s work that we review here is concerned

with measuring of information content. To this end we need the following definition

from [31].

Definition 96 A Scott continuous mapµ : D → [0,∞)∗1 on a domain is said to

measure the content ofx ∈ D if

x ∈ U ⇒ (∃ε > 0) x ∈ µε(x) ⊂ U ,

wheneverU is Scott open inD and

µε(x) = {y ∈ D|y v x & |µ(x)− µ(y)| < ε} .

The mapµ measuresX if it measures the content of eachx ∈ X.

A map µ is a measure of content if it distinguishes the maximal (in content)

elements.

Definition 97 A measurementis a Scott continuous mapµ : D → [0,∞)∗ on a

domain if it measures the set{x ∈ D |µ(x) = 0}.

The following results from [31] present the domain picture of the well-known

functions, the Shannon entropy and the von Neumann entropy. As we will discuss

in the next chapter this can provide us with a uniform framework for measuring the

entanglement.

Theorem 98 [31] Shannon entropy

µ(x) = −
n∑

i=1

xi log(xi) ,

is a measurement of type∆n → [0,∞)∗.

Von Neumann entropy

σ(ρ) = −Tr(ρ lg(ρ) ,

1The set[0,∞)∗ is the domain of nonnegative real numbers in their opposite order.
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is a measurement of typeΩn → [0,∞)∗.

4.5 Discussions

In this chapter, we have discussed a new framework for quantum computation via

quantum domain theory. Using domain theory a rigourous framework for quantum

computability has been introduced. Although it is known that the class of quan-

tum computable functions is same as the class of classical computable functions

(Church-Turing Principle [32, 66, 83]), we believe that by considering a proper

framework for quantum computability we may be able to address new and interest-

ing questions. We also presented a topological structure for quantum computation

using domain theory, which may prove to be useful in other aspects of theoret-

ical quantum computation. Furthermore we introduced a denotational semantics

for quantum computation and we showed that quantum computation over density

matrices with completely positive maps, has a similar semantical structure as prob-

abilistic computation over random variables. This could be considered as a foun-

dation for designing a functional programming language for quantum computation.

Finally we reviewed a domain structure for quantum information theory where the

proposed partial order has interesting connections with theory of entanglement [31].

We believe a domain theoretical approach to the theory of entanglement manipula-

tion may provide us with a uniform framework for measuring entanglement.
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Axiomatic Information Theory

5.1 Introduction

In this chapter we will present a general mathematical formalism which, we believe,

can describe key information processing aspects based on different physical theo-

ries. This formulation was originally introduced by Giles for the purpose of giving

a rigourous mathematical framework for classical thermodynamics [49]. In partic-

ular, he wanted to formalise the statement of the Second Law of thermodynamics

and derive a unique quantity, called entropy, which orders thermodynamical states

according to their mutual accessability.

There are many different ways of stating the Second Law. Caratheodory [24]

restated the Second Law by saying that in the neighbourhood of any state there exist

states which are adiabatically inaccessible from it. This allowed him to derive an

entropy function which is able to introduce ordering into the set of physical states.

The Second Law thus tells us that adiabatic processes cannot decrease entropy of

the system itself. The question, then, is whether entropy is the only such function.

To answer this question, however, thermodynamics needed first to be put onto a

more secure mathematical foundation. In the words of Caratheodory himself:

“What Thermodynamics needs is the establishment of logical order, essentially an
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intellectual cleanup. This is a problem for a mathematician. The fundamental ideas

and concepts have been introduced by physicists long ago and a mathematician

need not worry about it”.

The first such formalisation came from Giles in1964 [49] and was recently ex-

tended by Lieb and Yngvson [75]. Giles’ mathematical formalism can be presented

in a way which is completely divorced from any underlying physical basis, and this

is what potentially allows us to apply it to scenarios other than thermodynamics.

We first review Giles’ original application to thermodynamics, and then show that

the same formalism can be interpreted to capture entanglement manipulations in

quantum information processing [107, 106]. This allows us to prove in a novel way

the uniqueness of the measure of entanglement for pure bipartite states. Since clas-

sical information processing can be seen as a special case of quantum information

processing, this formalism will also allow us to derive the classical (Shannon) en-

tropy [96] within the same framework, but from the dynamical perspective. This

highlights the close relationship between information processing and statistical me-

chanics in general as we discuss at the end of the chapter, along with other open

problems in this direction.

5.2 Formal Theory

An ideal physical theory should consist of two independent parts: a mathematical

theory and a set of rules of interpretation of various mathematical objects involved

in the theory. By formalising a physical theory in such a way as to divorce it from the

physical interpretation, it is possible to derive a mathematical structure that may be

useful in a completely different physical setting to the original one. We give a brief

summary of Giles’ mathematical theory [49] and then describe how one can capture

thermodynamics and entanglement manipulations with the axioms introduced in

this section. The physical motivation behind the axioms will then become clearer.

We study a non-empty setS, whose elements are called states, in which two

operations,+ and→, are defined. The goal is to derive a unique ordering over

the states with some particular conditions. In what follows, states are denoted by
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a, b, c, . . . :

Axioms 1-5

(1) The operation+ is associative and commutative.

(2) For all statea we have: a → a.

(3) For all statesa, b andc we have: a → b & b → c =⇒ a → c.

(4) For all statesa, b andc we have: a → b ⇐⇒ a + c → b + c.

(5) For all statesa, b andc we have: a → b & a → c =⇒ b → c or c → b.

Definition 99 A processis an ordered pair of states(a, b). The set of all processes

is denoted byP.

We extend definitions of+ and→ toP as follows :

(a, b) + (c, d) = (a + c, b + d)

(a, b) → (c, d) ⇐⇒ a + d → b + c .

For simplicity, we also define a relation⊂ overS.

Definition 100 Given statesa andb we writea ⊂ b (and say thata is containedin

b), if there exists a positive integern and a statec such that

na + c → nb or nb → na + c .

Informally, the above definition means that a statea is smaller thanb if a requires the

help of another statec to be converted to or derived fromb. Now we can introduce

an important class of states, internal states, which server as yardstick for ordering

the states.

Definition 101 A statee is an internal state if, given any statex, there exists a

positive integern such thatx ⊂ ne.
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This definition introduces a reference state, which is the one that can contain any

other physical state given sufficiently many copies of it. The concept of the internal

state is necessary to give a basic metric unit to quantify the physical content of a

state in a unique way (i.e. independent of states). The other important classes of

states are the sets of equilibrium and anti-equilibrium states.

Definition 102 A statea is anequilibriumstate if there exists no stateb such that

a → b and b 6→ a. A statex is an anti-equilibrium state if there exists no statea

such thata → x andx 6→ a.

Now we can present the remaining axioms of the formal theory:

Axioms 6-8

(6) There exists an internal state.

(7) Given a processα, if there exists a statec such that for any positive real

numberε there exists positive integersm, n and statesx, y such thatm/n < ε,

x ⊂ mc,y ⊂ mc, and(x, y) + nα → 0 thenα → 0.

(8) Given a statea, there exists an anti-equilibrium statex such thatx → a. If x

andy anti-equilibrium states then sox + y.

To order the states we define the following function.

Definition 103 A real-valued function,E, is anentropyfunction, if it satisfies the

following properties for all statesa andb:

(i) E(a + b) = E(a) + E(b).

(ii) a → b & b → a ⇐⇒ E(a) = E(b.

(iii) a → b & b 6→ a ⇐⇒ E(a) < E(b).

(iv) For every anti-equilibrium statex we haveE(x) = 0.

To present the uniqueness theorem for entropy functions we need to define the

class of following functions. This notion is important as the entropy function will

be unique up to the addition of this function.
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5.3 Thermodynamics

Definition 104 A real-valued functionQ is a component of contentfunction if for

all statesa andb we have:

• Q(a + b) = Q(a) + Q(b).

• a → b =⇒ Q(a) = Q(b).

Definition 105 A real-valued functionQ is a non-equilibrium component of con-

tent if it satisfies the following properties:

(i) Q is a component of content function.

(ii) For every anti-equilibrium statex we haveQ(x) = 0.

Theorem 106 [49] Let E1 be an entropy function. IfQ is a non-equilibrium com-

ponent of content andλ a positive real number thenλE1 +Q is an entropy function.

Moreover, any entropy functionE may be written in this form.

This theorem, proved by Giles, states that the measure of order is unique up to

an affine transformation. With this we complete the formal part of the theory and

turn our attention to the applications. Note that the main point of the formalism is

to give conditions under which we can uniquely order states of a certain set.

5.3 Thermodynamics

In this section, we briefly discuss how the formal model introduced in Section 5.2

describes the structure of thermodynamics. ConsiderS to be the set of all thermo-

dynamical states (e.g. a state of a simple gas is defined once its temperatureT and

volumeV are known, therefore we can say thata = (Ta, Va)). The operator+

represents the physical operation of considering two systems together. Therefore it

must naturally be associative and commutative. On the other hand, the operator→
represents an adiabatic process which is meant to convert different physical states

into each other. Therefore, like any other physical process, it should naturally be

reflective and transitive as in axioms2 and3.
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Axiom 4 is the first non-intuitive property linking the operators+ and→. In the

forward direction it is clear that if statea can be converted intob then the presence

of another statec should not alter this fact, i.e. we can converta andc into b andc

by convertinga into b while doing nothing toc. In the backward direction, however,

this axiom is not completely obvious. It says that if a process is possible with the

aid of another state, then we, in fact, do not need this other state for the process.

Thermodynamics deals with macroscopic systems with a large number of degrees

of freedom (subsystems). It is in the “asymptotic” limit that this axiom becomes

more natural.

Finally, axiom5 is the key property which allows us to compare different states

and processes. It says that any two states that are accessible from a third state must

be accessible to each other at least in one direction. Not being able to do so would

lead to states which would be incomparable as there would be no physical way of

connecting them. Thus, a unique way of ordering states would be impossible.

Axiom 6 is necessary if we are to compare contents of different states in a unique

way. Axiom 7 is the most complex axiom in the theory, although it is strongly

motivated by the logic of thermodynamical reasoning. Loosely speaking, it states

that if we can transforma into b with an arbitrarily small environmental influence,

then this influence can be ignored. This, in some sense, introduces continuity into

thermodynamical properties. Axiom8 is self evident in thermodynamics. A more

detailed on physical interpretation of the axioms can be found in Giles’ book [49].

5.4 Entanglement Manipulation

Understanding of entanglement and its characterisation form the cornerstone of the

new and rapidly growing filed of quantum information and computation [67, 105].

We need to know how much entanglement is at our disposal since entanglement is

a form of resource that can enhance information processing [86].

Although a great deal of work has recently been performed in this direction

[61], it is widely acknowledged that we do not have a complete understanding of

even the bipartite entanglement for mixed states. There is a number of measures

to quantify entanglement which apply in different settings and have different prop-
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erties [61]. The consensus, however, is that local operations aided with classical

communication (LOCC) are the key to explaining entanglement [10, 87, 102].

The LOCC maps separate disentangled states from entangled states and thus

introduce adirectionality to entanglement manipulation processes: an entangled

state can always be converted to a disentangled one by LOCC, but not vice versa.

A comparison with thermodynamics will be very helpful at this point. The Sec-

ond Law of thermodynamics tells us which (energy conserving) processes are al-

lowed in nature, without any reference to the underlying physical structure. The

central role is played by adiabatic processes and entropy is used to separate the pos-

sible from the impossible processes according to a very simple principle: if a state

A has more entropy thanB, then there is an adiabatic process to go fromB to A,

but not vice versa.

In order to describe entanglement manipulations [61, 105] within Giles’ for-

mal theory, considerS to be the set of all quantum bipartite pure states and the

operation+ to be the tensor product⊗. The arrow will be defined in terms of

transformations which convert bipartite states by only using local operations on the

subsystems separately aided with classical communication between the subsystems

(LOCC) [61, 105]. First, we give the definition of⊂ in the quantum setting and

then give the precise definition of arrow in the spirit of axiom7.

Definition 107 We say that a pure statea is containedin a pure stateb, denoted by

a ⊂ b, iff there exists an integern and a statec such that either of the following two

cases is valid

i) (∀ε)(∃Φ ∈ LOCC) : ||Φ(a⊗n ⊗ c)− b⊗n|| < ε

ii) (∀ε)(∃Φ ∈ LOCC) : ||Φ(b⊗n)− a⊗n ⊗ c|| < ε .

In other words, a quantum statea is contained within a stateb if, with the help of

some other statec, a can be transformed by LOCC intob. Now we define what we

mean by a transformation of one quantum state into another.

Definition 108 We say that a pure statea can beconvertedinto a pure stateb,
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designated asa → b, iff

(∀ε)(∃c)(∀δ)(∃n,m ∈ N, Φ ∈ LOCC and x, y ∈ S)

such that m/n < δ , x ⊂ mc , y ⊂ mc and

||Φ(a⊗n ⊗ x)− b⊗n ⊗ y|| < ε .

Product states act as equilibrium states in the sense that LOCCs cannot create

entanglement out of them and the space of product (disentangled) states is invariant

under LOCCs. Likewise, maximally entangled states act as anti-equilibrium states,

in the sense that LOCCs naturally tend to destroy entanglement and therefore move

away from this set. Now we define an entanglement measure in a similar way that

to an entropy function.

Definition 109 A real-valued functionE defined overS is a called anentanglement

measure, if

• For all statea andb we have :E(a⊗ b) = E(a) + E(b) .

• If a → b & b → a, thenE(a) = E(b).

• If a → b & b 6→ a, thenE(a) > E(b).

• E(a) = 1 if a is a maximally entangled sate.

Giles’ proof of uniqueness of an ordering function is constructive and can be

found in [49]. In case of entanglement manipulations this leads to a definition for a

measure of entanglement as following:

E(a) = inf
m,n∈N

{m/n | ∃x, y ∈ S : y ⊂ e⊗m & y → a⊗n ⊗ x} ,

wheree is any maximally entangled state.

Our abstract approach to entanglement is different to the existing method where

one looks for a minimal number of conditions for a measure of entanglement that

would single out a unique one [102, 62, 90, 35]. The existing method has a strong

flavour of Shannon’s pioneering approach to information theory [96]. Shannon
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considered functions on the set of probability distribution which would describe

their information content. By introducing three natural conditions that this function

should satisfy he arrived at a unique measure, called the Shannon entropy. These

conditions are remarkably similar to the conditions leading to a unique measure of

entanglement for pure bipartite states [90]. This, of course, is not surprising. It

is well known that the Shannon entropy of the probabilities derived from Schmidt

coefficients in the Schmidt decomposition [92] of a pure bipartite state is a good

measure of entanglement [10].

5.5 Elementary Classical Information

As a very simple realisation of Giles’ theory we comment on how to capture the

most elementary notion of classical information, namely that the information car-

ried by an event happening with probabilityp is log p. For this, the states are real

numbers0 < r ≤ 1, + represents multiplication of real numbers, and the arrow is

the relation “less then or equal”. It is very simple to check that all the axioms are

satisfied. Following Giles’ construction, we can derive a unique measure for this

case which is then proportional tolog p. An open question now is to find dynamical

processes that naturally lead to this realisation and derive the more general Shannon

entropy−∑
i pi log pi.

5.6 Discussion

We show in this chapter that the Giles’ formal theory not only describes the mathe-

matical foundation of thermodynamics but can also describe entanglement manipu-

lations. This approach to uniqueness of measure of entanglement for pure bipartite

states is different to the existing method where one looks for a minimal number

of conditions for a measure to satisfy such that one could single out a unique one

[90, 35].

A natural question to ask is whether the same model can be applied to classical

information theory and derive the classical entropy from the dynamical perspec-

tive, rather than the usual axioms of Shannon [96]. This could be done by defining
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the states to be probability distributions (much like in statistical mechanics, where

these would correspond to occupational probabilities of different energy levels). In

addition, the arrow would be defined by a stochastic map taking one probability

distribution into another one. This is in the same spirit as Penrose’s formulation of

statistical mechanics [85]. However, in order to derive a unique measure, the no-

tion of arrow needs to be generalised to satisfy all the axioms. We believe this can

be done in an asymptotic way by converting multiple copies of the same probabil-

ity distribution with the aid of another (arbitrary) catalyser probability distribution.

This conjecture remains to be proven. This would not only show that there are deep

mathematical connections between thermodynamics, statistical mechanics and in-

formation theory, both classical and quantum, but also that they all in fact arise from

the same mathematical framework presented here.
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