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1. INTRODUCTION

This tutorial reviews basic concepts in complexity theory, as well as
various No Free Lunch results and how these results relate to compu-
tational complexity. The tutorial explains basic concepts in an infor-
mal fashion that illuminates key concepts. No Free Lunch theorems for
search can be summarized by the following result:

For all possible performance measure, no search algorithm is better than
another when its performance is averaged over all possible discrete func-
tions.

Note that No Free Lunch is often referred to simply as NFL within
the heuristic search community (despite copyrights and trademarks held
by the National Football League).

No Free Lunch relates to complexity theory in as much as complexity
theory addresses the time and space costs of algorithms; complexity
theory is also concerned with key classes of problems, such as the class of
N P-complete problems that are also of interest to researchers designing
search algorithms.

2. COMPLEXITY, P AND NP

The complexity classes denoted by P and NP are the most famous
(or notorious) classes of problems in complexity theory. The problem
class P is the set of problems that can be solved in polynomial time
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on a deterministic Turing machine. For current purposes, we can think
of any computer as a surrogate for a Turing machine (except that Tur-
ing machines are assumed to have infinite memory). The P stands for
polynomial. In practice, we generally think of P as representing those
problems that are tractable, i.e. problems that can be solved in reason-
able computation time (within one’s lifetime, for example).

The problem class NP is the set of problems that can be solved in
polynomial time on a nondeterministic Turing machine. The N P stands
for nondeterministic polynomial (not to be confused with Not Polyno-
mial). Nondeterminism is a little strange. In a nondeterministic ma-
chine, choices are allowed in the computation, so that some things need
not be computed. In effect, the computation itself becomes a search
tree. Each path in the tree represents a possible solution, but only cer-
tain paths yield an actual solution. We say that a problem is in NP
if this search tree is polynomial in height, while the number of nodes
in the search tree might be exponential. Thus, if we could explore all
computational paths in parallel, we arrive at a solution in polynomial
time. Alternatively, if we “magically” make the right choice at each de-
cision node in the tree, then we again arrive at the desired solution in
polynomial time. If we can deterministically find a path to a solution in
polynomial time in every case, then the problem is in P. All problems
in P are also in NP. Another characteristic of the class NP is that
the correctness of solutions can be verified in deterministic polynomial
time. Note that this is true, because if we have the solution in hand, we
then know how to make the right choice at each decision node without
needing any magical guidance.

Problems in NP that are not known to be in P are characterized
by an algorithm gap. An algorithm gap exists when the proven diffi-
culty of a problem (or a set of problems) has lower complexity than the
best known algorithms for solving that problem. The complexity of the
problem itself is algorithm independent and is a bound from below: the
problem can be proven to be at least this hard (but might be harder).
The complexity of the algorithm is a bound from above: the best known
algorithms solves the problem this fast (but might be done faster).

The complexity of sorting has been proven to be O(N log N), thus no
algorithm can sort faster than O(N log N) in the worst case. Of course,
there exist algorithms that sort in O(NV log V) time, so sorting is said to
be a closed problem because it does not have an algorithm gap.

If an algorithm sorts faster than O(N log N) time, then that algo-
rithm has been designed to work on special subclasses of problems: for
example, if we know that we are sorting integers from ranging from 1 to
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1000, and the expected distribution of the integers is uniform, we can
use a bucket sort and sort in linear, i.e. O(N), time.

In contrast, an algorithm gap does exist in the well-known traveling
salesman problem. Here, the only algorithm guaranteed to locate an op-
timal solution is, in effect, enumeration. Thus, the best known method
in the worst case has complexity O(N!) for an N city problem. Yet, no
one has proven that the inherent complexity of the traveling salesman
problem is such that it cannot be solved in polynomial time. And note
that a solution can be verified in polynomial time. If someone has a solu-
tion that is claimed to have a particular evaluation, then that evaluation
can be verified in O(N) time—which is polynomial, of course.

Can all the problems that are solved by a Turing machine in NP time
be solved by a deterministic Turing machine using another, more clever
algorithm in polynomial time? What we are really asking is whether the
complexity class P = NP. The answer is unknown and is considered to
be one of the most important theoretical questions in Computer Science.
It is an equally important question in Operations Research. While the
answer is unknown, it is widely thought that P # N P.

Researchers have identified a very important subset of the class NP
known as the class N P-complete. A problem, R, is N P-complete if (1)
R is NP-hard and (2) R € NP. Informally, a problem is N P-hard if
it is at least as hard as any other problem in NP. More formally, a
problem R is N P-hard if there exists an /N P-complete problem Ry such
that every instance of Ry can be “reformulated” into an instance of R
in deterministic polynomial time. R must be just as hard as R since R
in some sense “includes” Ry.

In a renowned theorem, Cook (1971) established that Boolean satis-
fiability is N P-complete by showing it is in NP and by showing that
every problem in NP can be expressed as a Boolean satisfiability prob-
lem (also just called “SAT”). Of course SAT is a member of the set
of NP problems: the nondeterministic Turing machine just selects the
right assignment to the Boolean variables to make the expression true,
if it is possible to do so.

Other problems in N P have been shown to be NV P-complete by show-
ing that every SAT problem can be converted into an instance of that
particular problem class. Thus, every instance of SAT can be converted
into an instance of the 3-CNF-SAT problem, which can an be converted
into an instance of a Hamiltonian circuit problem, which can an be con-
verted into an instance of the traveling salesman problem. This means
all of these problems are N P-hard. Showing that they are all also in the
class NP makes them NN P-complete. Technically, to be N P-complete,
a problem must be a decision problem. A decision problem is a problem
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that has a yes or no answer. Therefore, the traveling salesman problem
is “N P-complete” when expressed as a decision problem (i.e., Is there a
tour with length < X7?), but the traveling salesman problem is still said
to be “NP-hard” when expressed as an optimization problem.

Given the interrelated nature of the N P-complete problems, if re-
searchers ever discover a polynomial-time algorithm for any N P-complete
problem, then it would follow that every problem in NP could be solved
in polynomial time. In an abstract sense, this means that all problems
in the N P-complete problems are all of comparable difficulty, and that
the N P-complete are the most difficult problems in the set made up of
all problems in NP.

2.1 Complexity, Search and Optimization

Since we do not know how to compute the solution to N P-hard prob-
lems in polynomial time, we have to settle for approximate solutions
(which sometimes can be computed exactly in polynomial time) or use
search methods to find the best solutions possible. It can be useful to
think of these search methods as exploring the same decision tree that
is navigated by a nondeterministic Turing machine. The solutions that
are found using search methods often are not optimal, but finding suffi-
ciently good solutions can be important for many applications.

A basic distinction can be made between search problems that are
discrete versus problems that are continuous. This distinction can also
be related to the difference between integers and real-valued numbers.
If we ask how many integers there are in the (inclusive) interval between
1 and 10, the answer is obviously 10 different and discrete values. But
if we asked how many real-valued numbers there are between 1 and 10,
the answer is infinitely many.

The nondeterministic Turing machine is clearly solving a discrete
problem, because there are a fixed number of decisions that must be
made to reach an optimal solution. By definition, the number of deci-
sions that must be made by the nondeterministic Turing machine must
be polynomial if it is solving an N P-hard problem.

Some problems cannot be solved in polynomial time by a nondeter-
ministic Turing machines and therefore are not in NP; we can loosely
think of such problems as requiring exponential time, although in com-
plexity theory one must worry about both space (memory) and time and
balance trade-offs between space and time costs.

Consider a parameter optimization problem such that there is a func-
tion f that takes k parameters as inputs and returns a single value that
evaluates the usefulness or goodness of those k parameters. The space of
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possible inputs is known as the domain and the space of possible outputs
as the range or co-domain of the function. For example, we might have a
parameter optimization problem that used temperature and pressure as
two input control parameters for a process that produces some material
(e.g. paper), where the output of the function might be the cost of the
material, or some measurement of its quality.

If a parameter can be assigned any continuous real-valued number,
then the input space is theoretically infinite. We will limit our attention
to problems that are discrete such that the domain and therefore the co-
domain are finite. Discrete parameter optimization problems are part of
a larger set of discrete problems referred to as combinatorial optimization
problems. Combinatorial optimization problems include many different
types of problems, such as scheduling and resource allocation, as well as
problems in graph theory and Boolean logic.

For example, we might have a scheduling problem where we want to
optimize the order in which tasks are carried out. The goal might be
to minimize total processing time, or to maximize work done per unit
of time. For N tasks, there could be N! ways to order those tasks. Or,
we might want to assign truth values (0 or 1) to a Boolean expression,
in which case there are 2F assignments if there are k& Boolean variables
in the expression. In the first case, an input could be a permutation
of tasks of length NV and the evaluation might be how long it takes to
process all of the IV tasks. In the second case, an input might be a bit-
string of length k representing the assignments made to the k Boolean
variables, and the output might be a true or false (0 or 1) evaluation
of the overall Boolean expression. For classic N P-hard problems, the
search space is typically modeled in a general way so that the search
space is exponentially large in relationship to the size of an input.

Parameter optimization problems can also be discretized. For exam-
ple, a single input parameter can be restricted to a value between 0.00
and 99.99 (inclusive) where we only consider values that are increments
of 0.01. In this case, there are only 10000 possible assignments for that
particular input. If all of the parameters of a parameter optimization
problem are discretized in this way, then the overall search problem is
discrete as well. There are a number of reasons that one might want to
look at parameter optimization problems as discrete search spaces. In
some cases, sensors for the inputs and/or outputs have limited precision
and it does not make sense to represent and reason about extremely high
precision numbers: we simply cannot measure the world that precisely.
And, in general, as soon as anything is represented in a computer pro-
gram it is discrete. Infinite precision is a fiction, although it is sometimes
a useful fiction. But as soon as we decide to represent a parameter using
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a fixed-length floating point representation, the optimization problem is
discrete.

This leads to the following observation. If the set of possible inputs
is discrete, we can enumerate the set of inputs and label each possi-
ble input with a unique integer. We will also sort the inputs in some
principled manner, so that the ith possible input is uniquely identified.
This is a familiar concept in complexity, since it allows us to count all of
the inputs. Thus, any particular instance of a discrete search problem
using any given discrete representation can be abstractly modeled by a
function

fli) =37

where i is an integer that labels the ith input (i.e. element i of the do-
main) and j is a member of the set of values that make up the co-domain.
This perspective also provides a general foundation for discussing the
concept of No Free Lunch.

3. NO FREE LUNCH

In 1995, a paper by David Wolpert and William Macready caused a
good deal of excitement in the search community. An updated version
of the original report appeared in 1997. The paper No Free Lunch Theo-
rems for Search presents proofs that can be summarized by the following
No Free Lunch result:

For all possible performance measure, no search algorithm is better than
another when its performance is averaged over all possible discrete func-
tions.

First, note that we only consider discrete functions. A performance
measure includes any measurement of the quality of the solution (or
set of solutions) found after sampling some fixed number of points in
the search space, or how long it takes to find a solution of a particular
quality. It is also implied that a performance measure is taken over the
set of domain and associated co-domain values that have been sampled
so far.

A key assumption behind this result is that resampling is ignored:
this means that if a search algorithm samples point 7 and evaluates the
objective function f(i) then that point is never sampled again. In real-
ity, heuristic search algorithms “focus” search toward particular regions
of the search space: in other words, a focused search is one that spends
more time sampling points that are near to one another in the search
space. Consequently, a focused search is one that is more likely to re-
sample previously visited points. Search algorithms that are more likely
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to resample points in the search space than others are in some sense
“worse” than algorithms that resample less.

One of the most basic and least intelligent forms of search is random
enumeration. Random enumeration means that we sample the search
space randomly without replacement; this can be done using clever book-
keeping, or simply by keeping a list of visited points so that none are
evaluated again. In practice, random sampling is typically unfocused,
only a limited amount of the search space can be sampled, and it is rea-
sonable to allow sampling with replacement because resampling is un-
likely. When random sampling is used as a search algorithm, it provides
a minimal baseline against which the performance of heuristic search
algorithms can be judged. Clearly, we would expect any useful heuris-
tic search algorithm to outperform random enumeration. However, a
startling and powerful consequence of No Free Lunch is that no heuris-
tic search algorithm is better than random enumeration when compared
over all possible discrete functions.

Useful search algorithms do not exhaustively enumerate the entire
search space. Wolpert and Macready (1995, 1997) model a search algo-
rithm as a procedure that searches for m steps. However, this does not
restrict any of the No Free Lunch results.

Another issue relating to No Free Lunch involves deterministic ver-
sus stochastic search algorithms. Some algorithms make determinis-
tic decisions, such as a steepest ascent local search algorithm: when
started from the same point, steepest ascent always yields the same so-
lution. Genetic algorithms are often implemented as largely stochastic
algorithms—meaning that the search involves many random or stochas-
tic decisions and that different runs will often produce different solu-
tions. Wolpert and Macready present arguments showing that the No
Free Lunch theorems hold for both stochastic and deterministic search
algorithms. Radcliffe and Surry (1995) also point out that in practice
stochastic algorithms typically employ pseudo-random number genera-
tors. Thus, if we include the random number generator and initial seed
in the specification of the search algorithm, then these “stochastic” al-
gorithms, in effect, are also deterministic.

Immediately following its introduction, researchers had two general
reactions to the No Free Lunch results.

Reaction 1: Many researchers simply dismissed No Free Lunch, argu-
ing that results concerning the set of all possible discrete functions
are not applicable in the real world because this set is not rep-
resentative of real-world problems. Some researchers pointed out
that the set of all possible discrete functions is infinitely large and
most functions are incompressible in that there is not a represen-
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tation whose size is significantly less than the size of the function
when fully enumerated. For example, if there are N values in the
co-domain of a function, then writing down all of these values re-
quires N logy N bits (i.e. N values, logy(N) bits per value). In
effect, this representation of the function is just a look-up table
where the ith entry is the co-domain value associated with f(i).
If there exists no representation of a function that uses less than
O(N logy N) bits, then that function is incompressible. Even if
an evaluation function only returns 0 or 1, it still requires O(NV)
bits to construct a look-up table or to enumerate the function; in
this case, the look-up table is still exponentially large when N is
exponentially large in relationship to the size of an input string to
the evaluation function.

Of course, there are more random functions than non-random func-
tions (English, 2000a). Furthermore, most standard textbooks on
computability discuss the well-known result that the set of all pos-
sible functions is uncountably infinite (as can be shown using di-
agonalization arguments), while the set of all possible programs
(which are just bit-strings at the lowest level) is only countably
infinite (Sudcamp, 1997). So the set of all possible cost functions
that can be implemented on a computer is a tiny subset of the set
of all possible functions. Thus, the space of all possible discrete
functions is largely composed of incompressible functions. Given
these observations, “No Free Lunch is No Big Deal” seemed to be
the conclusion of this point of view.

Reaction 2: The other reaction to No Free Lunch was to acknowl-

edge that researchers trying to develop the best possible algorithm
for a particular application typically need to leverage extensive
problem-specific knowledge. Consequently, the No Free Lunch re-
sult seemed to be an intuitive affirmation of the idea that there
are no general-purpose search methods (at least none that are very
effective) and that the business of developing search algorithms
is one of building special-purpose methods to solve application-
specific problems. This point of view echoes a refrain from the
Artificial Intelligence community: “Knowledge is Power”.

Of course, there is truth in both of these views. It has taken several
years for the research community to gain a deeper understanding of
No Free Lunch. These investigations have led to some surprising and
even fruitful results along the way. In 1998 Joe Culberson published
an “algorithmic view” of No Free Lunch that added perspective to the
debate; Culberson makes two important points.
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First, No Free Lunch looks at search as a blind process. This means
that the only information we have is the evaluation of particular points in
the space. We do not have information about what a solution might look
like or information about how the evaluation function is constructed that
might allow us to search more intelligently. Blind search is extremely
weak. Using an “adversarial argument” we can think of blind search as
the process of asking an adversary to sample a point of some objective
function and then return an answer. In the space of all possible discrete
functions, however, the adversary is free to return any value whatsoever
without regard to those values of the search space that have already
been examined. In the worst case, sampled points from the search space
tell us nothing about the remaining points in the search space.

Second, search is often not blind. If we construct an algorithm for the
traveling salesman problem, for example, we often do exploit application-
specific operators and representations. But this does not mean that
we completely give up generality; our algorithms are designed to solve
a particular problem, but should be general enough to solve different
instances of that problem.

Radcliffe and Surry (1995) first formalized the idea that we can also
include representations under No Free Lunch. That is, when we consider
all possible representations of a function, No Free Lunch still holds: no
search algorithm is better than another when applied to all possible
representations of a function. In effect, a representation just transforms
one function into another.

Not surprisingly, No Free Lunch also holds when comparing the set
of possible representations under Gray codes and Binary bit encodings.
However, Whitley et al. (1997) pointed out that if one selected partic-
ular subsets of problems of bounded complexity, then No Free Lunch
no longer holds; Rana and Whitley (1997) and Whitley (199) provides
proofs of this related to binary representations. Droste et al. (1999) also
made similar observations, indicating that one can define sets of rea-
sonable and interesting functions where one algorithm can consistently
outperform another.

If we go back in time, No Free Lunch observations were made by Greg
Rawlins at the Foundations of Genetic Algorithms (FOGA) workshops
in 1990 and 1992. In the preface to the proceedings of the 1990 FOGA
workshop Rawlins (1991) makes the following observations:

(It is sometimes suggested that GAs [Genetic Algorithms] are universal
in that they can be used to optimize any function. These statements
are true in only a very limited sense; any algorithm satisfying [these]
claims can expect to do no better than random search over the space of
all functions. (Rawlins, 1991, p. 7)
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It is now apparent that for a fized universal algorithm, restricted to [bit]
strings ...over the set of all possible domain functions ...it does not
matter which encoding we use, since for every domain function which
the encoding makes easier to solve there is another domain function that
makes it more difficult to solve. Thus, changing the encoding does not
affect the expected difficulty of solving randomly chosen domain func-
tions.

Equivalently, assume that we have a fized domain function f and sup-
pose that we choose the encoding, e, at random....Then, no search
algorithm can expect to do better than random search, since no infor-
mation is carried by e about f, except that for each string there is a
value (Rawlins, 1991, p. 8.)

Rawlins anticipated several of the consequences of No Free Lunch.
Nevertheless, it was Wolpert and Macready who not only provided the
first proof of No Free Lunch, but also explored many of the ramifications
of the No Free Lunch Theorem.

3.1 No Free Lunch: Variations on a Theme
Two other common variants of NFL are as follows:

m the aggregate behavior of any two search algorithms is equivalent
when compared over all possible discrete functions;

m the aggregate behavior of all possible search algorithms is equiva-
lent when compared over any two discrete functions.

At the root of these observations is another, more concise result. Con-
sider any algorithm A; applied to function f;. Let Apply (A;, fj,m)
represent a “meta-level” algorithm that outputs the order in which A;
visits m elements in the co-domain of f; after m steps. For every pair
of algorithms Aj, and A; and for any function f;, there exists another
function f; such that

Apply (A;, fj,m) = Apply (A, fi,m)

The equivalence operator = denotes that the ordered sequence of co-
domain values that is returned by “Apply” will be equivalent. We could
interpret this result in another way. For every pair of functions f; and
fi and for any algorithm A;, there exists another algorithm A; such
that Apply (A;, fj,m) = Apply (Ag, fi,m). In fact, if we consider the
algorithms and the functions as variables that are supplied to the Apply
function, then when any three of the variables are known, the fourth is
immediately determined.

This also implies that we can talk about No Free Lunch in a much
smaller context: for example, we can talk about any two search algo-
rithms applied to exactly two carefully chosen paired functions.
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This perspective on No Free Lunch has some rather counterintuitive
implications, which may be deeper and more profound than the general
NFL result. Consider a best-first version of steepest ascent local search
which restarts when a local optimum is encountered. Also consider a
worst-first steepest ascent local search, also with restarts. We incorpo-
rate restarts so that these algorithms continue searching for an arbitrary
number of steps. Then, for every function f; there exists a function f;
such that

Apply (best-first, fj,m) = Apply (worst-first, fi,m)

Virtually all researchers would accept that best-first local search is
a reasonable search algorithm and that it is useful on many real-world
problems. In other words, there is a subset of problems where best-first
search is effective, relative to some performance measure. But there is
a corresponding set of functions where worst-first local search is equally
effective. What do these functions look like? They probably are “struc-
tured” in some sense, and might be compressible. Also note that if we
are minimizing a function, then a worst-first local search is one that
simply maximizes at each step, instead of minimizing. On the other
hand, it seems reasonable that we might want to maximize one func-
tion and minimize another function. Why is best-first search generally
viewed as a reasonable algorithm and worst-first as an unreasonable al-
gorithm? This is a nagging question for which, at least formally, there
are currently no good answers.

3.2 No Free Lunch and Permutation Closure

As has been noted, the set of all possible discrete functions is infinitely
large. One easy way to see this is by considering all the functions that
take K inputs: since K could be any integer from 1 to infinity, there must
be infinitely many discrete functions. But even if there are exactly two
inputs, the number of evaluations could be chosen from an infinite set of
different possible values, resulting in infinitely many discrete functions.

Whitley et al. (1997) first explored the idea that permutations could
be used to represent both algorithms and functions—and thus produce
an NFL result over a finite set. This was further explored by Whitley
(2000). Consider the following small example. Assume that the co-
domain of our objective function consists of the set of values {A, B,C'}.
Let the permutation (A, B,C') represent a canonical ordering of these
values. We can start by considering bijective functions, those that are
one-to-one and onto: an important implication of this is that each value
in the co-domain is unique. To construct a function, we need to assign
values to f(1), f(2) and f(3). Exactly 3! bijective functions can be
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constructed given three possible co-domain values. Additionally, only
3! behaviors are possible for any search algorithm, assuming that an
algorithm does not resample points. Let an algorithm’s behavior be
represented by a permutation over the set of numbers {1,2,3} which
will serve as indices into the canonical permutation of co-domain values
{A, B,C}. Let s; be the ith value sampled by a search algorithm. Thus,
the permutation (2,1,3) defined with respect to the canonical ordering
(A, B, C) represents a search algorithm whose behavior can be described
by the following sampling behavior: s; = B, s9 = A, s3 = C. Note that
we do not need to specify a particular function to talk about behavior,
we just need to define the co-domain values. In the following table, we
enumerate all possible permutations over all possible functions over the
co-domain {4, B,C} as well as all possible permutations over the set of
algorithm behaviors over the set of indices denoted by {1,2,3}.

POSSIBLE POSSIBLE

BEHAVIORS FUNCTIONS

Bi: <1, 2, 3> F1: <A, B, C>
B2: <1, 3, 2> F2: <A, C, B>
B3: <2,1, 3> F3: < B, A, C>
B4: <2, 3, 1> F4: < B, C, A>
B5: < 3,1, 2> F5: < C, A, B>
B6: <3, 2, 1> F6: < C, B, A >

-
-
-
-

The implications of No Free Lunch start to become clear when one
asks basic questions about the set of behaviors and the set of functions.

If we apply any two sets of behaviors to all functions, each behavior
generates a set of 3! possible search behaviors which is the same as the
set of all possible functions. If we apply all possible search behaviors to
any two functions, for each function we again obtain a set of behaviors
which, after the indices are translated into co-domain values, is the same
as the set of all possible functions.

We need to be careful to distinguish between algorithms and their
behaviors. There exist many algorithms (perhaps infinitely many) but
once the values of the co-domain are fixed, there are only a finite number
of behaviors.

Schumacher (2000) and Schumacher et al. (2001) sharpened the No
Free Lunch theorem by formally relating it to the permutation closure
of a set of functions. Let X and ) denote finite sets and let f: X — )
be a function where f(z;) = y;. Let o be a permutation such that
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o: X — X. We can permute functions as follows:

of(z) = f(o7"(x))

Since f(z;) = yi, the permutation of(x) can also be viewed as a
permutation over the values that make up the co-domain (the output
values) of the objective function.

We next define the permutation closure P(F') of a set of functions F:

P(F)={of:f € F and o is a permutation}

Informally, P(F') is constructed by taking each function in F' and re-
ordering its co-domain values to produce a new function. This process is
repeated until no new functions can be generated. This produces closure
since every re-ordering of the co-domain values of any function in P(F’)
will produce a function that is already a member of P(F'). Therefore,
P(F) is closed under permutation. This provides the foundation for the
following result.

THEOREM 10.1 The No Free Lunch theorem holds for a set of functions
if and only if that set of functions is closed under permutation.

Proofs are given by Schumacher et al. (2001). Intuitively, that NFL
should hold over a set closed under permutations can be seen from Cul-
berson’s adversarial argument: any possible (remaining) value of the
co-domain can occur at the next time sample. Proving that the con-
nection between algorithm behavior and permutation closure is an if
and only if relationship is much stronger than the observation that No
Free Lunch holds over the permutation closure of a function. But if
every remaining value is not equally likely at each time step, the set of
functions we are sampling from is not closed under permutation and No
Free Lunch does not hold. Similar observations have also been made by
Droste et al. (2002).

It is useful to view the permutation closure of a function as a table,
where each row of the table is a permutation representing a function.
FEach row in the table also corresponds to the behavior of some opti-
mization algorithm on some function. The behavior of an optimization
algorithm with respect to some objective function describes the order in
which the optimization algorithm samples the values that make up the
co-domain of the objective function. Schumacher et al. (2001) refer to
this as the performance vector.

This tabular representation makes it clear when NFL results hold and
makes it clear why making a general declaration that one algorithm is
better than another is in some sense meaningless.
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Consider the following table representing the permutation closure over
a function defined over a co-domain of three values.

<1, 2, 3>
<1, 3, 2>
<2,1, 3>
<2, 3, 1>
<3,1, 2>
<3, 2, 1>

-

Each column of the table represents the set of possible results at a
particular time step; the rows represent all possible performance vec-
tors. But each column is identical in its composition. The notion of
robustness implies that some algorithm yields relatively good perfor-
mance over a broad range of problems compared to another algorithm.
This would suggest that relatively good solutions are found within some
fixed (e.g. polynomial) number of time steps. Yet, if NFL holds over a
set of problems, the set of co-domain values returned over all functions
in the permutation closure is identical at each time step. Thus, not only
are all measures of performance the same after m steps; every step of the
search yields exactly the same set of co-domain samples when behavior
is aggregated over all possible functions in any permutation closure.

We can now make a more precise statement about the “zero-sum”
nature of No Free Lunch. If algorithm K outperforms algorithm Z on
any subset of functions denoted by ([, then algorithm Z will outper-
form algorithm K over P(3) — 3. Differences in aggregate measures of
performance such as the total number of steps taken to find a particu-
lar evaluation or the sum of the evaluations after m steps will be zero.
Aggregate versus average measures of performance can be different, be-
cause the subsets are of different size. This means that No Free Lunch
theorems for search apply to finite sets. These sets can in fact be quite
small.

English (2000a) first pointed out that NFL can hold over sets of
functions such as needle-in-a-haystack functions. A needle-in-a-haystack
function is one that has the same evaluation for every point in the space
except one; in effect, searching a needle-in-a-haystack function is neces-
sarily random since there is no information about how to find the needle
until after it has been found.

In the following example, NFL holds over just three functions:

f = (0,0,3)
P(f) = {<07073>7<07370>7<37070>}
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Clearly, NFL does not just hold over sets that are incompressible.
All needle-in-a-haystack functions have a compact representation of size
O(log N), where N =| X' |. In effect, the evaluation function needs to
indicate when the needle has been found and return a distinct evaluation.

Generally, we like to construct evaluation functions that are capable
of producing a rich and discriminating set of outputs: that is, we like to
have evaluation functions that tell us point 7 is better than point j. But
it also seems reasonable to conjecture that if NFL holds over a set that
is compressible, then that set has low information measure.

Schumacher et al. (2001) also note that the permutation closure has
the following property:

P(FUF')= P(F)U P(F')

Given a function f and a function g, where g ¢ P(f), we can then
construct three permutation closures: P(f), P(g), P(fUg). For example,
this implies that NFL holds over the following sets which are displayed
in table format:

Set 1: {< 3, 0, 0 >,
<0, 3, 0>, Set 3: {< 3, 0, 0 >,
<0, 0, 3>} <0, 3, 0>,
<0, 0, 3>,
Set 2: {< 1, 3, 2 >, <1, 3, 2>,
<2,1, 3>, < 2,1, 3>,
<2, 3, 1>, <2, 3, 1>,
<3,1, 2>, < 3,1, 2>,
<3, 2,1>} <3, 2,1>}

We can also ask about NFL and the probability of sampling a particular
function in P(f). For NFL to hold, we must insist that all members of
P(f) for a specific function f are uniformly sampled. Otherwise, some
functions are more likely to be sampled than others, and NFL breaks
down. For NFL to hold over P(g) the probability of sampling a function
in P(g) must also be uniform. But Igel and Toussaint (2004) point
out that we can also have a uniform sample over P(g) and a (different)
uniform sample over P(f) and NFL still holds. Thus, sampling need not
be uniform over P(f U g).

3.3 Free Lunch and Compressibility

Whitley (2000) presents the following observation (the current form
is expanded to be more precise).

THEOREM 10.2 Let P(f) represent the permutation closure of the func-
tion f. If f is a bijection, or if any fixed fraction of the co-domain values
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of [ are unique, then |P(f)| = O(N!) and the functions in P(f) have a
description length of O(N log N ) bits on average, where N is the number
of points in the search space.

The proof, which is sketched here, follows the well known proof demon-
strating that the best sorting algorithms have complexity O(N log N).
We first assume that the function is a bijection and that |P(f)| = N
We would like to “tag” each function in P(f) with a bit string that
uniquely identifies that function. We then make each of these tags a
leaf in a binary tree. The tag acts as an address that tells us to go
left or right at each point in the tree in order to reach a leaf node cor-
responding to that function. But the tag also uniquely identifies the
function. The tree is constructed in a balanced fashion so that the
height of the tree corresponds to the number of bits needed to tag each
function. Since there are N! leaves in the tree, the height of the tree
must be O(log N!) = O(N log N). Thus O(N log N) bits are required to
uniquely label each function. (Standard binary labels can be compressed
somewhat, but lexicographically ordered bit labels can be used, which
cannot be compressed, so that the complexity is still O(N log N).)

To construct a lookup table or a full enumeration of any permutation
of N elements requires O(NV log N) bits, since there are NV elements and
log N bits are needed to distinguish each element. Thus, most of these
functions have exponential description.

This is, of course, one of the major concerns about No Free Lunch
theorems. Do No Free Lunch theorems really apply to sets of func-
tions which are of practical interest? Yet this same concern is often
overlooked when theoretical researchers wish to make mathematical ob-
servations about search. For example, proofs relating the number of
expected optima over all possible functions (Rana and Whitley, 1998),
or the expected path length to a local optimum over all possible func-
tions (Tovey, 1985) under local search are computed with respect to the
set of N! functions.

Igel and Toussaint (2003) formalize the idea that if one considers
all the possible ways that one can construct subsets over the set of all
possible functions, then those subsets that are closed under permutation
are a vanishing small percentage. The problem with this observation is
that the a priori probability of any subset of problems is vanishingly
small—including any set of applications we might wish to consider. On
the other hand, Droste et al. (2002) have also shown that for any function
for which a given algorithm is effective, there exist related functions for
which performance of the same algorithm is substantially worse. This is
expressed in the Almost No Free Lunch (ANFL) theorem.
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THEOREM 10.3 ANFL Theorem: Let H be a randomized search strateqy
and f : {0,1}" — {0,1,...,N —1}. Then there exists at least N*"/*~1
functions fx : {0,1} — {0,1,..., N} which agree with f on all but at
most 23 inputs such that H does find the optimum of f* within 2"/3
steps with a probability bounded above by 27"/3. Ezponentially many of
these functions have the additional property that their evaluation time,
circuit size representation, and Kolmogorov complexity is only by an
additive term of O(n) larger than the corresponding complexity of f.

Even search algorithms designed for specific problem classes could be
subject to ANFL kinds of effects.

3.4 No Free Lunch and N P-completeness

No Free Lunch has not been proven to hold over the set of problems
in the complexity class N P. This is rather obvious if one considers the
following: if No Free Lunch holds for any N P-complete problem, then
it immediately follows that no algorithm is better than random enu-
meration on the entire class of N P-complete problems (because of the
existence of a polynomial-time transformation between any two N P-
complete problems). However, this would also prove that P # NP,
since it would prove that no algorithm could solve all instances of an
N P-complete problem in polynomial time. This means that proofs con-
cerning No Free Lunch do not apply to N P-complete problems unless
the proofs also show (perhaps implicitly) that P # NP.

The description length of all NP-complete problems must also be
polynomial, since we need to reformulate one problem into another in
polynomial time. This means that an N P-complete problem class (such
as NK-landscapes: Kauffman, 1989) cannot be used to generate all N!
functions of P(f) when f is a bijection, since on average the set of all
possible bijective functions over a set of co-domain values do not have
polynomial space descriptions.

The existence of ratio bounds for certain N P-complete problems also
shows that NFL theorems do not hold for certain INP-complete prob-
lems. For example, a greedy polynomial time approximate algorithm
exists for the Euclidean traveling salesman problem which is guaranteed
to yield a solution that is no worse than 2C, where C' is the cost of an
optimal solution (Cormen et al., 1990). (In fact, even tighter bounds
exist.) Branch and bound algorithms (Horowitz and Sahni, 1978) can
use this information to compute bounds such that no solution with a
cost greater than 2C' is examined. Thus, the existence of a ratio bound
means that algorithms can select which performance vectors to explore,
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and this excludes some search behaviors (i.e. performance vectors) that
are part of the permutation closure of the objective function.

3.5 Evaluating Search Algorithms

From a theoretical point of view, comparative evaluation of search
algorithms is a dangerous, if not dubious, enterprize. But the alternative
to testing is to give up and say that all algorithms are equal—which
means we have no way of recommending one algorithm over another
when a search method is required to solve a problem of practical interest.
The best we can do is build test functions that we believe capture some
aspects of the problems we actually want to solve. But this highlights
a critical question. Do benchmarks really test what we want to test?
If an algorithm does well on a very simple problem—such as a linear
objective function—is that good or bad? Many people have used the
ONEMAX test function for testing search algorithms that use a binary
representation. The objective function for ONEMAX is to maximize the
number of bits set to 1 in a bit string. But should we really believe that
an algorithm that does well on ONEMAX generalizes to other problems
of practical interest? Theory would suggest extreme caution.

A set of benchmarks, denoted by # where S = |3|, i is really just
a subset of functions. If algorithm K is better than algorithm Z on g,
then algorithm Z is equally and identically better on another set of S
functions drawn from P((3).

So what does it mean to evaluate an algorithm on a set of benchmarks
and compare it to another algorithm? Given the NFL theorems, com-
parison is meaningless unless we prove (which virtually never happens)
or assume (an assumption which is rarely made explicit) that the bench-
marks used in a comparison are somehow representative of a particular
subclass of problems.

Benchmarks are commonly used for testing both optimization and
learning algorithms. Often, the legitimacy of a new algorithm is “es-
tablished” by demonstrating that it finds better solutions than existing
algorithms when evaluated on a particular benchmark or collection of
benchmarks. Alternatively, the new algorithm may find high-quality
solutions faster than existing algorithms for one or more benchmarks.

What are some of the dangers associated with the use of benchmarks?
Algorithms can be tuned such that they perform well on specific bench-
marks, but fail to exhibit good performance on benchmarks with dif-
ferent characteristics. More importantly, there is no guarantee that
algorithms developed and evaluated using synthetic benchmarks will
perform well on more realistic problem instances. Furthermore, sim-
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ple algorithms can often provide excellent performance on more realistic
benchmarks (Watson et al., 1999).

While the dangers associated with benchmarks are well-known, most
researchers continue to use benchmarks to evaluate their algorithms.
This is because researchers have few alternatives. How can one algo-
rithm be compared to another without some form of evaluation? Eval-
uation requires the use of either synthetic or real-world benchmarks,
or at least the use of test problems drawn from problem generators so
that algorithms can be compared on sets of problem instances that have
similar characteristics. Researchers who develop new algorithms and do
not demonstrate their merit through some form of comparative testing
can expect their work to be ignored. The compulsion to develop “a new
method” has resulted in the literature being full of new algorithms, most
of which are never used or analyzed by anyone other than the researchers
who created them.

Hooker (1995) discusses the “evils of competitive testing” and points
out the difficulty of making fair comparisons of algorithm performance.
Implementation details can significantly impact algorithm performance,
as can the values selected for various tuning parameters. Some algo-
rithms have been refined for years. Other algorithms have become so
specialized that they only work well on specific benchmarks. Hooker ar-
gues that the evaluation of algorithms should be performed in a more sci-
entific, hypothesis-driven manner. Barr et al. (1995) suggest guidelines
for the experimental evaluation of heuristic methods. Such guidelines
are for the most part useful, although rarely followed.

While evaluation is difficult, it is also important. Too many exper-
imental papers (especially conference papers) include no comparative
evaluation; researchers may present a hard problem (perhaps newly
minted) and then present an algorithm to solve the problem. The ques-
tion as to whether some other algorithm could have done just as well (or
better!) is ignored.

4. CONCLUSIONS

As in many other areas of life, extreme reactions are likely to lead to
extreme errors. This is also true for No Free Lunch. It is clearly wrong
to say “NFL doesn’t apply to real world problems, so who cares?” It is
also an error to give up on building general purpose search algorithms.

A careful consideration of the No Free Lunch theorems forces us to ask
what set of problems we want to solve and how to solve them. More than
this, it encourages researchers to consider more formally whether the
methods they develop for particular classes of problems actually are bet-
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ter than other algorithms. This may involve proofs about performance
behavior. In some ways, we are just starting to ask the right questions.
And yet, researchers working in complexity and /N P-completeness have
long been concerned with algorithm performance for particular classes
of problems.

Few researchers have attempted to formalize their assumptions about
search problems and search algorithm behavior. But if we fail to do
this, then we become trapped in a kind of empirical and experimental
treadmill that leads nowhere: algorithms are developed that work on
benchmarks, or on particular applications, without any evidence that
such methods will work on the next problem we might wish to solve.

5. TRICKS OF THE TRADE

No Free Lunch is a theoretical result about search algorithms. As
such there are no specific methods or algorithms that directly follow
from NFL. Several pieces of advice do follow from No Free Lunch.

1 In most practical applications one must trade-off generality and
specificity. Using simpler off-the-shelf search methods reduces time
effort and cost. Simple but reasonably effective search methods,
even when implemented from scratch, are often easier to work with
than complex methods. Using custom-designed search methods
that only work for one application will usually yield better results:
but generally, one must ask how much time and money one wishes
to spend and how good does the solution need to be.

2 Exploit problem-specific information when it is simple to do so.
Most N P-complete problems, for example, have been studied for
years and there are many problem specific methods that yield good
near-optimal solutions.

3 For discrete parameter optimization problems, one has a choice of
using standard binary encodings, Gray codes or real-valued repre-
sentations. Gray codes are often better than binary codes when
some kind of neighborhood search is used either explicitly (e.g.,
local search) or implicitly (e.g., via a random bit flip operator).
The use of Gray codes versus real-valued is less clear, and depends
on other algorithm design choices.

4 Do not assume that a search method that does well on classic
benchmarks will work equally well on real-world problems. Some-
times algorithms are overly tuned to do well on benchmarks and
in fact do not work well on real-world applications.
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6. CURRENT AND FUTURE RESEARCH
DIRECTIONS

Another area of research is the construction of algorithms that can
provably beat random enumeration on specific subsets of problems. Chris-
tensen and Oppacher (2001) prove that No Free Lunch does not hold
over sets of functions that can be described using polynomials of a sin-
gle variable of bounded complexity. This also includes Fourier series
of bounded complexity. (Also see the paper by English (2000a) about
polynomials and No Free Lunch). They define a minimization algorithm
called “SubMedian-Seeker.” The algorithm assumes that the target func-
tion, f, is one-dimensional and bijective and that the median value of
f is known and denoted by med(f). The actual performance depends
on M(f), which measures the number of submedian values of f that
have successors with supermedian values. They also define M,;; as the
critical value of M(f) such that when M(f) < M,.;s SubMedian-Seeker
is better than random search. Christensen and Oppacher then prove:

If f is a uniformly sampled polynomial of degree at most k and if My >
k/2 then SubMedian-Seeker beats random search.

The SubMedian-Seeker is not a practical algorithm. The importance
of Christensen and Oppacher’s work is that it sets the stage for prov-
ing there are algorithms that are generally (if perhaps weakly) effec-
tive over a very broad class of interesting, nonrandom functions. More
recently Whitley et al. (2004) have generalized these concepts to out-
line conditions which allow local neighborhood bit climbers to display
“SubTheshold-Seeker Behavior” and then show that in practice such al-
gorithms spend most of their time exploring the best points in the search
space on common benchmarks and are obviously better than random
search.

ADDITIONAL SOURCES OF INFORMATION

The classic textbook Introduction to Algorithms by Cormen et al.
(1990) has a very good discussion of N P-completeness and approximate
algorithms for some well-studied N P-hard problems.

Joe Culberson’s 1998 paper On the Futility of Blind Search: an Algo-
rithmic View of No Free Lunch helps to relate complexity theory to No
Free Lunch in simple and direct terms.

Tom English has contributed several good papers to the NFL dis-
cussion (English, 2000a, 2000b). C. Igel and M. Toussaint have also
contributed notable papers. Chris Schumacher’s 2000 Ph.D. disserta-
tion, Fundamental Limitations on Search Algorithms, deals with various
issues related to No Free Lunch.



xxii WHITLEY AND WATSON

Recent work by Ingo Wegener and colleagues has focused on showing
when particular methods work on particular general classes of problems,
(e.g., Storch and Wegener, 2003; Fischer and Wegener, 2004) or showing
the inherent complexity of particular problems for black-box optimiza-
tion (Droste et al., 2003).

References

Barr, R., Golden, B., Kelly, J., Resende, M. and Stewart Jr., W., 1995,
Designing and reporting on computational experiments with heuristic
methods, J. Heuristics 1:9-32.

Christensen, S. and Oppacher, F., 2001, What can we learn from No Free
Lunch?, in: Proc. Genetic and Evolutionary Computation Conference,
GECCO-01, Morgan Kaufmann, San Mateo, CA, pp. 1219-1226.

Cook, S., 1971, The Complexity of Theorem Proving Procedures, in:
Proc. 3rd ACM Symposium on Theory of Computing, pp. 151-158.

Cormen, T., Leiserson, C. and Rivest, R., 1990, Introduction to Algo-
rithms, McGraw-Hill, New York.

Culberson, J., 1998, On the futility of blind search, Evol. Comput. 6:109—
127.

Droste, S., Jansen, T. and Wegener, 1., 1999, Perhaps not a free lunch,
but at least a free appetizer, in: Genetic and Evolutionary Computa-
tion Conference (GECCO-99), Morgan Kaufmann, San Mateo, CA,
pp- 833-839.

Droste, S., Jansen, T. and Wegener, 1., 2002, Optimization with ran-
domized search heuristics; the ANFL theorem, realistic scenarios and
difficult functions, Theor. Comput. Sci. 287:131-144.

Droste, S., Jansen, T., Tinnefeld, K. and Wegener, 1., 2003, A New frame-
work for the valuation of algorithms for black-box optimization, in:
Foundations of Genetic Algorithms (FOGA-7), Morgan Kaufmann,
San Mateo, CA.

English, T., 2000a, Practical implications of new results in conservation
of optimizer performance, in: Parallel Problem Solving from Nature,
Vol. 6, Springer, Berlin, pp. 69-78.

English, T., 2000b, Optimization is easy and learning is hard in the typ-
ical function, in: Proc. Congress on Evolutionary Computation (CEC-
2000), pp. 924-931.

Fischer, S. and Wegener, 1., 2004, The Ising model on the ring: muta-
tion versus recombination, in: Genetic and Evolutionary Computation
Conference, GECCO-04, Springer, Berlin, pp. 1113-1124.

Rawlins, G., ed., 1991, Foundations of Genetic Algorithms, Morgan Kauf-
mann, San Mateo, CA.



COMPLEXITY THEORY AND THE NO FREE LUNCH THEOREM xxiii

Hooker, J. N., 1995, Testing heuristics: we have it all wrong, J. Heuristics
1:33-42.

Horowitz, E. and Sahni, S., 1978, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD.

Igel, C. and Toussaint, M., 2003, On classes of functions for which No
Free Lunch results hold, Inform. Process. Lett.86:317-321.

Igel, C. and Toussaint, M., 2004, A no-free-lunch theorem for non-
uniform distributions of target functions, J. Math. Model. Algor.

Kauffman, S. A., Adaptation on Rugged Fitness Landscapes, 1989, in:
Lectures in the Science of Complexity, D. L. Stein, ed., Addison-
Wesley, New York, pp. 527-618.

Radcliffe, N. J. and Surry, P. D., 1995, Fundamental limitations on search
algorithms: Evolutionary computing in perspective, in: Lecture Notes
in Computer Science, Vol. 1000, J. van Leeuwen, ed., Springer, Berlin.

Rana, S. and Whitley, D., 1997, Representations, search and local op-
tima, in: Proc. 14th National Conference on Artificial Intelligence
(AAAI-97), MIT Press, Cambridge, MA, pp. 497-502.

Rana, S. and Whitley, D., 1998, Search, representation and counting op-
tima, in: Proc. IMA Workshop on Evolutionary Algorithms, L. Davis,
K. De Jong, M. Vose and D. Whitley, eds, Springer, Berlin.

Schumacher, C., 2000, Fundamental limitations of search, Ph.D. Thesis,
University of Tennessee, Department of Computer Sciences, Knoxville,
TN.

Schumacher, C., Vose, M. and Whitley, D., 2001, The no free lunch and
problem description length, in: Genetic and Evolutionary Computa-
tion Conference (GECCO-01), Morgan Kaufmann, San Mateo, CA,
pp. 565-570.

Storch, T. and Wegener, 1., 2003, Real Royal Road Functions for Con-
stant Population Size, in: Genetic and Evolutionary Computation Con-
ference (GECCO-03), Springer, Berlin, pp. 1406-1417.

Sudcamp, T., 1997, Languages and Machines, 2nd edn, Addison-Wesley,
New York.

Tovey, C. A., 1985, Hill climbing and multiple local optima, SIAM J.
Algebr. Discr. Methods 6:384—393.

Watson, J. P., Barbulescu, L., Whitley, D. and Howe, A., 1999, Algo-
rithm performance and problem structure for flow-shop scheduling,
in: Proc. 16th National Conference on Artificial Intelligence.

Whitley, D., 1999, A free lunch proof for gray versus binary encodings,
in: Genetic and Evolutionary Computation Conference (GECCO-99),
Morgan Kaufmann, San Mateo, CA, pp. 726-733.

Whitley, D., 2000, Functions as permutations: regarding no free lunch,
Walsh analysis and summary statistics, in: Parallel Problem Solving

any update
for Igel and
Toussaint,
20047

Rana and
Whitley
1997  not
cited.



XXiv WHITLEY AND WATSON

from Nature, Vol. 6, Schoenauer, Deb, Rudolph, Lutton, Merelo, and
Schwefel, eds., Springer, Berlin, pp. 169-178.

Whitley, D., Rana, S. and Heckendorn, R., 1997, Representation issues
in neighborhood search and evolutionary algorithms, in: Genetic Al-
gorithms and Evolution Strategies in in FEngineering and Computer
Science, C. Poloni, D. Quagliarella, J. Periaux, and G. Winter, eds,
Wiley, New York, pp. 39-57.

Whitley, D., Rowe, J. and Bush, K., 2004, Subthreshold seeking behavior
and robust local search, in: Genetic and FEvolutionary Computation
Conference (GECCO-04), Springer, Berlin, pp. 282-293.

Wolpert, D. H. and Macready, W. G., 1995, No free lunch theorems for
search, Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa
Fe, NM.

Wolpert, D. H. and Macready, W. G., 1997, No free lunch theorems for
optimization, IEEE Trans. Fvol. Comput. 4:67-82.



