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ABSTRACT 
 
     This paper describes an approach to online learning of 
navigation intelligence by non-player characters in video 
games. Using a reinforcement learning framework, 
specifically Markov decision processes, a non-player 
character learns navigation strategy by imitating movements 
of the human player against which it plays. The paper 
presents three experimental conditions in which our method 
was applied to a one-on-one dodgeball game, and in two of 
those conditions, the computer controlled non-player 
character successfully learned to dodge a player’s attacks. 
The paper also discusses possible extensions of this work to 
improve agent autonomy and extend online learning beyond 
navigation strategy. 
 
INTRODUCTION 
 
     To provide immersive game experiences for human 
players competing against computer-controlled non-player 
characters (NPCs, for short), NPCs might adapt to the skills 
and tendencies of the players, even learning from players’ 
expertise. For example, consider a simple one-on-one 
dodgeball scenario, constructed as a first-person shooter 
game: Each of two opposing entities (players or NPCs) tries 
to throw balls to hit its opponent; simultaneously, each entity 
dodges the balls thrown by its opponent, to avoid being hit. 
In this context, NPCs might learn strategies for navigating in 
their domain from observing and imitating the human 
player’s navigation. In particular, a NPC that begins play 
with only a simplistic framework for intelligence might learn 
to perform intelligently, perhaps even learning to dodge the 
balls thrown at it simply by observing the player doing so. 
 
     This paper presents an approach to this kind of imitative 
learning for NPCs in video games. NPCs are trained using a 
reinforcement learning framework —a Markov decision 
process (MDP), in particular— based on observations of 
human player behavior. Training observations need not 
occur in an artificial context outside of actual game-play; -
instead, our approach trains NPCs online, during play. 
Indeed, the motivation and purpose of our approach is to 
learn from human players’ actions in actual game conditions. 
 
     In this paper we focus on NPC-learning of navigation 
strategies in a dodgeball game. For simplicity, we consider a 

grid decomposition of the dodgeball game terrain, and we 
frame navigation as the straightforward movement from one 
grid element to another. For instance, a navigation move is 
simply movement from one grid element to an adjacent one. 
Our learning approach observes state transitions during game 
play, where a state is determined by the particular grid 
elements occupied by the player and the NPC, along with the 
presence or absence of a ball near the NPC. Our process of 
NPC-learning can thus be considered to have four 
components: 
1) Observe human actions during a training phase. In this 

phase, a NPC is guided by a simple finite-state machine 
intelligence, just to provide some foundation on which to 
base learning. 

2) Build a frequency matrix from observations, i.e., a table 
that records how often particular state transitions occur as 
results of NPC and player actions during game play. In 
our approach, this step is performed concurrently with the 
observations in step 1), above. 

3) Compute the expected values of navigation moves, based 
on the frequency matrix. Expected values are computed 
using the technique of value iteration, described more 
fully in the definitions and review section. 

4) Based on the computed expected values, determine a 
policy —a mapping of states to the actions to be 
performed in those states— for the NPC to carry out 
during game play.  

The NPC then navigates during play by following the 
computed policy, which is fundamentally based on its 
observations of player navigation behavior. 
 
     In this paper, we present background definitions of MDPs 
and other related concepts; we then discuss the four above 
elements of our approach to NPC-learning, leading to 
experimental results describing how a non-player character 
in a one-on-one dodgeball game autonomously learned to 
dodge opponents’ attacks. We conclude with a discussion of 
how our approach could be improved for more effective 
online learning applications. 
 
RELATED WORK 
 
     Video games have been described as the “killer 
application” of artificial intelligence (Laird and van Lent 
2000), and they may prove to be a “killer application” of 
machine learning as well. In the specific domain of learning 
navigation, Thurau et al. (2003) showed that a human 
player’s style of movement may be feasibly learned.  This 
was shown through a pattern recognition approach using self 
organizing maps and multilayer perceptrons based on data 
gathered from network tournaments of Quake II, an open 



 

source video game. Self organizing maps and neural network 
algorithms, however, appear to be too computationally 
expensive for online or real-time applications. 
 
     Online and real-time reinforcement learning work has 
been directed mostly towards deterministic methods such as 
Q learning, the complexity of which is discussed in (Koenig 
and Simmons 1993). Nondeterministic, pseudo-online and 
pseudo-real-time approaches to reinforcement learning, such 
as MDPs, are discussed in (Barto et al. 1995; Bradtke 1994). 
Such methods are not currently employed for research in 
real-time environments due to complexity constraints 
imposed by many non-deterministic environments. 
 
     In addition, imitation learning approaches such as 
(Horman and Kaminka 2004; Alissandrakis et al. 2000; 
Wood 2004) have been employed to train agents by imitating 
goal based behaviors. Of particular interest is (Wood 2004), 
which describes attempts to have agents learn a hierarchical 
action abstraction model; this is similar to our goal of agents 
learning a transition model based only on the agents’ situated 
observations. 
 
DEFINITIONS AND REVIEW 
 
     In this section, we present MDPs and surrounding 
concepts, which are central to our NPC-learning process. A. 
Markov Decision Process Structure Given an environment in 
which an agent will learn, a Markov decision process is a 4-
tuple (S, A, T, R), where  
 
• S is a set of states that an agent may be in. S is often 

derived in part from environmental features, e.g., the 
grid used to define states in our dodgeball example.  

• A is a set of actions that can be performed by an agent.  
• T : S × A × S → [0, 1] ⊆ ℜ is a transition model.       

T(s, a, s’) is the probability that if an agent performs 
action a∈A when in state s∈S, it will transition into state 
s’∈S. T is constrained such that ∑T(s, a, s’) = 1 for any 
s∈S, a∈A 

• R : S × A → ℜ, where R(s, a) is a reward given to the 
agent for taking action a when in state s. The reward 
function R represents the “reinforcement” in 
reinforcement learning. 

 
     We also discuss several elements related to MDPs, 
including the concepts of policy, value function, and discount 
factor. A policy π : S→A assigns an action a∈A to every 
state s∈S.  The notation π* is used to refer to the policy that 
optimizes expected rewards. We discuss how we compute π* 
in the next section. A value function V : S→ℜ based on a 
policy π is denoted )(sV π .  The value )(sV π  is the 
expected value that an agent will receive if it follows the 
policy π in state s. A value function )(sV π  is computed for 
each state s by 
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Figure 1. The value iteration algorithm. We employ value iteration to 
compute (approximate) the value function associated with optimal policy π*. 
In this presentation, notation argmaxa Q(s, a) refers to an action a that 
maximizes the value of Q(s, a). 
 
 

where γ is a discount factor constant in (0,1]. The discount 
factor enables a learning method to prefer more immediate 
rewards over delayed rewards to varying degrees. 
 
Policy Computation for Markov Decision Processes 
 
     An optimal policy π* is defined as the policy which 
achieves the maximum expected reward as specified by 
reward function R. The value function associated with policy 
π* is abbreviated as V*, and it can be computed 
(approximated) by value iteration (see Figure 1). Value 
iteration starts by assigning the reward of a state as the value 
of the state. It then iterates through all possible actions and 
states. After each iteration, the value of a state has taken into 
account the value of surrounding states which are 
progressively further away (i.e., requiring more actions to 
reach). As the algorithm iterates, the value of each state and 
the overall policy are updated until they converge to the 
optimal solution. This algorithm is guaranteed to converge 
(Bartlette 2003) such that 
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For further clarification on Markov decision processes and 
corresponding algorithms, see (Kaelbling et al. 1998). 
  
     The transition model T underlying a MDP may be 
described as a collection of Markov chains, state-transition 
processes in which the successor state depends solely on the 
current state. (This contrasts with general probabilistic 
processes, which may consider all previous states when 
determining the probability of a successor state.) In a MDP, 
there exists a corresponding Markov chain for every action 
a, representing the probability of moving from the current 
state to any other state when action a is taken. 
 
     Since we are looking at infinite horizon problems with 
theoretically unending executions, value iteration depends on 
the transition model having several properties (Bartlette 
2003). All states must communicate, i.e., any state s∈S must 
be able to reach any other state s’∈S in a finite number of 
actions. Additionally, it must be the case that there is a non-
zero probability to return to the current state. A Markov 
chain with both of these properties is ergodic; we refer later 
to ergodicity, when discussing the construction of the 



 

transition model in our MDP. For further theory and 
applications concerning ergodic Markov chains, see 
(Bartlette 2003; Ross 2002; Seneta 1981). 
 
METHODS 
 
     As mentioned in the previous section, the four parameters 
to a MDP are a state space S, an action space A, a reward 
function R, and a transition model T. In this section, we 
describe these components in the context of our NPC-
learning approach.  
 
Actions, States, and Rewards  
 
     In our navigation-learning experiments, the state space, 
action space, and rewards are built on simple representations 
and abstractions. The state space is based on the human 
player’s and non-player character’s locations in a 
predetermined grid decomposition of the terrain on which 
the game is played. In any state, there are four navigation 
actions for an agent: movement in one of the four cardinal 
directions. The reward for the agent on any given action is a 
function of the current state and the distance to the human 
player; rewards are increased when a NPC maintains a 
constant, safe distance from the player, and rewards are 
decreased when a ball is in the state occupied by the NPC.  
 
Transition Model  
 
     To clarify how a transition model is used, imagine a robot 
moving in a grid world, as described by (Russell and Norvig 
2003), that will move in one of four cardinal directions 
altering its position state. Assuming the robot has a semi-
reliable control system, we might say that it will arrive at the 
intended position with probability 0.92. The other 8% of the 
time, the robot will have moved into one of the three 
unintended grids or not moved at all. In this situation, the 
transition probabilities encoded statements about the robot’s 
reliability before it was sent into its environment.  
 
     In our approach, an agent constructs a transition model 
online, while it is playing its game, by incrementally adding 
to the model as it makes further observations. In particular, 
the agent straightforwardly tabulates the human player’s 
response to the agent’s action. The agent’s actions are 
initially based on a finite state machine, which may later be 
augmented or replaced by MDP-based intelligence. Once all 
of the necessary data have been collected, the resulting 
transition matrices are finalized, and we make sure they are 
ergodic by using Bayesian data adjustment based on a 
Laplacian prior (Mitchell 1997). (The Laplacian prior was 
selected arbitrarily, merely to distribute the probability such 
that ergodicity can be guaranteed.)  
 
EXPERIMENTS 
 
     To apply and evaluate NPC-learning in an experimental 
context, we employed a dodgeball video game, pictured in 
Figure 2. The game was developed in C++ using OpenGL 
and QUAKE III® models. Currently, there are several 
components      that     are      operating-system-specific      to 

 
Figure 2. The dodgeball game employed as the context for applying and 
evaluating our approach to NPC-learning. The human player, not seen, 
throws balls at and dodges balls from the NPC pictured here. 
 
Windows NT and XP, but the game could be readily ported 
to other POSIX platforms that support OpenGL.  Further 
information can be found at 
http://www.cs.hmc.edu/~aarvey/research/cgaims05/. 
 
     The human player throws red dodgeballs (seen in the 
Figure) at the NPC (who, it has been noted, may seem to 
resemble Homer Simpson). A ball is considered live if it was 
thrown by a character and has not yet hit the floor, walls, or 
any obstacle. If a ball is live, a stream of white fire trails the 
ball, as can be seen in figure 3. The non-human character has 
perfect knowledge of the entire state space, which includes 
the position of both players and whether or not a ball is 
nearby. 
 
     Once there is sufficient knowledge of the player’s 
reactions to determine a transition matrix, an optimal policy 
can be computed. The computation takes approximately 15 
seconds for a 5x5 grid decomposition on a 1.2 GHz Intel 
Pentium Processor, 40 seconds for a 6x6 grid, and 140 
seconds for a 7x7 grid. Grid size has little effect on final 
results and due to the quadratic increase in runtime, results 
discussed are based on a 5x5 grid.  
 
     In our experiments, we consider two components of 
navigation, reasoning processes that decide to which grid 
element the agent moves, and steering processes that guide 
the agent’s step-by-step progress. Our three experiments 
reported in this section varied in the ways FSMs and MDPs 
were utilized for these processes. Typically, MDPs are used 
for higher level reasoning, and control systems of some sort 
are used for steering; indeed, all of our experiments employ 
MDPs for reasoning. In two of our experimental conditions, 
however, a FSM is used as part of the control system, and in 
the third, the MDP itself is the full control system. In our 
particular experiments, FSM-based steering made movement 
seem less rigid, because our FSMs utilized a continuous 
action set and our MDPs were designed to utilize only a 
discrete action set. FSM steering goes against the ideal of 
this study, which is to give the agent as much autonomy as 
possible and have it rely primarily on learned behavior. 
 
MDP Steering 
 
     In this experimental condition, a MDP was the only tool 
used  for  steering.  At  every  time  step,  the  state would be 
inspected and  the action  derived from  the policy  would be 



 

  
           (a) Dodging to the right                      (b) Dodging to back court 

 
Figure 3. Two images depicting how the non-player character dodges in 
two different states. In both instances, the NPC had become stuck between 
two states and thus the only change in state was the incoming ball. 
 
followed. This is in contrast to inspecting the state every 20 
time steps and dictating to a control system the direction to 
take for the next 20 steps, which is similar to the FSM-based 
steering used in the next experiment discussed.  
 
     In our dodgeball video game, this method learned with 
the least amount of a priori knowledge, and the agent’s 
movement became noticeably more like that of the human 
player. This was most noticeable in the agent’s ability to 
dodge balls. Indeed, the non-player character not only 
learned how to dodge a ball, but it also did so by moving in a 
manner very similar to that of how the human player moved. 
In fact, it appeared to learn dodging behavior better than 
agents in the other two experimental conditions (described 
below) did. These results were somewhat encouraging, but 
the resulting navigation was unrealistic in that the NPC 
became “stuck” between two grid elements—it moved 
between two grid elements to dodge attacks, but its 
reasoning did not enable it to enter any other locations. 
 
MDP Using FSM Steering 
 
     In this experimental condition, a MDP was used 
exclusively for higher level reasoning, and a FSM steered the 
NPC. Every certain number of time steps, the FSM would 
ask for guidance from the MDP; after receiving a goal state 
from the MDP, the FSM would guide the agent in that 
direction. (Detours, such as dodging balls, were handled by 
the FSM due to the immediacy of the situation.) Once the 
FSM reached the goal, it would request a new goal state 
from the MDP.  
 
     Because a FSM was used for steering, movement was 
smoother and more natural, but the MDP’s role in decision 
making was minimized. The result was very similar to purely 
FSM based movement; even when parameters were altered 
to give the MDP more power, little change was noticed. 
Dodging behavior was not learned, and player navigation 
style was not well-imitated.   
 
MDP/FSM Hybrid Steering 
 
     In this experimental condition, in order to make the 
movement smoother, a MDP and a FSM were jointly 
responsible for steering: A MDP controlled steering 90% of 
the time and a FSM had control the other 10% of the time. 

As in all experimental conditions, a MDP was employed for 
reasoning.  
 
     The navigation observed using this method was roughly 
the same as with MDP steering: The agent successfully 
learned how to dodge a player’s attacks. Furthermore, there 
was some improvement in naturalness: The MDP steered too 
rigidly when left in complete control, but the occasional 
FSM continuous action in this hybrid steering made the 
movement look much smoother. 
 
FUTURE WORK 
 
Autonomy 
 
     One goal of our work is to improve autonomy of NPCs, 
but some simplifications in our present approach are contrary 
to this goal. For instance, we provide the agent full 
information concerning the state space, action space, and 
rewards to be received. In this section, we discuss 
possibilities for improving autonomy by having agents learn 
these MDP components using a imitative framework similar 
to the one currently being employed. 
 
     The state space is currently based on a predetermined grid 
size, positions of the players, and positions of the balls. 
Instead, however, the agent could learn a continuous state 
domain, enabling more natural and flexible navigation. A 
continuous domain would pose new problems for 
determining the transition model, however, and could also 
perhaps require considerably more computation power while 
not completely escaping the need for a priori knowledge.  
 
     The pre-specified action space, currently representing 
only movement to adjacent grid spaces, could instead be 
learned, perhaps by employing a hierarchical framework 
(e.g., (Wood 2004; Pineau and Thrun 2002)). For example, a 
hierarchical action “attack” could entail “get a ball,” which 
in turn could require the NPC to “move left” to get a ball; 
non-hierarchical action representations could lose some of 
these essential relationships among actions, upon which 
higher-level reasoning could be based.  
 
     The rewards currently being received by the NPC are 
based on experimenter intuition, but a reward structure could 
instead be learned via inverse reinforcement learning (Ng 
and Russell 2000). Several promising studies have been 
conducted in which an agent observes the actions resulting 
from an optimal policy and derives a close representation of 
the reward structure being used to generate that policy.  
 
Recomputing Policies 
 
     To more effectively remain intelligent in a dynamic game 
environment, a non-player character could have a threshold 
level for when the policy needs to be updated due to changes 
in the transition model underlying its MDP. One approach to 
this problem would be to use a probability distribution 
divergence function such as KL-divergence (Kullback and 
Leibler 1951) in order to determine when the two transition 
models, old and new, are sufficiently different. Once this 
threshold is surpassed, re-computation would be necessary. 
It is instead possible to continually re-compute the policy 



 

based on the most recent observation, but transition models 
frequently remain similar over small changes in time, and 
such continual computation is likely to be a needless 
expense. 
 
CONCLUSION 
 
     This paper discusses and demonstrates our approach to 
building a transition model for use in Markov decision 
processes in real-time video game applications. We applied 
this technique to the particular goal of learning navigation 
intelligence for non-player characters in a dodgeball video 
game: The NPCs observe the navigation styles of a human 
player, construct the relevant transition model, and compute 
a policy upon which they base their game play. The paper 
reports results of our initial experiments, which are 
encouraging although less than optimal; in particular, NPCs 
were able to learn how to dodge attacks, and we believe 
additional research will yield even greater learned 
intelligence.    
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