Optimization IsEasy and Learning IsHard In the Typical Function

Thomas M. English
The Tom English Projed
2401 4%h Stred #30
Lubbak, Texas 79412USA
Tom.English@ieeecom

Abstract-Elementary results in algorithmic information
theory are invoked to show that almost all finite func-
tions are highly random. That is, the shortest program
generating a given function description is rarely much
shorter than the description. It is also shown that the
length of a program for learning or optimization poses a
bound on the algorithmic information it supplies about
any description. For highly random descriptions, suc-
cess in guessing values is essentially accidental, but
lear ning accuracy can be high in some cases if the pro-
gram islong. Optimizers, on the other hand, are graded
accor ding to the goodness of values in partial functions
they sample. In a highly random function, good values
are as common and evenly dispersed as bad values, and
random sampling of pointsisvery efficient.

1 Introduction

Loosely spe&king, the idea of conservation in analysis of
leaning [1] and ogimizaion algorithms [2] has been that
good performance on some problem instances is offset by
bad performance on ahers. For a given randam distribution
on a problem classand a given performance measure, the
condtion d conservationisthat all algorithms lving that
class of problem have identicad performance distributions.
It has been shown that conservation d statisticd informa-
tion underlies conservation d optimizer performance|[3].

The present work diverges from past by addressng con-
servation in terms of agorithmic information [4]. The in-
formation d a problem instance is no longer the extrinsic
“surprise” a sedng it as the redizaion d arandam vari-
able, but the intrinsic complexity of computing its descrip-
tion. This dhift in analytic paradigm makes it possble to
charaderizewhat optimizers and leaners do onmost or all
instances of a problem, rather than to charaderize the per-
formance distribution. Remarkably, amost every instance
exhibits a high degree of algorithmic randamness and thus
has very little internal structure exploitable by programs.
Thus conservation is not so much an artifad of the distri-
bution d instances as a mnsequence of the pervasiveness
of algorithmicdly randam instances.

It is shown that an optimizer or leaner can esentialy
reduce the complexity of a particular instance, randam or
not, by “matching’ it. The degree of match, a mutual
complexity, is bounded by the length o the program. The
esence of conservation d agorithmic informationis that a
program for exploration a leaning canna reducethe dgo-
rithmic complexity of a problem instance by more than its
own complexity.

Here optimizaion and adive cdegory leaning are
given a unified treament in terms of function exploration
(suggested in [3]). The analysis is draightforward, bu the
unfamiliarity of key concepts will pase problems for some
readers. Thus edion 2 gves an informal overview of the
main results of the paper. Sedion 3 gves a string repre-
sentation o functions, describes both variants of function
exploration, and formally introduces algorithmic informa-
tion theory. Sedion 4 biefly derives conservation o sta-
tisticd performance, and lays a aucia foundition for sec-
tion 5 by establishing that function exploration entail s im-
plicit permutation d the string representation d the given
function. Sedion 5 derives the main results in conservation
of agorithmic information. Sedions 6 and 7 gve discus-
sion and conclusions.

2 Overview

This sdion gves an informal introduction to topics that
adualy require forma treadment. Everything pesented
here shoud be taken onaprovisional basis.

2.1 Function Exploration
The nation d an opgimizer that explores a function to lo-
cde points with good \aues is familiar. The nation d a
leaner that explores a function is less common. If every
domain pant belongs to exadly one cdegory, then the &-
sociation d points with their categories is a function. A
leaner guesses unotserved parts of the cdegory function
onthe basis of observed parts. The leaner is active when it
deddes on the basis of observations which pant’s category
to guessnext. Thus optimizers and adive leaners bath ex-
plore functions.

An optimizer is evaluated acording to the sequence of
values it observes while exploring the function. An adive

leaner, onthe other hand, is evaluated acwrding to its ac-
curacy in guessng what it will observe. The most straight-
forward measure of acaracy is the number of corred
guesss.

For the sake of analysis, finite functions are represented
as binary strings. Each string is a function description. The
distinction between functions and descriptions is important
becaise the performance of an algorithm on a particular
functionis generally sensiti ve to the representation.

The eploration algorithm obtains the value of a point
by reading the value (a field o bits) from the gpropriate
locaion in the string. The dgorithm is required to read all
values in finite time, and to write anonredundant trace of
the sequence of values it reads. When the dgorithm halts,
the traceis a permutation d the values in the description.
Thus there is no formal distinction between descriptions
and traces. A key fad (sec 4.]) is that the inpu-output re-
lation o ead exploration algorithm is a 1-to-1 correspon-
denceonfunction descriptions.

2.2 Algorithmic Randomness

The algorithmic complexty of a binary string is the length
of the shortest program that generatesit and Helts. The pro-
gram is loosely analogotis to the self-extrading archives
commonly transmitted over the Internet. The complexity of
the data is essntially the length of the exeautable achive.
Algorithmic complexity is uncomputable, however.

When a string has complexity greder than or equal to its
length, it is said to be algorithmically incompresshble. An
incompressble string is aso algorithmically randam. Al-
gorithmic randamness entail s al computable tests of ran-
domness[5], and tere the term is abbreviated to randam. If
alongstring can be dgorithmicdly compressed by at most
a smal fradion d its length, it may na satisfy the aisp
definition d agorithmic randamness bu it is noretheless
highly randam.

How many strings of a given length are highly randam?
If the length is gred, then aimost all of them are. The frac-
tion d strings that are dgorithmicdly compressble by
more than k bits is lessthan 2° [5]. To appredate this re-
sult, consider the modest example of functions on set of 32-
bit integers. Each of 2% domain elements has a 32-bit value,
so afunction is described by N = 32 x 22 = 2* pits. Com-
presson bymore than 1/ 2'° = 0.1% correspondsto k = N /
1024= 27, giving 2 = 27**"""* Compresdble descriptions,
though pentiful in shee number, arerelatively quiterare.

2.3 Exploration and Complexity

Function exploration has been formulated in such away as
to fadlit ate ressoning abou the dgorithmic complexity of
the function as described and the function as processed.
This line of reasoning dces not lead to simple statements
abou performance, bu it does help to charaderize the in-
formation processng o exploration rograms.

The 1-to-1 correspondence of descriptions and traces of
a program implies that the mean dfference in complexity
of description and correspondngtraceis zero. The range of
differences can vary gredly from one program to ancther,
however. An exploration frogram canna generate more d-
gorithmic information than it contains. Suppcse that pro-
gram p explores description x and writes tracey. The dif-
ferencein complexity of x andy is bounded approximately
by the complexity of p. If the diff erence were to exceed the
complexity of p by more than a small amourt, then p and
the shortest program generatingy could be acmbined with a
small amourt of code to generate x:

Foreach description x Loop
Execute p with x as input
If trace matches y Then
Qut put x
Hal t
Endl f
EndLoop

This generate-and-test algorithm exploits the invertibility
of the mapping from description to trace The shortest im-
plementation has complexity lower than that of x, but gen-
erates x, a contradiction.

This has covered the cae of reduction d complexity
due to exploration. A program similarly cannat add more
than its own complexity to that of the descriptionin gener-
ating the tracestring. In pradice, exploration programs are
short in comparison to descriptions, and the complexity ra-
tio of the function as procesed and the function as de-
scribed must be dose to urity unlessthe descriptionis low
in complexity.

2.4 Complexity and Performance

There is much about the relationship between complexity
and performance that has yet to be investigated. Only sim-
ple ceses are addressed here, but the results are significant.
Performance is assessd dfferently in leaning than in op-
timizaion, and it appeas that separate tregment is neces
sary.

2.4.1 Complexity and Optimizer Performance

Asaume that the performance citerion is a function d the
trace (In pradice, it might be afunction d a possbly-
redundant record of values observed, rather than a non
reduncant record.) For a relatively short optimizaion pro-
gram operating uponhighly randam function descriptions,
the traces are dso highly randam. This implies that a very
good \alue occurs with high probability in a short prefix of
the trace The probability associated with oltaining a ce-
tain level of quality in a prefix of a cetain length depends
only uponthe quality, nat the size of the function (seesec
5.3). Remarkably, aimost all functions are eay to optimize.

The non-constant functions of lowest complexity are
adualy the hardest to optimize These “needle in a hay-
stack” functions assgn a good \alue to exadly one paoint
and a bad value to al the other points. On average, any
program must explore half the points to find the good
value.

2.4.2 Complexity and L ear ning Accuracy

The adive leaning program guesss the trace rather than
the function description. If the program is short relativeto a
highly randam description, the traceis aso highly randam,
and guesses of the trace ae mrred essentially by chance
That is, abou 1 in M guesses will be mrred. In this ense,
amost all functions are hard to lean.

If a program guesss al vaues in the trace orredly,
this amourts to compresson d the function description to
avery short length, and the program must be & complex as
the description. The @nstruction is omitted here, bu the
gist is that the leaner does not have to write atraceit can
guessperfedly, and a contradiction arises if the complexity
of the traceis nat absorbed into the leaner.

3 Formal Preliminaries

3.1 Notation and Conventions
The set of functions under considerationisF = {f | f: S {0,
1}'} for indexed S = {x, ..., x,} and pasitive L. The de-
scription of f O F is the mncatenation f(x,) ... f(x,) O {0,
13", where N = LM. Every string in {0, 1}" describes ex-
adly orefunctionin F.

Here an optimizaion a leaning algorithm is required
to be deterministic, though rhaps pseudarandam with a
constant seed, and may be sequential or parallel. Imple-
mented algorithms are referred to as programs. As previ-
oudly indicated, ogtimizaion and leaning are grouped un-
der the rubric of function exploration. An exploration algo-
rithm reads values from function descriptions, and writes
binary trace strings as outputs (sec. 4.1 gves details). At-
tention is restricted to exploration algorithms that real
every inpu before hating. To read the value of domain
point x isto read thei-th field of L bitsin the description.

The performance of an ogimizer on a given description
isafunction d the trace It is assumed that there is ssme
mapping from valuesin {0, 1}' to goodmssvalues. General
charaderization d leaning acaracgy is not so simple. In
the present work, the dements of {0, 1}* are taken as cate-
gory labels, and the leaner guesses labels immediately be-
fore reading them from the description. The performance
criterionisthe fradion d corred guesses.

3.2 Algorithmic Complexity

Algorithmic information theory [4] defines the dgorithmic
complexity of binary strings in terms of halting programs
for a universal computer (i.e., an abstrad model as power-

h() h(y) h() h(y)

h(x, y) h(x:y)

h(x) h(y)

h(x|)

Fig. 1. Complexity isindicated bythe sizeof aregion. Thus h(x) >
h(y). The shaded regions depict the joint complexity of x andy,
h(x, y); the mutual complexity of x andy, h(x : y); and the com-
plexity of x relativetoy, h(x | y).

ful as any known). The programs are themselves binary
strings, and are required to be self-delimiting. The coice
of universal computer is insignificant for large programs,
becaise any universal computer may simulate any aher
with aprogram of constant length.

Let x andy be stringsin {0, 1}*. The algorithmic com-
plexty of x, denoted h(x), is the length of the shortest pro-
gram that generates x as output and telts. The relative
complexty of x giveny, denoted h(x | y), isthe length of the
shortest program that generates x as output, given a pro-
gram that generates y “for free” [4] (seefig. 1). The dgo-
rithmic complexity of the pair (X, y) is

h(x, y) = h(x) + h(y [X) + O().)

O(1) denates the set of all functions with magnitude &
ymptoticdly dominated by some nstant. The mutua
complexity of xandy is

h(x:y) =h(x) + h(y) —h(x, y)
=h(x) —h(x]y) + O(1)
=h(y) =h(y [x) + O(1))

These identities are dosely analogows to ores in conven-
tional information theory. Indeed the dgorithmic complex-
ity of randam strings is asymptoticdly equivalent to Shan-
nonentropy.

E1/nh(X"|n) - H(X)asn - o, (3)

where X" is a sequence of n i.i.d. random variables distrib-
uted as X on{0, 1} and H(X) is the Shannonentropy d the
distribution d X (seetheorem 7.3.1in [5]). Now if a func-
tion is drawn uriformly from F, the N bits in the descrip-

tion are i.i.d. unform on {0, I} with ore bit of entropy
apiece Settingn = N and X ~ Uniform{0, 1} in (3), and as-
suming that N is large, the expeded complexity of the de-
scriptionis N. How can the average complexity be equal to
the adual length of the descriptions? Some length-N strings
can be generated ony by self-delimiting pograms that are
greder than N in length, even when the programs are given
N.

4 Exploration, Permutation, and
Conservation

The following cerivation o conservation d performanceis
conventional in its invocaion d properties of the distribu-
tion d functions. It is unusual, however, in urifying the
treament of conservation d optimization performance [2,
3] and conservation d learning acarracy [1].

4.1 Exploration I's Equivalent to Honest Permutation

Definition. Let A denote afinite dphabet. An algorithm
that permutes input stringx = x, ... x, 0 A" to generate out-
put T(X) = X e % is horest if it sets j, withou examining
X k=1, ...,n

Any exploration algorithm can be modified to yield
horest permutations. With alphabet A = {0, 1}, function
descriptions are dements of A". Code may be inserted to
immediately write dements of A that are read, ensuring
that no inpu is written more than orce to the output, and
ordering values rea in parallel acording to inpu position.
In ather words, the traceis an horest permutation d the de-
scription.

Theorem 1 (Tt preservesi.i.d. inpus): Let X=X, ..., X be
a sequence of randam variables i.i.d. onA. If Tt A'- A" is
the inpu-output relation d an horest permutation algo-
rithm, Ti(X) ~ X.

Proof: Inpus X,, ..., X, are identicdly distributed, so there
is no pior distinction between them. By independence
only x suppies information about X, i = 1, ..., n, bu an
horest permutation algorithm does not read any X = x be-
fore setting ouput index j,. Thus the output orderingj,, ..,
i, conveys no information about X, and Ti(X) = Xy X~
X.

Now drawing a string uriformly from A" is equivalent to
sequentially drawing n elements independently and un-
formly from A. Thus a uniform distribution d input strings
is preserved in the outputs of an horest permutation algo-
rithm. It follows that if every stringin A" isinpu to the d-
gorithm exacaly once, then every stringin A" ocaurs exadly
once & an oupuit:

Corollary (1 is bijedive): If Tt A"- A" is the inpu-output
relation d an horest permutation algorithm, 1tis a 1-to-1
corresponcence

Thus any exploration algorithm induwes a 1-to-1 corre-
spondence on function descriptions. If the traceis regarded
as the “description as processed,” then ead algorithm pro-
cesses eadh descriptionin response to some inpu.

4.2 Conservation of Optimizer Performance

Asame that the values asociated with all domain pdnts
arei.i.d.asX on{0, }". By thm. 1, the tracevalues of any
optimizer are dsoi.i.d. as X, and all optimizers have iden-
ticd tracedistributions. Because the performance measure
is afunction d the trace it must also be the cae that all
optimizers have identicad performance distributions. Any
superiority an optimizer exhibits on a subset of descriptions
ispredsely off set by inferiority onthe complementary sub-
set. Thisis one sense in which performanceis conserved.

4.3 Conservation of Learning Accuracy

A leaner nat only has to read values, bu to predict them.
Performance is some function d the guesses and the trace
It is easiest to exhibit conservation d leaning acarracy if
the descriptions are uniform on {0, 3" and the perform-
ance citerionis the fradion d corred guesses. Under this
condtion, the cdegory labels in descriptions are i.i.d. un-
form on {0, 1}, and, bythm. 1, so are the labels in the
trace Any guessng strategy gets exadly 1 o 2° guesses
corred, onaverage. A leaner may have superior guessng
acaragy on ore subset of functions, but must compensate
predsely onthe complementary subset.

5 Complexity and Function Exploration

In contrast to the precaling sedion, this ®dion derives re-
sults that apply to individual function descriptions, rather
than to dstributions.

5.1 Almost All Descriptions Are Highly Random

Sedion 3.2indicaed that under the redistic asumption
that function descriptions are long, the average complexity
of descriptions relative to their length is their length. Con-
sider that a very short program p can be dfixed to any de-
scription x to oltain a program px that writes x and lelts.
The complexity h(px | N) of a brute force generator of x is
at most slightly greaer than N. On the other hand, h(x | N)
<< N for some descriptions x. Given this asymmetry, it
must be the case that h(x | N) = N for more than half of all x
o{o, 3"

It is furthermore the cae that amost all descriptions x
have h(x | N) very close to N. In genera, the fradion d
stringsx in {0, 1}" such that h(x | n) < n—kislessthan 1in
2 where0< k< n. That is,

KxO{0, 3" h(x|n) <n—kH|/2" < 2* @)

(Seethm. 7.5.1in [5].) With n = N, this charaderizes bath
descriptions and traces, due to their 1-to-1 corresponcence
In pradice, however, programs often generate only a prefix
of the tracebefore halting. Let n be the length of tracepre-
fixes, with n a @mnstant integer multiple of L. Each prefix
ocaurs in 2*" complete traces, and thus is generated in re-
sporse to 2*" descriptions. Because prefixes occur in equal
propation, inequality (4) appliesto them asto full traces.

Now X' O {0, 1}" is said to be algorithmically randam
when h(X" | n) = n. This entail s all computable tests for ran-
domness [5]. Algorithmic randamnessiis equivalent to al-
gorithmic incompresshility, and compresshility of a finite
string is a matter of degree na an absolute [4]. Thusit is
appropriate to say that a string is nealy randan when the
compressonratio h(X' | n) / nis dightly lessthan urity. As
ill ustrated in sec. 2.2,compresson byeven a small fradion
of nisvery rarewhen nislarge.

In sum, more than helf of al descriptions, traces, and
traceprefixes grictly satisfy the dgorithmic incompress-
bility criterion for agorithmic randamness Many ahers
are nealy incompressble. For perspicuity, binary strings X'
with compressgon ratios h(xX" | n) / n close to urity will be
referred to as highly randam. Note that the dgorithmic ran-
domnessof a descriptionis an intrinsic property, and daes
not depend uponan extrinsic randam distribution onF.

5.2 Conservation of Algorithmic Information

Consider again an exploration rogram p generating horest
permutations y = Ti(x) of descriptions x 0 {0, }". The fad
that 1t is a bijedion immediately implies that algorithmic
complexity of descriptions is conserved by the program.
That is, ({0, ") ={0, ", and

[{x: h(x | N) = n}| = {x: h(T(x) [N) = n}| ©)

forn=1, 2, 3, ...The mmplexity histogram for traces is
predsely that for descriptions, and daes not depend upon
the exploration program.

More significantly, there is conservation in the com-
plexity of any description and its correspondng tracerela-
tive to the program. Spedficdly, h(x | p, N) = h(T(X) | p, N),
and this implies that the asolute difference in complexity
of the description and the traceis bounded by the complex-
ity of the program. Thus algorithmic information is con-
served in the sense that an exploration program cannat add
or take avay more information than is present in itself (see
fig. 2. In the following, Tt is the inpu-output relation o
horest permutation program p, and y = 1i(x) for arbitrary x
o{o, g".

Lemma 1: Given p, x, and N, the complexity of y is
boundd bya @nstant. That is,

h(y [p, x, N) = O(1). (6)

Proof: Construct program p* that generates output y by in-
voking p with N and x as input, and then halts. The invoca-
tion o given programs may be acomplished with code of
constant length, and thus the shortest p* is constant in
length.

Lemma 2. Given p, y, and N, the mmplexity of x is
bouncdkd bya mnstant. That is,

h(x|p,y. N) = O(). ()

Proof: Construct program p* that enumerates grings w [
{0, 11". Given N, the enumeration may be performed by a
constant-length code. For eat w, p* suppies N andw to p
asinpu, and chedsto seeif the output of pisy. Because 1t
isinvertible, thereis exadly one w such that T(w) =y. Thus
p* generates output of x = w and helts when the output of p
isy. The omparison d T(w) toy can be acomplished with
code of constant length, gven N. Enumeration, compari-
son, and invocaions of given programs al can be acom-
plished with code of constant length, and thus the shortest
p* isconstant in length.

Theorem 2 (Preservation d relative omplexity): The dif-
ference in complexity of x and y relative to p and N is
bounckd bya mnstant. That is,

h(y | p. N) =h(x|p, N) + O(1).)

Proof:
h(x, ¥, pIN) =h(x, y, p| N)
h(x|p,y, N) + h(y, p|N) = h(y | x, p, N) + h(x, p| N) + O(2)
h(y, p|N) = h(x, p| N) + O(2),

h(x) h(y)

-

h(p)

Fig. 2. Conservation o complexity for description x, tracey, and
program p. Condtioning uponN is omitted. The x and y regions
outside the p redange ae equal in areabecaise h(x | p) = h(y | p).
Thus any dfferencein x area aad y areamust be acourted for
within the p redangdle. That is, the diff erencein areaof the hatched
regions of x-p overlap and y-p overlap is the cmmplexity diff erence
of xandy, and h(x) —h(y) = h(x: p) —h(y : p) < h(p).

by lemmas 1 and 2.Subtradion o h(p | N) from both sides
of therelation yields (8).

In the following theorem, nae that both pcsitive and
negative mnstants are O(1). Condtioning onN is implicit
in al complexity expressons.

Theorem 3 (Conservation): The magnitude of information
gain in the output of p is bounded by the complexity of p.
That is,

INX) —h(y)[+ O(1) = |h(x: p) —h(y : p)I (9a)
<max{h(x:p), h(y:p)} (9b)
< h(p). (9c)

Proof: To establish (9a), take the diff erence of
h(x) = h(x|p) + h(x: p) + O(1)
and

h(y) =h(y | p) + h(y : p) + O(1)
=h(x|p) + h(y: p) + O(2) [by Thm. 2].

Inequality (9b) foll ows from the non-negativity of h(x : p)
and h(y : p). Inequality (9c) halds becaise h(w : p) < h(p)
foral wO{o, 3"

Corollary (Conservationin prefixes): If y=y'z=11(x), y' O
{0, 3", 0<m<N,andz0{0, 1", then

h(y' | m) = h(x|N) —h(p) —I* — n+ O(2), (20
where* =log* min{m, n}.

Proof: The inequality
h(y [N) <1* + h(y' | m) + h(z| n) + O(2) (11

isderived by constructing a program that, given N, invokes
programs to write y' (given m) and z (given n) succes
sively. The value of min{m, n} is dored in the program in a
self-delimiti ng form that requires I* = log* min{m, n} bits
[5]. The value of max{m, n} is computed asN —min{m, n}.
The length of the ade for subtradion and invocations is
O(1). Thus the right-hand side of (11) gives the length of a
program that, given N, generates y. Eqn. (10) is obtained
from (11) by repladng h(y | N) with its minimum value of
h(x | N) —h(p), repladng h(z | n) with its maximum value of
n+ O(1), and rearanging terms.

Observation: If both y' and z are dgorithmicdly randam,
I* can be omitted from (10).

5.3 Optimization I's Almost Always Easy

It was established in sec 5.1that the fradion d function
descriptions for which traceprefixes of a given length are
compressble by more than k bits is lessthan 2*. For pre-
fixes containingm< N/ L values, amost al are highly ran-

dom if mislarge. Thisimplies a high degree of dispersion
of values over the codamain. For instance, bah 0 and 1
must occur in every position d the L-bit values in the pre-
fix, or it is possble to compressthe prefix simply by omit-
ting constant bits. If the values are interpreted as unsigned
integers, this alone guarantees that a value in the upper half
of the codamain occurs in the prefix. But it must also be
the cae that O and 1 are gproximately equiprobable in
eath pasition d the integers in the prefix, or there is a
scheme for compressng the prefix. Thus approximately
half of the values are in the better half of the cmdomain, ap-
proximately one-fourth are in the best quartile of the @-
domain, etc. Thus highly randam trace prefixes are quite
benignin the context of optimizaion.

Asaiming that the prefix y' comprises lessthan half of
algorithmicdly randam tracey, it can be inferred from (10)
that

h(y' | m) = m —h(p) —log* m + O(1), (12

wherem = mL isthe length in hits of an m-value prefix. To
appredate how log* mf isdominated by dher termsin (12),
consider that m' = 2” gives log* m = 36.2. Thus any long
traceprefix generated by a short program is highly randam
when the descriptionis algorithmicdly randam.

A nonparametric gpproach to assessng the difficulty of
optimization in amost al cases is to seled an arbitrary
function description x 0 {0, 1}" and cerive the fradion o
optimizers that achieve a cetain level of performance The
infinitude of optimization programs with the same inpu-
output relation is problematic, however, so the fradion o
permutations of the description gving a cetain level of
performanceis derived instead. The assumptionis that eadh
permutation d x is implemented by as many programs as
every other permutation.

What fradion d permutations of x yield a value & good
as 8 amongthe first mvalues? Let n = N/ L be the number
of valuesin x, and let k be the number of values in x that
areworse that 6. Then the fradion o permutations of x that
donat contain avalue & goodas 8in the m-prefix is

Ms . (]_3)

nk-m)! 0OnQ
Interestingly, (13) arises in courting functions for which a
fixed ogimizer fails to oktain the threshad value [6, 7).
For n = 2% pants, k = 0.9999%, and m= 10, al but 4.5 x
10” of permutations include a one-in-ten-thousand value
among the first million values. Thus amost all optimizers
discover good \alues rapidly. It beas mention that this
analysis, urlike that at the beginning d the subsedion, -
fines “good in terms of the range of the described func-
tion.,and nd the codomain.

5.4 Learning IsAlmost AlwaysHard

Leaners have the disadvantage, relative to ogimizers, of
being scored ontheir prediction of al values in the trace
naot their discovery of good \alues. For ahighly randam de-
scription, the learner attempts to infer regularity from ran-
dom values and wse that (norexistent) regularity to predict
randam values. Leaning to guesswell is equivalent to re-
ducing the uncertainty of unread values, and that implies
data cmpresson. But amost al descriptions are om-
presshble by at most a small amourt, and acarate guessng
israre.

Leaning performanceis evaluated in terms of the entire
trace In pradice, the number of distinct category labels, k
= 2", ismuch lessthan n = N/ L, the number of labelsin the
trace Under this condtion, any highly random trace on-
tains approximately the same number of instances of eah
label. Althoughthe point will not be agued formaly, this
gives ame insight as to why the typicd acaracgy, and nd
just the mean acaragy, of aleaning pogram is 1in k cor-
red.

Now let y denote any trace The gproach isto hdd y
constant and cetermine the fradion o learners achieving a
given level of guessngacaragy. To simplify, it is assumed
that ead sequence of guesss is generated by an identicd
number of programs, allowing sequences to be cournted in-
stead of programs. The fradion o sequences with m cor-
red guesses has the form of the binomial distribution, b(m;
n, p), p = 1/k, thoughit is nat randam. To determine the
fradion d sequences with m or fewer corred guesses, the
standard namal approximationz= (m-np) / (npg*, q=1
—p, is convenient. To appredate the rarity of learners that
have acarracgy as goodas 1.001times the chance rate, let
the domain have n = 2 paints, let the number of categories
bek =2°+ 1, and let the number of corred guesses be m =
(1 + 2% pn. The resulting z-value is 8. Thus very few
leaners get more than 1.001 6 k guesses corred.

6 Discussion

6.1 Near Ubiquitity of Highly Random Trace Prefixes
The length o traceprefixes does nat have to be gred for it
to be the cae that aimost all prefixes are highly random.
Exploration o 2° = 10 paints is common in applicaions.
If an exploration gogram halts after reading the values of
2” domain pdnts, and ead pdnt has a 32-bit value, then
the program generates a traceprefix of n = 2°° bits. Com-
presson d n/ 1024 lits gives k = 2" in (4). That is, fewer
than 1in 2" functions yields a traceprefix compressble
by more than 0.1% of its length.

6.2 Conservation of Algorithmic Information
A difficulty in uncerstanding conservation o agorithmic
information (sec 5.2 is that it is inherently badkhanded.

The aucial point is that an exploration program is equally
uninformed of afunction description and the crrespondng
trace bu not equally informed. This constraint of h(x | p,
N) = h(t(x) | p, N) arises from invertibility of the program’s
mapping from descriptions to traces. The synopsisin fig. 2
of this result and its ramifications is perhaps the best aid to
intuition.

6.3 Highly Random Function Descriptions

It is esential to uncerstand that the results of sedions 5.1,
5.3,and 5.4 @pend uponthe fad that amost al function
descriptions are intrinsicdly randam objeds, and nd upon
a randam distribution o functions. The uniform distribu-
tion is asaimed orly in determining what fradion d de-
scriptions are highly randam. The focus is upon grform-
ance of algorithms on amost all descriptions, individualy,
not their performance distributions for a function dstribu-
tion. Thus the results may be dharaderized as distribution
free

It shoud be noted, noretheless that for aimost al de-
scriptions it is impossble to regjed with much confidence
the hypahesis that the description’s bits were generated by
flipping afair coin N times. Thus almost every description
provides properties that have been exploited in prior work
with the uniform distribution d functions. The mndtion d
values that are independent and uriform on the codamain
does not arise merely when all function dstributions are
averaged to oltain the uniform. It holds approximately for
individual functions, with relatively few exceptions. In this
sense the uniform is nat just an average, bu is nealy ubig-
uitous.

Any dstribution onthe set of highly randam descrip-
tions is a boonto most or al optimizers and the bane of
most or al leaners. In the extreme cae that all probability
mass is assgned to ore randan description, by \vrtue of
high mutual complexity with the description some cmplex
optimizerswill generate atracewith valuesin reverse order
of goodress and some @mplex leaners will guess per-
fedly. But with its death of structure, the description in-
herently does not hide good \alues from optimizers and
does nat al ow generalization from observed to unolserved
values.

7 Conclusion

Elementary algorithmic information theory has fadlit ated
reformulation d conservation d information [3] in terms
of individua functions. The issue of the distribution o
functions has been circumvented. The nation, peviously
rather nebulous [3], that a program could excd only by en-
coding prior knowledge has been made cncrete. The dgo-
rithmic information supgied by an ogtimization o leaning
program is roughy bounad by its own length, whether or
not the explored functionis highly randam.

It has been shown that category leaners with high aca-
ragy are extremely rare. In ogimizaion, onthe other hand,
it has been shown that for the vast mgjority of functions
there is no strategy better than to visit a large number of
points as rapidly as possble. Indeed, such a strategy works
extremely well, and the epithet of “just randam search” has
no besisin formal analysis.

Acknowledgment
Thanks to Nicole Wecker for her constructive remarks.

References

[1] Schaffer, C. 1994 “A conservation law for generalization per-
formance” in Proc. Eleventh Int'l Conf. on Machine Learning,
H. Willi an and W. Cohen, eds. San Francisco: Morgan Kauf-
mann, pp. 259265

[2] Wolpert, D. H., and W. G. Maaealy. 1997 “No free lunch
theorems for optimizaion,” |[EEE Trans. Evolutionary Com-
putation, val. 1, no. 1, pp. 67-82.

[3] English, T. M. 1999 “Some Information Theoretic Results on
Evolutionary Optimization,” in Proc. Of the 1999 Congesson
Evolutionary Computation: CEC99. Piscaaway, New Jersey:
IEEE Service Center, pp. 788795

[4] Chaitin, G. J. 1999 The Unknowable, New York: Springer-
Verlag, chap. 6.

[5] Cover, T. M., and J. A. Thomas. 1991 Elements of Informa-
tion Theory, New York: Wiley & Sons.

[6] Breaden, J. L. 1994 “An EP/GA synthesis for optima state
spacerepresentations,” in Proc. Third Annud Conf. on Evolu-
tiona'y Programming, A. Sebald and L. Fogel, eds. River
Edge, NF: World Scientific, pp. 216-223

[7] English, T. M. 1996 “Evauation d evolutionary and genetic
optimizers: No freelunch,” in Evolutionary Programning V:
Proc. Fifth Ann. Conf. on Evolutionary Programming, L. Fo-
gel, P. Angeline, and T. Bad, eds. Cambridge, Mass: MIT
Press pp. 163169

