
Unsupervised Learning of Probabilistic Models for Robot Navigation�

Sven Koenig Reid G. Simmons
School of Computer Science, Carnegie Mellon University

Pittsburgh, PA 15213-3891

Abstract

Navigation methods for office delivery robots need to
take various sources of uncertainty into account in order to
get robust performance. In previous work, we developed
a reliable navigation technique that uses partially observ-
able Markov models to represent metric, actuator, and sen-
sor uncertainties. This paper describes an algorithm that
adjusts the probabilitiesof the initialMarkov model by pas-
sively observing the robot’s interactions with its environ-
ment. The learned probabilities more accurately reflect the
actual uncertainties in the environment, which ultimately
leads to improved navigation performance. The algorithm,
an extension of the Baum-Welch algorithm, learns without
a teacher and addresses the issues of limited memory and
the cost of collecting training data. Empirical results show
that the algorithm learns good Markov models with a small
amount of training data.

1 Introduction
Navigation methods for office delivery robots need to

take various sources of uncertainty into account in order
to get robust performance. We have developed a navi-
gation technique for the Xavier mobile robot (Figure 1)
that explicitly represents uncertain metric information (e.g.
“corridor X is between 2 and 9 meters long”), actuator
(dead-reckoning) uncertainty, and sensor uncertainty [13].
The technique uses partially observable Markov decision
process (POMDP) models to estimate the position of the
robot in the form of probability distributions. Experi-
ence with the technique has shown it to produce reliable
navigation. The results are better, however, when the
probabilities of the POMDP more closely reflect the actual
environment of the robot. In this paper, we describe a tech-
nique that learns more accurate probabilities, thus reducing

�Thanks to Lonnie Chrisman, Richard Goodwin, Geoffrey Gordon,
Joseph O’Sullivan, and Gregory Whelan for helpful discussions. This
research was supported in part by NASA under contract NAGW-1175,
and by the Wright Laboratory and ARPA under grant number F33615-93-
1-1330. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring organizations or
the United States government.

uncertainty about the lengths of corridors and improving
the accuracy of the actuator and sensor models. Our ap-
proach is fairly general, and is applicable to other robot
navigation systems that use POMDPs (e.g., [9]).

We desire that the learning be unsupervised and passive.
Unsupervised learning means that the robot gets no infor-
mation from a teacher, such as where it really is or what it
really observed. This is desirable because then the learning
can be done autonomously. Passive learning means that
the robot learns while it is performing other tasks – the
learning algorithm does not need to control the robot at any
time. This is desirable, since the robot does not need a sep-
arate training phase – learning takes place while the robot is
performing its delivery tasks. Consequently, training data
is obtained whenever the robot moves and it reflects the
environment in which the robot has to perform.

Unsupervised and passive learning is difficult, however:
there is no “ground truth” to compare against, and the robot
cannot execute strategies that would likely maximize its in-
formation. For example, the robot’s positional uncertainty
prevents it from simply learning corridor lengths by first
moving to the beginning of a corridor and then to its end
while measuring the distance traveled, and the robot cannot
reduce its uncertainty by asking a teacher or by executing
localization actions. In addition, robot learning is hard be-
cause it must run within the CPU and memory constraints
of the robot’s computers, and must deal with the fact that
collecting data is time consuming.

Our POMDP learning algorithm addresses all these con-
cerns. It is an unsupervised, passive method based on
the Baum-Welch algorithm [11], a simple expectation-
maximization algorithm for learning POMDPs from ob-
servations. To enable the algorithm to run on-board the
robot, we have extended the Baum-Welch algorithm to use
a floating window of training data. This decreases its mem-
ory requirements, while producing comparable results to
the traditional Baum-Welch algorithm and maintaining its
efficiency (run-times of seconds to minutes). Since the
algorithm merely updates the probabilities associated with
the POMDP, rather than changing its actual structure, learn-
ing is transparent to all other components of the robot archi-
tecture and the learned POMDP can be used immediately

Figure 3: Corridor of length 2 to 4 meters

ing right 90 degrees (r), turning left 90 degrees (l), and go-
ing forward one meter (f). Thus, every time Xavier travels
a meter or turns, it adds an action report to its execution
trace along with the associated sensor reports. Currently,
three virtual sensors are modeled: a front sensor reports
whether there is a wall directly in front of Xavier; a left
sensor and a right sensor report walls and openings of var-
ious sizes (small, medium, and large) to the immediate left
and right, respectively, of Xavier. Alternatively, a sensor
can report the feature dont-know if it is uncertain about
how to interpret the raw sensor data.

3 Input: The Markov Model

The initial POMDP is automatically compiled from ac-
tuator and sensor models and a topological map that is
augmented with uncertain metric information [13]. The
POMDP is specified as (1) a finite set of states S, (2) a set
of actions A that can be executed in each state, (3) transi-
tion probabilities p(s �js� a) for all s� s� � S and a � A (the
probability that the successor state is s� if the robot executes
action a in state s), and (4) sensor probabilities pvs(f js) for
all vs � VS, f � F(vs), and s � S (the probability that
sensor vs reports feature f when the robot is in state s).
The transition probabilities are obtained from the actuator
models and uncertain metric information, and the sensor
probabilities are obtained from the sensor models.

For Xavier, we instantiate this framework as follows:
Each state encodes both the orientation and location of the
robot. Right and left turn actions are defined for every
state (Figure 2). These actions are nearly deterministic,
but there is a small chance that the robot ends up in any
of the three unintended orientations at the same location
(not shown in the figure). Forward actions transition

from location to location.1 We model corridors (or, to be
precise, the corridor parts between two adjacent junctions)
as sets of parallel chains that share their first and last states
(Figure 3). Each chain corresponds to one of the possible
lengths for that stretch of corridor, reflecting both metric
uncertainty and dead-reckoning error of the robot. From
each junction, forward actions have probabilisticoutcomes,
indicating how likely the corridor is to be perceived of that
length (initially, we assume a uniform distribution). Each
forward transition after that is deterministic.

4 The Baum-Welch Algorithm
The Baum-Welch algorithm is a simple expectation-

maximization algorithm for learning POMDPs from ob-
servations [11]. To describe it, we assume that at time
t = 1 . . . T, just before executing action at (t �= T), the
robot is in state st and each sensor vs reports a proba-
bility distribution r vs�t over its features (T is the length
of the execution trace). We call the aggregate of all
sensor reports at time t the observation ot and define
p(otjs) :=

Q
vs�VS

P
f�F(vs) [rvs�t(f)p vs(f js)] for all s � S.

Given a POMDP and an execution trace, the Baum-
Welch algorithm estimates a POMDP that better fits the
trace, in the sense that the probability p(o1...Tja1...T�1) with
which the POMDP explains (or, synonymously, generates)
the observations is increased. This bootstrapping process
is then repeated with the same execution trace and the im-
proved POMDP. The resulting hill-climbing process con-
verges eventually to a POMDP which locally, but not nec-
essarily globally, best fits the trace.

The Baum-Welch algorithm estimates an improved
POMDP in three steps: First, it calculates the “scaling fac-
tors” scalet, “alpha values” �t(s), and “beta values” �t(s)
for all s � S and t = 1 . . . T. Then, it uses these values to
calculate the “gamma values” �t(s� s�) for all t = 1 . . . T� 1
and s� s� � S, and �t(s) for all t = 1 . . . T and s � S. Fi-
nally, it uses the gamma values to determine the improved
transition and sensor probabilities.

scalet := p(otjo1...t�1� a1...t�1)

�t(s) := p(st = sjo1...t� a1...t�1) =
p(o1...t� st = sja1...t�1)Q

t�=1...t scalet�

�t(s) :=
p(ot+1...Tjst = s� at...T�1)
p(ot...Tjo1...t�1� a1...T�1)

=
p(ot+1...Tjst = s� at...T�1)
Q

t�=t...T
scalet�

1To be precise: forward actions can only be executed in states that do
not face walls, and a successful execution of a forward action conveys
information. This is not a problem for the learning algorithms discussed
in this paper, but would complicate our notation for their derivation. We
therefore ask the reader to assume that forward actions are defined for all
states (resulting in self-transitions for states that face walls) and that the
information normally provided by them is instead provided by a special
virtual sensor that is part of VS.

�t(s� s
�) := p(st = s� st+1 = s�jo1...T� a1...T�1)

�t(s) := p(st = sjo1...T� a1...T�1)

The alpha values �t are essentially what our navigation
system uses to estimate the state of the robot. They can be
calculated on the fly, because they are only conditioned on
the part of the execution trace that is available at the current
time. The gammavalues �t, on the other hand, are more pre-
cise estimates of the same state distribution, because they
also utilize information that became available after time t.
For example, going forward three meters and seeing a wall
ahead at time t provides strong evidence that at time t � 3
the robot was three meters away from the end of the corri-
dor. The scaling factors are used to prevent the numerators
of the alpha and beta values from underflowing. They are
also convenient for calculating how well the POMDP fits
the execution trace, since p(o1...Tja1...T�1) =

QT
t=1 scalet.

The Baum-Welch algorithm uses the following dynamic
programming approach (“forward-backward algorithm”),
that applies Bayes’ rule repeatedly, to calculate the scaling
factors, alpha values, and beta values efficiently [3]:

A1. Set scale1 :=
P

s�S[p(o1js)P(s1 = s)].
A2. Set �1(s) := p(o1js)P(s1 = s)�scale1 for all s � S.
A3. For t := 1 to T� 1 (“forward propagation”)

(a) Let tempt(s) =
P

s��S[p(sjs�� at)�t(s�)] for all s � S.

(b) Set scalet+1 :=
P

s�S
[p(ot+1js)tempt(s)].

(c) Set �t+1(s) := p(ot+1js)tempt(s)�scalet+1 for all s � S.

A4. Set �T(s) := 1�scaleT for all s � S.
A5. For t := T � 1 downto 1 (“backward propagation”)

(a) Set �t(s) :=
P

s��S[p(s�js� at)p(ot+1js�)�t+1(s�)]�scalet

for all s � S.

Next, the Baum-Welch algorithm calculates the gamma
values as follows:

A6. Set �t(s� s�) := �t(s)p(s�js�at)p(ot+1js�)�t+1(s�) for all t =
1 . . . T� 1 and s� s� � S.

A7. Set �t(s) := scalet�t(s)�t(s) for all t = 1 . . . T and s � S.

Finally, the algorithm uses the following frequency-
counting re-estimation formulas to calculate the improved
initial state probabilities, transition probabilities, and ob-
servation probabilities (the overlined symbols represent the
probabilities that constitute the improved POMDP):

A8. Set �p(s1 = s) := �1(s).
A9. Set �p(s�js�a) :=

P
t=1...T�1jat =a

�t(s� s�)�
P

t=1...T�1jat =a
�t(s)

for all s� s� � S and a � A.
A10. Set �p(ojs) :=

P
t=1...Tjot =o

�t(s)�
P

t=1...T
�t(s) for all s � S

and all observations o.

When implementing the Baum-Welch algorithm as part
of our learning method, we made the following design
decisions:

Updating the Sensor Probabilities: We are not really
interested in updating the observation probabilities p(ojs)

as is done by the Baum-Welch algorithm – we want to up-
date the sensor probabilities pvs(f js) instead. Our learning
method therefore uses the following re-estimation formula:

A10’. Set �pvs(f js) :=
P

t=1...T[rvs�t(f)� t(s)]�
P

t=1...T �t(s) for all
vs � VS, f � F(vs), and s � S.

Influence of the Initial POMDP: Because the Baum-
Welch algorithm converges to a local optimum, the final
POMDP can, in theory, depend on the initial POMDP. We
found that the Baum-Welch algorithm is very robust to-
wards variations of the initial probabilities. Our learning
method therefore applies the Baum-Welch algorithm only
to the initially given POMDP (after having added a small
amount of noise).

Extreme Transition Probabilities: The re-estimation
formulas do not change transitionprobabilities that are zero
or one. This means that transitions that were impossible
(or certain) in the original model remain so in the updated
model. Our learning method uses this property to save
computation time by calculating � t(s� s�) and �p(s�js�a) only
if p(s�js�a) �= 0.

5 Problems and Solutions

Despite its theoretical elegance, the Baum-Welch algo-
rithm has two deficiencies that make it impractical for real
robots: its memory and training data requirements. We
address these problems by extending the Baum-Welch al-
gorithm.

5.1 Memory Requirements

Standard implementationsof the Baum-Welch algorithm
need arrays of floating pointnumbers whose sizes are on the
order of the product of the number of states and the length
of the execution trace. Even our smallest POMDPs have
thousands of states, and we need execution traces with hun-
dreds of action executions toget sufficient data. Since many
other processes are run on the same on-board computer, the
memory requirements of a learningmethod shouldbe rather
small and relatively constant. The extended Baum-Welch
algorithm still calculates the alpha values precisely, since
they can be calculated incrementally with only two arrays
the size of the number of states: one for the current al-
pha values and another one for the alpha values of the next
time step. The beta values, however, are approximated us-
ing a sliding “time window” on the execution trace. The
gamma values are then calculated using the alpha and beta
values, as before. Approximating the gamma values this
way is reasonable because floors of buildings are usually
constructed in a way that allows one to obtain sufficient
clues about the current location from past experience and
the local environment only. Otherwise not only robots, but
also people, would easily get confused.

The values �t(s) are approximated with p(ot+1...t� jst =
s�at...t��1)�

Q
t��=t...t� scalet�� . This results in �t(s� s�) being

approximated with p(st = s� st+1 = s�jo1...t� � a1...t��1) and
�t(s) being approximated with p(st = sjo1...t� � a1...t��1). The
extended Baum-Welch algorithm guarantees the “effective
look-ahead” t��tof the beta values tobe at least lamin, where
the “minimal look-ahead” lamin � 0 is chosen so that the
gamma values are approximated closely. For the calcula-
tions, the algorithmuses a time window of size x � lamin+2,
where x is independent of the length of the execution trace.
A time window that starts at tstart can store the scaling,
alpha, and beta values for all t = tstart . . . tstart + x � 1. It
only needs arrays of floating point numbers whose sizes
are on the order of x times the number of states and thus its
memory requirements do no longer depend on the length
of the execution trace.

The window-based Baum-Welch algorithm operates as
follows (for simplicity, we do not show how the initial state
distribution is updated or � T(s) is calculated):

B1. Set �p�(s�js�a) := 0 for all s� s� � S and a � A.
B2. Set �p�vs(f js) := 0 for all vs � VS, f � F(vs), and s � S.
B3. Initialize scale1 using A1 and �1 using A2.
B4. Set tstart := 1 and tend := x.
B5. While tstart � T:

(a) If tend � T, then set tend = T.
(b) Calculate scalet and�t for t = tstart . . . tend (if they have

not been calculated already), working forward from
scaletstart and �tstart using A3(a), A3(b), and A3(c).

(c) Approximate the beta values � t for t = tstart . . . tend ,
initializing �tend (s) := 1�scaletend for all s � S and
working backward using A5(a). (Previously calcu-
lated beta values cannot be re-used.)

(d) If tend = T, then set tnewstart := T else set tnewstart :=
tend � lamin.

(e) For all t = tstart . . . tnewstart � 1:
i. Calculate �t(s� s�) for all s� s� � S, using �t and

the approximation of �t+1 in A6.
ii. Calculate �t(s) for all s � S, using �t and the

approximation of �t in A7.
iii. Set �p�(s�js� at) := �p�(s�js� at) + �t(s� s�) for all

s� s� � S (these values will be normalized in
B6).

iv. Set �p�vs(f js) := �p �
vs(f js) + r vs�t(f)� t(s) for all vs �

VS� f � F(vs), and s � S (these values will be
normalized in B7).

(f) Forget all scalet and�t for t = tstart . . . tnewstart � 1, and
all �t for t = tstart . . . tend .

(g) Set tstart := tnewstart and tend := tnewstart +x�1 (i.e. move
the time window).

B6. Set �p(s�js�a) := �p�(s�js�a)�
P

s��S
�p�(s�js�a) for all s� s� � S

and a � A (i.e. normalize the transition probabilities).
B7. Set �pvs(f js) := �p �

vs(f js)�
P

f�F(vs) �p
�
vs(f js) for all vs � VS,

f � F(vs), and s � S (i.e. normalize the sensor probabili-
ties).

With the extended Baum-Welch algorithm, there is a
tradeoff between memory requirements, run time, and pre-
cision of the improved POMDP. Run-time overhead is in-
curred mostly for calculating the beta values repeatedly.
While the traditional Baum-Welch algorithm calculates ev-
ery state distribution � t once, the extended Baum-Welch
algorithm calculates it on average x�(x � lamin � 1) times
for long execution traces. Its precision increases with its
effective look-ahead, which is, on average, (lamin + x)�2 for
long execution traces. Thus, the precision can be increased
by increasing the minimal look-ahead lamin or the win-
dow size x. Increasing the minimal look-ahead produces a
small amount of run-time overhead, but leaves the memory
requirements unchanged; increasing the window size de-
creases the overhead, but increases the amount of memory
needed. We therefore suggest to make the window size as
large as possible and to set the minimal look-ahead based
on the average lengths of the corridors, because the most
useful sensor reports are obtained when the robot traverses
junctions.

5.2 Training Data Requirements
The traditional Baum-Welch algorithm requires a large

amount of trainingdata: as the degrees of freedom (settable
parameters) increase, so does the need for training data, to
decrease the likelihood of overfitting the model. Given the
relatively slow speed at which mobile robots can move,
we want our learning method to learn good POMDPs with
as few corridor traversals as possible. Thus, we use sev-
eral methods to decrease the number of model parameters
that must be learned. The initial structure of the POMDP
already reduces the model parameters considerably by dis-
allowing transitions that are clearly impossible (such as
teleporting to distant locations). We employ two additional
techniques to reduce the degrees of freedom further:

Leaving Probabilities Unchanged: Our learning
method does not adjust parameters that we believe to be
approximately correct. Actuator and sensor models, for
example, are often similar in different environments and
consequently need only be learned once.

Imposing Equality Constraints: Our learning method
constrains some probabilities to be identical. This has the
advantage that the Baum-Welch algorithm can now update
a probability using all the information that applies to any
probability in its class. Consider the following examples:
� Metric Uncertainty: We constrain the transition

probabilities of the forward actions for “junction”
states that lead into the same corridor to be identi-
cal (e.g., states X and Y in Figure 3). This forces the
length estimates for a corridor to be the same in both
directions. In general, we group all junction states that
are known to lead into equally long corridor segments
(such as those intersected orthogonallyby two parallel
corridors – see Figure 4).

� Actuator Models: We assume that the models for
the left and right turn actions are the same for all
states. We further constrain the left and right turn
probabilities to be symmetrical.

� Sensor Models: Instead of learning separate sensor
models for each state, we learn them for classes of
states (wall, “near wall”, junction opening, open-door,
closed-door). These classes reflect our prior knowl-
edge about how the sensors are supposed to operate
– they are currently predefined and not learned. For
example, all states that have a wall on their left are
construed to have the same left sensor model. Our
learning method also assumes that the left and right
sensors behave identically, so their models are con-
strained to have the same probabilities.

These techniques enable the Baum-Welch algorithm to
operate with a smaller amount of training data. However,
frequency-based estimates are not very reliable if the sam-
ple size is small. To understand why, consider the following
analogy: If a fair coin were flipped once and came up heads,
the frequency-based estimate would set p(heads) = 1. If
this model were used to predict future coin flips, one would
be very surprised if the coin came up tails next time – this
would be inconsistent with the learned model. To avoid
this problem, we change the re-estimation formulas A9 and
A10’ to use Bayes’ rule (Dirichlet distributions) instead
of frequencies (both methods produce asymptotically the
same results for long execution traces). For example, the re-
estimation formula for the transition probabilities becomes
(probability classes are not shown):

A9’. Set �p(s�js�a) := (k� p(s�js� a) +
P

t=1...T�1jat =a �t(s� s�))�(k +
P

t=1...T�1jat =a
�t(s)) for all s� s� � S and a � A.

In this formula, p(s�js�a) are the transition probabilities
before learning and k � 0 is a constant whose magnitude
indicates the confidence that one has in the initial proba-
bilities (we use k = 1). Note that the original re-estimation
formula A9 is a special case of A9’ where k = 0. Similarly,
leaving the transition probabilities unchanged is a special
case of A9’ where k is large.

6 Experimental Evaluation
The world cannot be expected to satisfy the indepen-

dence properties that POMDPs and the Baum-Welch al-
gorithm assume. In the end, one has to test empirically
whether they are satisfied well enough for our learning
method to yield plausible models. We therefore performed
several experiments with the Xavier simulator, a highly re-
alistic simulation of Xavier. Figure 1 shows a snapshot of
the simulator operating on the prototypical corridor en-
vironment that we used in our experiments. (The circles
show the probability mass with which the robot believes
itself to be in a certain junction or corridor.) The initial

Figure 4: Actual and learned metric models

metric uncertainty of each corridor part was characterized
by a uniform distribution over the lengths from 2 to 9 me-
ters, yielding a POMDP with 2472 states. Unless stated
otherwise, we used the extended Baum-Welch algorithm
with a minimal look-ahead of 5 time steps and a window
size of 20 time steps.

In the first experiment, we simultaneously learned the
metric model, actuator models, and sensor models using
an execution trace that consisted of ten smaller execution
traces with various start locations of the robot. In total,
every corridor of our environment was traversed five times.
The purpose of this experiment was to learn good actuator
and sensor models for use in the subsequent experiments.

Table 1 lists the learned sensor model together with the
human estimates that the navigation system used originally
(open and closed doorsare omitted, since they do not appear
in the test environment). Note that the sensors are reason-
ably accurate when they issue a report. The relatively high
probability of dont-know observations is partly due to
the virtual sensors being quite conservative: they don’t re-
port features until they have collected sufficient evidence.

It is also partly due to the fact that the sensor and action re-
ports are generated asynchronously, and the execution trace
fills in a dont-know whenever a sensor has not issued a
report in time.

The second experiment fixed the previously learned ac-
tuator and sensor models and learned the metric model only,
this time using an execution trace that was generated by
traversing every corridor only once. The extended Baum-
Welch algorithm needed 15 iterations to converge and pro-
duced the metric model shown in Figure 4(B). Even with
only one traversal per corridor, the learned metric model
is very accurate. In general, it is our experience that
the Baum-Welch algorithm can learn good models with
about one to three corridor traversals, depending on how
confusing the corridor environment is. It is unrealistic to
expect the Baum-Welch algorithm to learn the distances
perfectly: the estimates are actually the perceived corri-
dor lengths, and the perception can be distorted by dead-
reckoning uncertainty, the discretization granularity used,
and how sharply the robot turns at junctions (which may
change the distance traveled by up to a meter).

difference between approximated and correct gamma values

1�T�
P

t=1...T

P
s�S

[p(st = sjo1...t+la� a1...t+la�1) � �t (s)]2

look-ahead la difference look-ahead la difference

1 4�0� 10�03 7 2�1� 10�09

2 4�5� 10�05 8 4�9� 10�10

3 6�5� 10�05 9 3�8� 10�10

4 4�7� 10�05 10 1�4� 10�10

5 1�1� 10�05
6 1�4� 10�06 50 1�4� 10�19

Table 3: Approximation errors due to time windows

To determine how good the learned models are, we cal-
culated how well they fit a (different) long “evaluation”
execution trace. We used a transformation of the fit to
make it independent of the length of the execution trace.
Learning improves the models if the value of this transfor-
mation gets closer to zero. Table 2 shows that this is indeed
the case both for the learned actuator and sensor models
alone, for the learned metric model alone, and for their
combination. To determine how much the learned models
improve Xavier’s on-line position estimation capabilities
(and thus it navigation performance), we calculated the av-
erage entropy of the alpha values (the state distributions
used during navigation) after every action execution of the
“evaluation” execution trace. The entropy is a measure for
how certain the robot knows its current state, ranging from
0 (absolute certainty at every point in time) to -1 (absolute
ignorance, a uniform state distribution). If learning im-
proves the models, we expect the entropy to get closer to
zero. Table 2 shows that this is indeed the case.

To determine how well the extended Baum-Welch al-
gorithm does, we compared the true gamma values and
the approximate gamma values for various (strict) effec-
tive look-aheads. Table 3 shows that the errors start out
small to begin with and then quickly become negligible for
increasing look-aheads. This means that the gamma val-
ues can indeed be closely approximated with small window
sizes. Not surprisingly, then, our experiments confirm that
the window-based and windowless Baum-Welch algorithm
learn the same models.

To test the power of the equality constraints, we repeated
the second experiment without the techniques introduced
in Section 5.2 except that we required each corridor to be
equally long in both directions. Now, there were six cor-
ridors where the most probable length was not the correct
one. Even if we used an execution trace that was twice as
long (starting with the original execution trace), the result
did not improve dramatically, see Figure 4(C). This is also
reflected in the statistics: when using this learned model,
the fit of our “evaluation” execution trace was -1.797074
and its entropy was -0.054793. Table 2 shows that the same
values are only -1.684340 and -0.044137 when using the

learned model from the second experiment instead. Thus,
the former model is somewhat inferior, despite the larger
amount of training data. We conclude that the techniques
from Section 5.2 are an effective means for reducing the
amount of training data required to learn good models.

The corridor environment used in this example was rela-
tively small and thus one could have used distance learning
methods with exponential run-time (such as methods that
match the routes probabilistically against the topological
map). The extended Baum-Welch algorithm, however, has
been used successfully to learn in more complex environ-
ments than the one used here. Consider, for example, the
slightly more difficult environment shown in Figure 5. We
let the robot traverse parts of the corridor seven times such
that it passed each landmark (doors and corridor junctions)
a total of about three times. However, we did not inform
the robot of its start locations, the status of the doors (all
of which were open), or any distance constraints. The ini-
tial metric uncertainty from one landmark to the next was
given as a uniform distribution over the lengths from 1 to
10 meters. Note that each traveled route can be matched
in numerous ways against the topological map. Further-
more, doors are hard to detect: the robot cannot detect
closed doors, misses open doors 22 percent of the time,
and can confuse them with corridor openings. Neverthe-
less, the extended Baum-Welch algorithm (using a minimal
look-ahead of 20 time steps) learned all distances but two
correctly (it placed the corridor marked X one meter to the
left of its correct position).

7 Related Approaches
Our method learns metric information passively, to-

gether with actuator and sensor models, using prior topo-
logical (and other) knowledge of its environment. In con-
trast, most other approaches in the literature use active
exploration to learn either metric or topological maps from
scratch (sometimes assuming perfect actuators or sensors)
with the goal either to map the environment completely or
to reach a given goal location. Approaches whose prop-
erties have been analyzed formally, for example, include
[5], [10], [12], [7], and [15]. Approaches that have been
demonstrated experimentally include [6], [8], and [14]. The
approaches of [1] and [2] learn Markov models of the en-
vironment, as we do, but they use active exploration, while
our approach is passive. The learning approach of [4] does
use a passive learning approach, but it learns a topological
map only. These approaches also differ from our learning
method in that they learn their models from scratch.

8 Conclusion
This paper has presented a method that can simultane-

ously learn more accurate metric, actuator, and sensor mod-

Figure 5: A long corridor with doors

els for robot navigation It is unsupervised (does not require
a teacher) and passive (does not need to control the robot at
any time). The training data are generated in the course of
normal robot navigation. The learning method can update
the models selectively, efficiently, and incrementally. The
quality of the models improves as the amount of available
training data increases.

Our learning method is an extension of the Baum-
Welch algorithm, an expectation-maximization algorithm
for learning partially observable Markov models from ob-
servations. To reduce the amount of training data needed,
we augmented the Baum-Welch algorithm to take advan-
tage of prior knowledge, such as symmetry in the map and
of the sensors. This reduces the number of parameters that
must be adjusted. To decrease the amount of memory re-
quired, our learning method uses a sliding “time window”
on the execution trace. Time windows add a small over-
head to the run time and cause a small loss in precision of
the improved models, but allow the memory requirements
to be dynamically scaled to the available memory.

Our experimental results confirm that the method pro-
duces good metric, actuator, and sensor models with a small
amount of training data. The resulting models help the
robot to determine its position more accurately, and to nav-
igate more efficiently and reliably.

References

[1] K. Basye, T. Dean, and J.S. Vitter. Coping with uncertainty
in map learning. In Proceedings of the International Joint
ConferenceonArtificial Intelligence (IJCAI-89), pages663–
668, 1989.

[2] T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling,
E. Kokkevis, and O. Maron. Inferring finite automata with
stochastic output functions and an application to map learn-
ing. In Proceedings of the National Conference on Artificial
Intelligence (AAAI-92), pages 208–214, 1992.

[3] P.A. Devijver. Baum’s forward backward algorithm revis-
ited. Pattern Recognition Letters, 3:369–373, 1985.

[4] S.P. Engelson and D.V. McDermott. Error correction in mo-
bile robot map learning. In Proceedingsof the IEEE Interna-

tional Conference on Robotics and Automation (ICRA-92),
pages 2555 – 2560, 1992.

[5] S.S. Iyengar, C.C. Jorgensen, S.V.N. Rao, and C.R. Weisbin.
Robot navigation algorithms using learned spatial graphs.
Robotica, 4:93–100, 1986.

[6] B.J. Kuipers and Y.-T. Byun. A robust, qualitative method
for robot spatial learning. In Proceedings of the National
Conference on Artificial Intelligence (AAAI-88), pages 774–
779, 1988.

[7] V.J. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic
path planning in sensor-based terrain acquisition. IEEE
Transactions on Robotics and Automation, 6(4):462–472,
8 1990.

[8] M.J. Mataric. Environment learning using a distributed
representation. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-90), pages
402–406, 1990.

[9] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: An
office-navigating robot. AI Magazine, 16(2):53–60, 1995.

[10] J.B. Oommen, N.S.V. Rao S.S. Iyengar, and R.L. Kashyap.
Robot navigation in unknown terrains using learned visibil-
ity graphs. Part I: The disjoint convex obstacle case. IEEE
Journal of Robotics and Automation, 3:672–681, 1987.

[11] L.R. Rabiner. An introduction to hidden Markov models.
IEEE ASSP Magazine, pages 4–16, 1 1986.

[12] N.S.V. Rao, N. Stoltzfus, and S.S. Iyengar. A “retraction”
method for learned navigation in unknown terrains for a cir-
cular robot. IEEE TransactionsonRoboticsandAutomation,
7(5):699–707, 10 1991.

[13] R. Simmons and S. Koenig. Probabilistic robot navigation
in partially observable environments. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 1080–1087, 1995.

[14] S.B. Thrun. Exploration and model building in mobile robot
domains. In Proceedings of the IEEE International Confer-
ence on Neural Networks (ICNN), pages 175–80, 1993.

[15] A. Zelinsky. A mobile robot exploration algorithm. IEEE
Transactions on Robotics and Automation, 8(6):707–717,
12 1992.

