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Abstract

The central thesis of this article is that memory-based methods provide
natural and powerful mechanisms for high-autonomy learning control. This
paper takes the form of a survey of the ways in which memory-based meth-
ods can and have been applied to control tasks, with an emphasis on tasks
in robotics and manufacturing. We explain the various forms that control
tasks can take, and how this impacts on the choice of learning algorithm.
We show a progression of five increasingly more complex algorithms which
are applicable to increasingly more complex kinds of control tasks. We
examine their empirical behavior on robotic and industrial tasks. The fi-
nal section discusses the interesting impact that explicitly remembering all
previous experiences has on the problem of learning control.

1 Learning Control

The necessity for sell improvement in control systems is becoming more
apparent as fields such as robotics, factory automation and autonomous ve-
hicles are being impeded by the complexity of inventing and programming
satisfactory control laws. We are interested in applying memory-based learn-
ing to control tasks in robotics and manufacturing. These tasks often involve
decisions based on streams of information from sensors and actuators, where
data is not to be wasted, but can be relatively plentiful. This paper dis-
cusses the opportunities that arise if everything that happens to a system
in its lifetime is remembered.

One of the important distinctions that became clear to us in the process
of implementing learning controllers is the difference between representa-
tional tools, such as lookup tables, neural networks, or structured represen-
tations, and what we will call learning paradigms, which define what the
representation is used for, where training data comes from, how the training
data is used to modify the representation, whether exploratory actions are
performed, and other related issues. It is difficult to evaluate a representa-



tional tool independently of the paradigm in which it is used, and vice versa.
A successful robot learning algorithm typically is composed of sophisticated
representational tools and sophisticated learning paradigms.

There are three readily identifiable components of a learning control
system, depicted in the following figure.

Computing
a control rule

Learning
a Model
from Data

Experiment
Design

The control rule computation relies on the empirical model to make its
decisions. Building the empirical model requires data, and the experiment
design component decides which data is most valuable to obtain. And then,
in turn, the control rule may choose actions in order to help obtain that
data.

This paper discusses all three components as they are used in a number
of learning control algorithms. The aim of this paper is to survey the im-
plications of memory-based approaches for the performance of a controller.
In memory-based learning, experiences are explicitly remembered, and pre-
dictions and generalizations are performed on line in real time by building
a local model to answer any particular query (an input for which the func-
tion’s output is desired). Our approach is to model complex functions using
simple local models. One benefit of memory-based modeling is that it avoids
the difficult problem of finding an appropriate structure for a global model,
since there is no global model.

A key idea in memory-based modeling is to form a training set for the
local model after the query that must be answered is known. This approach
allows us to include in the training set only relevant experiences (nearby
samples) and to weight the experiences according to their relevance to the
query. We form a local model of the portion of the function near the query
point, much as a Taylor series models a function in a neighborhood of a
point. This local model is then used to predict the output of the function



for that query. After answering the query, the local model is discarded and a
new local model is created to answer the next query. This leads to another
benefit of memory-based modeling for control: the structure of the local
model and the structural parameters do not have to be chosen until after
the data is collected. In fact, choices are forced only when a query arrives,
and any choices can be changed when the next query arrives.

The memory-based architecture can represent nonlinear functions, yet
has simple training rules with a single global optimum for building a local
model in response to a query. This allows complex nonlinear models to
be identified (trained) quickly. Currently we are using polynomials as the
local models. Since the polynomial local models are linear in the unknown
parameters, we can estimate these parameters using a linear regression. Fast
training makes continuous learning from a stream of new input data possible.
It is true that memory-based learning transfers all the computational load
onto the lookup process, but our experience is that the linear parameter
estimation process during lookup is still fast enough for real time robot
learning.

We use cross validation to choose an appropriate distance metric and
weighting function, and to help find irrelevant input variables and terms
in the local model. In fact, performing a cross validation in a memory-
based model is no more expensive than processing a single query. Cheap
cross validation makes search for model parameters routine, and we have
explored procedures that take advantage of this.

Robots should be able to learn multiple tasks. Unfortunately, changing
the data distribution causes problems for parametric models. Since black
box models such as neural networks do not have exactly the correct model
structure for a task, the distribution of the data affects the values of the
parameters. When the data distribution changes (because the robot is doing
something slightly different) the parameters also change, leading to degraded
performance on the original task. Because memory-based models store the
actual data and avoid retaining any constructs based on the data, they do
not suffer from this type of negative interference.

We have extended the memory-based approach to give information about
the reliability of the predictions and local linearizations generated, based on
the local density and distribution of the data and an estimate of the local
variance. This allows the robot to monitor its own skill level, protect itself
from its own ignorance by designing robust policies, and guide its exploratory
behavior.

Another attractive feature of memory-based learning is that there are



explicit parameters to control smoothing, outlier rejection, forgetting, and
other processes. The modeling process is easy to understand, and therefore
easy to adjust or control.

We will see how the explicit memories can speed up convergence and im-
prove the robustness and autonomy of optimization and control algorithms.
It is very frustrating to watch a robot repeat the same mistake over and over,
with only a slight improvement on each attempt. The goal of the learning
algorithms described here is to have rapid improvement in performance.

We will not review memory-based function approximation here, but refer
the reader to the companion papers in this collection. Here, we use the
terminology and notation of [Atkeson et al., 1995].

2 Learning control with empirical models

In this paper we will deal with learning control problems in which, on each
cycle, the controller first senses its current state, a vector x. A task descrip-
tion specifies the desired behavior, a vector y4,,. The controller must then
choose an action, which is another vector, u. Having performed the action,
the controller observes the actual resulting behavior y, (.1 and may use this
data to improve its subsequent performance.

Several relationships could be acquired by a learning controller. The
first is the forward model (State x Action — Behavior) [Miller, 1989,
Mel, 1989, Moore, 1990, Jordan and Rumelhart, 1992].

y = f(Xv u)

This allows one to predict the effects of various actions but initially appears
unattractive because it does not proscribe the correct action to take.

An alternative is the policy (State — Action) [Michie and Chambers,
1968, Barto et al., 1989, Watkins, 1989].

u=m7(x)

The policy may initially appear the most attractive mapping because it
provides exactly what the controller needs: a mapping from the state we have
observed to the action we should apply. Its disadvantage is that if learned on
its own, then a strategy for updating the policy requires extra fore-knowledge
of the structure of the world: if we apply an action which gives substandard
behavior, we need to know which direction to alter the mapping so that next



time the adjusted action will produce improved behavior. This problem is
alleviated if the policy is learned in conjunction with a more easily updatable
mapping, such as the forward world model [Jordan and Rumelhart, 1992,
Sutton, 1990a], and perhaps also a value function (see Section 7).

The inverse model (State x Behavior — Action) [Atkeson, 1989,
Miller, 1989], is of the form

u= f_l(x,y).

A superior feature of this scheme over a policy is that we are adding objective
observations of the world, rather than adjustments to a task-specific map.
For example, if a Billiards-playing robot is learning to sink balls in the far
left hole, and it accidentally sinks it in the far right hole, then despite the
immediate failure, the robot has the consolation that should it in future be
asked to sink into the far right, it will have remembered the means to satisfy
the request.

This paper is organized by types of control tasks. In the next few sections
we will examine control tasks of increasing complexity. For each task-type we
will show memory-based algorithms for learning control, and for several task-
types we also provide details of robotic implementations. The progression
of control tasks is given in the following table.

Task Task Goal Example Sec.
Specification
Temporally Inde- | yqes Choose u such that | Billiards, throwing, 3
pendent Task Ely] = Y des- setpoint-based process
control
Dead-beat X{es OF trajectory | Choose u(t) such that | Ball bouncing, some 4
control {xges(t)} Elx(t+1)] = xges(t + 1). process control
Dynamic Control | Matrices Q and | Minimize future sum Cost = | Trajectory tracking, 5
R, x g, O trajec- Zo (d(t)TQd(t) + u(t)TRu(t) regulation
tory {xXges(t)} where d(t) = x(t) — xges(t)
Dynamic Regula- | Matrices Q and | Find a stable setpoint such that | Juggling, 6
tion, setpoint | R x(t) = f(x(t), u(t)) Pole-balancing
unknown
General Cost function | Find a control policy to mini- | (All previ- 7
Non-linear Opti- | Cost(x,u). mize the sum of future costs. ous, plus) Car-on-hill,
mal Control Packaging, Plant setup
and shutdown

3 Temporally Independent Decisions

In the simplest class of task we will consider, the environment provides a
behavior y(¢) as a function of an action u(¢) which we can choose, a state




x(t) we can observe but not choose, and random noise.

y(t) = f(x(t), u(t), noise(t))

The task is to choose u(t) to achieve F [f(x(t),u(t))] = ¥yqes- The function
f is an a-priori unknown. An important assumption (which we will relax
later) is that x(¢ 4+ 1) is independent of u(¢), so there is no opportunity to
choose suboptimal actions in the short-term to improve performance in the
long-term.

It is considerably easier to reason about the optimality of, and compute
the optimal controls for, a temporally independent problem, because all
decision making is concerned entirely with the outcome of the immediate
action. There is no need to consider the effects of the current action on the
future performance in later time steps.

Despite this relative ease, the problems still form an interesting class of
learning tasks. They are different from conventional supervised learning,
because a decision must be made at each time step, and that decision both
depends on inferences from earlier data and affects the future data available
to future decisions.

Inverse-model based learning control

The learned inverse model can provide a conceptually simple controller for
some temporally independent or dead-beat control problems. The memory-
base is arranged so that the input vectors of each datapoint are the con-
catenation of state and behavior vectors. The corresponding output is the
action needed to produce the given behavior from the given state.

—
(—

x(0), y(0) —= u(0)
x(1),y(d) —= uQ)

x(2),y@) — u@

x(n), y(n) — u(n)

With this memory-base there is a very simple algorithm for simulta-
neously learning control and gathering data in the important parts of the
action space.

Algorithm: Inv-Mod

10



Y des . . -
Figure 1: Given the initial data

(black dots) the inverse model (read

from the y axis to the z axis) can be

Behavior (y)

used to predict the action that will

achieve the desired behavior.

Action (u) Uchosen

1. Observe state x and goal behavior y ges.

-1 . . .

2. Choose u =1 (X,y4es). If there are insufficient data in the
memory-base to make a prediction, choose an experimental
action.

3. Perform action u in the real world.
4. Observe actual behavior, y.

5. Update the memory with (x,y) — u.

The strength of this algorithm in conjunction with a memory based
learner is demonstrated in Figure 1. The learning is aggressive: during
repeated attempts to achieve the same goal behavior, the action which is
applied is not an incrementally adjusted version of the previous action, but
is instead the action which the memory and the memory-based learner pre-
dicts will directly achieve the required behavior. In this simple monotonic
function the sequence of actions which are chosen by the Inv-Mod algorithm
are closely related to the Secant method [Conte and De Boor, 1980] for nu-
merically finding the zero of function by bisecting the line between the two
most recent approximation by the y = 0 axis. See [Ortega and Rheinboldt,
1970] for a good discussion of the multidimensional generalization of Secant.

If the learning process begins with an initial error Fjg in the action choice,
and we wish to reduce this error to Fy/ K, then the number of learning steps
is O(loglog K): subject to benign conditions, this learner jumps to actions
very close to the ideal action very quickly. Inv-Mod, trained initially with a

11



Figure 2: The true relation (shown
as the thick black line) is non-

monotonic. When a behavior is de-

True function

Inverse sired at the shown value, the ac-

Model . .
prediction tion that is suggested produces a be-

y d havior that differs from the desired
[

one. Worse, the new datapoint that
is added (at the intersection of the

black line and the vertical arrow)

Behavior (y)

will not change the inverse model

near y Jes, and the same mistake will

Action (u)

u
chosen be repeated indefinitely.

feedback learner, has been used with locally weighted regression by [Atkeson,
1989].

A commonly observed problem with the inverse model is that if the vec-
tor space of actions has a different dimensionality than that of behaviors then
the inverse model is not well defined. More insidiously, even if they are the
same dimensionality then if the mapping is not 1-1 (which implies globally
continuous and monotonic), or if there are some misleading noisy observa-
tions, then learning can become stuck in permanent pockets of inaccuracy
which are not reduced with experience. Figure 2 illustrates a problem where
a non-monotonic relation between actions and behaviors is misinterpreted
by the inverse model. Even if the inverse model had interpreted the data
correctly the averaging it would have done on u would have led to incorrect
actions [Moore, 1991a, Jordan and Rumelhart, 1992].

Forward-model based learning control

We now arrange the memory-base so that the input vectors of each datapoint
are the concatenation of state and action vectors. The corresponding output
is the actual behavior that was observed when the state-action pair was
executed in the real world.

12



—
(—

x(0) , u(©) —= y(0)
x(1),u@) —= y(@)

X(2), u@ —= y(2)

x(n), u(n) —= y(n)

To use this model for control requires more than a simple lookup. Actions
are chosen by on line numerical inversion of a memory-based forward model.
This is illustrated by the following algorithm

Algorithm: For-Mod

1. Observe state x and goal behavior y ge.

2. Perform numerical inversion: search among a series of can-
didate actions, ui,ug,.. ..

y; = f'(x,ui)
to find an action uy for which ¥, = y4es-

3. If no action was found within the allotted number of candi-
date actions (or allotted real time) then use an experimental,
or default, action.

4. Observe actual behavior, y, and update the memory with
(x,up = y).

Step 2 requires that a set of actions are searched to find one that predicts the
desired output. This computation is exactly equivalent to numerical root
finding over the empirical model. A number of root-finding schemes are
applicable, with desirability depending on the dimensionality of the actions,
the complexity of the function and the amount of real-time available with
which to perform the search.

e Generate all available actions sampled from a uniform grid over ac-
tion space. Use the action which is predicted to produce the closest
behavior t0 ¥y qes-

e Generate random actions, and again use the action which is predicted
to produce the closest behavior 10 y 4.

13



e Perform a steepest-ascent search from an initial candidate action to-
wards an action that will give the desired output. Finding the local
gradient of the empirical model is easy if locally weighted regression
is used. Part of the computation of the locally weighted regression
model forms the local linear map, and so it is available for free. We
may write the prediction local to x and u as

f(x + éx,u+ éu) = c+ Adx + Bdu + 2nd order terms

where ¢ is a vector and A and B are matrices obtained from the
regression, such that

_i 0 g _ 0
e=frxuw) Ay=gr Bi= g (1

e Use Newton’s method to iterate towards an action with the desired
output. If ug is an approximate solution, Newton’s method gives ug41
as a better solution where

Ugp41 = Ug + B_I(Ydes - C)

with B and c as defined in Equation 1. Newton’s method is less stable
in general, but if a good approximate solution is available (perhaps
from one of the earlier methods) it produces a very accurate action in
only two or three iterations.

If the partial derivatives matrix B is singular, or the action space and
state space differ in dimensionality, then robust matrix techniques based on
the pseudo-inverse can be applied to this procedure. The forward model can
also be used to minimize a criteria that penalizes large commands as well
as behavior errors, which makes this search more robust:

Cost = (Ydes - C)TQ(Ydes - C) + llTRll

The matrices Q and R allow control of which components of the error are
most important.

This learning control algorithm does not require a human trainer, nor
does it require external guidance as to when it should experiment. If an
action is wrongly predicted to succeed, then the algorithm will apply the
action, and the resulting new datapoint will prevent the same mistake in
future predictions.

14



Combining Forward and Inverse models

It is easy to combine the previous two algorithms so that the inverse model
can provide a good initial start-point for the search. The initial estimate of
a good action action is generated by

1
u =f (Xv Ydes)

Then ug can be evaluated using a memory-based forward model with the
same data.

y = f(x, ug)
Provided ¥ is close t0 y4.s, Newton’s method can then be used for further
refinement.

Experiment design for temporally independent learning

A nice feature of these algorithms is that in normal operation they perform
their own experimental design. The experiments are chosen greedily at the
exact points where the desired output is predicted to be, which for the
forward model is guaranteed to provide a useful piece of data.

In the early stages of learning, however, there may be no action that is
predicted to give the desired behavior. A simple experiment design strategy
is to choose actions at random. Far more effective, however, is to choose
datapoints which, given the uncertainty inherent in the prediction, are con-
sidered most likely to achieve the desired behavior. This can considerably
reduce the exploration required [Moore, 1991a, Schaal and Atkeson, 1994b,
Cohn et al., 1995].

Example (robotic): Billiards

Some experiments were performed with the billiards robot shown in Figure 3.
See [Moore, 1992, Moore et al., 1992] for more details of the experiment. The
equipment consists of a small (1.5m X 0.75m) pool table, a spring actuated
cue with a rotary joint under the control of a stepper motor, and two cameras
attached to a Datacube image processing system.

All sensing is visual: one camera looks along the cue stick and the other
looks down at the table. The cue stick swivels around the cue ball, which,
in these experiments, has to start each shot at the same position. A shot
proceeds as follows:

1. At the start of each attempt the object ball (the ball which we will
try to sink in a pocket) is placed at a random position in the half of

15



Figure 3: The billiards robot. In the
foreground is the cue stick which at-
tempts to sink balls in the far pock-

ets.

the table opposite the cue stick. This random position is selected by
the computer in order to avoid human bias.

. The camera above the table obtains the centroid image coordinates of

the object ball (xilg?g’ft, yggfe"ci), which constitute the state x.

. The controller then uses the forward-and-inverse algorithm to find an
action, u, that is predicted to sink the object ball into the nearer of
the two pockets at the far end of the table. The action is specified
by what we wish the view from the cue to be just prior to shooting.
Figure 4 shows a view from the cue camera during this process. The
cue swivels until the centroid of the object ball’s image (shown by the

object: Shown by the

vertical line) coincides with the chosen action, z¢

CTross.

. The shot is then performed and observed by the overhead camera. The
image after a shot, overlaid with the tracking of both balls, is shown
in Figure 5. The behavior is defined as the cushion and position on
the cushion with which the object ball first collides. In Figure 5 it is
the point b.

. Independent of success or failure, the memory-base is updated with

: above , above .cue
the new observation (2350, Yobinetr Tobject) — b-

16



Figure 4: The view from the cue

camera during aiming

Figure 5: Tracking the shot with the

overhead camera

17
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As time progresses, the database of experiences increases, hopefully con-
verging to expertise in the two-dimensional manifold of state-space corre-
sponding to sinking balls placed in arbitrary positions. Before learning be-
gins there is no explicit knowledge or calibration of the robot, pool table, or
cameras, beyond having the object ball in view of the overhead camera, and
the assumption that the relationship between state, action and behavior is
reasonably repeatable.

In this experiment the empirical model was locally weighted regression
using outlier removal and cross validation for choosing the kernel width.
Inverse and forward models were used together; the forward model was
searched with steepest ascent. Early experiments (when no success was
predicted) were uncertainty-based [Moore, 1991a]. After 100 experiences,
control choice running on a Sun-4 was taking 0.8 seconds.

A graph of the number of successes against trial number (Figure 6) shows
the performance of the robot against time. Sinking the ball requires better
than 1% accuracy in the choice of action, the world contains discontinuities
and there are random outliers in the data due to visual tracking errors, and
so it is encouraging that within less than 100 experiences the robot had
reached a 75% success rate. This is substantially better than the authors
can achieve and given the limited repeatability of the robot, perhaps close
to as high a success rate as possible.

This experiment demonstrates several important points. The primary
point is accuracy. The cue-action must be extremely precise for success,

18



and it would have been inadequate to use a function approximator which
merely gave the “general trends of the data”. The second point is the non-
uniformity of the data. Although the function being learned is only 3 inputs
— 1 output, it is perhaps surprising that it achieved the necessary accuracy
in only 100 datapoints. The reason is the aggressive non-uniformity of the
the data distribution—almost all clustered around state-action pairs which
get the ball in or close to a pocket.

4 Dead-beat control

A more complex class of learning control tasks occur when the assumption
of temporal independence is removed: x(t 4+ 1) may now be influenced by
x(t). Indeed, a common case is

y() = x(t+1) = f(x(t), u(?t))

and the very behavior we are controlling is the system state. The task may
be to regulate the state to a predefined desired value called a setpoint xqes
or a trajectory of states

Xdes (1), Xdes(2), Xdes(3) - - -

The clearest approach to achieving the trajectory is one-step dead-beat
control, in which each action is chosen to (in expectation) cause the imme-
diate next state to be the desired next state. Assuming the next state is
always attainable in one step, the action may again be chosen with only
the immediate decision in mind, and not paying attention to the needs of
future decisions and the methods of Section 3 can be used directly. The
ball-bouncing task of [Aboaf et al., 1989] provides an example.

5 Dynamic Control

In many dynamic control problems, it is not possible to return to the desired
setpoint or trajectory in one step: an attempt to do so would require actions
of infeasibly large magnitude or cause an instability. Dead-beat control will
fail on non-minimum phase systems, of which the pole on a cart is one
example. In these systems, one must move away from the goal in order to
approach it later.

19



Commonly, a controller performs more robustly and effectively if it is
encouraged to use smaller magnitude actions and return to the correct tra-
jectory in a larger number of steps.

This idea is posed precisely in the language of LQ (linear quadratic)
regulation, in which a long term cost function (over many time steps) is to
be minimized:

o0

Cost = 3 ((x(t) — Xdes) " Q(x(t) — Xaes) + u(t) 'Ru(r))

=0
where Q is a positive definite and R a positive semi-definite matrix. If, for
example, Q and R were set to identity matrices, then the sum of squared
deviation from desired performance would be penalized. The human super-
visor can specify the various magnitudes of importance of the various state
and action components by suitable adjustments to Q and R.

Not using dead-beat policies implies some amount of lookahead. LQR
control assumes a time invariant task and performs an infinite amount of
lookahead. Predictive or Receding Horizon control design techniques look
N steps ahead. These techniques will allow larger state errors in order to
reduce the size of the control signals. The exact tradeoff is set by choosing
Q and R in the optimization criteria. At this point it is not clear what
balance of Q and R is best for learning.

Once in this form, we can take advantage of the locally linear state-
transition function provided by locally weighted regression.

x(t+ 1) =c+ Ax(t) + Bu(?)

The optimal action can be obtained by solution of a matrix system called
the Ricatti equation [Sage and White, 1977]. If we translate the coordinate
system we can consider the problem as one in which the goal is to minimize

Cost = f: (x(1"Qx(t) + u(t) Ru(1))

subject to the linear system x(t+1) = Ax(¢) 4+ Bu(t) Then, optimal control
theory gives us, that subject to our assumption of local linearity, the long
term cost starting from state x is x/ Px where P is obtained by running the
following iteration to convergence.

1. P:=Q
2. P:= Q+ATP[I+BR'BTP]'A
3. Unless converged, goto Step 2.

20



The same theory gives the optimal action u as a simple gain matrix K
u=—-(R+BTPB)"'B'PAx = —-Kx

Policies based on LQR designs will not be useful if the task requires
operation outside a locally linear region. The LQR controller may actually
be unstable. For example, the following system

Thp1 = 20p + U + Trug (2)

has a local linear model at the origin (z = 0) of A =2 and B = 1. For the
optimization criteria Q = 1 and R = 1, K = 1.618. For a goal of moving to
the origin, this linear control law is unstable for x larger than 0.95. In cases
where the nonlinearity is significant the full dynamic programming based
policy design approach may be used (Section 7).

6 Unknown optimal setpoints

The LQR method combined with LWR empirical modeling is a direct ap-
plication of conventional control theory. The learning task is considerably
harder if the desired trajectory is unknown in advance, and instead must
itsell be optimized in order to achieve some higher level task description.

In the general case, it is necessary to learn an optimal trajectory in
addition to learning to optimally track the trajectory. That case we leave
until the next section. A special case is when the task is a regulation task,
which means that the optimal solution involves maintaining the system at a
fixed setpoint. If the location of the setpoint were known in advance we could
use conventional LQR in combination with our model. If the location of the
setpoint is unknown, we have an additional part of the task to learn, which
can be addressed by the shifting setpoint algorithm [Schaal and Atkeson,
1994a).

The shifting setpoint algorithm (SSA) attempts to decompose the control
problem into two separate control tasks on different time scales. At the fast
time scale, it acts as a nonlinear regulator by trying to keep the controlled
system at some chosen setpoints. On a slower time scale, the setpoints are
shifted to accomplish a desired goal.

Experiment Design with Shifting Setpoints
The major ingredient of the SSA is a statistical self-monitoring process.

21



Whenever the current location in input space x has obtained a suflicient
amount of experiences such that a measure of confidence rises above a thresh-
old, the setpoints are shifted in the direction of the goal until the confidence
falls below a minimum confidence level. At this new setpoint location, the
learning system collects new experiences. The shifting process is repeated
until the goal is reached. In this way, the SSA builds a narrow tube of data
support in which it knows the world. This data builds the basis for the first
success of the regulator controller. Subsequently, the learned model of the
world can be used for more sophisticated control algorithms for planning or
further exploration.

Example (robotic): Devil Sticking

The SSA method was tested on a juggling task known as devil sticking. More
details may be found in [Schaal and Atkeson, 1994b, Schaal and Atkeson,
1994a). A center stick is batted back and forth between two handsticks.
Figure 7 shows a sketch of our devil sticking robot. The juggling robot uses
its top two joints to perform planar devil sticking. Hand sticks are mounted
on the robot with springs and dampers. This implements a passive catch.
The center stick does not bounce when it hits the hand stick, and therefore
requires an active throwing motion by the robot. To simplify the problem the
center stick is constrained by a boom to move on the surface of a sphere. For
small movements the center stick movements are approximately planar. The
boom also provides a way to measure the current state of the center stick.
The task state is the predicted location of the center stick when it hits the
hand stick held in a nominal position. Standard ballistics equations for the
flight of the center stick are used to map flight trajectory measurements into
a task state. The dynamics of throwing the devilstick are parameterized by
5 state and 5 action variables, resulting in a 10/5-dimensional input/output
model for each hand.

Every time the robot catches and throws the devil stick it generates an
experience of the form (xx, ug, Xx4+1) where x; is the current state, uy is the
action performed by the robot, and xx41 is the state of the center stick that
results. The SSA algorithm was applied in the following steps.

1. Regardless of the poor juggling quality of the robot (i.e., at most
two or three hits per trial), the SSA makes the robot repeat these
initial actions with small random perturbations until a cloud of data
is collected somewhere in state-action space of each hand. An abstract
illustration for this is given in Figure 8a.
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Figure 7: (a) an illustration of
devil sticking, (b) sketch of our
devil sticking robot: the flow of
force from each motor into the
robot is indicated by different
shadings of the robot links, and
a position change due to an ap-
plication of motor 1 or motor 2,
respectively, is indicated in the
small sketches.

2. Each point in the data cloud of each hand is used as a candidate for
a setpoint of the corresponding hand by trying to predict its output
from its input with LWR. The point achieving the narrowest local con-
fidence interval becomes the setpoint of the hand and an LQ controller
is calculated for its local linear model. The linear model is estimated
by LWR. By means of these controllers, the amount of data around
the setpoints can quickly and rather accurately be increased until the
quality of the local models exceeds a certain statistical threshold (Fig-

ure 8b).

3. At this point, the setpoints are gradually shifted towards the goal set-
points until the data support of the local models falls below a statistical
value (Figure 8b).

4. The SSA repeats itself by collecting data in the new regions of the
workspace until the setpoints can be shifted again (Figure 8c). The
procedure terminates by reaching the goal, leaving a ridge of data in
space (Figure 8d).

The LQ controllers play a crucial role for devil sticking. Although we
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Figure 8: Abstract illustration how the SSA algorithm collects data in space: (a) sparse
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statistically exploit data rather thoroughly, it is nevertheless hard to build
good local linear models in the high dimensional forward models, particu-
larly at the beginning of learning. LQ control has useful robustness even if
the underlying linear models are still rather imprecise.

The SSA was tested in a noise corrupted simulation and on the real
robot. Learning curves of the real robot are given in Figure 9. The learning
curves are typical for the given problem. It takes roughly 40 trials before
the setpoint of each hand has moved close enough to the other hand’s set-
point. For the simulation, a breakthrough occurs and the robot rarely loses
the devilstick after that. At this time, about 400 data points have been
collected in memory. The real robot’s learning performance is qualitatively
the same, only that due to the stronger nonlinearities and unknown noise
sources learning takes more trials to accomplish a steady juggling pattern.
Peak performance of the robot was more than 2000 consecutive hits.

7 Optimal Control with non-linear dynamics and
costs

As before, we assume an unknown function
x(t + 1) = f(x(t), u(t)) 4 noise(t)
We are given a cost function, which is known by the controller:
c(t) = Cost(x(t), u(t))

The task is to minimize one of the following expressions:

[ele] € 00 n
max 1
t —
tE_O c(t) or ;_0 c(t) or ;_07 c(t) where 0 <y <1 or Jim - ;_0 c(t)
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The attractive aspect of these formulations are their extreme general pur-
poseness. All of the previous control formulations are special cases of at
least one of these.

The delayed rewards nature of these tasks means that actions we choose
at time ¢ do not only affect the quality of the immediate reward but also
affect the next, and all subsequent states, and in so doing affect the future
rewards attainable. This leads to immense computational difficulties in the
general case.

A large literature on such learning control problems has sprung up in
recent years, with the general name of reinforcement learning. Overviews
may be found in [Sutton, 1984, Barto et al., 1989, Watkins, 1989, Barto et
al., 1994, Moore and Atkeson, 1993]. In this paper we will restrict discussion
to the applications of memory-based learning to these problems.

Again, we proceed by learning an empirical forward model. In this case,
though, the controller design is computationally much more expensive, al-
though conceptually easy. A general-purpose solution can be obtained by
discretizing state-space into a multidimensional array of small cells, and
performing a dynamic programming method [Bellman, 1957, Bertsekas and
Tsitsiklis, 1989] such as value iteration or policy iteration to produce two
things:

1. A value function, mapping cells onto the minimum possible sum of
future costs if one starts in that cell.

2. A policy, mapping cells onto the optimal action to take in that cell.

Value iteration can be used in conjunction with learning a world model.
It is, however, extremely computationally expensive. For a fixed quantiza-
tion level, the cost is exponential in the number of state variables. The most
computationally intensive version would repeat value iteration after every
update of the memory base:

Algorithm: Mem-Based-RL

Observe the current state x(¢) and choose action u = = (x)
Perform action, and observe next state x(t + 1)

Add (x(¢),u) — x(t + 1) to the memory base.

= W N =

Recompute the optimal value function and policy using value
iteration and the new model.
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Because of the enormous expense of value iteration, the dynamic pro-
gramming would normally be performed only at the end of each trial, or as
an incremental parallel process in the manner of [Sutton, 1990b, Moore and
Atkeson, 1993, Peng and Williams, 1993].

Experiment design

This algorithm does not explicitly explore. If the learned model contains
serious errors, a part of state space which wrongly looks poor will never be
visited by the real system, and so the model will never be updated. On
the other hand, we do not want the system to explore every part of state
space explicitly—the supposed advantage of function approximation is the
ability to generalize parts of the model without explicitly performing an
action. To resolve this dilemma, a number of useful exploration heuristics
can be used, all based on the idea that it is worth exploring only where there
is little confidence in the empirical model [Sutton, 1990b, Kaelbling, 1990,
Moore and Atkeson, 1993, Cohn et al., 1995].

Example: Container Filling

The problem involves filling containers with variable numbers of non-identical
products. The product characteristics also vary with time, but can be
sensed. Depending on the task, various constraints are placed on the container-
filling procedure regarding the total weight of a batch and minimum weight
of individuals.

Conventional practice is that controls for such equipment are chosen
by human operators, but this choice is not easy as it is dependent on the
current product characteristics and the current task constraints. The de-
pendency is often difficult to model and highly non-linear. For example, for
one given control parameters setting the amount of wastage varies approxi-
mately according to product mean weight and standard deviation according
to the relationship in Figure 10. Furthermore, product characteristics drift
randomly during the shifts.

In our experiments, the state of the system was four dimensional (plus
time), and container-filling was optimized over batches of several thousand
containers. Locally weighted regression learned a dynamic model, and value
iteration was performed over a 160,000-cell decomposition of state space.
The experimental result were deemed a success, and learned a considerably
better controller quickly.

Experimental details are not available, and so instead we illustrate this
form of learning by means of a very simple simulated example. Figure 11
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Sensor One

depicts a frictionless puck on a bumpy surface. It can thrust left or right with
a maximum thrust of +4 Newtons. Because of gravity, there is a region near
the center of the hill at which the maximum rightward thrust is insufficient
to accelerate up the slope. If the goal is at the hill-top, a strategy that
proceeded by greedily choosing actions to thrust towards the goal would get
stuck.

This is made clearer in Figure 12, a phase space diagram. The puck’s
state has two components, the position and velocity. The hairs show the
next state of the puck if it were to thrust rightwards with the maximum
legal force of 4 Newtons. Notice that at the center of state-space, even when
this thrust is applied, the puck velocity decreases and it eventually slides
leftwards. The optimal solution for the puck task, depicted in Figure 13, is
to initially thrust away from the goal, gaining negative velocity, until it is on
the far left of the diagram. Then it thrusts hard right, to build up suflicient
energy to reach the top of the hill.

We performed two experiments.

e Experiment 1: Conventional Discretization. This used the con-
ventional reinforcement learning strategy of discretizing state space
into a grid of 60 x 60 cells. The reinforcement learning algorithm
was chosen to be the as efficient as possible (in terms of data needed
for convergence) given that we were working with a fixed discretiza-
tion. All transitions between cells experienced by the system were re-
membered in a discrete state transition model. A learning algorithm
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Figure 11: A frictionless puck acted
on by gravity and a horizontal
thruster. The puck must get to the
goal as quickly as possible. There

are bounds on the maximum thrust.

Figure 12: The state transition
function for a puck that constantly

thrusts right with maximum thrust.
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Figure 13: The minimum-time path
from start to goal for the puck on
the hill. The optimal value function
is shown by the background dots.
The shorter the time to goal, the
larger the black dot. Notice the dis-

continuity at the escape velocity.

-1 0 1
Position

similar to Dyna [Sutton, 1990b] was used with full value iteration
carried out on the discrete model every time-step. Exploration was
achieved by assuming any unvisited state had a future cost of zero.
The action, which is one-dimensional, was discretized to five levels:
{—4N,—-2N,0N,2N,4N}.

e Experiment 2: LWR-based Model. The second experiment was
the same as the first, except that transitions between cells were filled
in by predictions from a locally weighted regression forward model
x(t + 1) = f(x(t),u(t)). Thus, unlike experiment 1, many discrete
transitions which had not been physically experienced were stored in
the transition table by generalization from the real experiences.

The experimental domain is a simple one, but its empirical behavior demon-
strates an important point. Generalizing the forward model in combination
with value iteration can dramatically reduce the amount of real-world data
needed. The graphs of the first five trajectories of the two experiments are
shown in the following table.
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Trial 1

Trial 3 Trial 4 Trial 5

Exp. 1

Exp. 2
In total, the number of real-world transitions needed by the experiments
before permanent convergence to a near optimal path (within 3% of optimal)

was:

Experiment 1 (discrete model) 28,024 steps to converge

Experiment 2 (model generalized with LWR) | 291 steps to converge

The computational costs of this kind of control are considerable. Although it
is not necessary to gather data from every part of the state space when gen-
eralization occurs with a model, the simple form of value iteration requires
a multidimensional discretization for computing the value function. The
following question is the subject of considerable ongoing research: How can
we reduce the cost of value iteration when a model has been learned? (e.g.
[Moore, 1991b, Mahadevan, 1992, Atkeson, 1994]).

8 The consequences of the memory-based approach

The memory-based approach leads to fairly different kinds of autonomous
control than have been previously studied in the literature. This is primarily
because the resulting algorithms explicitly perform empirical modeling as
well as designing their controllers. Since this approach is different, it is
worth discussing the strengths and weaknesses.

e Flexibility, adaptive bias and adaptive resolution of local meth-
ods.

Cross-validation and local-kernel-optimization approaches can accom-
modate (i) functions with critical, fine, levels of detail, (ii) functions
with considerable noise to smooth away, (iii) functions with differing
input relevance and scaling. Some critical parts of the state space can
be represented at very fine detail while other sparser, less important
regions are represented merely with their general trends.
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e Automatic, empirical, local Taylor expansions. Locally weighted
regression returns a local linear map. It performs the job of an engi-
neer who is trying to empirically linearize the system around a region
of interest. It is not difficult for neural net representations to provide a
local linear map too, but other approximators such as straightforward
nearest neighbor or CMAC [Albus, 1981, Miller, 1989] are less reliable
in their estimation of local gradients—in the case of CMAC this is
because predictions are obtained from groups of locally flat tiles.

e Automatic, confidence estimations. Locally weighted regression
can also be modified to return a confidence interval along with its
prediction. This can be done heuristically, with the local density
of the data providing an uncertainty estimate [Moore, 1991a] or by
making sensible statistical assumptions [Schaal and Atkeson, 1994b,
Cohn et al., 1995]. In either case, this has been shown empirically to
dramatically reduce the amount of exploration needed when the uncer-
tainty estimates guide the experiment design. The cost of estimating
uncertainty with memory-based methods is small. Neural networks
can also be adapted to return confidence intervals [MacKay, 1992,
Pomerleau, 1994], but approximations are required, and the compu-
tational cost is larger. Worse, any parametric model (such as global
polynomial regression or a neural net) that predicts confidence statis-
tically is making the assumption that the true world can be modeled
by at least one set of its parameters. If this assumption is violated the
confidence intervals lose any useful interpretation. We are unaware of
any methods for obtaining confidence intervals from a CMAC trained
online.

e Adding new data to a memory-based model is cheap. In con-
trast, users of neural networks for control must make a choice. Either
they only use each piece of new data once, or else they must remember
all data and repeatedly pass all data through the net each time a new
experience arrives. Neither solution is satisfactory.

e One-shot learning. We do not make the same mistake twice. When
we make an error there is no small incremental adjustment to compen-
sate. Instead we can just switch to the action most likely to succeed
given the single new datapoint. In some cases, the convergence to
optimal performance can be superlinear (reducing error by a factor K
requires only O(loglog K') steps.
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e Non-linear, yet no danger of local minima in function approx-
imation. Locally weighted regression can fit a wide range of complex
non-linear functions, and finds the best fit analytically, without requir-
ing any gradient descent. There are no dangers of the model learner
becoming stuck in a local optimum.

e No interference. We don’t care about what we task we are cur-
rently learning or if data distribution changes. In contrast anything
trained incrementally with a delta rule, or linear adaption rule eventu-
ally forgets old experience and concentrates all representational power
on current experience.

e Costs increase with data. Memory and prediction costs increase
with the amount of data. Memory costs are clearly linear, and are
not generally a problem. Even if the system makes 10 observations a
second and operates for three months it only generates 10° items of
data, which can easily be stored on fast access storage.

Computational costs are more serious. Although computers and signal
processors are powerful enough to cope with large memory-bases, there
will always be a limit to the memory-base size that can be accommo-
dated in real-time. One approach is to simply throw away some data,
perhaps selected according to predictive usefulness or age. A more
attractive solution is to structure the data so that very close approxi-
mations to the output predicted by locally weighted regression can be
obtained without explicitly visiting every point in the database. There
are a surprisingly large number of algorithms available for doing this,
mostly based on kd-trees [Preparata and Shamos, 1985, Omohundro,
1987, Moore, 1990, Grosse, 1989, Quinlan, 1993, Omohundro, 1991,
Deng and Moore, 1995].

e Delta-rule increments are difficult. It is very easy to add and
remove datapoints from the model. But some other learning control
schemes use a delta-rule update step when learning control, for ex-
ample [Miller et al., 1987, Miller, 1989, Jordan and Rumelhart, 1992].
Standard memory-based methods cannot be updated in this way.
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9 Discussion

There are two questions that can be asked. How useful is it to learn models
in order to learn control? And what is the benefit of using memory-based
methods to learn those models? This paper has examined and empirically
evaluated both questions—throughout the bulk of the paper, the emphasis
was on the ways that forward and inverse learned models can be used. The
experiments were all performed with memory-based models. The previous
section discussed in more detail the pros and cons of memory-based function
approximators as the specific choice of model learner.

Perhaps the most important issue is autonomy. Why would we be inter-
ested in learning control as an engineering application unless the goal is to
reduce the amount of human programming, decision-making and expertise
needed to control a process or robot? In this survey the autonomy has been
strengthened in the following ways:

e A mathematical model of the system to be controlled does not need
to be derived. The model is obtained empirically.

e The empirical modeling (“learning from data”) is itself highly auto-
matic. The wide class of functions that can be learned by memory-
based methods, and the wide variety of self tuning methods (cross-
validation, local kernel optimization etc.) reduce the need for human
tweaking.

e The controller is also automatically designed. Depending on the class
of control task, this can happen in a number of different ways.

e The training phase (“experiment design”) is also automated. All the
algorithms we have seen decide themselves where they need data.

There is little doubt that these victories for autonomy can be converted into
general purpose packages for the benefit of robotics and process control. But
it should also be understood that we are still a considerable distance from full
autonomy. Someone has to decide what the state and action variables are
for a problem, how the task should be specified, and what class of a control
task it is. The engineering of real-time systems, sensors and actuators are
still required. A human must take responsibility for safety and supervision
of the system. Thus, at this stage, if we are given a problem, the relative
effectiveness of learning control, measured as the proportion of human effort
eliminated, is heavily dependent on problem-specific issues.
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