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Abstract

Traditional approaches to joint control required
accurate modelling of the system dynamic of the
plant in question. Fuzzy Associative Memory
(FAM) control schemes allow adeguate control
without a model of the system to be controlled.
This paper presents a FAM based joint controller
implemented on a humanoid robot. An empirically
tuned Pl velocity control loop is augmented with
this feedforward FAM, with considerable reduction
in joint position error achieved online and with
minimal additional computational overhead.

1 Introduction

Research into control techniques for highly non-linear and
systems with unknown or difficult to model dynamics is
becoming more and more prevalent. Learning systems that
are capable of providing adequate control of highly complex
systems are quickly gaining acceptance as suitable control
techniques.

In the field of humanoid robotics, learning systems are
appealing for two main reasons. their ability to generate
control  without accurate system characterization
information, and the parallels with the biological world.
Humanoid robots are typically multi-jointed systems, with
each joint subject to complex and varying loads as the robot
moves about.

Designing controllers that maintain a high level of
tracking and stability under a range of load conditions is
challenging. Using traditional model-based control, the
problem is addressed by calculating the forward model of
the torques on the joints and applying an appropriate
compensating signal.

However, humanoid robots are difficult to model
mathematically. Hence anaytically finding feedforward
dynamics for model based control can be both a complicated
and time consuming process. Additionally, contact with the
unpredictable loads from the rea world and human
interaction further complicates the modelling problem.

The motions performed by a humanoid robot are
typically cyclic, such as walking and grasping. The loads
experienced by each joint are consequently cyclic, and as

such, feedforward controllers may be used to great effect to
predict and compensate the expected loads.

Adaptive control techniques such as Fuzzy Logic and
Associative Memories can be used to implement this
feedforward component without explicitly modelling the
system dynamics.

This paper presents the use of a Fuzzy Associative
Memory (FAM) as a feedforward addition to a traditional
control schema. This component provides an additive
compensating signal, effectively predicting the known
disturbances of a cyclic motion.

1.1 Previous Research

The area of adaptive control has been widely researched and
in particular, the use of learning systems in adaptive joint
control of under-modelled systems has been previously
investigated.  Three main methods are used: neural
networks, fuzzy logic systems, and  genetic
agorithms [Commuri and Lewis, 1996; Kee, 2002; Si et al.,
1999]. Of these methods, fuzzy associative memory is
generally the most suited to on-line learning.

Collins[2003] outlines the use of a Trajectory Error
Learning (TEL) schema, whereby the measured error of the
systemislearned by a neural network feedforward block. In
a poorly tuned system, consisting of a wheelchair robot, the
initial error is significant, and the compensating signal is
heavily updated every iteration. As the system learns, the
measured error is reduced and the compensating signal
undergoes fewer modifications. Kee[2002] adapted this
TEL for use in the joint controllers of a humanoid robot.
Both methods employ the use of a Cerebellar Modelled
Articulated Controller (CMAC) as the learning component
to the system [Kee and Wyeth, 2002].

An dternative to the CMAC is the use of a Fuzzy
Associative Memory as a feedforward control element for
adaptive joint control. Severa researchers [Commuri and
Lewis, 1996; Pan and Woo, 2000] show methodol ogies that
develop appropriate control for an n-degree-of-freedom
planar robot arm. Both teams apply their methodology to a
simulated two degree of freedom arm with successful
results.

Si, Zhang and Tang [1999] built on Pan and Woo
[2000], and augmented a PD controller with a Fuzzy
Controller on a two-degree-of-freedom planar robotic arm.



The Fuzzy Adaptive Controller was then trained to
compensate for the gravity disturbance experienced by the
tool point. They used a Genetic Algorithm to learn the
membership functions parameters which are traditionally
determined by an expert human. The GA was used to
determine the optimal membership width of a set of triangle
membership functions to control a simulated inverted
pendulum on a cart.

1.2 Paper Outline

Section 2 presents the experimental setup in the form of the
GuRoo humanoid robot and the associated simulator.
Section 3 outlines the FAM as used in this research,
including the parameters of the membership functions and
association tables.

Results obtained from the experimental system with both
the uncompensated and compensated architecture are
outlined in Section 4. These results include experiments
with changing system dynamics and the impact co-
evolutionary learning systems. Section 5 draws conclusions
based on these resullts.

2 GuRoo Project

The GuRoo is a humanoid robot with 21 degrees of freedom
(Figure 1). It stands 1.2m tall and weighs approximately
35kg with onboard computation and power. In addition, the
project uses a graphical simulator which accurately models
the dynamics of the multi degree of freedom robot.

Figure 1 GuRoo Robot and location of degrees of freedom

2.1 TheRobot

The joints of the robot consist of 15 high-powered DC
motors to actuate the legs and spine, as well as six smaller
servo motors to drive arm movements.

These motors are controlled by a distributed computing
system, comprising six dedicated motor control boards and

a central computer. The central computer is a mini-ITX
motherboard with a 1GHz CPU running Windows

XP (Figure 2).
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Figure 2 GuRoo distributed control architecture

Trajectories for each of the joints are calculated, and the
desired joint velocities are sent to each motor control board
viaa CAN network. Each motor control board consists of a
Motorola 68HC376 processor and discrete power
electronics capable of controlling three motors. The control
boards are responsible for running local control loops for
these motors, and can measure and send diagnostic
information back to the main controller. The local control
loops run at 250 Hz, while the main trajectory generator
runs five times slower, at 50 Hz.

2.2 GuRoo Simulator

The simulator is based on DynaMechs[McMillian, 1995], a
dynamic simulation tool for multi-chained, star configured
robots. It has been adapted to include specific characteristics
of the GuRoo, including the distributed nature of the control
architecture and the CAN bus. The GuRoo's chest is
modelled as a mobile base with five chains arranged in a
star configuration representing the arms, legs and head. The
modified Denavit-Hartenburg parameters and CAD surface
area graphically represent the robot, as seen in Figure 3.

Mass digtribution information in the form of inertia
tensors is combined with actual motor characteristics to
simulate realistic interactions between links. The simulator
provides the same programmatic interface as the firmware,
with the ability to read encoders, measure current
consumption and to transmit and receive CAN packets.
This interface also provides simulated sensor information
congruous with the real world sensors located on the robot.

The GuRoo has a vision system consisting of two Basler
Firewire cameras. This system is capable of capturing and
processing 30 frames per second. It can identify the soccer
ball, coloured markers and soccer goas necessary to
compete in the RoboCup Humanoid League.

Capacitive force sensors located in the feet are used to
calculate the zero moment point acting on the robot.



Figure 3 GuRoo Simulator

3 Fuzzy Associative Memory

A Fuzzy Associative Memory (FAM), employing the use of
triangular membership functions, was implemented as the
feedforward component in a Traectory Error Learning
schema. The FAM component consists of two sub-
components, the fuzzy logic rules and the input/output
mapping relation known as the Associative Memory.

3.1 Fuzzylogic

A fuzzy logic system contains sets used to categorise input
data (fuzzfication), decision rules that are applied to each
set, and a way of generating an output from the rule results
(defuzzfication).

In the fuzzification stage, a data point is assigned a
degree of membership (DOM) in the each set. The DOM is
determined by a membership function. The membership
function is often atriangular function [Castro, 1995] centred
at agiven point Xo:

DOM (x) = max{L |2, 0) @

The width of the membership function w is then set so that
adjacent sets overlap, ensuring that the total degree of
membership is constant. An example of four triangular
membership functions is shown in Figure 4. Here each
input is assigned to at most two of the sets “tiny”, “small”,
“medium”, or “large”.

Once the input has been categorised into sets, rules are
applied to the sets. Therules are if...then statements, e.g. IF
inputl=tiny AND input2=small THEN outputl=3. Each
rule inherits a degree of membership (or a degree of
applicability) which is the product of the degrees of
membership of the inputs. These rules may be input by a
human expert before the system runs, but in the case of
FAM, therules are learned online.

Defuzzification is the name for a procedure to produce a
real (non-fuzzy) output which combines the fuzzy rule

Degree of
Membership

\ 4

Value
Figure 4 Example of membership functions for four fuzzy sets

results together. It generally takes one of severa forms; in
this case, each output is the weighted sum of applicable
rules. The effect isto interpolate outputs between the points
specified by the rules.

In the GuRoo system, the inputs are the phase of the
current cyclic action, and the error in each of the joints.
Thirty-six phase sets are used, and sixty-four error sets.
Each of these sets has a triangular membership function,
with a constant width. The outputs produced are the
positional corrections to apply to each of the joints. Each
joint has its own independent set of rules; i.e., the state of
other joints is not considered when calculating corrections
to a specific joint.

The number of sets to use in a particular application
depends on how rapidly the output changes with respect to
the inputs. A fuzzy logic control system effectively
interpolates between known output values, so a large
number of triangles means better interpolation, but higher
memory use and less extrapolation. In the case of the
GuRoo system, these numbers were chosen by knowledge
of the range of expected data, and tuned by experimentation.

3.2 Associative Memory

Associative Memory is a type of memory with a generalised
addressing method: the address is not the same as the data’'s
location, as in traditional memory [Skapura, 1995]. An
associative memory alows a fuzzy rule base to be stored:
the inputs are the degrees of membership, and the outputs
are the fuzzy system’s output. Such a system is termed a
fuzzy associative memory (FAM) [Si et al 1999]. A FAM is
particularly useful if learning algorithms are applied,
becauseit alows rules to be updated easily.

FAM may be implemented in software for restricted
inputs by assigning a number to each possible input set (e.g.
“tiny”=1, “small”=2, etc.), and using the numbersto index a
multidimensional array (the number of dimensions being the
number of input variables). Each element of the
multidimensional array isthen alist of the output values. In
the case of this type of FAM control, the output is the
position correction that must be made.

Using the associative memory presented thus far, the
system has a storage method, and a way of calculating
outputs, but no way of learning from its inputs. The
learning process is governed by a learning rule; the type of
data being learned influences the choice of learning rule. In
this case, the learning rule for an output correction Ax is

DX, = DX,y tOE
where a is the learning rate (which controls how much the



existing knowledge is weighted relative to the new
knowledge), and € is the position error that was observed
[Collins, 2003; Russell and Norvig, 2003]. This learning
rule converges to a stable output state when the error is zero.
In the case of the GuRoo system, the learning rule is applied
to every element of the associative memory where the
degree of membership for the input variables is non-zero.
(Other aternatives include applying the rule to only the
memory element with the highest degree of membership.)

3.3 Feedforward block

The feedforward FAM component outlined above is used as
the learning component of a Traectory Error Learning
(TEL) architecture (Figure 5). A conventional feedback
control loop is implemented on the motor control boards,
with the desired position as the input to the system. Using
the desired position and the trajectory phase as inputs to the
system, the FAM generates a compensating signal which is
added to the original signal’s position. The updating of the
table values in the associative memory component is driven
by the position error measured in the system. As the error
decreases, the change in values of the associative memory
and hence compensating signal tends towards zero.

In general, each output should be calculated using all the
joint position information available. In practice, this creates
a prohibitively large FAM array with a large number of
inputs: with n inputs, and m sets per input, memory usage is
O(m"). So the output for each joint was determined only by
its own error, not that of other joints. Effectively, each joint
used an independent FAM controller.

Using a set of independent controllers can pose
problems, however, because the dynamics of the joints are
not actualy independent. Because the dynamics are
coupled, the FAM learning systems can potentially
coevolve. The extent to which this coevolution helps or
hinders the FAM system isinvestigated later in the paper.

3.4 Sensor Deay, Actuator Delay, and Temporal
Credit Assignment

The fuzzy logic system as described so far presumes that the
sensing and actuation is instantaneous. |If sensing is not
instantaneous, or there is a delay between sensing and

processing the data (as is the case in GuRoo0), then the
desired position from the trajectory generator must be
delayed so that it corresponds with the measured position.
This is not difficult in the case of the GuRoo because the
sensor delay is known accurately. Activity queue number 1
in Figure 5 compensates for this delay.

A more difficult problem arises when the actuator
responds slowly, because of communication delays, inertia
in the system, or a poorly tuned control loop. In this case,
errors will not be corrected at the point in the associative
memory that caused them. Further problems may flow on,
such as induced unstable oscillations. This problem is
known as the temporal credit assignment problem.

For a general plant, the solution is difficult to overcome,
especialy when no a priori estimate of this time is
available. In the case of the GuRoo, the time delay is
similar across joints because of the similar motors and
hardware used, and trial solutions may be estimated and
tested in simulation. One can obtain an initial estimate of
the magnitude of this time delay by applying an impulse
input from the associative memory and observing the
system’s output. Once an estimate of this actuator delay
time has been made, an activity queue of this length may be
used to store past inputs. When errors are observed, the
portion of the table that is updated with the desired
correction is determined by the earliest entry in the activity
gqueue. Activity queues?2 and 3 in Figure 5 represent this
actuator delay compensation. Their lengths were tuned as
described above. This essentially places all credit or blame
a the one time, a variant of the common TD learning
agorithm. Because of the fuzzy nature of the table, the
temporal credit is spread across two phase sets and two error
sets. Fully solving the temporal credit problem in general is
extremely complex, and essentially needs a complete system
model of its own.

Although the input and output delays may seem
symmetrical (a delay between input and output), changing
the point where FAM is applied effectively changes the
FAM system’s objective. In the case of GUR0O, one of the
objectives of FAM is to compensate for the dow system
response, so separate input and output delay lines are
necessary.
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Figure 5 Fuzzy Associative Memory Implementation
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actuator delay length of 0.24 seconds was used. The robot

visibly improved its balance with FAM as opposed to
without FAM—TFigure 7 shows the tracking. Table 1 shows

the RMS error in both cases. However, when no actuator

activity queues were used to address the temporal credit
assignment problem, FAM created instabilities that caused
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for greater steady state stability. Fewer triangles allowed
for faster learning and better generalisation.

The adaptive nature of FAM suggests testing it in a
dynamic environment. The previous crouching test may be
extended to alifting situation. The robot is alowed to learn
an appropriate compensation for its crouching motion, but
after five cycles is given a mass of 5kg in its aams. The
FAM controller must then relearn the dynamics of the
system.

Figure 10 shows the joint position errors when the robot
lifts a load. The point where the load is applied is easily
visible, but the motion quickly returns to its previous
behaviour. A temporary increasein the error is seen, but the
system converges to nearly the same long-term errors asin
Figure 7.

In each of these tests, the robot started in a dightly
crouched position so that it would not be moving to its joint
limits. Because FAM knows nothing of the robot’s joint
limits, it may try to compensate past the robot’s joint limits
if the robot is operating near them. This creates a highly
discontinuous force as the joint hits the limit, effectively
violating the assumption underlying FAM that the system
has continuous derivatives, and hence destabilizing the
agorithm.
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Figure 12 RMS position error vs time, with FAM disabled during a
normal walking gait

The phenomenon of coevolution, where the learning of
one joint affects the response of the system to the other
joints, was observed, but not as dramatically as was first
thought. Joint position errors in this case are shown in
Figure 11. The knee error is amost the same asin Figure 7,
differences are more apparent later in the evolution. In fact,
the RMS knee error is dightly higher in Figure 11 (FAM
applied to the knee only); it is 1.93 degrees, higher than the
RMS error of 1.87 degrees when FAM was applied to al
joints. Not observing unstable coevolution is heartening,
because the most obvious solution to coevolution problems
would be to use al joint errors as inputs to the associative
memory, creating a many-dimensional lookup table that
consumes exponentially more memory than the present
implementation. However, other joint positions are quite
well correlated with the gait phase, so the gait phase
essentially encodes the other joint positions for a given
motion. Although this approximation is certainly not exact,
it appearsto produce a favourable space/accuracy tradeoff.

For maximum utility, the one set of FAM parameters
must be stable for awide variety of period motions. To test
this, the more complex motion of walking was used to test
FAM’s dability and effectiveness. The same FAM
parameters as for crouching were used.
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Figure 12 and Figure 13 show the joint position error
against time while walking with FAM disabled and enabled,
respectively. The improvement with FAM is less than for
the crouching motion, with the ankle pitch showing greatest
improvement. It is thought that more improvement is
observed in the crouching motion than the walking motion
because the knees are not loaded as much in the walking
motion as in the crouching motion, and the FAM system
was tuned based on the crouching motion. This raises the
guestion as to whether tuning control gains is easier than
tuning FAM parameters for a particular application.

5 FutureWork

FAM has been shown to improve joint-tracking errors, but
thereis clearly room for further improvement. In particular,
the method for tuning FAM parameters is rather ad-hoc,
requiring an understanding of the tradeoffs involved.
Further, some more general parameters, such as the optimal
set of membership functions and the method of temporal
credit assignment, are very complex in general. Using other
learning techniques (such as used by Si et al [1999]) can
help tune the FAM parameters in a specific situation, but
tuning al the parameters would generally take a large
amount of learning time. Hence further work should focus
on finding subsets of this parameter space that are likely to
contain near-optimal sets of parameters.

In addition to the parameter search improvements, the
techniques here could be extended to higher level robotic
control tasks. For example, FAM could be used to ad
toolpoint path planning.

6 Conclusions

Complex multi-degree of freedom robotic systems are
difficult to model and hence difficult to control using
traditional analytical techniques. Learning approaches such
as FAM enable appropriate control without the need for
accurate system dynamics to be determined. In this
research, a FAM was implemented on a set of poorly tuned
joint controllers on the GuRoo robot and resulted in an
improvement in joint control.

The temporal credit assignment problem caused by the
delay between commanded output and measured response
was addressed through the use of activity queues to keep
track of inputs and their relative impact. Use of the FAM on
a simple crouching motion improved joint positional error
by up to 30% in somejoints.

The paper aso shows the FAM’s ability to compensate
for changes in system dynamics. A sudden 15% increase in
mass at the arms initially increased the positional error, but
was quickly compensated for.

Co-evolutionary issues were initialy thought to
potentially impact the system, as changes in position of one
joint can effect changes in another joint with constant
inputs. The effects of co-evolution were found to be
negligible once the system was implemented, probably due
to the use of a gait phase variable to drive the learning.

When implemented on more complex motions such as
walking, the improvement was not as noticeable, with only
minor decreases in RMS error. The joint error present

during a walking gait is less than during a deep crouch and
as such, lower absolute improvements were expected.

The FAM implementation was found to provide an
increase in performance but only from the basis of an
initially poorly tuned controller. Even without accurate
system dynamics, it was easy to tune the PI controller to
give comparable results. The FAM still requires some
tuning in the form of learning rates and number of
membership functions.
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