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Abstract. For a robot to be autonomous it must be able to navigate indepen-
dently within an environment. The overall aim of this paper is to show that locali-
sation can be performed even without having a pre-defined map given to the robot
by humans. In nature place cells are brain cells that respond to the environment
the animal is in. In this paper we present a model of place cells based on Self Or-
ganising Maps. We also show how image invariance can improve the performance
of the place cells and make the model more robust to noise. The incoming visual
stimuli are interpreted by means of neural networks and they respond only to a
specific combination of visual landmarks. The activities of these neural networks
implicitly represent environmental properties like distance and orientation to the
visual cues. Unsupervised learning is used to build the computational model of
hippocampal place cells. After training, a robot can localise itself within a learned
environment.

1 Introduction

Despite progress made in the fields of AI and Robotics, robots today still remain vastly
inferior to humans or animals in terms of performance [1]. One reason for this is that
robots do not possess the neural capabilities of the brain. Human and animal brains
adapt well to diverse environments, whereas artificial neural networks are usually lim-
ited to a controlled environment, and also lack the advantage of having millions of
neurons working in true parallelism.

In an mammal’s brain place cells fire when the animal occupies a familiar portion
of its environment, known as its place field. However, the activity of cells, or even
a collection of such cells, simply indicates different locations; it informs the animal
where it is, but it cannot directly inform the animal where it should go [2–4]. One role
of the place cells is to associate a path integrator and local view so that when an animal
enters a familiar environment, it can reset its path integrator to use the same coordinate
system as during previous experiences in the environment [5].

To navigate in familiar environments, an animal must use a consistent representation
of its positions in the environments. In other words, the animal must localise in order
to navigate within the environment. Visual clues that support a local view to inform
the animal of its initial position may be ambiguous or incomplete and there must be
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a way to settle on a consistent representation of localisation [4]. The evidence from
neurophysiology suggests that place cells are well suited for this role. Spikes fired by
dentate granule cells, CA1 and CA3 pyramidal cells, are strongly correlated with the
location.

In a experimental environment, place cells have clearly shown a firing rate that
relates to that environment. From the experimental evidence [5] we can summarise their
properties as follows:

1. When distinct landmarks move, place fields also move proportionately.
2. Place cells continue to show clean place fields when landmarks are removed.
3. The firing rate correlates to more than the location of the animal.
4. Place cells show different place fields in the environment.
5. Place cells are directional when the animal takes a limited path, but non-directional

when wandering around randomly in open fields.
6. Place cells are multi-modal. They can integrate various input sensors to localise

with vision being the primary one. In the case of no vision or restricted vision, they
localise using other sensors such as odour, or whiskers.

In this paper we evaluate our computational place code model in a realistic context,
using a Khepera robot. Visual information is provided by a linear vision system. Eight
infra-red sensors are used to provide reactive behaviour. This paper is structured as
follows: we describe the basis of the model in section 2, outline of the model in section
3, following with the experiments and results in section 4.

2 Self Organising Map for Localisation

In the brain, hippocampal pyramidal cells called place cells have been identified that fire
when an animal is at a certain location within its environment. In our model, we show
that place cells based on SOMs have potential to provide locations to the path integrator
and place cells can localise the robot in a familiar environment. Self-localisation in
animals or humans often refers to the internal model of the world outside. As seen in a
white water maze experiment [4], even though a rodent was not given any landmarks,
it could still reach its goal by forming its own internal representation of landmarks
of the world outside. It is seen in humans and animals that they can create their own
landmarks, depending on the firing of place cells [6]. These cells change their firing
patterns in an environment when prominent landmarks are removed. With this evidence
from computational neuroscience, it is reasonable to assume that a model of place cells
might prove to be an efficient way of robot localisation using vision.

One possibility is to build a place code model that is based on Self Organising Maps
(SOM). SOM [7] networks learn to categorise input patterns and to associate them with
different output neurons, or a set of output neurons. Each neuron, j, is connected to the
input through a synaptic weight vectorwj = [wj1....wjm]T . At each iteration, the SOM
finds a winning neuronv by minimising the following equation:

v(x) = arg minj‖x(t) − wj‖, j = 1, 2, ...n (1)



x belongs to anm-dimensional input space,‖.‖ is the Euclidean distance, while the
update of the synaptic weight vector is done in the following way:

wj(t + 1) = wj(t) + α(t)hj,v(x)(t)[x(t) − wj(t)], j = 1, 2, ......n, (2)

This activation and classification are based on features extracted from the environ-
ment by the network. Feature detectors are neurons that respond to correlated combina-
tions of their inputs. These are the neurons that give us symbolic representations of the
world outside. In our experiments, once we get symbolic representations of the features
in the environment we use these to localise the robot in that environment.

The sparsification performed by competitive networks is very useful for preparing
signals for presentation to pattern associators and auto associators, since this represen-
tation increases the number of patterns that can be associated or stored in such networks
[8, 9]. Although the algorithm is simple, its convergence and accuracy depend on the
selection of the neighbourhood function, the topology of the output space, a scheme for
decreasing the learning rate parameter and the total number of neuronal units [10].

The removal of redundancy by competition is thought to be a key aspect of how the
visual system operates [8, 9]. Competitive networks also reduce the dimensions of the
input vector as a set of input patterns, in our case pixels of the input image vector. The
representation of a location is achieved by activation of a neuron.

An important property of SOMs is feature discovery. Each neuron in a SOM be-
comes activated by a set of consistently active input stimuli and gradually learns to
respond to that cluster of coactive inputs. We can think of SOMs as feature discovery
in the input space. The features in the input stimuli can thus be defined as consistently
coactive inputs and SOMs thus show that feature analysers can be built in without any
external teachers [8]. This is a very important aspect of place cells, as they have to re-
spond to unique features or landmarks in the input space in order to localise the robot.

3 Scenario and Architecture

Our approach is to try to model aspects of neural visual localisation present in human
and animal brains. The main emphasis of this research is to build a robot that uses robust
localisation, with the objective that it has learning and autonomy. The central objective
is on natural vision for navigation based on neural place codes. This section summarises
the scenario and architecture of our approach.

3.1 Scenario

In our experiments the overall goal for the robot (a Khepera robot, figure 1(a)) was
to to localise itself between two desired locations. In order to facilitate natural vision
experiments, we provided random colour-coded squares on the wall, along with some
distinguishable features like cubes, cylinders and pyramids randomly kept in the envi-
ronment as shown in figure 1(b). During experimentation, the robot should be able to
create its own internal representation of the world model based on unsupervised learn-
ing for neural place codes.



(a) (b)

Fig. 1. (a) A Khepera robot used during experimentation.(b) A birds eye view of the overall
experiment setup and the cage in which the robot was allowed to move in.

3.2 Overall Architecture of the Model

Humans and animals use various sensors to navigate [11, 12]. In our robot model, we
are primarily using vision as a global navigation strategy and for our local navigation
strategy we have employed the use of infra red sensors.

Our approach is based upon functional units each of which uses a neural network.
An overview of the different functional units can be seen in figure 2. SOMs are used
for the visual landmarks, which enable the robot to generate its internal representation
of the world based on the most salient features in its visual field. A primitive visual
landmark allows us to implement simple, visually-based behaviour. The transform in-
variance and pattern completion modules are based on MLPs, the output of which forms
the input to the SOM. Furthermore, self-localisation and target representation are based
on SOMs.

In figure 2, ‘visual information derivation’ is a module which is responsible for
getting the images from the robot’s camera. The Visual information derivation module
is responsible for image pre-processing and normalising the images for the network.
Transform invariance, a part of our localisation module (figure 5) makes use of asso-
ciative memory and pattern completion for noise reduction. The localisation module is
responsible for the localisation of the robot in the environment.

Effective navigation depends upon the representation of the world the robot is using
[11]. In our architecture the world representation is called ‘spatial representation’. This
provides the path planning module with necessary information from the localisation
module and visual target module. It maps both the current location and the location of
the target into the same map and enables the path planning module to compute the most
appropriate path. Once we can map both the visual target and the current location of the
robot into the same spatial representation, the ‘path-planning module’ directs the robot
to its goal. The path planning can derive a path which is the shortest and quickest way
towards the goal.

There are various ways in which the robot can be instructed as to where its target
for navigation is. We are exploring how to translate the place code output and target
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Fig. 2. Overall architecture used in the visual navigation strategy of the robot. This shows the
flow of the model.

representation into a spatial representation. The path planning module provides output
to the ‘motors control’. This forms the global navigation strategy.

We have implemented the local navigation strategy using reactive behaviour. Both
the global and local navigation strategies meet each other in the navigation strategy
module, which is mostly responsible for choosing motor commands either from local or
global behaviours. Accordingly, it chooses the output from either the global navigation
strategy or local navigation strategy to generate motor control commands.

Real-time processing of artificial neural networks requires vast amounts of compu-
tational power, especially those algorithms that require real-time vision. Therefore, we
make use of distributed and decentralised processing. The robot onboard computer is
primarily responsible for robot control. At the same time we are making use of various
off-board computers in order to achieve the real time navigation. Each module in figure
2 can run on a different computer/CPU as a part of distributed architecture.

3.3 Overview of the Model Implementation

The focus of this paper is on robot localisation and therefore in this section we will
describe in detail the implemented models. It consists of a hierarchical series of five
layers of hybrid neural networks, corresponding to the transform invariance layers and
place code layer. Figure 4 shows the forward connections to individual layers derived
from the modular arrangement of the layers.

Local Navigation: Reactive Behaviour A lot of recent research in intelligent robotics
involves reactive behaviour [13, 14]. In a reactive robot system, all sensors are wired
to the motor controls. This enables the motors to react on the sensory state. In these
systems internal representations play a limited role or no role at all in determining the



motor control output for the robot. Even though reactive behaviour robots do not have
an internal representation of the outside world, they are able to solve many complex
tasks, since the robot can react to different sensory states in a different manner based
upon coordination of perception and action [15, 16].

As in biological systems, reactive behaviours have a direct mapping of sensory in-
puts to motors actions [11]. The reactive behaviour emerges as a result ofSENSEand
ACT strongly coupled together. Sensing in reactive behaviour is local to each behaviour,
or in other words it is behaviour-specific. One behaviour is unaware of what the other
behaviour is doing, i.e. the behaviours are independent of each other and they do not
interact with each other. This is the fundamental difference between local and global
navigation strategies.

Our neural network design for reactive behaviour (figure 3) is based on Braiten-
berg’s Vehicle [17, 16], with eight infrared sensors forming the input layer. The inputs
were pre-processed to toggle the actual input between 0 and 1. The output layer had
two nodes, one connected to the left wheel, another to the right wheel and direction
was determined by the value of activation between -1 and 1: positive activation for the
forward direction and negative activation for backwards.

Avoid Motor Control
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Forward

Turn

Distance
Determine

Halt

Fig. 3.Control system for robots reactive behaviour.

Constructing a local navigation system by behaviours is often referred to as pro-
gramming by behaviour [11], since the fundamental component of any implementation
is a behaviour. Behaviours are inherently modular and easy to test in isolation i.e. they
can be tested independently of the global navigation. Behaviours also support incre-
mental expansion of the capabilities of the robot and a robot becomes more ”intelligent”
with more behaviours in it. The reactive behaviour decomposition results in an imple-
mentation that works in real time and is computationally inexpensive. If the behaviours
are implemented poorly, then the reactive implementation can be slow. But generally,
the reaction speed of a reactive behaviour is equivalent to the stimulus-response time in
animals [11].

Global Navigation and Self Localisation The global navigation strategy is crucial for
how systems behave. Global navigation requires perception and motor skills in order
to provide complex sensor-motor integration enabling the system to reach its goal. The
global navigation strategy is the strategy which uses an internal representation, or map,
of the environment while local navigation does not make use of such representations
or maps. Many of these global planning methods are based on paths without obstacles



[18] and their main advantage is to prove the existence of a solution that will permit the
robot to reach its destination. Thus both reactive and deliberate planning are needed,
not only bottom-up reactive, but also top-down predictive behaviour.
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Fig. 4. Overview of the neural model that is being used in our experiments. Hybrid neural net-
works for localisation based on vision. The first part of the hybrid neural networks is associative
memory based on associative memory for invariance and higher layers are SOM for place codes.

Although localisation has been investigated for more then a decade, there is still
no universally accepted solution [19]. Some general methods have been employed for
encoding prior knowledge of the environment and matching it with local sensor in-
formation. Some of the previous methods of localisation are(i) Topological Maps: the
environment is mapped into a number of distinct locations, usually connected with each
other [20]. Typically these maps are learned during the exploration stage.(ii) Evidence
grids [21]: in this method each location in the environment is represented by a grid
point in the global map. For localisation, the system constructs local grip maps with
occupancy probability for each grid point which are matched to the global map.(iii)
Markov Models: in this method of place code localisation the probability distribution is
computed for all possible locations in the environment [22].(iv) Landmarking: in this
method the robot encodes a number of distinctive locations [23, 20, 24, 25, 2].

Our method of localisation is based on landmarks. We use landmarks for localisa-
tion, mainly because this enables us to make internal representation of the environment
and does not involve human interference for determining the landmarks in the envi-
ronment. As the robot generates its own landmarks depending on the features in the
environment, we call it “Self-Localisation”. Our method of localisation is distinct from
other methods described above because there are not maps given to the robot and the
neural network creates an internal representation of the world based on the visual stim-
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Fig. 5. An overview of the localisation in our model. This is the overall implementation of the
localisation module as been before in figure 2. The image pre-processing is responsible for get-
ting the images from the robot camera and resizing. Then the associative memory is responsible
for image-invariant processing. Localisation of the robot is done by place codes. Visual Target
represents the main goal for the navigation. Spatial representation will take activations from both
the neural network regions and represent it in the environmental space.

uli. This network is inspired from neural place codes, making the model more robust
and efficient.

4 Experiments and Results

Once the environment was learned by the robot, and when the landmarks were presented
to it, it could be seen clearly that the activation in the SOM’s map would represent a
place code. There were some interesting observations made, including that the land-
marks were not only self-generated, but also that when the robot starts to approach the
landmark there was activation in neighbouring fields before it reached it, as discussed
in section 4.5. Another observation was that the neuron responsible for the landmark
would have increasing levels of activation when it was approached by the robot.

4.1 Experimental Setup

The experiments were conducted on a Khepera robot. The robot was introduced in a
closed environment, as seen in figure 6 of about 2m x 1.5m, which was divided into
four parts: north, south, east and west. The environment was further divided into a grid
of 10 cm x 10 cm squares. This grid was only used for the purpose of calculation of
the error by the place cells. All the landmarks were placed against the wall of the cage.
There were cubes and pyramids of different colour codes spread across the walls of the
cage randomly. The walls also had randomly colour-coded figures on it.

Each square represents a place code. Each cell was given a name, depending on
where it was located, for example a cell in the southern part within the eastern part was
given name “se10”. The naming convection was simple; the first letter represents which
hemisphere, the second letter which block and the numbers indicate thex andy co-
ordinates. This information was purely for our use in order to test the results and set up
the experiments. This information was not provided to the robot. For training purposes
there were 4 images taken from each of the place codes. For testing there were 10 new
images from each place code in the environment.
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Fig. 6. The arena of the robot. The robot was allowed to moved in a limited space, as we did not
want it to be too close to, nor too far away from, the landmarks. The area of movement of the
robot was divided into smaller grids of 10cm x 10cm, giving us an approximate position of the
robot.

4.2 Representation of Visual Input

It is more convenient to perform neural analysis on smaller versions of an image while
retaining all the essential information of interest, in our case to detect a landmark in an
image using neural networks. If the landmark is just as evident in the smaller image, it
is more efficient to reduce the image size before applying neural methods. Thus com-
putational time saving occurs as the smaller images contain fewer pixels and the recall
time for associative memory and self organising map is reduced, since the number of
the neurons is reduced.

There are number of techniques that can be used to enlarge or reduce images [26–
28]. These generally have a tradeoff between speed and the degree to which they reduce
salient visual features. The simplest methods to reduce the image keep everynth pixel.
However, this results in aliasing of high frequency components. Therefore, a more gen-
eral case of changing the size of an image by a given factor requires interpolation of
colours. The simplest method is called “nearest neighbourhood”, which is currently
used by us. Using this method one finds the closest corresponding pixel in the original
image(i, j) for each pixel in the reduced image(i′, j′). If the original image has the
dimensions width (w) and height (h), and the reduced image would be ofw′ andh′,
then the point in the destination is given by

i′ = iw′/w (3)

j′ = jh′/h (4)

where the division (equation 4) is a integer, the remainder being ignored. In other
words, in the nearest neighbour method of resizing, the output pixel is assigned the



value of the pixel that the point falls within. The number of pixels considered affects
the complexity of the computation.

Once the images are resized, they are arranged to a single dimension vector from a
two dimensional vector. All images were in 24 bit colour RGB (Red Green Blue)format
(equations 8),N represents the whole image.

N = (aijk) ∈ A3mn, i = 1, 2, . . . ,m j = 1, 2, . . . , n k = 1, 2, 3 (5)

R = (rij) ∈ Amn, i = 1, 2, . . . ,m j = 1, 2, . . . , n rij := aij1 (6)

G = (gij) ∈ Amn, i = 1, 2, . . . ,m j = 1, 2, . . . , n gij := aij2 (7)

B = (bij) ∈ Amn, i = 1, 2, . . . ,m j = 1, 2, . . . , n bij := aij3 (8)

A is the set of possible pixel values. The values are between 0 and 255, and can be
represented as shown in 9.

A = {0, 1, 2, . . . , 255}, m = 17, n = 27 (9)

Each image was reduced to a size of 17 x 27. This image in turn was converted into
a single vector to be presented to the network. It was done as explained from equations
10 to 12.

A =


a11 · · · a1n

a21 · · · a2n

...
...

...
am1 · · · amn

 Ai = (ai1, . . . , ain) i = 1, 2, . . . ,m (10)

V = (vl) := (A1, . . . , Am) ∈ Amn l = 1, 2, . . . ,mn (11)

Equation 11 is a concatenation ofAi of A. In other words,

v(i−1)n+j := aij i = 1, 2, . . . ,m j = 1, 2, . . . , n (12)

4.3 Training and Testing Procedure

The stimuli used for training and testing our model are specially constructed to inves-
tigate the performance of localisation using the self organising maps. To train the net-
work, a sequence of 200 images was presented to represent over 20 landmarks. At each
representation the winning neuron was selected and the weight vector of the winning
neuron was updated along with the distance vector. The presentation of all the stimuli
across all the landmarks consists of one epoch of training. In this manner the networks
were trained using backpropagation in Multi-Layered Perceptrons. Invariance and the
place code networks were trained separately.



Training Testing
No. of Images 200 485

No. of Epoch (Invariance) 1800 -
No. of Epoch (Place Code)3000 -

Table 1.Training and Testing procedure

4.4 Results for Transform Invariance

This method of representation shows promise, although it is not ideal for invariance
such as size, view etc. It is observed that, compared to the traditional template match-
ing methods, it is computationally and memory efficient. After the neural networks
memorised the various landmarks, and after a new image has been given at the retina,
our method finds the image nearest to the image previously memorised.

The main purpose of transform invariance was to reconstruct the image that was on
the retina for the SOM. It was seen that due to this process of reconstructed images,
we could also achieve a certain degree for independence from light conditions. The
independence of this was achieved due to the generalisation feature of neural networks,
which would generalise the effect of light over various colours in the reconstructed
image. Transform invariance has improved the performance of place codes based on
SOMs in various way, and the results will be described in sections 4.5. and 4.6.

4.5 Discussion of Results for SOMs Place Codes

Activation Activity of a Neuron When an animal approaches a desired landmark,
the place cells representing the landmark increase activation and, when the animal is
at that the desired landmark, the activation is maximum. This property is observed in
biological place cells and has been discussed in 1.1.

To show that our model also follows the same principles of biological place cells,
we have taken readings of activation of various neurons and we are presenting here
activation levels of a neuron responsible for different place codes. In figure (7) we can
see that when the robot starts to approach the landmark, there is a sudden steep rise in
the activation of the neuron responsible. As the robot gets closer, the activation keeps
on rising, until it is at the desired landmark. Once there, the activation is 1. As the robot
moves away from the desired landmark, there is a gradual fall in the activation of the
neuron, and as soon as the landmark is out of sight of the robot, the activation is set to
0. This is shown in figure 7.

Activation Activity of a Place Code Cluster Another property of place cells is that
when the animal is approaching the desired landmark, the neighbouring neurons would
also be active as described in section 1. These results are shown in figure 8. It is seen
that when the robot is within a region there is a cluster of place codes responding to
the robot’s location. In section 4.6, we will see the advantages of having clusters of
place cells for noise handling. The activation in the cluster provides us the robot’s grid
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Fig. 7. This figure shows activation levels and activity for a single place cell. As the robot ap-
proaches the place code, the activation rises and when the robot is at the location represented by
the place cell the activation is maximum.

location. Each neuron within the cluster provides us with a more precise location of the
robot, within 2cm of precision.

Clustering of Place CodesThe basic property of a SOM network is to form clusters
of information relating to each other, in our case landmarks. A cluster is a collection of
neurons which are next to each other representing the same landmark. Figure 8 shows
that when the robot was approaching the desired landmark, there were activations in the
neighbouring neurons. This is due to clustering of similar images around the landmark.
There are multiple similar images that are being represented by a single neuron, mak-
ing the cluster smaller and richer in information. This is achieved with the invariance
module.

On the other hand, figure 8(c) shows the landmarks which were at a distance to the
location represented in figure 8(d). Two landmarks that were given to the robot at a
distance would be mapped not only into different clusters, but also distant from each
other. By their very definition, landmarks are features in the environment. This was the
reason behind a formation of these clusters by SOMs. The landmarks that were chosen
by the SOM were quite significant in the image and distinguished features from the rest
of the environment, and other landmarks.

Distinction between North and South We have observed that there is a clear distinc-
tion between the north and the south on the place code map. Figure 9(a) shows all the
neurons that are responsible for landmarks in the north and figure 9 (b) represents the
neurons responsible for the south. The reason for this distinction is that the field of view
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Fig. 8.Each of the graph shows activation of winning neurons. It is seen in the images that neigh-
bouring regions in environment are neighbours to each other on the place code map. There is also
a clear overlap of a neuron in both regions. The reason for the overlap is because in the field of
view of the robot between both locations, both prominent landmarks can be seen.



is quite different in both hemispheres. It has been observed that in the northern hemi-
sphere the object of attention for the landmark selection was very much limited to an
object in the field of view. In contrast, in the southern hemisphere, the robot had a much
larger field of view, therefore the object of attention was not focused only on a single
object, but on various objects.
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Fig. 9. The various activations of neurons that represent landmarks in the northern and southern
hemisphere. We can also see that they are not topological.

Overlap of East and West in the South SectionIn the north it was observed that
there was a clear distinction between the east and west, whereas in the south, there is
overlap. The overlap was caused by the field of view of the robot retina. From the south
section of the cage, the robot is able to see more landmarks than in the north section.
After small movements in the north, the object of attention changes, whereas in the
southern hemisphere there are various objects of attention that lie in the field of view.
Therefore, minor movements in the southern hemisphere, do not lead to drastic changes
in the visual field. The overlap is caused by landmarks which are nearer the borders of
east and west.

Directional Independence It was clearly observed that the model was directionally
independent. It was seen that in whichever direction the robot travelled within the en-
vironment, as it came across the landmark, it would activate the place cells responsible
for the landmark. Therefore it did not matter in which direction the robot travelled; it
could localise itself as soon as it came across a significant landmark.
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Fig. 10.There is a clear overlap of the regions in the (a) south-eastern and (b) south western. The
overlap is due to the sharing of landmarks between both the regions.
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Fig. 11. In the images above, there is a clear distinction between the (a) north eastern and (b)
northwestern. The reason for this is that the field of view here is restricted to a particular land-
mark.



For testing purposes, the model was presented with random images with different
landmarks. It was even seen that once the landmark was seen, the place cell responsible
for it would be activated.

Manipulating the Landmarks There were two experiments that were conducted for
testing robustness with the robot. In the first experiment, we removed two blocks from
eastern part and blocks from western part randomly. It was observed that when the robot
was in the northern hemisphere and came across the missing blocks, it would activate
an unknown cluster or completely wrong neuron. This happened because the field of
view within the northern hemisphere is very limited to one or two objects. So, when the
blocks were removed, the environment was not rich enough to provide the robot with
enough clues as to where it was, but as soon as the robot came across a known land-
mark, it localised itself again. This was not observed in the southern hemisphere. The
southern hemisphere visual field was large, hence the removal of blocks did not affect
the activations of neurons. The visual field was rich enough to provide the necessary
clues to localise.

In the second experiment, the blocks that were removed were now replaced, but not
in their original positions. It was observed that the activations in the southern hemi-
sphere were still representing the right location. In the northern hemisphere, the activa-
tions were not in the unknown cluster, but for the neurons representing those landmarks.

Reduction in Cluster Size It was observed in [23], that the main cause for large clus-
ters of place codes was due to the SOM trying to handle transform invariance by hav-
ing the neighbouring neurons responding to the invariance. With the use of associative
memory for transform invariance, the size of the clusters was reduced. In the present
model, the SOM does not represent the invariance, rather it represents the place codes.
Images were collected at every 10th frame i.e. approximately half a second between
images. This causes large amounts of overlap and large amounts of transform invari-
ance. The associative memory clustered the similar images and reduced the transform
invariance. The number of neurons per location reduced, since there were fewer neurons
required to represent the same location if there was a shift in the images. This also has
additional benefits, mainly now SOM can represent more place codes without actually
growing or increasing the size of the map.

4.6 Performance of Network

To test the performance of the network, we tested it with white noise with a mean noise
ranging from 0.0 to 0.8 and variance of 0.01 to the image. The effects of the noise on
the images can be seen in figure 13. The aim of the neural network is to localise the
robot within its environment, based on the internal representations it has formed. As the
place cells are based on SOMs, there is a cluster of neurons responsible for a place code
in the environment. The neuron representing that place code would be more accurate
then the neighbouring neurons. To have a more precise localisation, we need the neuron
responding to the place to be active.
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Fig. 12.The cluster sizes i.e. number of neurons per cluster representing a particular location of
the robot. It is seen that There is a drastic reduction in the size of the clusters after the use of
autoassociative memory before the place code map. This makes it possible for us to have more
place code on the same size of the map.

There are various reasons where we would need an approximate localisation. It was
noted that with the increasing noise, it was more likely for the robot to be ‘lost’ (unable
to localise itself) [23]. During these times, approximate coordinates would help the
robot to localise itself. We consider two options for localisation with noise handling:
one being that a neuron responsible for the robot response and another being another
neuron in the cluster of neurons responding for the same place responding. In the later
case, localisation may not be very accurate.

As seen in figure 14, the clusters are more robust than the neurons with regard to
noise handling. As the amount of noise increases, the neurons or cluster response to
localisation becomes more random. However the network performance is quite impres-
sive until 0.5 mean deviation of noise where the error for localisation is below 30%.
The cluster for a place codes still performs much better and is still below 20%.

Noise handling by the neural networks was also improved by adding an additional
layer of associative memory below the place codes. The associative memory reduces
the noise before the outputs are given to the place codes layer in the architecture. It can
be seen in figure 14 that associative memory helps place cells to perform better, giving
less error per neuron.



(a) (b) (c)

Fig. 13. Effects of different noise levels added to the image.(a) Image without any noise.(b)
Image with 0.2 mean deviation(c) Image with 0.5 mean deviation
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Fig. 14.This figure shows the noise handling by the network, with transform invariance, based on
associative memory, and also without transform invariance. It shows that the network performs
much better with transform invariance.



It was also noted that as the noise level increased, the performance of the network
decreased along with associative memory. This was mainly seen for localisations where
higher levels of noise were present. With noise of 70%, the performance was not signif-
icantly different, with or without associative memory. At higher levels of noise of more
than 80% the noise handling of the associative memory failed, making the place codes
performance performs worse than without the layer. At can be expected, with 80% noise
level, the performance of the SOMs is completely random to get the right localisation.

For our experiments we were not expecting more than 30% of noise levels. Since
this would mostly be caused by interference in wireless signals. Even if the noise levels
for a few frames is more then 30%, it would be possible for the robot to localise itself
with the following input frames. With the use of the associative memory, the perfor-
mance up to 30% noise level improved substantially.

5 Conclusion

The aim of this research, was to investigate whether the reliability of robot localisation
can be improved using SOMs based on place codes. In this paper we have described a
place cell model based on a SOM for localisation. The model was successful in learning
the locations of landmarks even when tested with distorted images. Visual landmarks
were associated with locations in a controlled environment. This model clusters neigh-
bouring landmarks next to each other. The landmarks that are distant from each other are
also relatively distant in the place code map. Rather than pre-programming localisation
algorithms as internal modules, our place code based SOMs architecture demonstrates
that localisation can be learnt in a robust model based on external hints from the envi-
ronment. This model was developed to learn landmarks in an environment, by having
maps divided into clusters of neurons for different parts of the environment. It is con-
sidered to have a lot of potential for learning the localisation of the robot within an
environment.
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