Image-based memory for robot navigation
using properties of omnidirectional images
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Abstract

This paper proposes a new technique for vision-based robot navigation. The basic
framework is Lo localise Lhe Tobol by comparing images laken al ils current localion
with reference images stored in its memory. In this work, the only sensor mounted
on the robot is an omnidirectional camera. The Fourier components of the ommni-
directional image provide a signature for the wviews acquired by the robot and can
be used to simplify the solution to the robot navigation problem. The proposed sys-
tem can calculate the robot position with variable accuracy (*“hierarchical localisa-
tion”) saving computational time when the robot does not need a precise localisation
(e.g. when il is lravelling through a clear space). In addilion, the system is able Lo
self-organise its visual memory of the environment. The self-organisation of visual
memory s essential to realise a fully autonomous robot that is able to navigate in
an unexplored environment. Frperimental evidence of the robustness of this system
is given tn unmodified office environments.
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1 Introduction

A mobile robot that moves from place to place in a large scale environment
needs to know its position in the environment to successfully plan its path
and its movements. The general approach to this problem is to provide the
robot with a detailed description of the environment (usually a geometrical
map) and to use some kind of sensors mounted on the robot to locate it-
self in its world representation. Unfortunately, the sensors used by the robots
are noisy, and they are easily misled by the complexity of the environment.
Nevertheless, several works successfully addressed this solution using high pre-
cision sensors like laser range scanners combined with very robust uncertainty
management systems [19] [2]. Another solution, very popular in real-life robot
applications, is the management of the environment. If artificial landmarks,
such as stripes or reflecting dots, are added to the environment, the robot can
use these objects, which are easy to spot and locate, to calculate its position
on a geometrical map. An example of a successful application of this method
is the work of Hu [§].

Unfortunately, these two approaches are not always feasible. There are situa-
tions in which an exact map of the environment is either unavailable or useless
— for example, in old or unexplored buildings or in environments in which the
configuration of objects in the space changes frequently. So, the robot needs to
build its own representations of the world. This internal representation can be
something different from a metrical map. As an example let us consider topo-
logical maps. These are representations of the environment that capture the
topology of the environment and that have been successfully used for robot
navigation and map building [4] [14] [18]. This means that in most cases a
geometrical map contains more information than that needed by the robot to
move in the environment. Often, this adds unnecessary complexity to the map
building problem. Kuipers showed that is possible to construct a hierarchical
description of the environment [13] by first building a topological map and
then, on top of it, a metrical description of the environment. In a previous
work we showed it is possible to implement these ideas in a real robot fitted
with an omnidirectional vision system [15].

In addition to the capability of reasoning about the environment topology
and geometry, humans show a capability for recalling memorised scenes that
help themselves to navigate. This implies that humans have a sort of wvisual
memory that can help them locate themselves in a large environment. There is
also experimental evidence to suggest that very simple animals like bees and
ants use visual memory to move in very large environments [5]. From these
considerations, a new approach to the navigation and localisation problem
developed, namely, image-based navigation. The robotic agent is provided with
a set of views of the environment taken at various locations. These locations are
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Fig. 1. The omnidirectional vision sensor used in the experiments.

called reference locations because the robot will refer to them to locate itself
in the environment. The corresponding images are called reference images.
When the robot moves in the environment, it can compare the current view
with the reference images stored in its visual memory. When the robot finds
which one of the reference images is more similar to the current view, it can
infer its position in the environment. If the reference positions are organised
in a metrical map, an approximate geometrical localisation can be derived.
With this technique, the problem of finding the position of the robot in the
environment is reduced to the problem of finding the best match for the current
image among the reference images. The problem now is how to store and to
compare the reference images, which for a wide environment can be a large
number.

As we will see in Section 2.1, different methods have been proposed. In this
paper, we have fully developed a method we proposed in a previous work
[10]. The robot is equipped with an omnidirectional camera and takes a set
of omnidirectional images at the reference locations, then it compares the
current omnidirectional image with the reference images. In order to store and
match a large number of images efficiently, we transform each omnidirectional
view into a compact representation by expanding it into its Fourier series.
The agent memorises each view by storing the Fourier coefficients of the low
frequency components, that we call the “Fourier signature” of the image.
This drastically reduces the amount of memory required to store a view at
a reference location. Matching the current view against the visual memory is
computationally inexpensive with this approach. Details on how to calculate
the Fourier signature from the original image are given in Section 2.1. In
Section 2.2, we will describe the process of matching the current view against
the visual memory. This process is derived from calculating the degree of



Fig. 3. The panoramic cylinder created by the omnidirectional image of Fig. 2.

similarity between two omnidirectional images using the signatures associated
to them. In Section 2.3, we will show experimental evidence of what we called
hierarchical localisation in a complex real-world environment in which many
objects are present. In Section 3.1, we will show experiments in which the
robot explores a new environment and memorises the local views at many
locations. When the exploration phase is finished, it organises the memorised
views so that they reflect the geometry of the environment. In Section 3.5, we
explain how the robot plans its navigation toward a destination in a reactive
manner by using its self-organised memory.

2 Image-based Localisation

As we pointed out in the introduction, the first problem to tackle when build-
ing an image-based localisation system is to find a manageable way of storing
and comparing the reference images. The aim is to have a data set that fully
describes the environment and enables the system to reliably associate the
current view with the reference view taken at a nearby location, while keeping
the dataset small enough to be easily stored and quickly processed.

The first step, in order to lower the number of required reference images, is
to use an omnidirectional camera. In fact, if the robot is fitted with a stan-
dard perspective camera, the view of the environment from a certain location



changes with the direction of gaze. To be able to recognise this point regard-
less of the instantaneous heading, the robot needs to take several pictures
in different directions. The amount of memory required to store and retrieve
such a large number of images can rapidly grow to an unmanageable size. A
solution can be to constrain the movements of the robot in order to keep the
camera pointing at the same location [3], but this greatly limits the motion of
the robot. Another solution can be to extract from the images some features
that reduce the amount of required memory while retaining a unambiguous
description of the image [20]. Nevertheless, working with a perspective cam-
era, collecting such a large number of images is tedious and time consuming.
Therefore, we used the omnidirectional camera depicted in Fig. 1. This camera
mounts an hyperbolic mirror with a black needle at the apex of the mirror
to avoid internal reflections on the glass cylinder [9]. A single omnidirectional
image gives a 360° view of the environment from a certain location, see Fig. 2.

One might object that ommnidirectional images have a low resolution, but this
usually is not a limitation in tasks like navigation and localisation. In fact, we
are more interested on the position of the objects than in the details on their
surfaces. Actually, to some extent, the low resolution can be an advantage,
because it lowers the number of pixels to be processed to extract the desired
information. We will show that the relatively low-resolution images we used
contain enough information for the localisation and navigation task.

2.1 Image signature

Let us come to the second step, the comparison of the current image with
the reference images. The simplest approach might appear to be some sort of
direct comparison of two images pixel by pixel, but this will force us to store the
whole image using much memory. We propose to use what we call a Fourier
signature to represent the omnidirectional images. The Fourier signature is
computed in three steps. First, the omnidirectional image is transformed in a
panoramic cylinder, this is a new image obtained unwarping the original
omnidirectional image, as depicted in Fig. 3. Second, we calculate the 1-D
Fourier transform of every line of the panoramic cylinder and we store in a
matrix the Fourier coefficients line by line. Third, we keep only a subset of
the Fourier coefficients, those corresponding to the lower spatial frequencies,
as signature for the image.

Note we do not calculate the Fourier transform of the original omnidirectional
image, but we calculate the Fourier transform of the panoramic cylinder. This
simplifies the problem of calculating the image similarity. First of all, the
panoramic cylinder is a periodic function along the x-axis which, firstly, sim-
plifies the calculation of the Fourier transform and secondly, is the natural



Fig. 4. Two panoramic cylinder acquired at the same location before and after a
rotation on the spot. The dashed box indicates the spatial shift a between the two
images.

representation for implementing a rotational invariance. As we said, the robot
must be able to match the current view with the corresponding reference image
regardless of the current heading. So, we need to introduce a rotational invari-
ance in the calculation of the similarity between two images. Using the Fourier
coefficients as a signature for the images, this problem is also addressed. Let
us explain how it works.

If the robot grabs two omnidirectional images at the same location but with
different headings, these two images are actually the same omnidirectional
image rotated about its centre. The amount of rotation corresponds exactly
to the number of degrees the robot rotated. This means the two panoramic
cylinders created by unwarping the omnidirectional image are actually the
same image just shifted along the x-axis, like in Fig. 4. Let see how this
consideration affects the Fourier transform of the two images. If f(x) is one
row of the first panoramic cylinder, f(xz — a) is the corresponding row of the
shifted panoramic cylinder and by applying the Shift Theorem, we can write:

Fif(x—a)} = e F{f(x)} (1)

where F{f(x)} is the Fourier transform of f(z). In other words, the Fourier
transform of a shifted signal is equal to the Fourier transform of the origi-
nal signal multiplied by the unit magnitude complex coefficient e 727%¢, This
property is valid for every row of the panoramic cylinder. This means that the
amplitude of the Fourier transform of the shifted image is not changed and
there is only a phase change, proportional to the amount of shift a.

Coming back to our panoramic images, we can then associate the magnitude
of the Fourier transform to the appearance of the environment from a partic-
ular place and the phase of the Fourier transform to the heading of the robot.
In such a way, when the robot is turning on the spot and the apparency of
the environment is not changing, the magnitude of the Fourier transform does
not change. What is changing is the phase of the Fourier transform and the
amount of change is proportional to the change in the heading. Associating the






