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Abstract

This paper describes a simulated on-line map-
ping system for robot navigation. This system
allows the autonomous creation of topological
maps enhanced with metrical information pro-
vided by internal (odometry) and external (vi-
sion and sonars) sensors. Within such maps,
the robot’s position is represented and calculated
probabilistically according to algorithms that are
inspired by Hidden Markov Models. The visual
system is very simple and does not allow reli-
able recognition of specific places but, used jointly
with odometry, sonar recordings and an active
perception system, it allows reliable localization
even when the robot starts exploring its environ-
ment, and when it is passively translated from
one place to another. Advantages and drawbacks
of the current system are discussed, together with
means to remediate the latter.

1. Introduction

In order to navigate within a large-scale environment,
an autonomous robot needs to store spatial information
gathered from exploration. Such information may derive
from internal and external perceptions and may lead to
two types of map - metrical and topological.

Metrical — maps, such as occupancy grids
(Moravec and Elfes, 1985), may be wused for navi-
gation in a very straightforward way, as they give
the robot’s position in an Euclidean space. In such
a space, distances and directions are very easy to
calculate and may be used directly to guide the robot
toward a goal.  Unfortunately, internal perception
gained from an odometry device is subject to cumu-
lative noise and cannot be used reliably over long
periods of time. Another way of storing information
about the environment is to use external perceptions
to identify distinctive places. Such places may be
stored in topological maps along with means to get
from one place to another (Kuipers and Byun, 1991,

Bachelder and Waxman, 1995). But this kind of
map suffers from the perceptual aliasing problem
(Whitehead and Ballard, 1991), i.e., from the fact that,
in large environments, several places look the same from
the robot’s point of view.

The obvious solution for reliable navigation is to use
both sources of information to create a map of the envi-
ronment in which perceptually identical places are dis-
tinguished thanks to odometry (Thrun, 1999). From
this point of view, biological systems may provide in-
spiration. For example, place cells found in rats re-
spond mainly to perceptual cues, but it has been shown
that they remain operational even in the dark, thus sug-
gesting that their firing also depends upon odometry
(Quirk et al., 1990).

Fusion of these two kinds of information may be re-
alized in a very straightforward way in navigation sys-
tems based on Partially Observable Markov Decision
Processes (POMDP) (Kaelbling et al., 1998). In these
systems, movements and perceptions are used to update
a probabilistic representation of position. However, a
major drawback to this approach is that the map used
to represent the environment has to be created prior to
its utilization and cannot be extended on-line if the robot
discovers a new part of its environment.

Figure 1: The Pioneer 2 mobile robot.



The navigation system described herein draws inspi-
ration from both biology and POMDP models. It is
based on a topological map in which additional data from
odometry and vision are stored. The activity level of
each node in the map represents the robot’s probability
of being in a given place. This activity is updated us-
ing techniques drawn from POMDP models. The map
is created on-line, and its utilization is not separated
from learning. Moreover, the system calls upon an ac-
tive perception strategy which controls the robot camera
in order to enhance map accuracy and position estima-
tion.

This navigation system has been designed for a fu-
ture implementation on a Pioneer 2 mobile robot man-
ufactured by ActivMedia (Figure 1). This mobile robot
is equipped with a 16 sonar belt, an orientable camera
and a compass providing an absolute reference direction.
However, this paper only reports simulation results ob-
tained on map learning with the realistic simulator that
is provided with the Pioneer 2 robot (ActivMedia, 1999).

2. Markov models for navigation

Navigation systems based on POMDP, like those devel-
oped by Simmons and Koenig (1995) or Thrun et al.
(1998), rely on a discretization of space into a finite set
of states S that cover all the environmental locations
the robot can reach. The robot’s position is represented
by a probability distribution P(s) over S. Actions and
perceptions are also discretised and modeled probabilis-
tically: a set of actions A and transition probabilities
p(s|s’,a) is defined, where p is the probability of being
in state s when the robot performs action a is state s’.
Likewise, a set of perceptions O and probabilities p(o|s)
is defined, where p is the probability of acquiring per-
ception o in state s.

P(s) is updated in two ways whenever the robot acts
or perceives. In the present context, acting means mov-
ing, and, for each move a, the updating equation used
is:

prils) = K x S plsls'sa) xpu(s) (1)
s'eS
Likewise, for each perception o, the updating equation
is:
pi+1(s) = L x p(o[s) x pe(s) (2)
where p;(s) is the robot’s probability of being in state s
at time ¢, and K and L are normalization factors ensur-
ing that probabilities sum to 1 over S.

These POMDP systems, even if they rely on the
assumption that the world is Markovian - which
is obviously false - behave very well in the real
world and are able to track the robot’s position re-
liably.  Learning of action and perception models
(Simmons and Koenig, 1995) as well as off-line learn-
ing of POMDP structure (Thrun et al., 1998) is possible

but, to our knowledge, current implementations do not
allow the set of states of the POMDP to be modified
on-line. Therefore, they are not able to deal with an en-
vironment that the robot should discover incrementally.

3. The current model

This work is inspired from Markovian models and makes
it possible for a simulated robot to represent and es-
timate its position thanks to a fine-grained topological
map augmented with metrical data, which is incremen-
tally built during the exploration of the environment.

In each node in the map, perceptual data are recorded
when the robot is located at the corresponding place in
the environment. Likewise, links between nodes store the
distance and absolute direction the robot has to move to
get from one node to another, as measured by the robot’s
compass and odometry devices.

This kind of map combines advantages from both
topological and metrical maps. From topological maps,
it inherits their sparse representation of space and their
ease of extension. Moreover, it can be used without
knowing the robot’s initial position, thus allowing the
lost robot problem (Duckett and Nehmzow, 1997) to be
tackled. Conversely, from metrical maps, it draws the
easy use of odometry data and the ability to calcu-
late new paths from one place to another through ar-
eas that remain unexplored (Trullier and Meyer, 1997,
Trullier et al., 1997).

The activity of each node in this map assesses the
robot’s probability of being in the corresponding place
in the environment. Accordingly, the map learning al-
gorithm iterates the following steps each time the robot
moves a fixed distance D :

e Calculate the activity of all the nodes in the map.
e Recognize the current node or create a new one.

e Update sonar and visual data stored in the recognized
node using current data.

e Update connection parameters between previous and
current nodes using odometry data.

D is set to approximately the robot’s size in our ex-
periments. The map structure and the successive steps
of this algorithm are detailed in the next sections.

3.1 Map inputs

3.1.1 Sonar data

Data perceived through the 16 sonars are aggregated in 8
virtual sensors giving the distances of obstacles in 8 abso-
lute directions. These data are calculated using compass



information. The values of these 8 sensors are averaged
and stored in the map node corresponding to the current
place. In other words, the stored data that represent the
environment around the place associated to a given node
on the map are the means of all the values recorded dur-
ing successive recognitions of this node.

The matching measure used to estimate the similarity
of the robot’s current location with any location stored
in the map is simply :

Corrs(S1,52) :C—Zabs(Slk—S2k)/8 (3)

k=1

where C' is a constant which ensures that Corr(S1,S2)
remains positive, and S1; and S2 are the perceived and
memorized obstacle distances in direction k. Thus, the
matching measure is maximum if S1 = S2, and decreases
when the differences between S1 and S2 increase.

3.1.2  Visual system
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Figure 2: Examples of matching measures between currently
perceived visual data and data stored in different nodes.
Pairs of numbers indicate a landmark’s category and head-
ing. Arcs indicate, for each node, the directions for which
visual data have already been recorded. In this example, the
node that best matches the current perception is node N3.

The visual system that will ultimately be implemented
on the real Pioneer 2 robot is inspired from that of
Gaussier an Zrehen (1995). It will call upon specific

landmarks - i.e. corners extracted from an image taken
by the robot’s camera - that will be classified into a pre-
defined number of categories. According to these imple-
mentation perspectives, within each node in the current
model, a list of landmarks - each characterized by a cat-
egory number and an associated direction - is stored,
along with how often each landmark has been detected.

When new landmarks are detected from the place as-
sociated with a given node, each newly perceived land-
mark is searched for in the list of memorized landmarks.
If a landmark of the same category is found whose direc-
tion differs by less than 10 degrees from that of the new
landmark, the latter is considered as being recognized.
If not, the new landmark is added to the landmark list
attached to the node.

Likewise, as a camera picture will cover only 40 de-
grees, the real robot will need to take several pictures
to gain information about its whole environment. Be-
cause such movements will be time-consuming, instead
of taking a full panoramic image for each node, the di-
rections in which the camera has already been pointed
will be recorded in each node. Such information will be
used during subsequent recognitions of the place, in or-
der gradually to obtain a full representation of the envi-
ronment. An equivalent strategy has been implemented
here, as an active perception procedure that orients the
visual system in a specific direction:

e If the robot needs new data about its environment,
the chosen direction is simply a direction for which
there are no recorded data associated to the current
node.

o If the robot needs to obtain a better localization esti-
mate, the chosen direction is the direction for which
the number of already recognized landmarks is max-
imum. This choice heads the visual system toward a
direction where landmarks are numerous and easily
recognizable.

The choice between these two alternatives is made by
detecting the node with the highest activity in the map.
If this activity is above a given threshold, the localization
is considered successful, and new information is sought
according to the first procedure. If this activity is below
the threshold, the second procedure is used to improve
the quality of localization.

The matching measure assessing the similarity of the
perceived and stored visual data is:

Corri(L1,L2) = Y G( min  abs(H(l) - H())
(4)

leLl c(h=cq)
where C(I) is the class of landmark [, H(I) is the di-
rection of landmark [ and G a Gaussian of mean 0 and



variance 10 given by :
G(z) = exp(—z?/100) (5)

The value of this function is 0 if there are no common
landmarks in the perceived and stored data. It increases
with the number and similarity of common landmarks
(Figure 2).

3.2 Activity update

Activity is updated within the map using a two-step
process, i.e., a first step taking into account the robot’s
move, and a second step taking into account the robot’s
perceptions.
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Figure 3: Propagation of activity in the map using odometry
data. The gray level of each node belonging to pre; shows
the activity of the node ¢ time steps earlier. Points od; show
the robot’s position ¢ time steps earlier relative to N5. The
update rule takes into account both the past activities of
neighboring nodes and their positions relative to the current
node (see text for details). In this example, the activity of
the current node N5 will be updated to that of node Ng, three
time steps earlier, multiplied by a Gaussian transform of the
distance ods — relyg.

Recent information from odometry is used in a local
map-matching procedure that takes into account a few
past time-steps (Figure 3). For each node in the map,
the relative position of neighboring nodes is calculated
using odometry data stored in the connections. These
relative positions are used to calculate the new activity
according to equation:

max

acty(n) = max <
n'Eprey(n)

p€[l..P]

(6)

(acti_p(n') x D(reln/,odp))>

where od,, is the robot’s relative position p time steps
earlier as recorded by odometry, rel,  is the position of
node n' relative to the current node, pre,(n) the set of
map’s nodes which can be reached from n using less than
p connections, and D(posl, pos2), a Gaussian of mean 0
and variance K of the difference between the two relative
positions posl and pos2 :

(posl — pos2)?

D(pos1, pos2) = exp(— o2 ) (7)

K is set to half the distance D.

Thus, for each node IV, this procedure seeks to deter-
mine from which more or less recently visited node M
the robot is able to get closest to N, according to its
recorded odometry. The new activity of node N is set
to that of M, modulated by a function of the difference
between the recorded odometry and the position of N
relative to M as calculated using the map data. This
function’s value is 1 if the positions are identical and
converges to 0 as their differences increase.

This update rule has the advantage of capitalizing
upon past information to avoid the propagation of tem-
porary wrong place identification. For example, if the
robot reactively avoids a moving obstacle in a corri-
dor, the current odometry recording will not correspond
to the global direction of the corridor, whereas earlier
recordings will still allow a good activity propagation
along the corridor.

During the second step, sonar data are used to modu-
late the current node’s activity according to the similar-
ity of current perceptions with recorded perceptions:

acti—1(n) + Corr(S,S,)/Cs)
’ ®

where Corrs(S,S,) is given by equation (3), Cg is the
maximum of Corr,() over all map nodes, S is the current
sonar data and S,, is the data memorized in node n.

At this time, the procedure described in the next sec-
tion is used in order to recognize or create a new node.
This node is used by the active perception procedure to
choose a camera direction. Then, landmarks detected
by the visual system modulate the node’s activity us-
ing equation (8), where Corr,(S,S,,) is replaced by the
function Corri(L, L) given in equation (4).

acti(n) =

3.8 Node recognition

If the highest activity in the map is above a given thresh-
old, the most activated node is considered recognized as
the current node, whereas if all activities are below this
threshold, recent odometry is used to determine the cur-
rent node. This is achieved by calculating the robot’s
position relative to the nodes previously recognized:

relg = Z (od, —relyp)/ P (9)

p=1—P
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Figure 4: This figure shows the estimation of the new posi-
tion of the robot relative to the last recognized node N3. The
robot’s current odometry recording is odp. od; is the odome-
try recording one time step before, when the recognized node
was N3. ods is the odometry recording two time steps before,
when the recognized node was N2. The new position rely is
taken as the mean of the two relative positions that can be
reached from N3 and N2 using odometry recordings od; and
0d2.

where od,, is the position of the robot at time ¢ — p ac-
cording to odometry and rel, if the position of the node
recognized at time ¢ — p relative to the node recognized
at t — 1 (Figure 4). In our experiments, P was set to 10.

This relative position is then used to verify whether
a node already exists in the map at a distance smaller
than D' where D' < D. If so, this node is considered
recognized; if not, a new node is created.

After this first recognition step, the current node is
used by the active perception procedure previously de-
scribed to choose a new camera heading. An image is
taken, and landmarks are extracted. Then a new up-
date of each node’s activity in the map is performed,
using the perceived landmarks only. After this update,
if the most activated node is different from the current
one, and if its activity is above the threshold, this node
is chosen as the new current node.

3.4 Map parameter update

Sonar and landmark data attached to the current node
are updated according to current perceptions as de-
scribed in section 3.1. The connection between the previ-
ously and the currently recognized nodes is then created,
or updated if it already exists. The parameters are cho-
sen so as to ensure map consistency (Figure 5). In this
context, a map is considered to be consistent if, when
two different paths link two nodes, the relative positions
of these nodes, calculated by summing the connection

N1 N3

Figure 5: Procedure used to update connection parameters.
In this example, the robot was previously in N9 and odom-
etry suggests that IN10 is the robot’s new position. As the
distance between N10 and N2 is smaller than D', N10 is not
created, but N2 is recognized. Connections (N1, N2) and
(N2, N3) are modified, and connection (N9, N2) is created
by a procedure which ensures map consistency (see text for
details).

data along these two paths, are identical.

4. Experimental results

4.1 Ezxperimental setup

The experiments reported in this section were conducted
using the Pioneer 2 robot similator provided by Activme-
dia. This simulator calls upon realistic error estimates
for sonar sensors and odometry. In particular, wheel en-
coder values are corrupted with a noise whose maximum
is 1 percent of their value. Likewise, compass direction
is corrupted with a random value whose maximum is
5 degrees. Lastly, sonar sensors are corrupted with a
Gaussian noise and are sensitive to specular reflections
when the angle between the sonar beam and the obstacle
is too small.

The visual system has also been simulated using a pro-
gram which provides the robot with the category and
direction of the landmarks it perceives, according to its
position and to the visual system’s orientation in the
simulated world. Landmarks are randomly positioned
in the environment by the experimenter. In this sim-
ulator, the determination of the category and direction
of landmarks is deterministic. However, as nodes in the
map represent small areas in the environment by a single
point, different pictures taken from the area surround-
ing this point are considered as being all taken from the
point, thereby introducing noise in the perceived land-
marks directions.

The robot is controlled by a low-level navigation mod-
ule, which allows it to randomly explore the environment
while reactively avoiding obstacles.

4.2 Map creation

Figure 6 shows three maps created in various environ-
ments. These maps exhibit some inconsistencies, such
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Figure 6: Examples of maps (bottom) created by the robot in various environments (top). Numbers indicate the category of

the various landmarks that have been positioned in the environment by the experimenter.
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Figure 7: Evolution over time (abscissa) of the distance be-
tween the real location and the location estimated by odome-
try alone, on the one hand, and by the whole mapping system,
on the other hand (ordinate). The environment and the map
used are those of Figure 8. The environment size is 5000,
the distance D’ is 250, while the distance D and the robot’s
diameter are both 500 in arbitrary units. While odometry
error keeps growing, the mapping system’s error is restricted
to a value slightly greater than the robot’s size.

as inter-node links that cross walls. Most such incon-
sistencies result from erroneous node recognitions at the
beginning of the map-building process, i.e., during a pe-
riod when the representation of the visual environment
associated with each node is not accurate enough to en-
sure good discrimination.

Note that once a map has been created with the right
general structure, the perceptual similarity of different
places is no longer a problem. As a matter of fact, in
almost stabilized maps, individual perceptions are less
important than in newly created ones because activity

propagation using a robot’s move is more efficient and
makes the localization process more resistant to tempo-
rary lack of perceptual information. The relative number
of inconsistent links, as compared to the total number
of connections, is always observed to be low compared
to the total number of connections. Consequently, the
robot is able to localize itself accurately in the environ-
ment, even at the beginning of the exploration process
(Figure 7), because activity propagation within the map
is coherent with respect to the robot’s actual moves (Fig-
ure 8).

4.8  Re-localization

Because this mapping system allows the robot to localize
itself with no knowledge of its initial position, it remains
efficient even when the robot is passively transported
from one place to another in the environment.

Figure 9 indicates how the odometry and mapping
errors evolve during two such experiments. Figure 10
shows the activity propagation within the map after such
a transportation episode. It demonstrates that, after a
few wrong place identifications, the robot succeeds in
re-localizing itself correctly.

4.4 Map pruning

A drawback to the current mapping system is that it
has a tendency to let the number of nodes slowly, but
steadily, grow as the robot explores its environment,
even should the exploration entail passing through places
all known already. As such an increase in the number
of nodes might prove a problem in a large and com-
plex environment, dedicated procedures for detecting
and pruning redundant nodes have been designed and
implemented.



Figure 8: Activity updates within the map as the robot moves to successive places in its environment. Labels a, b, ...g indicate

both the actual position of the robot and the corresponding map activity. The grey level of each small node in a map indicates

its activity, ranging from 0 for white nodes to 1 for black nodes. Larger black dots indicate the successfully recognized nodes.
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Figure 9: Evolution over time (abscissa) of the odometry and
map estimation errors (ordinate) during two re-localizations.
While the odometry error keeps growing, the mapping sys-
tem’s estimation error, after a temporary increase, restabi-

lizes at its mean value.

For example, in the course of the experiment reported
in Figure 11, each place in the environment is visited
approximately 1500 times. The number of nodes cre-
ated by the mapping system described so far attains 400
and results in the map shown on top of Figure 11. This
map exhibits several erroneous nodes and connections
(notably connections that cross walls) and, in particular,
the whole left part of the map, which has been created at
the beginning of the mapping process, is erroneous and

useless. However, the second map on the figure has been
created by the same mapping system, but with addi-
tional node-pruning procedures. This map contains only
a few errors, and the number of its nodes quickly stabi-
lizes around 170. One such procedure eliminates nodes
near the current node if they have not been visited more
recently than 300 time steps ago. Another procedure
eliminates nodes than have not been visited since 1000
time steps. These implementation details have been de-
termined empirically after examining the first map, and
they surely depend on the environment size. However,
they suggest that adaptive procedures can be set up that
will cause the mapping system to stabilize automatically.

5. Discussion

The current simulated system exhibits some similarities
with several other navigation systems, some of which
having been implemented on real robots. For example,
as already mentioned, it shares procedures with the work
of Simmons and Koenig (1995) for position representa-
tion and estimation that are inspired by POMDP mod-
els. However, the present work has the advantage of
allowing the corresponding map to be built incremen-
tally during exploration. This has been made possible
thanks to a procedure that adds new nodes to the map
every time the representation of the environment needs
to be refined.

Such a mapping procedure is highly reminiscent of



Figure 10: Activity updates within the map after a translocation process during which the robot has been moved passively

from place a to place b in the environment. After a few wrongly recognized positions (from b to d), the robot correctly

recognizes its actual position (e).

those used in biologically-inspired navigation systems
[see Trullier and Meyer (1997) and Trullier et al. (1997)
for reviews], with the fundamental difference that the
activity of a given node in the present system codes
for the robot’s probability of being in the correspond-
ing place in the environment. In other models, nodes
work like so-called place cells in the hippocampus of ro-
dents, i.e., they are deterministically active or not de-
pending whether the robot is located in the correspond-
ing place or not. The probabilistic approach that has
been used here makes it possible to easily fuse vision
with dead-reckoning - which is seldom the case in tradi-
tional biologically-inspired models - and this fusion very
probably enhances the robustness of the current system
with respect to sensory noise. Naturally, such a prob-
abilistic approach raises questions about the traditional
view regarding spatial representations in rodents. In par-
ticular, it suggests that some sort of population coding
(Georgopoulos et al., 1986) might represent the animal’s
probability of being in a given place.

The current system is able to cope with the chicken
and egg problem tackled by Yamauchi et al. (1999) and
by Kurz (1995), which arises when a robot has to si-
multaneously build a map and estimate its position. In
other words, the robot needs to know its position in or-
der to build a map, whereas it needs a map to estimate
its position. In these two research efforts, the problem
is solved by continuously correcting the robot’s position
estimate using specific procedures. In our system, as in

most systems relying on topological maps, the problem
is avoided by taking into account recent odometry infor-
mation and re-localizing the robot when there is enough
evidence that the current estimation is wrong.

The current system also shares with those of Mataric
(1991), Kuipers and Byun (1991), Donnart et Meyer
(1996), the management of metric information together
with the nodes and links of an inherently topologi-
cal map. However, this system allows the robot to
wander freely in an arbitrary environment, whereas
Mataric’s and Kuiper and Byun’s systems are in-
tended to work under the control of an underlying
wall-following or corridor-following exploration proce-
dure. Likewise, Donnart and Meyer’s system can-
not cope with an environment containing non-polygonal
obstacles. Nevertheless, these and other systems
(Nehmzow and Smithers, 1992) exhibit the interesting
property of allowing the localization procedure to de-
pend upon information acquired by moment-to-moment
decisions taken by the underlying motor-control system.
Such information could easily be added to the vision and
dead-reckoning data already taken into account during
activity updates in the map and would probably further
enhance the robustness of the current system.

The procedures used here to evaluate the robot’s po-
sition using odometry and to decide whether the robot
is in a place already known or in one never seen be-
fore (see section 3.3) shows some similarities with those
of Kurz (1995). Like the present system, his is able
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Figure 11: This figure reports a long-term experiment dur-
ing which the robot explores the whole environment given in
Figure 10 approximatively 1500 times. The map on the top
exhibits several wrong nodes and links. The map below has
been obtained with ad-hoc procedures that suppress useless
nodes (see text for details) and is much more accurate. The
chart at the bottom of the figure shows the evolution of the
number of nodes in the map versus time for the mapping sys-
tem alone (solid line) and for the mapping system with its
pruning procedures (dashed line).

to create a topological map of large environments us-
ing low-accuracy sensors providing information that is
merged with dead-reckoning data in order to disam-
biguate places. However, as the robot’s position is rep-
resented by a single point in his mapping system, this
system is not able to accumulate evidence over several
time steps and, accordingly, is unable to recognize the
robot’s position without knowing its starting position.
Beyond the implementation differences that have just
been discussed, the current system may also be com-
pared to others with respect to its functionalities. It
shares with Donnart and Meyer (1996) and with Ya-
mauchi et al. (1999) the capacity of exploring and map-
ping an unknown environment while maintaining an ac-
curate estimate of its position at all times. In the former
work, the error between the real and estimated position
of the robot is permanently maintained around a value
roughly equal to the robot’s size, as is the case in the re-
sults described above. Unfortunately, in the latter work,

the size and evolution of this error cannot be deduced
from available information. Likewise, the capacities of
the current system to accurately localize itself extend to
the case where the robot is passively translocated from
one place to another in the environment. Similar ca-
pacities are evidenced in the work of Balakrishnan et al.
(1999), but seem to require more motion steps to accu-
rately position the robot once it has been moved to a
new place. However, only systematic comparisons of the
two systems could help in assessing their relative merits
accurately.

While the actual system favorably compares to others,
it should be emphasized that it nevertheless is subject
to two limitations. First, it calls upon visual landmarks
predefined by the experimenter, who provides the cat-
egories to which they belong, together with the direc-
tions in which they are seen. Although there is good
reason to believe (Gaussier and Zrehen, 1995) that a ro-
bust procedure affording such functionalities can be im-
plemented on a real robot, landmark detection and cat-
egorizing could call upon more autonomous procedures,
like those of Tani (1998) or Gourichon (1999), which de-
pend upon a methodology based on a so-called mizture
of experts. Such procedures could afford an on-line and
adaptive definition of landmarks.

A second drawback, mentioned in section 4.4, is that
the mapping system has a tendency to let the number
of nodes slowly, but steadily, grow. Ad-hoc procedures
have already been tested which solve the problem in
a given environment, but more adaptive criteria which
would work in any environment have still to be designed
and implemented.

6. Conclusions

The simulated mapping system described herein is able
to create on-line a fine-grained topological map of an
unknown environment. At each time-step, the system
is able to track the robot’s position reliably with an er-
ror that does not exceed roughly the robot’s size, even
when the odometry error is large. The system relies on
an active perception mechanism that enables the robot
to gradually refine its representation of the environment
and to improve its position estimate.

Further improvements will aim at introducing mech-
anisms which will adaptively prune maps by removing
useless nodes and connections, in order to prevent the
map from continuing to grow once the environment is
fully represented. Procedures for planning a trajectory
from a given place to another will also be implemented
in the near future.

Finally, this simulated Pioneer 2 system will be imple-
mented on a robot, in order to check its ability to deal
with real navigation problems.
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