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Abstract In this study, a new mechanism that adapts the mutation rate for each
locus on the chromosomes, based on feedback obtained from the current population
is proposed. Through tests using the one-max problem, it is shown that the proposed
scheme improves convergence rate. Further tests are performed using the 4-Peaks
and multiple knapsack test problems to compare the performance of the proposed
approach with other similar parameter control approaches. A convergence control
scheme that provides acceptable performance is chosen to maintain sufficient
diversity in the population and implemented for all tested methods to provide fair
comparisons. The effects of using a convergence control mechanism are not within
the scope of this paper and will be explored in a future study. As a result of the
tests, promising results which promote further experimentation are obtained.

1. Introduction

Genetic algorithms belong to a class of biologically inspired optimization approaches that
model the basic principles of classical Mendelian genetics and Darwinian theory of
evolution. Due to their robust nature, genetic algorithms are used in a wide variety of
applications. However one of the major drawbacks is that performance largely depends on
the appropriate setting of some parameters: population size, crossover and mutation rates.
These parameters interact with each other, making it even harder to find optimal settings.
However mutation rate is considered to be the most sensitive of these parameters.
Mutation has been traditionally regarded as a background operator that mainly works as
an insurance policy protecting alleles from being lost from the population. There has been
extensive work to investigate the exact nature of mutation and to find optimal settings for
different classes of problems [2], [7], [8]. It has also been shown in further studies [2], [3],
[12] that using a varying mutation rate strategy overcomes the difficulties of finding
optimal mutation rate settings. The techniques developed to set the parameters are
classified separately by Eiben et al. [5] Angeline [1] and Smith et al. [10] but the main
underlying principles of the different classifications are similar. Parameter setting



methods can be classified into two major categories: parameter tuning and parameter
control. In parameter tuning, the parameter values are set in advance, before the run and
are kept constant during the whole execution of the algorithm. In parameter control,
parameters are initialized at the start of execution and their values are allowed to change
during the run. The type of the change is defined in [5] to be one of the following:
deterministic (the parameter value is updated according to some deterministic rule),
adaptive (the parameter value is updated based on some feedback taken from the
population) or self-adaptive (the parameter is evaluated and updated by the evolutionary
algorithm itself).

In this study, an adaptive mutation rate strategy that increases or decreases the mutation
rate for each locus on the chromosome, based on feedback obtained from the current
population is introduced. Even though using feedback from the current state of the search
seems to be a useful approach, it has not been studied much within the scope of canonical
genetic algorithms [12]. This approach is tested against previously published methods for
mutation rate control on a chosen set of test problems. The results are seen to be
promising and promote further study. The rest of this paper is organized as follows:
Section 2 introduces the proposed mutation rate adaptation approach section 3 presents
the experimental setup, section 4 discusses the results of the experiments, and section 5
provides a conclusion and possible directions for future work.

2. A Genetic Algorithm with Gene Based Adaptive Mutation

Mutation as an insurance policy against permanent loss of genes is considered to be the
most sensitive of the required GA parameters. Determining the optimum fixed mutation
rate for different types of problems requires an empirical analysis. In this paper, a Gene
Based Adaptive Mutation (GBAM) method is proposed. This approach experiments with
adaptive mutation rate values during the run using feedback from the population.
Therefore, instead of using a fixed optimum value for a mutation rate, a range can be
specified which provides more flexibility. Different from other known mutation
adaptation strategies, GBAM has its own mutation rate value for each locus. An adaptive
approach for adjusting mutation rates for the gene locations based on the feedback
obtained by observing the relative success or failure of the individuals in the population is
used. Since the mutation rates at each locus depend mainly on whether the individuals
with a specific allele value for that locus is successful or not, GBAM is more suited to
problems in which the representation is binary.

In GBAM, there are two different mutation rates defined for each locus: p,, for those
genes that are "1" and pp, for those that are "0". In the reproduction phase, the appropriate
mutation rate is applied based on the gene allele value. Initially all of the mutation rates
are set to an initial value in the specified boundaries. Then for each generation, the
mutation probabilities p,,; and pno for each locus are updated based on feedback taken
from the relative success or failures of those individuals having a "1" or "0" at that locus.



The update rule for the two mutation rate values for one gene location can be seen in Eq.1.
This update rule is applied separately for each locus. The p,,; value for a locus corresponds
to the rate of mutation, which will be applied when the gene value is i in the
corresponding gene location. S, is the average fitness of the individuals with an allele
“1” for the corresponding gene location. Py, is the average fitness of the population, v is
the update value for the mutation rates. For a maximization problem, if the ratio of S,,, to
P,y is greater than 1 or all the genes at that locus are 1, i.e. the average fitness value of the
individuals having the allele "1" for that locus is higher than those having "0", the allele
value “1” for the corresponding locus is assumed to generate more successful results.
Therefore, a decrease in py;, and an increase in p,o for the corresponding locus are
implemented. Similarly, if the S,,, to Py, ratio is less than 1 or all the genes at that locus
are 0, then the opposite operations are implemented on the mutation rate values. In the
case of a minimization problem, the operations in Eq. 1 should be exchanged. As a result
of the updates at each generation, p,; values are allowed to oscillate within the limits
defined by lower and upper bounds. If an update causes a mutation rate to exceed the
limits, it is set to the corresponding boundary value. All GBAM parameters are
determined empirically.
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As will be shown in the analysis of the experiments, GBAM allows rapid convergence.
For unimodal objective functions, this rapid convergence provides a valuable refinement.
However, the premature convergence problem, which may cause the program to get stuck
at local optima, arises especially for the multimodal objective functions. This problem is
explored in detail in [9] for self-adaptive mutations, however the results can easily be
extended to adaptive mutation schemes too. One way to remedy this is to implement a
mechanism to maintain sufficient diversity in the population for escaping local optima. As
a result of preliminary experimentation, a method that complements (p,=1.0) the
genotype of a predefined percentage of the population during the reproduction phase
when the population converges, and then resets the mutation rates to their initial values is
observed to generate acceptable results. This convergence control method is used in
GBAM to enable the program to escape from possible local optima.

3. Experimental Design

The aim of the experiments is to show that GBAM requires fewer generations to reach the
optimum as well as exploring its performance compared to other parameter control
approaches found in literature, based on two different types of problems. The testing
phase consists of two stages. In the first stage, GBAM is compared with a simple
canonical genetic algorithm using a fixed mutation rate to determine whether the addition



of the proposed adaptive mutation rate strategy causes a performance improvement by
reducing the amount of fitness evaluations to reach the optimum. There is no convergence
control used at this stage. The one-max problem, which is unimodal and easy for the
simple genetic algorithm, is used for this stage of the tests. In the second stage of the
testing phase, representative parameter control approaches for each type of change
scheme (deterministic, adaptive and self-adaptive) developed for canonical genetic
algorithms are chosen from literature and are compared with GBAM. Two test problems
are used during this stage: 4-Peaks and the multiple knapsack problems. For both of these
problems, all tested approaches are equipped with the convergence control mechanism
explained in Section 2 to provide fair comparisons. The results are evaluated based on
their solution quality and the number of fitness evaluations it takes each approach to find
those results.

3.1 Test Problems

One-Max: The main aim of this problem is to maximize the number of 1s in a binary
represented string of length L. The optimum for this function is L.

4-Peaks: The fitness function for the 4-Peaks problem where each individual consists of
100 bits is given in Eq.2 where z(x) is the number of contiguous Os ending in Position
100, o(x) is the number of contiguous 1s starting in Position 1, and T is a threshold. The
problem has two global and two local optima. As explained in [4], by increasing T, the
basins of attraction surrounding the inferior local optima increase in size exponentially
while the basins around the global optima decrease at the same rate. Therefore, increasing
T makes it harder for a GA to escape the local optima.

100+ T if o(x)>T Az(x)>T
0 otherwise )
f(x) = MAX(o(x), z(x))+ REWARD

REWARD = {

Multiple Knapsack Problem: In the 0/1 Multiple Knapsack Problem (Mkp), there are m
knapsacks of capacity c;, n objects of profit p;. The weights for the objects are different
for each knapsack. wj represents the i"™ object’s weight for the j™ knapsack. A feasible
vector  solution for this problem can be defined as a vector

X =(x|,%y,...,x,) Where x; € {0,1} , such that Zfl_l w; *xl. < c; for j=1,2,.m. The value

“0” for an object in the vector representation means that the object is not placed in any of
the knapsacks. Otherwise, the object is placed in all of the knapsacks. The main objective

is to find a feasible vector with maximum profit P(X) =" x, * p,. The feasible

vector solution should satisfy the constraint that no knapsack is overfilled. A penalty



value is added to the objective function to enable the feasible individuals to have more
survivability. The penalized objective function of [6] defined in Eq. 3 is used in this study.

S =202 %ﬁv};l) * max (max(0, 3w, *x, =) @)

3.2 Parameter Control Approaches Chosen for Comparisons

There are different formulations and implementations of various parameter control
techniques in literature. A representative scheme that is shown to give good performance
is chosen from each category and used for the comparisons.

Deterministic Approach: Deterministic mutation rate schedule provides the mutation
rate to be deterministically altered at each generation. The mutation rate decreases from a
value (generally 0.5) to the optimum mutation rate (generally 1/L) without using any
feedback from the population. The deterministic mutation rate schedule suggested in [10]
was reported in [12] as being successful for hard combinatorial problems. Time-varying
mutation rate p;, is calculated based on the formula given in Eq. 4. In this formula,
te{0,1,...,T—1} denotes the generation number, and T is the maximum number of

generations.
L-2.Y"
Pt=[2+T l*tj “

Self-Adaptive Approach: In the self-adaptive approach, the parameters are encoded into
the chromosomes and undergo mutation and recombination. The idea is that better
parameter values lead to better individuals and these parameter values will survive in the
population since they are brought together with the surviving individuals. In [3] a self-
adaptation mechanism of a single mutation rate per individual is proposed. The mutation
of this mutation rate p € ]0,1[ gives the new mutation rate p’ € ]0,1[ according to Eq. 5.
In this equation y is the learning rate which controls the adaptation speed and it is taken as
0.22 in [3]. An individual consists of a bit string and an individual mutation rate p. The
new individual is determined through bit wise mutation of n bits using the mutated
mutation rate value p’. The mutation rate is not allowed to go below 1/L. In this approach
the crossover is applied only to the binary vector and has no effect on p.

p'=(1+l’pp.exp(—y.zv(o,l)»* 5)

Adaptive Approach: Adaptive GA proposed in [11] is a kind of individually adaptive
mutation rate strategy. The probabilities of crossover and mutation are adapted depending
on the fitness values of the individuals. The adaptation of the p. and p, allows the
individuals having fitness values of over-average to maintain their genetic material, while



forcing the individuals with sub-average fitness values to disrupt. Therefore, the method
auto-controls the convergence situation. The method is tested with only SGA in [11]. In
Adaptive GA both the mutation and the crossover rates are adapted. However, since the
effects of the crossover rate adaptation are not addressed in this study, only the mutation
rate adaptation strategy of the Adaptive GA is used as a comparison method. The
mutation rate adaptation rule is given in Eq. 6. In this equation, f denotes the fitness value
of the individual, f. denotes the best fitness value of the current generation, and f,y,
denotes the average fitness value of the current generation. In [11], the constants k, and
the k, are chosen as 0.5.

P =k (s =) rnax = e S
P, =k, f<fuvg
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(6)

4. Experimental Results

As explained in the previous section, the experiments consist of two stages. For all the
tests in each stage, the program implementation for each chosen approach on each test
problem is run 100 times. In this section the results of each stage will be given separately.
In tables, u denotes mean values, ¢ standard deviations and the 99% CI confidence
intervals. Some parameter settings are kept constant through all tests. A population
consists of 250 individuals. Parent selection is done through tournament selection with
tournament sizes of two. Recombination is done through two-point cross over at a fixed
rate of 1.0. The new population is determined using elitism where the best individual
replaces the worst individual in the next generation.

4.1 Exploring the Effects of GBAM on Number of Generations to Find Optimum

The GBAM approach is expected to reduce the number of generations to locate an
optimal individual. To investigate just the effect of the proposed mutation rate adaptation
approach, GBAM and a simple canonical genetic algorithm (SGA) is applied to the One-
Max problem. Since the problem space is unimodal, no convergence control is
implemented. Maximum number of generations for both GBAM and SGA are 500. The
mutation rate for SGA is 1/L, where L is the string length. For GBAM, the initial mutation
rate is 0.02 and this mutation rate value is allowed to change between a lower bound of
0.0001 and an upper bound of 0.2 with update value y=0.001 in Eq.1. These settings are
determined empirically to provide the best performance for each approach. Tests are
performed for three different string lengths: L=200, L=400, L=800. Both GBAM and
SGA are able to locate the optimum individuals for all tested string lengths. The statistical
calculations are given in Tablel. Here 99%CI shows the 99% confidence interval of the



difference between the means of GBAM and SGA. Based on the results in Table-1, it can
be said with 99% certainty that the true mean value for the reduction in number of
generations to reach the optimum when using GBAM for the one-max problem with the
chosen parameter settings lies within the given CI ranges. This result confirms the
expectation that GBAM locates the optimal individual much quicker than a SGA under
similar circumstances.

Table-1. Statistical calculations for number of generations to reach the optimum

L=200 L=400 L=800

1! c u c u c
GBAM | 48.09 | 2.56 | 99.28 [34.27|217.33 [39.23
SGA 91.08 | 7.33 [169.65 [14.04 | 332.19 | 23.18
99%CI [|41.45 to 44.53 162.97 to 79.97 |103.1 to 126.64

4.2 Comparison of GBAM with Other Parameter Control Methods

The aim of this second testing stage is to compare the performance of GBAM with the
different parameter control approaches explained in section 3.2. Two kinds of test
problems are used during these tests: 4-Peaks (section 3.1.2) and Mkp (section 3.1.3). For
4-Peaks problem, the methods given in [4] are tested for different T values between 11
and 25 and it is seen that after the value of 19 it becomes hard for simple GAs to find the
optimum. Therefore in this study T=11 is chosen to test an easy 4-Peaks problem and
T=27 a difficult one. These values are chosen to compare the effectiveness of the
algorithms for different levels of difficulty. The global best fitness value is 199, while
local best fitness value is 100. The number of maximum generations is selected as 3500
for this problem. As a testbed for the Mkp Weing-7 and Weish-30 datasets [13] are
selected. In Weing-7, there are 2 knapsacks and 105 objects. In Weish-30, there are 5
knapsacks and 90 objects. The known optima are reported as 1095445 for Weing-7 and as
11191 for Weish-30 in [13]. The number of maximum generations is selected as 6000.
Because the chosen penalty approach assigns high negative fitness values to infeasible
individuals, for the Mkp instances, the mutation rate adaptation is done based on only the
feasible individuals.

A convergence control mechanism is implemented for each of the algorithms except
the Adaptive GA which has its own convergence control. The implemented mechanism
takes the complement of the 25% of the population when 90% of all the genes are
converged for all gene locations. Chromosome length (L) is equal to 100 for 4-Peaks, and
to the number of objects for the Mkp instances. The initial mutation rate for SA is 2/L. In
GBAM, the initial mutation rate is 1/L for all problem instances. The upper and lower
bounds for the mutation rate in GBAM are 0.2 and 0.0001 respectively, with an update
amount of y=0.001. The comparison criteria for the tests are chosen as the best fitness
values and the number of generations to reach the best fitness both averaged over 100



runs. The following abbreviations are used in Table-2 and Table-3: SA (Self Adaptive),
Adap (Adaptive), Det (Deterministic) and GBAM.

Table-2. Statistical results of 4-Peak Problem Instances

»n 4-Peaks (T=11) 4-Peaks (T=27)
Eﬁ N c 99%Cl N o 99%CI
E SA 143.94 7.98 141.80-146.08 43.44 8.24 41.23-45.65
= Adap 128.98 46.18 116.60-141.36 95.53 3.53 94.58-96.48
n
g Det 198.83 0.64 198.66-199.00 99.82 0.88 99.67-99.97
GBAM 199.00 0.00 199.00-199.00 199.00 0.00 199.00-199.00
4-Peaks (T=11) 4-Peaks (T=27)
z M o 99%CI u s 99%CI
% SA 2481.02 801.55 2266.19-2695.85 2302.51 852.95 2073.90-2531.12
% Adap 3020.88 404.14 2912.57-3129.20 2962.98 403.61 2854.81-3071.15
Det 3142.52 227.71 3081.49-3203.55 3099.12 293.37 3020.49-3177.75
GBAM 301.85 | 209.47 245.71-357.99 654.07 466.40 529.07-779.07
Table-3. Statistical results of MKP Problem Instances
MKP (Weing-7) MKP (Weish-30)
u c 99%ClI p o 99%ClI
2 1047582.69-
E SA 1051736.88 | 15499.66 1055891.00 10030.18 | 381.97 9927.81-10132.55
E 1081813.00-
: Adap 1083460.50 | 6146.87 1085108.00 10860.07 144.43 10821.36-10898.78
wn
= 1094694.63-
o0 Det 1094818.63 462.55 1094942.63 11163.94 16.18 11159.60-11168.28
1094923.38-
GBAM | 1095085.25 604.02 109524713 11190.96 0.40 11190.85-11191.07
MKP (Weing-7) MKP (Weish-30)
1] c 99%CI1 N o 99%CI
2] SA 3520.13 1678.82 3070.18- 3527.80 1746.44 3059.73-3995.87
E ) ) 3970.08 i i ) ’
o 4810.58-
8 Adap 5040.67 858.49 527076 4739.13 1100.37 4444.21-5034.05
] 5368.70-
z Det 5484.20 430.95 5461.25 521.09 5321.59-5600.91
5599.70
GBAM 2586.80 1788.95 2107.33- 588.86 695.30 402.51-775.21
’ ) 3066.27 ’ ) ) )

Table-2 and Table-3 are given in two parts: one is for the best fitness values and the
other is for the number of generations to locate the individual with the best fitness. To



assess the success of an approach, both parts should be considered together. Based on the
results in these tables, GBAM seems to be promising for all of the tested problems. For
the 4-Peaks problem, GBAM finds the global optimum for all of the T values, while none
of the other methods can. The confidence intervals also do not intersect, showing that in
99% of all trials, the mean values for all approaches will fall within these intervals,
confirming that GBAM performs better in these cases. For Mkp, GBAM generates most
successful results of all, both in the average fitness value and the number of generations
needed to find the best fitness. The 99% confidence intervals for the average fitness
values for the Weing-7 instance intersect for Det and GBAM, however it should be noted
that the number of generations for GBAM to reach its best fitness value is much less than
that for Det.
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Fig.1. Avg. best fitnesses over 100 runs

The best fitness values averaged over 100 runs for all generations can be seen in Fig 1
for the tested problems. The deterministic approach behaves as expected with increasing
best fitness values for each generation. The convergence intervention applied to this
algorithm is not effective due to the nature of the approach since convergence occurs
towards the end of the run. However in GBAM convergence can occur in earlier steps,
because this method forces the population to converge fast. In GBAM after the population
converges and 25% of the population is complemented, the mutation rate values for the



genes are again reset to the initial values. However, due to elitism, previously found good
individuals are not lost. In GBAM the overall best individual fitness values are highest of
all approaches, and they are found in earlier generations as mentioned before. The best
fitness values found for the Mkp which are higher than 1095000 for Weing-7 (listed as
succesful in [12]) and 11150 for Weish-30 can be seen in Table-4. Based on the graphical
results in Fig. 1, the rise of the plot for GBAM is fastest of all the tested methods.

Table-4. Best fitness values higher than selected thresholds observed in 100 runs for
MKP (1095000 for Weish-30 and 11150 for Weing-7)

Weing-7 Results Weish-30 Results
SA | Adap | DET | GBAM SA | Adap | DET | GBAM
1095445 - - - 10 11191 - - 11 99
1095382 - - 5 18 11187 - - 5 1
1095357 - - 3 12 11182 - - 2 -
1095295 - - - 1 11181 - - 1 -
1095266 - - - 6 11178 - - 1 -
1095264 - - 3 3 11177 - - 1 -
1095262 - - - 2 11175 - - 1 -
1095232 - - 1 1 11174 - - 2 -
1095207 - - 2 5 11173 - - 4 -
1095206 - - 4 2 11172 - - 2 -
1095202 - - 1 - 11170 - - 4 -
1095195 - - 1 - 11169 - - 4 -
1095157 - - 1 3 11168 - - 3 -
1095141 - - 1 1 11167 - - 5 -
1095137 - - 3 4 11166 - - 1 -
1095132 - - - 1 11165 - - 1 -
1095114 - - 1 1 11164 - - 1 -
1095112 - - 3 2 11162 - - 3 -
1095081 - - 2 - 11161 - - 2 -
1095065 - - - 2 11160 - - 5 -
1095062 - - 3 1 11159 - - 1 -
1095057 - - - 1 11158 - - 3 -
1095056 - - - 1 11157 - - 5 -
1095039 - - 1 - 11156 - - 1 -
1095035 - - 1 3 11155 - - 1 -
1095014 - - 1 - 11154 - - 1 -
1095007 - - 2 - 11153 - - 6 -
Overall [0/100| 0/100 |39/100| 80/100 HE? - 1 5 -
Overall |0/100| 1/100 |82/100| 100/100




5. Conclusion and Future Work

In this study, a mutation rate adaptation approach (GBAM) for each gene location in a
binary representation, based on the relative performance of individuals is proposed.
GBAM is expected to increase the convergence rate. This has been confirmed through
tests performed on a simple one-max problem. However, especially in multimodal
problems, fast convergence may cause the population to get stuck on local optima. To
overcome this problem, a convergence control mechanism that introduces diversity when
the population converges, is added. This convergence control is applied to all tested
algorithms but since GBAM again adapts the mutation rate parameter, it quickly
converges after the introduction of diversity and thus is able to locate good solutions in
fewer generations even for multimodal problems. This fact has been shown through tests
using two instances of both the multiple knapsack problem and a problem with a fitness
landscape that has local optima with large basins of attraction. In both cases GBAM is
shown statistically to perform better than the other tested methods both in locating the
optima and also in reaching the optima in fewer generations. One major drawback is that
GBAM increases the computational costs since at every generation new mutation rate
values for all gene locations (as many as the length of a chromosome) are recalculated. On
the other hand, among the other tested methods, the deterministic approach seems to be
able to reach acceptable fitness values with almost no additional computational costs,
however it takes much longer. So for problems similar to the ones used in this study, in
the cases where it is more important to find good results in fewer generations, GBAM
seems to be the better choice among the tested methods.

Even though as a result of these preliminary tests, the overall performance of GBAM
seems to be very promising for the chosen type of problems, there is still more work to be
done to be able to make healthy generalizations. First of all, the parameter settings for
GBAM, such as the lower and upper bound values, initial mutation rate and the mutation
update value have been determined experimentally. More experiments need to be
performed to see the effects of these parameters on performance more thoroughly.
Secondly, the test problem set can be extended to include different types of problem
domains. Thirdly, a convergence control mechanism has been implemented for this study,
however its effects have not been thoroughly examined. More rigorous experimentation
needs to be performed to be able to fully understand the exact nature of the convergence
control method. Finally, it is observed that the adaptive nature of the proposed mutation
mechanism might be suitable to be used in dynamic environments. Since the mutation rate
adapts itself based on the relative fitness of individuals, it would also be able to adapt to a
change in the environment causing a change in the fitness values of the individuals and it
would not need to explicitly detect the change in the environment. Based on these
observations, it seems to be a promising line of further study to use GBAM in dynamic
environments in its pure form or even in combination with other approaches developed
previously to cope with changing environments.
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