
Optimization Is Easy and Learning Is Hard In the Typical Function

Thomas M. English
The Tom English Project

2401 45th Street #30
Lubbock, Texas 79412 USA

Tom.English@ieee.com

Abstract-Elementary results in algorithmic information
theory are invoked to show that almost all finite func-
tions are highly random. That is, the shortest program
generating a given function description is rarely much
shorter than the description. It is also shown that the
length of a program for learning or optimization poses a
bound on the algorithmic information it supplies about
any description. For highly random descriptions, suc-
cess in guessing values is essentially accidental, but
learning accuracy can be high in some cases if the pro-
gram is long. Optimizers, on the other hand, are graded
according to the goodness of values in partial functions
they sample. In a highly random function, good values
are as common and evenly dispersed as bad values, and
random sampling of points is very efficient.

1 Introduction

Loosely speaking, the idea of conservation in analysis of
learning [1] and optimization algorithms [2] has been that
good performance on some problem instances is offset by
bad performance on others. For a given random distribution
on a problem class and a given performance measure, the
condition of conservation is that all algorithms solving that
class of problem have identical performance distributions.
It has been shown that conservation of statistical informa-
tion underlies conservation of optimizer performance [3].

The present work diverges from past by addressing con-
servation in terms of algorithmic information [4]. The in-
formation of a problem instance is no longer the extrinsic
“surprise” at seeing it as the reali zation of a random vari-
able, but the intrinsic complexity of computing its descrip-
tion. This shift in analytic paradigm makes it possible to
characterize what optimizers and learners do on most or all
instances of a problem, rather than to characterize the per-
formance distribution. Remarkably, almost every instance
exhibits a high degree of algorithmic randomness, and thus
has very littl e internal structure exploitable by programs.
Thus conservation is not so much an artifact of the distri-
bution of instances as a consequence of the pervasiveness
of algorithmicall y random instances.

It is shown that an optimizer or learner can essentiall y
reduce the complexity of a particular instance, random or
not, by “matching” it. The degree of match, or mutual
complexity, is bounded by the length of the program. The
essence of conservation of algorithmic information is that a
program for exploration or learning cannot reduce the algo-
rithmic complexity of a problem instance by more than its
own complexity.

Here optimization and active category learning are
given a unified treatment in terms of function exploration
(suggested in [3]). The analysis is straightforward, but the
unfamiliarity of key concepts will pose problems for some
readers. Thus section 2 gives an informal overview of the
main results of the paper. Section 3 gives a string repre-
sentation of functions, describes both variants of function
exploration, and formally introduces algorithmic informa-
tion theory. Section 4 briefly derives conservation of sta-
tistical performance, and lays a crucial foundation for sec-
tion 5 by establi shing that function exploration entail s im-
pli cit permutation of the string representation of the given
function. Section 5 derives the main results in conservation
of algorithmic information. Sections 6 and 7 give discus-
sion and conclusions.

2 Overview

This section gives an informal introduction to topics that
actuall y require formal treatment. Everything presented
here should be taken on a provisional basis.

2.1 Function Exploration
The notion of an optimizer that explores a function to lo-
cate points with good values is familiar. The notion of a
learner that explores a function is less common. If every
domain point belongs to exactly one category, then the as-
sociation of points with their categories is a function. A
learner guesses unobserved parts of the category function
on the basis of observed parts. The learner is active when it
decides on the basis of observations which point’s category
to guess next. Thus optimizers and active learners both ex-
plore functions.

An optimizer is evaluated according to the sequence of
values it observes while exploring the function. An active

learner, on the other hand, is evaluated according to its ac-
curacy in guessing what it will observe. The most straight-
forward measure of accuracy is the number of correct
guesses.

For the sake of analysis, finite functions are represented
as binary strings. Each string is a function description. The
distinction between functions and descriptions is important
because the performance of an algorithm on a particular
function is generall y sensiti ve to the representation.

The exploration algorithm obtains the value of a point
by reading the value (a field of bits) from the appropriate
location in the string. The algorithm is required to read all
values in finite time, and to write a non-redundant trace of
the sequence of values it reads. When the algorithm halts,
the trace is a permutation of the values in the description.
Thus there is no formal distinction between descriptions
and traces. A key fact (sec. 4.1) is that the input-output re-
lation of each exploration algorithm is a 1-to-1 correspon-
dence on function descriptions.

2.2 Algorithmic Randomness
The algorithmic complexity of a binary string is the length
of the shortest program that generates it and halts. The pro-
gram is loosely analogous to the self-extracting archives
commonly transmitted over the Internet. The complexity of
the data is essentiall y the length of the executable archive.
Algorithmic complexity is uncomputable, however.

When a string has complexity greater than or equal to its
length, it is said to be algorithmicall y incompressible. An
incompressible string is also algorithmicall y random. Al-
gorithmic randomness entail s all computable tests of ran-
domness [5], and here the term is abbreviated to random. If
a long string can be algorithmicall y compressed by at most
a small fraction of its length, it may not satisfy the crisp
definition of algorithmic randomness, but it is nonetheless
highly random.

How many strings of a given length are highly random?
If the length is great, then almost all of them are. The frac-
tion of strings that are algorithmicall y compressible by
more than k bits is less than 2-k [5]. To appreciate this re-
sult, consider the modest example of functions on set of 32-
bit integers. Each of 232 domain elements has a 32-bit value,
so a function is described by N = 32 × 232 = 237 bits. Com-
pression by more than 1 / 210 ≈ 0.1% corresponds to k = N /
1024 = 227, giving 2-k = 2–134217728. Compressible descriptions,
though plentiful in sheer number, are relatively quite rare.

2.3 Exploration and Complexity
Function exploration has been formulated in such a way as
to facilit ate reasoning about the algorithmic complexity of
the function as described and the function as processed.
This line of reasoning does not lead to simple statements
about performance, but it does help to characterize the in-
formation processing of exploration programs.

The 1-to-1 correspondence of descriptions and traces of
a program implies that the mean difference in complexity
of description and corresponding trace is zero. The range of
differences can vary greatly from one program to another,
however. An exploration program cannot generate more al-
gorithmic information than it contains. Suppose that pro-
gram p explores description x and writes trace y. The dif-
ference in complexity of x and y is bounded approximately
by the complexity of p. If the difference were to exceed the
complexity of p by more than a small amount, then p and
the shortest program generating y could be combined with a
small amount of code to generate x:

Foreach description x Loop
Execute p with x as input
If trace matches y Then

Output x
Halt

EndIf
EndLoop

This generate-and-test algorithm exploits the invertibilit y
of the mapping from description to trace. The shortest im-
plementation has complexity lower than that of x, but gen-
erates x, a contradiction.

This has covered the case of reduction of complexity
due to exploration. A program similarly cannot add more
than its own complexity to that of the description in gener-
ating the trace string. In practice, exploration programs are
short in comparison to descriptions, and the complexity ra-
tio of the function as processed and the function as de-
scribed must be close to unity unless the description is low
in complexity.

2.4 Complexity and Performance
There is much about the relationship between complexity
and performance that has yet to be investigated. Only sim-
ple cases are addressed here, but the results are significant.
Performance is assessed differently in learning than in op-
timization, and it appears that separate treatment is neces-
sary.

2.4.1 Complexity and Optimizer Performance
Assume that the performance criterion is a function of the
trace. (In practice, it might be a function of a possibly-
redundant record of values observed, rather than a non-
redundant record.) For a relatively short optimization pro-
gram operating upon highly random function descriptions,
the traces are also highly random. This implies that a very
good value occurs with high probabilit y in a short prefix of
the trace. The probabilit y associated with obtaining a cer-
tain level of qualit y in a prefix of a certain length depends
only upon the qualit y, not the size of the function (see sec.
5.3). Remarkably, almost all functions are easy to optimize.

The non-constant functions of lowest complexity are
actuall y the hardest to optimize. These “needle in a hay-
stack” functions assign a good value to exactly one point
and a bad value to all the other points. On average, any
program must explore half the points to find the good
value.

2.4.2 Complexity and Learning Accuracy
The active learning program guesses the trace, rather than
the function description. If the program is short relative to a
highly random description, the trace is also highly random,
and guesses of the trace are correct essentiall y by chance.
That is, about 1 in M guesses will be correct. In this sense,
almost all functions are hard to learn.

If a program guesses all values in the trace correctly,
this amounts to compression of the function description to
a very short length, and the program must be as complex as
the description. The construction is omitted here, but the
gist is that the learner does not have to write a trace it can
guess perfectly, and a contradiction arises if the complexity
of the trace is not absorbed into the learner.

3 Formal Preliminaries

3.1 Notation and Conventions
The set of functions under consideration is F = { f | f: S→{ 0,
1} L} for indexed S = { x1, …, xM} and positi ve L. The de-
scription of f ∈ F is the concatenation f(x1) … f(xM) ∈ { 0,
1} N, where N = LM. Every string in { 0, 1} N describes ex-
actly one function in F.

Here an optimization or learning algorithm is required
to be deterministic, though perhaps pseudorandom with a
constant seed, and may be sequential or parallel. Imple-
mented algorithms are referred to as programs. As previ-
ously indicated, optimization and learning are grouped un-
der the rubric of function exploration. An exploration algo-
rithm reads values from function descriptions, and writes
binary trace strings as outputs (sec. 4.1 gives detail s). At-
tention is restricted to exploration algorithms that read
every input before halting. To read the value of domain
point xi is to read the i-th field of L bits in the description.

The performance of an optimizer on a given description
is a function of the trace. It is assumed that there is some
mapping from values in { 0, 1} L to goodness values. General
characterization of learning accuracy is not so simple. In
the present work, the elements of { 0, 1} L are taken as cate-
gory labels, and the learner guesses labels immediately be-
fore reading them from the description. The performance
criterion is the fraction of correct guesses.

3.2 Algorithmic Complexity
Algorithmic information theory [4] defines the algorithmic
complexity of binary strings in terms of halting programs
for a universal computer (i.e., an abstract model as power-

ful as any known). The programs are themselves binary
strings, and are required to be self-delimiti ng. The choice
of universal computer is insignificant for large programs,
because any universal computer may simulate any other
with a program of constant length.

Let x and y be strings in { 0, 1} *. The algorithmic com-
plexity of x, denoted h(x), is the length of the shortest pro-
gram that generates x as output and halts. The relative
complexity of x given y, denoted h(x | y), is the length of the
shortest program that generates x as output, given a pro-
gram that generates y “ for free” [4] (see fig. 1). The algo-
rithmic complexity of the pair (x, y) is

h(x, y) = h(x) + h(y | x) + O(1). (1)

O(1) denotes the set of all functions with magnitude as-
ymptoticall y dominated by some constant. The mutual
complexity of x and y is

h(x : y) = h(x) + h(y) – h(x, y)
= h(x) – h(x | y) + O(1)
= h(y) – h(y | x) + O(1) (2)

These identities are closely analogous to ones in conven-
tional information theory. Indeed the algorithmic complex-
ity of random strings is asymptoticall y equivalent to Shan-
non entropy:

E 1/n h(Xn | n)→H(X) as n→ � , (3)

where Xn is a sequence of n i.i.d. random variables distrib-
uted as X on { 0, 1} and H(X) is the Shannon entropy of the
distribution of X (see theorem 7.3.1 in [5]). Now if a func-
tion is drawn uniformly from F, the N bits in the descrip-

h(x)

h(x) h(y)

h(y)

h(x, y) h(x : y)

h(x) h(y)

h(x | y)

Fig. 1. Complexity is indicated by the size of a region. Thus h(x) >
h(y). The shaded regions depict the joint complexity of x and y,
h(x, y); the mutual complexity of x and y, h(x : y); and the com-
plexity of x relative to y, h(x | y).

tion are i.i.d. uniform on { 0, 1} with one bit of entropy
apiece. Setting n = N and X ~ Uniform{ 0, 1} in (3), and as-
suming that N is large, the expected complexity of the de-
scription is N. How can the average complexity be equal to
the actual length of the descriptions? Some length-N strings
can be generated only by self-delimiti ng programs that are
greater than N in length, even when the programs are given
N.

4 Exploration, Permutation, and
Conservation

The following derivation of conservation of performance is
conventional in its invocation of properties of the distribu-
tion of functions. It is unusual, however, in unifying the
treatment of conservation of optimization performance [2,
3] and conservation of learning accuracy [1].

4.1 Exploration Is Equivalent to Honest Permutation

Definition. Let A denote a finite alphabet. An algorithm
that permutes input string x = x1 … xn ∈ An to generate out-
put π(x) = xj

1
 … xj

n
 is honest if it sets jk without examining

xj
k
, k = 1, …, n.

Any exploration algorithm can be modified to yield
honest permutations. With alphabet A = { 0, 1} L, function
descriptions are elements of AM. Code may be inserted to
immediately write elements of A that are read, ensuring
that no input is written more than once to the output, and
ordering values read in parallel according to input position.
In other words, the trace is an honest permutation of the de-
scription.

Theorem 1 (π preserves i.i.d. inputs): Let X = X1, …, Xn be
a sequence of random variables i.i.d. on A. If π: An→An is
the input-output relation of an honest permutation algo-
rithm, π(X) ~ X.

Proof: Inputs X1, …, Xn are identicall y distributed, so there
is no prior distinction between them. By independence,
only xi supplies information about Xi, i = 1, …, n, but an
honest permutation algorithm does not read any Xi = xi be-
fore setting output index j i. Thus the output ordering j1, …,
jn conveys no information about X, and π(X) ≡ Xj1

, …, Xjn
 ~

X. ð

Now drawing a string uniformly from An is equivalent to
sequentiall y drawing n elements independently and uni-
formly from A. Thus a uniform distribution of input strings
is preserved in the outputs of an honest permutation algo-
rithm. It follows that if every string in An is input to the al-
gorithm exactly once, then every string in An occurs exactly
once as an output:

Corollary (π is bijective): If π: An→An is the input-output
relation of an honest permutation algorithm, π is a 1-to-1
correspondence.

Thus any exploration algorithm induces a 1-to-1 corre-
spondence on function descriptions. If the trace is regarded
as the “description as processed,” then each algorithm pro-
cesses each description in response to some input.

4.2 Conservation of Optimizer Performance
Assume that the values associated with all domain points
are i.i.d. as X on { 0, 1} L. By thm. 1, the trace values of any
optimizer are also i.i.d. as X, and all optimizers have iden-
tical trace distributions. Because the performance measure
is a function of the trace, it must also be the case that all
optimizers have identical performance distributions. Any
superiority an optimizer exhibits on a subset of descriptions
is precisely offset by inferiority on the complementary sub-
set. This is one sense in which performance is conserved.

4.3 Conservation of Learning Accuracy
A learner not only has to read values, but to predict them.
Performance is some function of the guesses and the trace.
It is easiest to exhibit conservation of learning accuracy if
the descriptions are uniform on { 0, 1} N and the perform-
ance criterion is the fraction of correct guesses. Under this
condition, the category labels in descriptions are i.i.d. uni-
form on { 0, 1} L, and, by thm. 1, so are the labels in the
trace. Any guessing strategy gets exactly 1 of 2L guesses
correct, on average. A learner may have superior guessing
accuracy on one subset of functions, but must compensate
precisely on the complementary subset.

5 Complexity and Function Exploration

In contrast to the preceding section, this section derives re-
sults that apply to individual function descriptions, rather
than to distributions.

5.1 Almost All Descriptions Are Highly Random
Section 3.2 indicated that under the reali stic assumption
that function descriptions are long, the average complexity
of descriptions relative to their length is their length. Con-
sider that a very short program p can be aff ixed to any de-
scription x to obtain a program px that writes x and halts.
The complexity h(px | N) of a brute force generator of x is
at most slightly greater than N. On the other hand, h(x | N)
<< N for some descriptions x. Given this asymmetry, it
must be the case that h(x | N) ≥ N for more than half of all x
∈ { 0, 1} N.

It is furthermore the case that almost all descriptions x
have h(x | N) very close to N. In general, the fraction of
strings x in { 0, 1} n such that h(x | n) < n – k is less than 1 in
2k, where 0 ≤ k < n. That is,

|{ x ∈ { 0, 1} n: h(x | n) < n – k} | / 2n < 2–k. (4)

(See thm. 7.5.1 in [5].) With n = N, this characterizes both
descriptions and traces, due to their 1-to-1 correspondence.
In practice, however, programs often generate only a prefix
of the trace before halting. Let n be the length of trace pre-
fixes, with n a constant integer multiple of L. Each prefix
occurs in 2N–n complete traces, and thus is generated in re-
sponse to 2N–n descriptions. Because prefixes occur in equal
proportion, inequalit y (4) applies to them as to full t races.

Now xn ∈ { 0, 1} n is said to be algorithmicall y random
when h(xn | n) ≥ n. This entail s all computable tests for ran-
domness [5]. Algorithmic randomness is equivalent to al-
gorithmic incompressibilit y, and compressibilit y of a finite
string is a matter of degree, not an absolute [4]. Thus it is
appropriate to say that a string is nearly random when the
compression ratio h(xn | n) / n is slightly less than unity. As
ill ustrated in sec. 2.2, compression by even a small fraction
of n is very rare when n is large.

In sum, more than half of all descriptions, traces, and
trace prefixes strictly satisfy the algorithmic incompressi-
bilit y criterion for algorithmic randomness. Many others
are nearly incompressible. For perspicuity, binary strings xn

with compression ratios h(xn | n) / n close to unity will be
referred to as highly random. Note that the algorithmic ran-
domness of a description is an intrinsic property, and does
not depend upon an extrinsic random distribution on F.

5.2 Conservation of Algorithmic Information
Consider again an exploration program p generating honest
permutations y = π(x) of descriptions x ∈ { 0, 1} N. The fact
that π is a bijection immediately implies that algorithmic
complexity of descriptions is conserved by the program.
That is, π({ 0, 1} N) = { 0, 1} N, and

|{ x: h(x | N) = n} | = |{ x: h(π(x) | N) = n} | (5)

for n = 1, 2, 3, … The complexity histogram for traces is
precisely that for descriptions, and does not depend upon
the exploration program.

More significantly, there is conservation in the com-
plexity of any description and its corresponding trace rela-
tive to the program. Specificall y, h(x | p, N) ≈ h(π(x) | p, N),
and this implies that the absolute difference in complexity
of the description and the trace is bounded by the complex-
ity of the program. Thus algorithmic information is con-
served in the sense that an exploration program cannot add
or take away more information than is present in itself (see
fig. 2). In the following, π is the input-output relation of
honest permutation program p, and y = π(x) for arbitrary x
∈ { 0, 1} N.

Lemma 1: Given p, x, and N, the complexity of y is
bounded by a constant. That is,

h(y | p, x, N) = O(1). (6)

Proof: Construct program p* that generates output y by in-
voking p with N and x as input, and then halts. The invoca-
tion of given programs may be accomplished with code of
constant length, and thus the shortest p* is constant in
length. ð

Lemma 2: Given p, y, and N, the complexity of x is
bounded by a constant. That is,

h(x | p, y, N) = O(1). (7)

Proof: Construct program p* that enumerates strings w ∈
{ 0, 1} N. Given N, the enumeration may be performed by a
constant-length code. For each w, p* supplies N and w to p
as input, and checks to see if the output of p is y. Because π
is invertible, there is exactly one w such that π(w) = y. Thus
p* generates output of x ≡ w and halts when the output of p
is y. The comparison of π(w) to y can be accomplished with
code of constant length, given N. Enumeration, compari-
son, and invocations of given programs all can be accom-
plished with code of constant length, and thus the shortest
p* is constant in length. ð

Theorem 2 (Preservation of relative complexity): The dif-
ference in complexity of x and y relative to p and N is
bounded by a constant. That is,

h(y | p, N) = h(x | p, N) + O(1). (8)

Proof:
h(x, y, p | N) = h(x, y, p | N)

h(x | p, y, N) + h(y, p | N) = h(y | x, p, N) + h(x, p | N) + O(1)
h(y, p | N) = h(x, p | N) + O(1),

h(x)

h(p)

h(y)

Fig. 2. Conservation of complexity for description x, trace y, and
program p. Conditioning upon N is omitted. The x and y regions
outside the p rectangle are equal in area because h(x | p) ≈ h(y | p).
Thus any difference in x area and y area must be accounted for
within the p rectangle. That is, the difference in area of the hatched
regions of x-p overlap and y-p overlap is the complexity difference
of x and y, and h(x) – h(y) ≈ h(x : p) – h(y : p) ≤ h(p).

by lemmas 1 and 2. Subtraction of h(p | N) from both sides
of the relation yields (8). ð

In the following theorem, note that both positi ve and
negative constants are O(1). Conditioning on N is implicit
in all complexity expressions.

Theorem 3 (Conservation): The magnitude of information
gain in the output of p is bounded by the complexity of p.
That is,

|h(x) – h(y)| + O(1) = |h(x : p) – h(y : p)| (9a)
≤ max{ h(x : p), h(y : p)} (9b)
≤ h(p). (9c)

Proof: To establi sh (9a), take the difference of

h(x) = h(x | p) + h(x : p) + O(1)

and

h(y) = h(y | p) + h(y : p) + O(1)
= h(x | p) + h(y : p) + O(1) [by Thm. 2].

Inequalit y (9b) follows from the non-negativity of h(x : p)
and h(y : p). Inequalit y (9c) holds because h(w : p) ≤ h(p)
for all w ∈ { 0, 1} N. ð

Corollary (Conservation in prefixes): If y = y′z = π(x), y′ ∈
{ 0, 1} m , 0 < m < N, and z ∈ { 0, 1} n, then

h(y′ | m) ≥ h(x | N) – h(p) – l* – n + O(1), (10)

where l* = log* min{ m, n} .

Proof: The inequalit y

h(y | N) ≤ l* + h(y′ | m) + h(z | n) + O(1) (11)

is derived by constructing a program that, given N, invokes
programs to write y′ (given m) and z (given n) succes-
sively. The value of min{ m, n} is stored in the program in a
self-delimiti ng form that requires l* = log* min{ m, n} bits
[5]. The value of max{ m, n} is computed as N – min{ m, n} .
The length of the code for subtraction and invocations is
O(1). Thus the right-hand side of (11) gives the length of a
program that, given N, generates y. Eqn. (10) is obtained
from (11) by replacing h(y | N) with its minimum value of
h(x | N) – h(p), replacing h(z | n) with its maximum value of
n + O(1), and rearranging terms. ð
Observation: If both y′ and z are algorithmicall y random,
l* can be omitted from (10).

5.3 Optimization Is Almost Always Easy
It was establi shed in sec. 5.1 that the fraction of function
descriptions for which trace prefixes of a given length are
compressible by more than k bits is less than 2–k. For pre-
fixes containing m ≤ N / L values, almost all are highly ran-

dom if m is large. This implies a high degree of dispersion
of values over the codomain. For instance, both 0 and 1
must occur in every position of the L-bit values in the pre-
fix, or it is possible to compress the prefix simply by omit-
ting constant bits. If the values are interpreted as unsigned
integers, this alone guarantees that a value in the upper half
of the codomain occurs in the prefix. But it must also be
the case that 0 and 1 are approximately equiprobable in
each position of the integers in the prefix, or there is a
scheme for compressing the prefix. Thus approximately
half of the values are in the better half of the codomain, ap-
proximately one-fourth are in the best quartile of the co-
domain, etc. Thus highly random trace prefixes are quite
benign in the context of optimization.

Assuming that the prefix y′ comprises less than half of
algorithmicall y random trace y, it can be inferred from (10)
that

h(y′ | m′) ≥ m′ – h(p) – log* m′ + O(1), (12)

where m′ = mL is the length in bits of an m-value prefix. To
appreciate how log* m′ is dominated by other terms in (12),
consider that m′ = 225 gives log* m′ ≈ 36.2. Thus any long
trace prefix generated by a short program is highly random
when the description is algorithmicall y random.

A nonparametric approach to assessing the diff iculty of
optimization in almost all cases is to select an arbitrary
function description x ∈ { 0, 1} N and derive the fraction of
optimizers that achieve a certain level of performance. The
infinitude of optimization programs with the same input-
output relation is problematic, however, so the fraction of
permutations of the description giving a certain level of
performance is derived instead. The assumption is that each
permutation of x is implemented by as many programs as
every other permutation.

What fraction of permutations of x yield a value as good
as θ among the first m values? Let n = N / L be the number
of values in x, and let k be the number of values in x that
are worse that θ. Then the fraction of permutations of x that
do not contain a value as good as θ in the m-prefix is

Interestingly, (13) arises in counting functions for which a
fixed optimizer fail s to obtain the threshold value [6, 7].
For n = 232 points, k = 0.99999n, and m = 106, all but 4.5 ×
10–5 of permutations include a one-in-ten-thousand value
among the first milli on values. Thus almost all optimizers
discover good values rapidly. It bears mention that this
analysis, unli ke that at the beginning of the subsection, de-
fines “good” in terms of the range of the described func-
tion., and not the codomain.

.
)!(!

)!(!
m

n

k

mkn

mnk





≤

−
−

(13)

5.4 Learning Is Almost Always Hard
Learners have the disadvantage, relative to optimizers, of
being scored on their prediction of all values in the trace,
not their discovery of good values. For a highly random de-
scription, the learner attempts to infer regularity from ran-
dom values and use that (nonexistent) regularity to predict
random values. Learning to guess well i s equivalent to re-
ducing the uncertainty of unread values, and that implies
data compression. But almost all descriptions are com-
pressible by at most a small amount, and accurate guessing
is rare.

Learning performance is evaluated in terms of the entire
trace. In practice, the number of distinct category labels, k
= 2L, is much less than n = N / L, the number of labels in the
trace. Under this condition, any highly random trace con-
tains approximately the same number of instances of each
label. Although the point will not be argued formally, this
gives some insight as to why the typical accuracy, and not
just the mean accuracy, of a learning program is 1 in k cor-
rect.

Now let y denote any trace. The approach is to hold y
constant and determine the fraction of learners achieving a
given level of guessing accuracy. To simpli fy, it is assumed
that each sequence of guesses is generated by an identical
number of programs, allowing sequences to be counted in-
stead of programs. The fraction of sequences with m cor-
rect guesses has the form of the binomial distribution, b(m;
n, p), p = 1 / k, though it is not random. To determine the
fraction of sequences with m or fewer correct guesses, the
standard normal approximation z = (m – np) / (npq)1/2, q = 1
– p, is convenient. To appreciate the rarity of learners that
have accuracy as good as 1.001 times the chance rate, let
the domain have n = 232 points, let the number of categories
be k = 26 + 1, and let the number of correct guesses be m =
(1 + 2-10) pn. The resulting z-value is 8. Thus very few
learners get more than 1.001 of k guesses correct.

6 Discussion

6.1 Near Ubiquitity of Highly Random Trace Prefixes
The length of trace prefixes does not have to be great for it
to be the case that almost all prefixes are highly random.
Exploration of 220 ≈ 106 points is common in applications.
If an exploration program halts after reading the values of
220 domain points, and each point has a 32-bit value, then
the program generates a trace prefix of n = 225 bits. Com-
pression of n / 1024 bits gives k = 215 in (4). That is, fewer
than 1 in 232768 functions yields a trace prefix compressible
by more than 0.1% of its length.

6.2 Conservation of Algorithmic Information
A diff iculty in understanding conservation of algorithmic
information (sec. 5.2) is that it is inherently backhanded.

The crucial point is that an exploration program is equally
uninformed of a function description and the corresponding
trace, but not equally informed. This constraint of h(x | p,
N) ≈ h(π(x) | p, N) arises from invertibilit y of the program’s
mapping from descriptions to traces. The synopsis in fig. 2
of this result and its ramifications is perhaps the best aid to
intuition.

6.3 Highly Random Function Descriptions
It is essential to understand that the results of sections 5.1,
5.3, and 5.4 depend upon the fact that almost all function
descriptions are intrinsicall y random objects, and not upon
a random distribution of functions. The uniform distribu-
tion is assumed only in determining what fraction of de-
scriptions are highly random. The focus is upon perform-
ance of algorithms on almost all descriptions, individually,
not their performance distributions for a function distribu-
tion. Thus the results may be characterized as distribution-
free.

It should be noted, nonetheless, that for almost all de-
scriptions it is impossible to reject with much confidence
the hypothesis that the description’s bits were generated by
flipping a fair coin N times. Thus almost every description
provides properties that have been exploited in prior work
with the uniform distribution of functions. The condition of
values that are independent and uniform on the codomain
does not arise merely when all function distributions are
averaged to obtain the uniform. It holds approximately for
individual functions, with relatively few exceptions. In this
sense the uniform is not just an average, but is nearly ubiq-
uitous.

Any distribution on the set of highly random descrip-
tions is a boon to most or all optimizers and the bane of
most or all l earners. In the extreme case that all probabilit y
mass is assigned to one random description, by virtue of
high mutual complexity with the description some complex
optimizers will generate a trace with values in reverse order
of goodness and some complex learners will guess per-
fectly. But with its dearth of structure, the description in-
herently does not hide good values from optimizers and
does not allow generali zation from observed to unobserved
values.

7 Conclusion

Elementary algorithmic information theory has facilit ated
reformulation of conservation of information [3] in terms
of individual functions. The issue of the distribution of
functions has been circumvented. The notion, previously
rather nebulous [3], that a program could excel only by en-
coding prior knowledge has been made concrete. The algo-
rithmic information supplied by an optimization or learning
program is roughly bounded by its own length, whether or
not the explored function is highly random.

It has been shown that category learners with high accu-
racy are extremely rare. In optimization, on the other hand,
it has been shown that for the vast majority of functions
there is no strategy better than to visit a large number of
points as rapidly as possible. Indeed, such a strategy works
extremely well , and the epithet of “ just random search” has
no basis in formal analysis.

Acknowledgment

Thanks to Nicole Weicker for her constructive remarks.

References

[1] Schaffer, C. 1994. “A conservation law for generalization per-
formance,” in Proc. Eleventh Int’ l Conf. on Machine Learning,
H. Willi an and W. Cohen, eds. San Francisco: Morgan Kauf-
mann, pp. 259-265.

[2] Wolpert, D. H., and W. G. Macready. 1997. “No free lunch
theorems for optimization,” IEEE Trans. Evolutionary Com-
putation, vol. 1, no. 1, pp. 67-82.

[3] English, T. M. 1999. “Some Information Theoretic Results on
Evolutionary Optimization,” in Proc. Of the 1999 Congress on
Evolutionary Computation: CEC99. Piscataway, New Jersey:
IEEE Service Center, pp. 788-795.

[4] Chaitin, G. J. 1999. The Unknowable, New York: Springer-
Verlag, chap. 6.

[5] Cover, T. M., and J. A. Thomas. 1991. Elements of Informa-
tion Theory, New York: Wiley & Sons.

[6] Breeden, J. L. 1994. “An EP/GA synthesis for optimal state
space representations,” in Proc. Third Annual Conf. on Evolu-
tionary Programming, A. Sebald and L. Fogel, eds. River
Edge, NF: World Scientific, pp. 216-223.

[7] English, T. M. 1996. “Evaluation of evolutionary and genetic
optimizers: No free lunch,” in Evolutionary Programming V:
Proc. Fifth Ann. Conf. on Evolutionary Programming, L. Fo-
gel, P. Angeline, and T. Bäck, eds. Cambridge, Mass.: MIT
Press, pp. 163-169.

