Hierarchical Memory-Based
Reinforcement Learning

Natalia Hernandez-Gardiol Sridhar Mahadevan
Department of Computer Science Department of Computer Science
Michigan State University Michigan State University
East Lansing, MI 48824 East Lansing, MI 48824
hernan9Q@cse.msu.edu mahadeva@cse.msu.edu
Abstract

A key challenge for reinforcement learning is how to scale up to
large partially observable domains. In this paper, we show how
a hierarchy of behaviors can be used to create and select among
variable length short-term memories appropriate for a task. At
higher levels in the hierarchy, the agent abstracts over lower-level
details and looks back over a variable number of high-level deci-
sions in time. We formalize this idea in a framework for solving
partially observable, sequential decision tasks called Hierarchical
Short-Term Memory (HSM). HSM uses a memory-based SMDP Q-
learning method to rapidly propagate delayed reward across long
decision sequences. We show that the HSM framework outperforms
several related reinforcement learning techniques on a realistic cor-
ridor navigation task.

1 Introduction

Reinforcement learning encompasses a class of machine learning problems in which
an agent learns from experience as it interacts with its environment. One funda-
mental challenge faced by reinforcement learning agents in real-world problems is
that the state space can be very large, and consequently there may be a long delay
before reward is received. Previous work has addressed this problem by breaking
down a large problem into a hierarchy of subtasks or abstract behaviors. These
approaches include using a behavior-based decomposition to accelerate learning in
real robots [2], learning a policy for a task over a set of macro-actions [5], and using
a top-down decomposition of tasks into subtasks [1]. In these approaches, each level
of the hierarchy focuses only on the subset of the state space relevant to its activity.

Another difficult issue that frequently arises in real-world environments is the prob-
lem of perceptual aliasing: different world states often generate the same obser-
vations. One strategy to deal with perceptual aliasing is to add memory about
past percepts. Short-term memory consisting of a linear (or tree-based) sequence of
primitive actions has been shown to be a useful strategy [3]. However, considering
short-term memory at a flat, uniform resolution of primitive actions would likely
scale poorly to tasks with long decision sequences. Thus, just as spatio-temporal

comner T-junction dead end

T N

1
o D3 D1 D3 D2 D1 D3 e

navigation level O—————=()- ¥O O O VC> ©<: ?

i _ P _

o %3 R — %3 @ = 3
traversal level O——&)—»Q——{e O——O—>9+ ...Oq ?

» L p

primitive level O »0 »O w» O g_,o_>o_> O 0O »0 » O»

Figure 1: A hierarchical short-term memory structure for a navigation task. At
the abstract (navigation) level, observations and decisions occur at intersections.
At the lower (corridor-traversal) level, observations and decisions occur within the
corridor. This figure illustrates memory-based decision making at two levels in
the hierarchy. At each level, the current decision point is shown with a star. Each
decision point examines its past experience to find states with similar history (shown
with shadows).

abstraction of the state space improves scaling in completely observable environ-
ments, for large partially observable environments a similar benefit may result if we
consider the space of past experience at variable resolution. Given a task, we want a
hierarchical strategy for rapidly bringing to bear past experience that is appropriate
to the grain-size of the decisions being considered.

Consider, for example, the task of navigating in a long corridor environment. A
decision can be made at a given T-junction, say, to continue onward to the next
intersection. However, the navigation decision at the next intersection might de-
pend on the percepts at the last intersection and not the sequence of percepts seen
while traversing the corridor. The issue then becomes how to choose memories with
variable granularity. In this paper, we show that considering past experience at
a variable, task-appropriate resolution can speed up learning and greatly improve
performance under perceptual aliasing. The resulting approach, which we call Hi-
erarchical Short-Term Memory (HSM), is a general technique for solving large,
perceptually aliased tasks.

2 Hierarchical Short-Term Memory

By employing short-term memory over abstract decisions, each of which involves
running a hierarchy of behaviors, we can apply memory at a more informative level
of abstraction. An important side-effect is that the agent can look at a decision point
many steps back in time while ignoring the exact sequence of low-level observations
and actions that transpired. Figure 1 illustrates the HSM method and a more
precise description is given below.

1. Given an abstraction level [and choice point s: for each potential future de-
cision, d, examine the history at level [to find a set of past choice points that
have executed d and whose incoming (suffix) history most closely matches
that of the current point. Call this set of instances the “voting set” for
decision d.

2. Choose d; as the decision with the highest average discounted sum of reward
over the voting set. Occasionally, choose d; using an exploration strategy.
Here, t is the event counter of the current choice point at level [.

3. Execute the decision d; and record: o, the resulting observation; r;, the
reward received; and n;, the duration of abstract action d; (measured by
the number of primitive environment transitions executed by the abstract
action).

Note that for every environment transition from state s;_1 to state s; with
reward r; and discount 7, we accumulate any reward and update the dis-
count factor: rr 4= T+ Vel Ve < YVt

4. Using the following SMDP Q-learning rule, update the Q-value of the cur-
rent decision point. Also, update the Q-value analogously for each instance
in the voting set, using the decision, reward, and duration values recorded
along with the instance (f is the learning rate).

Qi(se,de) (1= B)Qi(se, dy) + B(re + ¢ max Qi(5t4n,,d))

To implement the hierarchy of behaviors, in principle any hierarchical reinforcement
learning method may be used. For our implementation, we used the Hierarchy of
Abstract Machines (HAM) framework proposed by Parr and Russell [4]. When
executed, an abstract machine executes a partial policy and returns control to the
caller upon termination. The HAM learns with a Q-learning rule modified for
SMDPs. This Q-learning rule can be shown to converge to the optimal policy in
the restricted space of policies consistent with the HAM decomposition.

HSM also requires a technique for short-term memory. A variety of alternatives are
available. For simplicity, we implemented the Nearest Sequence Memory (NSM)
algorithm proposed by McCallum [3]. NSM records each of its raw experiences as a
linear chain. To choose the next action, the agent evaluates the outcomes of the k
“nearest” neighbors in the experience chain. NSM evaluates the closeness between
two states according to the match length of the suffix chain preceding the states.
The chain can either be grown indefinitely, or old experiences can be replaced after
the chain reaches a maximum length.

3 The Navigation Task

To test the HSM framework, we devised a navigation task in a simulated corridor
environment (see Figure 2). The task is for the robot to find its way from the start,
the center T-junction, to the goal, the four-way junction. The robot receives a
reward at the goal intersection and and a small negative reward for each primitive
step taken.

Since the agent is equipped with sonar and infrared sensors, the environment
presents significant perceptual ambiguity. The robot’s range-finding sensors may
identify the goal, but they cannot unambiguously identify the location of the robot
in the environment otherwise. Additionally, sensor readings can be noisy; even if
the agent is at the goal or an intersection, it might not “see” it.

What makes the task difficult are the several activities that must be executed con-
currently. Conceptually, there are two levels to our navigation problem. At the top,
most abstract, level is the root task of navigating to the goal. At the lower level
is the task of physically traversing the corridors, avoiding obstacles, maintaining
alignment with the walls, etc.

Robot: fll}n'li\lil(l] Ll:ln_q 3ens: Hi)l“(l!ll:lj
Robot View Show Reiresh Pancks
3

| T~ - I Short Sens: Nomad(1)

il

I~ — - R y
T N
Windos bounds; LL LR AO000Z1ERY ' e A
fictual positicn: %==00003907 Y=00MOIES S=0008 T=00NE ==yt
Encoder pnsl.Llon K+ 0000305 Y=+00000107 S=0008 T=0008 A

Previcus oo-md. at{}
Units: coordinates = 0,1 inches: angles = 0,1 degrees

Figure 2: The corridor environment in the Nomad 200 robot simulator. The goal
is the 4-way junction. The robot is shown at the middle T-junction. The robot
is equipped with 16 short-range infrared and long-range sonar sensors. The other
figures in the environment are obstacles the robot must maneuver around.

Our primary testbed was a simulated agent using a Nomad 200 robot simulator.
This simulated robot is equipped with 20 bumper and 16 sonar and infrared sensors,
arranged radially. The dynamics of the simulator are not “grid world” dynamics:
the Nomad 200 simulator realistically represents continuous, noisy sensor input and
the occasional unreliability of actuators. Note the size of the robot relative to the
environment in Figure 2.

4 Implementation of the Learning Agents

In our experiments, we compared four learning agents: a basic HAM agent, two
agents using HSM (one with short-term memory only at the most abstract level,
and one with short-term memory at multiple levels in the hierarchy), and a “flat”
NSM agent.

4.1 Design of the Behavioral Hierarchy

In order to build a set of behaviors for hallway navigation, we used a three-level
hierarchy. The top abstract level is basically a choice state for choosing a hallway
navigation direction (see Figure 3a). In each of the four nominal directions (front,
back, left, right), the agent can make one of three observations: {wall, opening,
unknown}. The agent must learn to choose among the four abstract machines to
reach the next intersection. This top level machine has control initially, and it
regains control at intersections.

The second level of the hierarchy contains the machines for traversing the hallway.
The traversal behavior is shown in Figure 3b. Each of the four machines at this
level executes a reactive strategy for traversing a corridor.

Finally, the third level of the hierarchy implements the follow-wall and avoid-
obstacle strategies using primitive actions. Both the avoid-obstacle and the follow-

go forward

' - intersection

obstacle (> no obstacle

go forward

ction

choose avoid obs

=

Figure 3: Hierarchical structure of behaviors for hallway navigation. Figure (a)
shows the most abstract level — responsible for navigating in the environment. Fig-
ures (b) and (c) show two implementations of the hall-traversal machines. The
machine in Figure (b) is reactive, and Figure (c) is a machine with a choice point.

intersecfion

/

choose

go backward /

no inteysection

wall strategies were themselves trained previously using Q-learning to exploit the
power of reuse in the hierarchical framework.

4.2 Design of the HAM Agent

The HAM agent uses the three-level behavior hierarchy as described above. There
is a single choice state, at the top level, and the agent learns to coordinate its
choices by keeping a table of Q-values. The Q-value table is indexed by the current
percepts and the chosen action (one of four abstract machines). The HAM agent
uses a discount of 0.9, and a learning rate of 0.1. Exploration is done with a simple
epsilon-greedy strategy.

4.3 Design of the HSM Agents

The first of two HSM agents uses short-term memory only at the most abstract
level. It uses the same behavior hierarchy as the HAM. However, when making a
decision at the abstract level, it extracts and updates the Q-values according to
the method described in section 2. The HSM agent uses a history length of 1000,
a k of 4, a discount of 0.9, and a learning rate of 0.1. Exploration was done with
a simple epsilon-greedy strategy. The performance of this agent was studied as a
control against the more complex multi-level memory agent described next.

The second of two HSM agents uses short-term memory both at the abstract nav-
igation level and at the intermediate level. The behavior decomposition at the
abstract navigation level is the same for the previous two agents. As in the above
HSM agent, this agent must use short-term memory at the abstract level to learn
a strategy for navigating the corridor. However, the traversal behavior is in turn
composed of machines that must make a decision based on short-term memory.
Each of the four machines at the traversal level uses short-term memory to learn
to coordinate a strategy behaviors for traversing a corridor. The memory-based
version of the traversal machine is shown in Figure 3c. The traversal machine uses

Number of Successful Trials

NSM as the short-term memory technique, maintaining a maximum chain length
of 1000. Exploration is done with a simple epsilon-greedy strategy in all cases.

4.4 Design of the Flat Agent

Finally, we compare the HSM agents to a “flat” NSM agent designed to solve the
same task. The flat agent must keep track of the following perceptual data: first, it
needs the same perceptual information as the top-level HAM (so it can identify the
goal); second, it needs the additional perceptual data for aligning to walls and for
avoiding obstacles: {bumped, angle to the wall (binned into 4 groups of 45° each)}.

The flat agent chooses among four primitive actions: go-forward, veer-left, veer-
right, and back-up. Not only must it learn to make it to the goal, it must simul-
taneously learn to align itself to walls and avoid obstacles. The NSM agent uses
a history length of 1000 , a k£ of 4, a discount of 0.9, and a learning rate of 0.1.
Exploration is done with a simple epsilon-greedy strategy.

5 Experimental Results

In Figure 4, we see the learning performance of each agent in the navigation task.
The graphs show the performance advantage of both HSM agents over the non-HSM
agents. In particular, we find that the flat memory-based agent does considerably
worse than the other three, as expected. The flat agent must carry around the
perceptual data to perform both high and low-level behaviors. From the point
of view of navigation, this results in long strings of uninformative corridor states
between the more informative intersection states. Since takes such an agent longer
to discover patterns in its experience, it never quite learns to navigate successfully
to the goal.

Next, both memory-based hierarchical agents outperform the HAM agent. The
HAM agent does better at navigation than the flat agent since it abstracts away
the perceptually aliased corridor states. However, it is unable to distinguish between
all of the intersections. Without the ability to tell which T-junctions lead to the
goal, and which to a dead end, the HAM agent does not perform as well.

Finally, the multi-level HSM agent outperforms the single-level HSM agent. The
multi-level HSM agent can tune its traversing strategy to the characteristics of the
cluttered hallway by using short-term memory at the intermediate level.

45

T T T T T T
multi-level memory (HSM) —— multi-level memory (HSM) ——
40 + single-level memory (HSM) - B o 0.0009 single-level memory (HSM) - 1
no memory (HAM) - 2 no memory (HAM) -
35 L flat (NSM) o flat (NSM)
g
30 ¢ i
E
25 s
17
n
20 r IS
3]
=
15 | &
s
9]
10 r k<]
£
5
5r z
0 e - I L L L 0 H I T I L L L
0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
Number of Steps Number of Steps

Figure 4: Learning performance in the navigation task. Each curve is averaged over
five trials for each agent. A trial is “successful” when the agent reaches the goal.

6 Conclusions and Future Work

In this paper we proposed a framework for solving large perceptually aliased tasks
through the Hierarchical Short-term Memory (HSM) method. This approach has
several key advantages. The hierarchical behavioral structure gives the agent the
ability to conduct a more efficient initial exploration of its environment. Rather than
wasting time re-learning obstacle avoidance each time it is placed in a new envi-
ronment, it re-uses previously learned hall-traversing strategies to direct its efforts
to solving the navigation task. Second, organizing past experience hierarchically
scales better to problems with long decision sequences than organizing past experi-
ence as a linear chain of primitive observations and actions. Without a hierarchical
structure, the experiences an agent needs to solve the navigation task (namely, its
observations and decisions at the intersections) are widely separated by long strings
of experience during the traversal of a corridor. It is hard for the agent to effectively
generalize across those experiences in order to learn to find the goal. We presented
an experiment comparing four different learning methods, showing that hierarchical
short-term memory produces overall the best performance in a perceptually aliased
corridor navigation task.

The work in this paper can be extended in several directions. For the final version of
this paper, we expect to include results on HSM with more sophisticated short-term
memory techniques, such as multi-scale variants of Utile Suffix Memory [3].

One key limitation of the current HSM framework is that each abstraction level
examines only the history at its own level. One extension is to permit interaction
between the memory streams at each level of the hierarchy. Consider a navigation
task in which the decision at a given intersection depends on an observation seen
while traversing the corridor. In this case, the abstract level should have the ability
to “zoom in” to inspect a particular low-level experience in greater detail. Con-
versely, a decision at the low-level may also depend on the context of the high-level
behavior. We expect that pursuit of general techniques to manage past experience
at variable granularity will lead to strategies for control that are able to gracefully
scale to large, partially observable problems.

Acknowledgements

This research is supported in part by a Knowledge and Distributed Intelligence
(KDI) grant from the National Science Foundation ECS-9873531.

References

[1] Thomas G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In
Autonomous Robots Journal, Special Issue on Learning in Autonomous Robots, 1998.

[2] S. Mahadevan and J. Connell. Automatic programming of behavior-based robots using
reinforcement learning. Artificial Intelligence, 55(1):311-365, 1992.

[3] Andrew K. McCallum. Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, 1995.

[4] Ron Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD
thesis, University of California at Berkeley, 1998.

[6] R. Sutton, D. Precup, and S. Singh. Intra-option learning about temporally abstract
actions. In Proceedings of the 15th International Conference on Machine Learning,
pages 556-564, 1998.

