ONLINE MARKOV DECISION PROCESSES FOR LEARNING
MOVEMENT IN GAMES

Aaron Arvey
Department of Computer Science
Claremont McKenna College
Claremont, California 91711
Email: aarvey@cs.hmc.edu

KEYWORDS
Reinforcement learning, Markov decision process, online
learning, agent navigation.

ABSTRACT

This paper describes an approach to online learning of
navigation intelligence by non-player characters in video
games. Using a reinforcement learning framework,
specifically Markov decision processes, a non-player
character learns navigation strategy by imitating movements
of the human player against which it plays. The paper
presents three experimental conditions in which our method
was applied to a one-on-one dodgeball game, and in two of
those conditions, the computer controlled non-player
character successfully learned to dodge a player’s attacks.
The paper also discusses possible extensions of this work to
improve agent autonomy and extend online learning beyond
navigation strategy.

INTRODUCTION

To provide immersive game experiences for human
players competing against computer-controlled non-player
characters (NPCs, for short), NPCs might adapt to the skills
and tendencies of the players, even learning from players’
expertise. For example, consider a simple one-on-one
dodgeball scenario, constructed as a first-person shooter
game: Each of two opposing entities (players or NPCs) tries
to throw balls to hit its opponent; simultaneously, each entity
dodges the balls thrown by its opponent, to avoid being hit.
In this context, NPCs might learn strategies for navigating in
their domain from observing and imitating the human
player’s navigation. In particular, a NPC that begins play
with only a simplistic framework for intelligence might learn
to perform intelligently, perhaps even learning to dodge the
balls thrown at it simply by observing the player doing so.

This paper presents an approach to this kind of imitative
learning for NPCs in video games. NPCs are trained using a
reinforcement learning framework —a Markov decision
process (MDP), in particular— based on observations of
human player behavior. Training observations need not
occur in an artificial context outside of actual game-play; -
instead, our approach trains NPCs online, during play.
Indeed, the motivation and purpose of our approach is to
learn from human players’ actions in actual game conditions.

In this paper we focus on NPC-learning of navigation
strategies in a dodgeball game. For simplicity, we consider a

Eric Aaron
Department of Computer Science
Wesleyan University
Middletown, CT 06459
Email: eaaron@wesleyan.edu

grid decomposition of the dodgeball game terrain, and we

frame navigation as the straightforward movement from one

grid element to another. For instance, a navigation move is
simply movement from one grid element to an adjacent one.

Our learning approach observes state transitions during game

play, where a state is determined by the particular grid

elements occupied by the player and the NPC, along with the
presence or absence of a ball near the NPC. Our process of

NPC-learning can thus be considered to have four

components:

1) Observe human actions during a training phase. In this
phase, a NPC is guided by a simple finite-state machine
intelligence, just to provide some foundation on which to
base learning.

2) Build a frequency matrix from observations, i.e., a table
that records how often particular state transitions occur as
results of NPC and player actions during game play. In
our approach, this step is performed concurrently with the
observations in step 1), above.

3) Compute the expected values of navigation moves, based
on the frequency matrix. Expected values are computed
using the technique of value iteration, described more
fully in the definitions and review section.

4) Based on the computed expected values, determine a
policy —a mapping of states to the actions to be
performed in those states— for the NPC to carry out
during game play.

The NPC then navigates during play by following the

computed policy, which is fundamentally based on its

observations of player navigation behavior.

In this paper, we present background definitions of MDPs
and other related concepts; we then discuss the four above
elements of our approach to NPC-learning, leading to
experimental results describing how a non-player character
in a one-on-one dodgeball game autonomously learned to
dodge opponents’ attacks. We conclude with a discussion of
how our approach could be improved for more effective
online learning applications.

RELATED WORK

Video games have been described as the “killer
application” of artificial intelligence (Laird and van Lent
2000), and they may prove to be a “killer application” of
machine learning as well. In the specific domain of learning
navigation, Thurau et al. (2003) showed that a human
player’s style of movement may be feasibly learned. This
was shown through a pattern recognition approach using self
organizing maps and multilayer perceptrons based on data
gathered from network tournaments of Quake II, an open

source video game. Self organizing maps and neural network
algorithms, however, appear to be too computationally
expensive for online or real-time applications.

Online and real-time reinforcement learning work has
been directed mostly towards deterministic methods such as
Q learning, the complexity of which is discussed in (Koenig
and Simmons 1993). Nondeterministic, pseudo-online and
pseudo-real-time approaches to reinforcement learning, such
as MDPs, are discussed in (Barto et al. 1995; Bradtke 1994).
Such methods are not currently employed for research in
real-time environments due to complexity constraints
imposed by many non-deterministic environments.

In addition, imitation learning approaches such as
(Horman and Kaminka 2004; Alissandrakis et al. 2000;
Wood 2004) have been employed to train agents by imitating
goal based behaviors. Of particular interest is (Wood 2004),
which describes attempts to have agents learn a hierarchical
action abstraction model; this is similar to our goal of agents
learning a transition model based only on the agents’ situated
observations.

DEFINITIONS AND REVIEW

In this section, we present MDPs and surrounding
concepts, which are central to our NPC-learning process. A.
Markov Decision Process Structure Given an environment in
which an agent will learn, a Markov decision process is a 4-
tuple (S, A, T, R), where

e Sis a set of states that an agent may be in. S is often
derived in part from environmental features, e.g., the
grid used to define states in our dodgeball example.

e Adisaset of actions that can be performed by an agent.

e T:SxAxS —]J0,1] < R is a transition model.
T(s, a,) is the probability that if an agent performs
action acA when in state s€S, it will transition into state
s’eS. T is constrained such that >'T(s, a, s’) = 1 for any
seS, acA

e R:SxA— R, where R(s, @) is a reward given to the
agent for taking action a when in state s. The reward
function R represents the “reinforcement” in
reinforcement learning.

We also discuss several elements related to MDPs,
including the concepts of policy, value function, and discount
factor. A policy = : S—A assigns an action a€A to every
state S€S. The notation ©* is used to refer to the policy that
optimizes expected rewards. We discuss how we compute 1t°
in the next section. A value function V : S—>9R based on a
policy m is denoted V7(s). The value V7(s) is the
expected value that an agent will receive if it follows the
policy m in state s. A value function V 7 (s) is computed for

each state S by

V7(s)=R(s, 7)1 7D T(s'| s, 2(S)V " (5)

Vo(s) =0 V¥seS
V1(s) — R(s,a) Vs€S VYac A
t— 1
while Js € S such that |Vi(s) — V;_1(s)| > ¢
forall s S
forall ac A

Q(s,a) — R(s,a) +7 Y T(s,a,5)V;-1(s5)

s'eS
Vi(s) — maxQ(s,a)
m(s) <« arg max Q(s,a)
t—t4+1

Figure 1. The value iteration algorithm. We employ value iteration to
compute (approximate) the value function associated with optimal policy ©".
In this presentation, notation argmax, Q(S, @) refers to an action a that
maximizes the value of Q(S, a).

where v is a discount factor constant in (0,1]. The discount
factor enables a learning method to prefer more immediate
rewards over delayed rewards to varying degrees.

Policy Computation for Markov Decision Processes

An optimal policy n° is defined as the policy which
achieves the maximum expected reward as specified by
reward function R. The value function associated with policy
n is abbreviated as V', and it can be computed
(approximated) by value iteration (see Figure 1). Value
iteration starts by assigning the reward of a state as the value
of the state. It then iterates through all possible actions and
states. After each iteration, the value of a state has taken into
account the value of surrounding states which are
progressively further away (i.e., requiring more actions to
reach). As the algorithm iterates, the value of each state and
the overall policy are updated until they converge to the
optimal solution. This algorithm is guaranteed to converge
(Bartlette 2003) such that

max |V,*(s) =V "(s) |< 26 ——
seS 1_7/

For further clarification on Markov decision processes and
corresponding algorithms, see (Kaelbling et al. 1998).

The transition model T underlying a MDP may be
described as a collection of Markov chains, state-transition
processes in which the successor state depends solely on the
current state. (This contrasts with general probabilistic
processes, which may consider all previous states when
determining the probability of a successor state.) In a MDP,
there exists a corresponding Markov chain for every action
a, representing the probability of moving from the current
state to any other state when action a is taken.

Since we are looking at infinite horizon problems with
theoretically unending executions, value iteration depends on
the transition model having several properties (Bartlette
2003). All states must communicate, i.e., any state S€S must
be able to reach any other state s’€S in a finite number of
actions. Additionally, it must be the case that there is a non-
zero probability to return to the current state. A Markov
chain with both of these properties is ergodic; we refer later
to ergodicity, when discussing the construction of the

transition model in our MDP. For further theory and
applications concerning ergodic Markov chains, see
(Bartlette 2003; Ross 2002; Seneta 1981).

METHODS

As mentioned in the previous section, the four parameters
to a MDP are a state space S, an action space A, a reward
function R, and a transition model T. In this section, we
describe these components in the context of our NPC-
learning approach.

Actions, States, and Rewards

In our navigation-learning experiments, the state space,
action space, and rewards are built on simple representations
and abstractions. The state space is based on the human
player’s and non-player character’s locations in a
predetermined grid decomposition of the terrain on which
the game is played. In any state, there are four navigation
actions for an agent: movement in one of the four cardinal
directions. The reward for the agent on any given action is a
function of the current state and the distance to the human
player; rewards are increased when a NPC maintains a
constant, safe distance from the player, and rewards are
decreased when a ball is in the state occupied by the NPC.

Transition Model

To clarify how a transition model is used, imagine a robot
moving in a grid world, as described by (Russell and Norvig
2003), that will move in one of four cardinal directions
altering its position state. Assuming the robot has a semi-
reliable control system, we might say that it will arrive at the
intended position with probability 0.92. The other 8% of the
time, the robot will have moved into one of the three
unintended grids or not moved at all. In this situation, the
transition probabilities encoded statements about the robot’s
reliability before it was sent into its environment.

In our approach, an agent constructs a transition model
online, while it is playing its game, by incrementally adding
to the model as it makes further observations. In particular,
the agent straightforwardly tabulates the human player’s
response to the agent’s action. The agent’s actions are
initially based on a finite state machine, which may later be
augmented or replaced by MDP-based intelligence. Once all
of the necessary data have been collected, the resulting
transition matrices are finalized, and we make sure they are
ergodic by using Bayesian data adjustment based on a
Laplacian prior (Mitchell 1997). (The Laplacian prior was
selected arbitrarily, merely to distribute the probability such
that ergodicity can be guaranteed.)

EXPERIMENTS

To apply and evaluate NPC-learning in an experimental
context, we employed a dodgeball video game, pictured in
Figure 2. The game was developed in C++ using OpenGL
and QUAKE III® models. Currently, there are several
components that are operating-system-specific to

evaluating our approach to NPC-learning. The human player, not seen,
throws balls at and dodges balls from the NPC pictured here.

Windows NT and XP, but the game could be readily ported
to other POSIX platforms that support OpenGL. Further
information can be found at
http://www.cs.hmc.edu/~aarvey/research/cgaims05/.

The human player throws red dodgeballs (seen in the
Figure) at the NPC (who, it has been noted, may seem to
resemble Homer Simpson). A ball is considered live if it was
thrown by a character and has not yet hit the floor, walls, or
any obstacle. If a ball is live, a stream of white fire trails the
ball, as can be seen in figure 3. The non-human character has
perfect knowledge of the entire state space, which includes
the position of both players and whether or not a ball is
nearby.

Once there is sufficient knowledge of the player’s
reactions to determine a transition matrix, an optimal policy
can be computed. The computation takes approximately 15
seconds for a 5x5 grid decomposition on a 1.2 GHz Intel
Pentium Processor, 40 seconds for a 6x6 grid, and 140
seconds for a 7x7 grid. Grid size has little effect on final
results and due to the quadratic increase in runtime, results
discussed are based on a 5x5 grid.

In our experiments, we consider two components of
navigation, reasoning processes that decide to which grid
element the agent moves, and steering processes that guide
the agent’s step-by-step progress. Our three experiments
reported in this section varied in the ways FSMs and MDPs
were utilized for these processes. Typically, MDPs are used
for higher level reasoning, and control systems of some sort
are used for steering; indeed, all of our experiments employ
MDPs for reasoning. In two of our experimental conditions,
however, a FSM is used as part of the control system, and in
the third, the MDP itself is the full control system. In our
particular experiments, FSM-based steering made movement
seem less rigid, because our FSMs utilized a continuous
action set and our MDPs were designed to utilize only a
discrete action set. FSM steering goes against the ideal of
this study, which is to give the agent as much autonomy as
possible and have it rely primarily on learned behavior.

MDP Steering

In this experimental condition, a MDP was the only tool
used for steering. At every time step, the state would be
inspected and the action derived from the policy would be

= —

(a) Dodging to the right

= IR S
(b) Dodging to back court

Figure 3. Two images depicting how the non-player character dodges in
two different states. In both instances, the NPC had become stuck between
two states and thus the only change in state was the incoming ball.

followed. This is in contrast to inspecting the state every 20
time steps and dictating to a control system the direction to
take for the next 20 steps, which is similar to the FSM-based
steering used in the next experiment discussed.

In our dodgeball video game, this method learned with
the least amount of a priori knowledge, and the agent’s
movement became noticeably more like that of the human
player. This was most noticeable in the agent’s ability to
dodge balls. Indeed, the non-player character not only
learned how to dodge a ball, but it also did so by moving in a
manner very similar to that of how the human player moved.
In fact, it appeared to learn dodging behavior better than
agents in the other two experimental conditions (described
below) did. These results were somewhat encouraging, but
the resulting navigation was unrealistic in that the NPC
became “stuck” between two grid elements—it moved
between two grid elements to dodge attacks, but its
reasoning did not enable it to enter any other locations.

MDP Using FSM Steering

In this experimental condition, a MDP was used
exclusively for higher level reasoning, and a FSM steered the
NPC. Every certain number of time steps, the FSM would
ask for guidance from the MDP; after receiving a goal state
from the MDP, the FSM would guide the agent in that
direction. (Detours, such as dodging balls, were handled by
the FSM due to the immediacy of the situation.) Once the
FSM reached the goal, it would request a new goal state
from the MDP.

Because a FSM was used for steering, movement was
smoother and more natural, but the MDP’s role in decision
making was minimized. The result was very similar to purely
FSM based movement; even when parameters were altered
to give the MDP more power, little change was noticed.
Dodging behavior was not learned, and player navigation
style was not well-imitated.

MDP/FSM Hybrid Steering

In this experimental condition, in order to make the
movement smoother, a MDP and a FSM were jointly
responsible for steering: A MDP controlled steering 90% of
the time and a FSM had control the other 10% of the time.

As in all experimental conditions, a MDP was employed for
reasoning.

The navigation observed using this method was roughly
the same as with MDP steering: The agent successfully
learned how to dodge a player’s attacks. Furthermore, there
was some improvement in naturalness: The MDP steered too
rigidly when left in complete control, but the occasional
FSM continuous action in this hybrid steering made the
movement look much smoother.

FUTURE WORK
Autonomy

One goal of our work is to improve autonomy of NPCs,
but some simplifications in our present approach are contrary
to this goal. For instance, we provide the agent full
information concerning the state space, action space, and
rewards to be received. In this section, we discuss
possibilities for improving autonomy by having agents learn
these MDP components using a imitative framework similar
to the one currently being employed.

The state space is currently based on a predetermined grid
size, positions of the players, and positions of the balls.
Instead, however, the agent could learn a continuous state
domain, enabling more natural and flexible navigation. A
continuous domain would pose new problems for
determining the transition model, however, and could also
perhaps require considerably more computation power while
not completely escaping the need for a priori knowledge.

The pre-specified action space, currently representing
only movement to adjacent grid spaces, could instead be
learned, perhaps by employing a hierarchical framework
(e.g., (Wood 2004; Pineau and Thrun 2002)). For example, a
hierarchical action “attack” could entail “get a ball,” which
in turn could require the NPC to “move left” to get a ball;
non-hierarchical action representations could lose some of
these essential relationships among actions, upon which
higher-level reasoning could be based.

The rewards currently being received by the NPC are
based on experimenter intuition, but a reward structure could
instead be learned via inverse reinforcement learning (Ng
and Russell 2000). Several promising studies have been
conducted in which an agent observes the actions resulting
from an optimal policy and derives a close representation of
the reward structure being used to generate that policy.

Recomputing Policies

To more effectively remain intelligent in a dynamic game
environment, a non-player character could have a threshold
level for when the policy needs to be updated due to changes
in the transition model underlying its MDP. One approach to
this problem would be to use a probability distribution
divergence function such as KL-divergence (Kullback and
Leibler 1951) in order to determine when the two transition
models, old and new, are sufficiently different. Once this
threshold is surpassed, re-computation would be necessary.
It is instead possible to continually re-compute the policy

based on the most recent observation, but transition models
frequently remain similar over small changes in time, and
such continual computation is likely to be a needless
expense.

CONCLUSION

This paper discusses and demonstrates our approach to
building a transition model for use in Markov decision
processes in real-time video game applications. We applied
this technique to the particular goal of learning navigation
intelligence for non-player characters in a dodgeball video
game: The NPCs observe the navigation styles of a human
player, construct the relevant transition model, and compute
a policy upon which they base their game play. The paper
reports results of our initial experiments, which are
encouraging although less than optimal; in particular, NPCs
were able to learn how to dodge attacks, and we believe
additional research will yield even greater learned
intelligence.

ACKNOWLEDGMENTS

We thank Claremont McKenna College for funding
support and Matt Reynolds for significant contributions to
the code base. We also thank the conference referees for
their thoughtful comments.

REFERENCES

Alissandrakis, A., C. L. Nehaniv, and K. Dautenhahn. 2000.
“Learning How to Do Things With Imitation Learning.” In
AAAI Fall Symposium on Learning How to Do Things. 1-6.

Bartlett, P. L. 2003. “An Introduction To Reinforcement
Learning Theory: Value Funtion Methods.” In Advanced
Lectures on Machine Learning. Springer Verlag New York
Inc., New York, NY. 184-202.

Barto, A. G., S. J. Bradtke, and S. P. Singh. 1995. “Learning
to Act Using Real-Time Dynamic Programming.” Artificial
Intelligence, vol. 72, no. 1-2: 81-138.

Bradtke, S. J. 1994. “Incremental Dynamic Programming for
On-Line Adaptive Optimal Control.” PhD thesis, University
of Massachusetts.

Horman, Y., and G. A. Kaminka. 2004. “Improving
Sequence Learning For Modelling Other Agents.” In
Proceedings of the AAMAS 2004 Workshop on Learning and
Evolution in Agent-Based Systems.

Kaebling, L. P., M. L. Littman, and A. R. Cassandra. 1998.
“Planning and Acting in Partially Observable Stochastic
Domains.” Artificial Intelligence, vol 101, no 1-2: 99-134.

Koenig, S. and R. G. Simmons. 1993. “Complexity Analysis
of Real-Time Reinforcment Learning.” In National
Conference on Artificial Intelligence. 99-107.

Kullback, S. and R. A. Leibler. 1951. “On Information and
Sufficiency.” Annals of Mathematical Statistics, vol. 22: 79-
86.

Laird, J. E. and M. van Lent. 2000. “Human-Level AI’s
Killer Application: Interactive Computer Games.” In
AAAI/IAAL. AAAI Press/The MIT Press. 1171-1178.

Mitchell, T. M.. 1997. Machine Learning. McGraw-Hill
Publishers, New York, NY.

Ng, A.Y. and S. Russell. 2000. “Algorithms for Inverse
Reinforcement Learning.” In Proceedings of the 17"
International Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA. 663-670.

Pineau J. and S. Thrun. 2002. “High-Level Robot Behavior
Control Using POMDPs.” In AAAI Workshop on Cognitive
Robotics. AAAI Menlo Park, CA.

Ross. S. M. 2002. Introduction to Probability Models, 8"
edition. Academic Press, St. Louis, MO.

Russell, S. and P. Norvig. 2003. Artificial Intelligence: A
Modern Approach, 2™ edition. Prentice Hall, Englewood
Cliffs, NH.

Seneta, E. 1981. Non-Negative Matrices and Markov
Chains. Springer-Verlag, New York, NY.

Thurau, C., C. Bauckhage, and G. Sagerer. 2003.
“Combining Self Organizing Maps and Multilayer
Perceptrns to Learn Bot-Behavior for a Commercial Video
Game.” In Proceedings of GAME-ON. 119-123.

Wood, M. A. 2004. “Agent-Based Imitation Learning
Through Hierarchical Behavior Modelling.” Technical
Report Department of Computer Science, University of
Bath, United Kingdom (Nov.).

BIOGRAPHY

Aaron Arvey is a student at Claremont
McKenna College finishing up degrees in both
Computer Science and Mathematics. Current
research interests include sequential monte
carlo methods in computational biology,
machine learning, and stochastic processes.

Eric Aaron is an Assistant Professor of
Computer Science at Wesleyan University
in Middletown, Connecticut. He received
his Ph.D. from Cornell University in 2000.
His research interests include intelligence
modeling for embodied agents and
verification methodologies for dynamical
navigating actors.

