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Abstract— Modern computing systems are distributed, large
and heterogeneous. Computers, other devices and humans are
very tightly connected with each other and therefore it would
be more preferable to handle these entities more as agents as
stand-alone systems. One goal of the artificial intelligence is
to understand interactions between entities, whether they are
artificial or natural, and how to make good decisions taking other
decision makers also into account. In this research project, these
interactions between intelligent and rational agents are modeled
with Markov games and the emphasis is on the adaptation and
learning in multiagent systems.

I. I NTRODUCTION

Reinforcement learning methods have attained lots of atten-
tion in recent years. Although these methods and procedures
were earlier considered to be too ambitious and to lack a firm
foundation, they have been established as practical methods
for solvingMarkov Decision Processes (MDPs). However, the
requirement for reinforcement learning methods to work is
that the problem domain in which these methods are applied
satisfies the Markov property. Basically this means that the
next state of a process depends only on the current state, not
on the history. In many real-world problems this property is not
fully satisfied. However, many reinforcement learning methods
can still handle these situations relatively well. Especially,
in the case of two or more decision makers in the same
system the Markov property does not hold and more advanced
methods should be used instead. A powerful tool for handling
these highly non-Markov domains is the concept ofMarkov
Game (MG). In this project, we have developed efficient, both
tabular and numeric, learning methods for MGs. In addition,
the developed methods have been tested with several example
applications.

II. MG S

With multiple agents in the system, the fundamental prob-
lem of single-agent MDPs is that the approach treats other
agents as a part of the static environment and thus ignores the
fact that the decisions of the other agents may influence the
state (s ∈ S) of the environment.

One possible solution is to use competitive multiagent
MDPs, i.e. MGs. In a MG, the process changes its state
according to the action choices of all agents and can thus be
seen as a multicontroller MDP. In Fig. 1, there is an example of
a MG with three states (s1,s2,s3) and two agents. The process

changes its state according to probabilityP (si|s1, a
1, a2), i =

2, 3, wherea1, a2 are actions selected by the agents 1 and 2.
In single-agent MDPs, it suffices to maximize the utility of

the agent in each state. In MGs, however, there are multiple
decision makers and more elaborated solution concepts are
needed. Game theory provides a reasonable theoretical back-
ground for solving this interaction problem. In single-agent
learning, the goal is to find the utility maximizing rule (policy)
that stipulates what action to select in each state. Analogously,
in a multiagent setting the goal is to find equilibrium policies
between the learning agents.

III. PRACTICAL LEARNING METHODS

We have concentrated on the case where the state transition
probabilities and utility values are not known to the learning
agents. Instead, the agents observe their environment and learn
from these observations. In general, we use the update rule in
the following form:
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t+1 is the immediate
reward for agenti and γ is the discount factor. Val{·} is a
function used for evaluating values of the games associated
with states. Although the general form of the update rule is
the same for all agents in the system, the implementation of
the operator Val{·} may be different for agents.

In this research project, the following choices for Val{·}
have been considered:

1) Stackelberg equilibrium. In this case, the agents in the
system are put in some ordering and all the agents
are assumed to know and accept this ordering. The
evaluation of Val{·} is very fast due to the sequential
nature of the decision process.

2) Correlated equilibrium. In the correlated equilibrium
concept, it is assumed that in addition to agents, there
exists also amediator, a human or a machine that
randomly recommends pure strategies to the agents. If
the distribution where the recommendations are drawn
satisfiesstrategic incentive constraints, it is also rational
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Fig. 1. An example MG with three states.

to obey these recommendations for all the agents. The
value Val{·} can be evaluated by solving a simple linear
program.

3) Nash equilibrium. With Nash equilibrium concept, the
roles of the agents are symmetric, i.e. all agents make
their decisions simultaneously. The resulting equilibrium
policy may be stochastic. In general case, the evaluation
of Val{·} can be computationally demanding; in fact, it
is still an open question if there exists computationally
efficient methods for determining Nash equilibria of an
arbitrary game.

4) MaxMin solution. Much of the earlier work in game the-
ory was on two-person zero sum games. In these games,
the Nash equilibrium concept reduces to the MaxMin
solution that is possible to be determined by using a
simple linear program. If this solution concept is applied
in general-sum problems, it provides a security level
solution: it is a best response against the worst possible
action selection of the opponent. If the agent assumes
that it faces a zero-sum problem and applies MaxMin
solution concept, it can do no worse but possible better
against an unknown opponent.

5) MaxMax solution. The opposite class of games for
zero-sum games is the class of games in which the
players share the same utility function. In this case,
the problem reduces, in fact, to the decision problem in
which there is a meta-agent corresponding all the agents.
The actions available to this meta-agent are joint actions
of all the agents and the MaxMax solution returns the
value corresponding a joint action that maximizes the
utility function. The value of the operator Val{·} is very
fast to evaluate and the resulting equilibrium policy is
deterministic.

In multiagent reinforcement learning systems based on
MGs, the space and computational requirements grow very
quickly with the number of learning agents and the size of the
problem instance. Therefore, it is necessary to use function
approximators, such as neural networks, to model agents
in real-world applications. In this research project, various
numeric learning methods are proposed for multiagent learning
problem.

IV. EXAMPLE APPLICATIONS

The proposed methods are tested with small but non-trivial
example problems from different research areas, including ar-
tificial robot navigation, simplified soccer game and automated
pricing models for intelligent agents. The main properties of
the applications are discussed below.

1) Grid world problem. The problem is a version of robot
navigation problem in which two agents learn to navi-
gate through a grid world without colliding with each
other or with other obstacles. The problem is particularly
interesting due to its general-sum payoff structure, i.e.
the interests of the agents are only partially conflicting.

2) Simple soccer game. In this problem, there are three
players (agents): one fixed strategy player and two
learning agents that constitute a team. The goal of the
agents is to find the optimal strategy against the fixed
strategy opponent.

3) Pricing applications. In pricing applications, there are
two or more brokers (agents) that sell identical products
and compete with each other on the basis of price. The
goal of the agents is to learn to prevent “price wars”,
i.e. repeated price reductions among the brokers.
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