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Abstract  In this paper, we attempt to find a solution to the 
problem of robot navigation in a domain with partial 
observability. The domain is a grid-world with intersecting 
corridors, where the agent learns an optimal policy for 
navigation by making use of a hierarchical memory-based 
learning algorithm. We define a hierarchy of levels over 
which the agent abstracts the learning process, as well as its 
behaviour. The problem is modeled as a POMDP and a 
solution is obtained by implementing the SARSA algorithm, 
which incorporates Temporal Difference learning. The agent 
uses short-term memory and abstracts over minute details 
thereby enabling it to scale up to large partially observable 
domains.  
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1. Introduction 
 

The problem of robot navigation in general refers to 
that of finding a navigable path between any two points 
say, the source and the destination, on a given map. 
Assuming that at least one such path exists, the agent’s 
task is to find the best path among all such existing 
paths. Best here refers to the most profitable path, or in 
other words, the path having the least overall cost. Thus 
such an optimal path must be found, with certain 
constraints being imposed on the agent, such as time 
limits and limited availability of resources.  

 
In this paper, we tackle the problem of robot 

navigation in a domain with partial observability. Partial 
observability implies that the agent is at no point fully 
aware of its surroundings, and can only perceive a part 
of it at any given time. This complicates the problem of 
navigation since there is always a level of uncertainty 
about the agent’s position, relative to the environment. 
For example, the agent may sense the same perceptions 
at different points on the map, thereby rendering it 
unable to distinguish between those points.  

 
Path planning problems in domains with partial 

observability have been studied under AI for a long 
time, though their origins can be traced to problems 
rising in Operations Research. Of the various 
approached used to tackle planning problems in 
POMDPs, the most effective ones use a Belief State 

model [16] to approximate real-world states in a probabilistic 
manner. Other approaches include aggregation of states, 
maintaining a state history, and the use of a Predictive 
Representation of States [15]. 

 
The approach used in this paper, to guide the agent 

through the map is one of Hierarchical Memory-Based 
Reinforcement Learning [10]. The agent learns to take 
optimal actions at every step, by experimenting as it passes 
through the map, and is ultimately equipped with the 
knowledge of the optimal sequence of steps from source to 
destination.  

 
The use of Hierarchical Memory-Based Reinforcement 

Learning for robot navigation has already been demonstrated 
[1]. The salient features of this paper, in comparison with the 
above mentioned work are as follows. 

In this paper, the domain has been narrowed down to a 
discrete grid-world environment and the algorithm has been 
implemented on a generic gird-world platform created for 
this purpose. In [1] however, a continuous spatial domain 
serves as the environment and the Nomad 200 simulator [8] 
has been used for testing purposes. Further, this paper makes 
use of the on-policy SARSA learning algorithm, in contrast 
with the off-policy Q-learning approach [10] used in [1] and 
also incorporates an alternative short-memory technique. In 
addition, the levels of abstraction and the respective options 
defined at each level such as ‘wall following’ and ‘avoiding 
obstacles’ are implemented differently. 

 
2. The Problem 
 

The problem dealt with in this paper is that of simple 
grid-world navigation. The map consists of square tiles 
arranged in a sequential manner in 2 dimensions, having 
mutually perpendicular walls, with the agent being able to 
occupy exactly one empty tile at a time. The map is 
structured in the form of intersecting corridors with 
randomly located obstacles, through which the agent must 
navigate, avoiding collisions. The agent is provided with a 
reward for reaching the destination, and is penalized for 
colliding into walls or obstacles. Also, each step taken by the 
agent has an associated step cost, that the agent must aim to 
minimize. 
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Here, a major problem faced by the agent is that the 
state space can be very large, making it difficult for the 
agent to keep track of the world as a whole. Further, 
partial observability leads to the problem of perceptual 
aliasing, ie. Different real world states generate the same 
observation to the agent.  

 
Other issues involved are the dynamicity of the 

environment, such as varying wind blowing across the 
map, which may affect the agent’s motion, and the 
stochasticity of world events and the agent’s actions. 
Further the agent’s sensors or effectors or both may be 
defective, causing noisy readings and erroneous output. 
 
2.1 Problem Formulation 
 

The entire state space and actions taken by the agent 
are formalized as a finite Markov Decision Process 
(MDP) [6]. A finite Markov Decision Process is a tuple 
<S, A, �, P, R>, where S = {1, 2, 3, …, n} is a set of 
states, A is a finite set of actions, �   S x A, is the set of 
admissible state-action pairs, P : � x S � [0,1], is the 
transition probability function with P(s,a,s’) being the 
probability of transition from state s to state s’ under 
action a, and R : � � R is the expected reward function, 
with R(s, a) being the expected reward for performing 
action a in state s. 

 
However, due to partial observability criteria, the 

agent does not perceive the entire state space S, but only 
a set of observations, say O. Thus the formalization is 
actually that of a Partially Observable MDP (POMDP) 
[11], which is a generalization of an MDP, with O 
denoting the set of all observations perceived by the 
agent, and rest of the parameters remaining the same.  

 
The agent thus tries to learn an optimal Control 

Policy [13] which is nothing but a relation C : O � A, 
giving the optimal action to be chosen by the agent, 
corresponding to each observation. 
 
2.2 Agent’s Perceptors and Actuators 
 

The agent has 8 sonars fixed horizontally in the 
each of the 8 principal directions. Each sonar sends out a 
beam which travels in that direction until it collides with 
a wall/obstacle and gets reflected. The agent makes use 
of the reflected beam to calculate the distance to the 
nearest obstacle in that direction. A sample set of sonar 
readings is shown in the following figure, with the blue 
tile indicating the position of the agent. Black tiles 
represent obstacles and numbers indicate the distance 
from the agent to the obstacle. Each such sonar reading 
constitutes an observation, in the simplest sense. 
 
 

 
 
 

 

 
 

Figure 1. Agent’s Perceptors 
 

The actions available to the agent apart from sensing are 
Turn Left, Turn Right and Move Forward. 
 
3. A Solution 
 

The agent uses a short-term memory to remember recent 
observations and learns the optimal control policy using an 
on-policy Temporal Difference learning scheme, namely 
SARSA [13].  
 
3.1 SARSA – A Temporal Difference Reinforcement 
Learning Algorithm 
 

As in any Reinforcement Learning scheme, the aim here 
is to maximize the cumulative reward obtained by the agent. 
As mentioned earlier, the agent is presented a certain reward 
when it reaches the destination and a certain penalty for 
colliding with walls and obstacles. 

 
A certain Reward Function can thus be associated with 

every State-Action pair (s,a) which is nothing but the reward 
r obtained when the agent chooses the action a in state s. 
Thus the agent’s goal is to maximize the total reward 
obtained over time, or in other words maximize the final 
return. 

 
Each state-action pair is associated with a value function 

(Q-function) which gives the desirability of choosing an 
action in that state. Thus Q(s,a) gives the desirability of 
choosing action a in state s and is initialized with random 
values for all a. The Q-functions for each state-action pair 
are updated as the learning progresses, and in Temporal 
Difference (TD) learning [13], this update takes place based 
on the previous Q-value. 

 
An �-greedy algorithm [13] is used to pick the action at 

each step, thereby choosing a random action with probability 
�, and the action with highest Q-value, with probability 1- �, 
where � is a small value corresponding to the exploration 
factor. This process of selection and update is repeated until 
the goal state is reached and the learning stops. Training 
takes place by repeating the above process over numerous 
iterations of learning until the Q-values stabilize to the 
desired level of accuracy. 

 
 
 

⊆
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SARSA is an on-policy TD algorithm in the sense 
that the updates to Q-values are made at each step based 
on the action taken previously, and not the best possible 
action at that step. 
 

The steps involved in the SARSA algorithm are as 
follows: 
 
Initialize Q(s,a) arbitrarily 
Repeat (for each episode) 
     Initialize s 
     Choose a from s using policy derived from Q (ie. � -
Greedy) 
     Repeat (for each step of episode) 
          Take action a, observe r, s’ (where s’ is the new state 

reached) 
          Choose a’ from s’ using policy derived from Q (ie. � - 

Greedy) 
          Q(s,a) � Q(s,a) + � [ r + �.Q(s’,a’) – Q(s,a) ] 
          s � s’ ; a � a’ 
     until s is terminal 
                                 SARSA Algorithm 
 

In our case, since the set of all states S maps onto 
the set of all observations O, we replace state s by 
observation o. 
 
3.2 Memory and Hierarchy 
 

As discussed already, the two major hurdles faced 
in this problem are that of scaling up to larger domains 
and perceptual aliasing. These can be overcome by 
organizing the learning process into different levels of a 
hierarchy, such that each level abstracts over minute 
details, which are present in the lower layers. Further by 
employing short-term memory instead of decisions 
based on single states, we can reduce the problem of 
perceptual aliasing. 

 
Our state space now consists of histories, with each 

history representing a collection of recently observed 
states. Learning takes place at different hierarchical 
levels based on the histories of observations made at 
each level. This greatly speeds up the learning process 
and also simplifies the spatial complexity required for 
learning by a great deal. Hence we go in for a hierarchy 
of levels with each level containing a history of states 
previously observed at that level, instead of a flat, one-
level state space. 

 
A history can thus be defined as a sequence of the 

last n observations and the agent’s memory is thus a 
collection of all such histories that have been 
encountered in the past. The agent’s memory is stored in 
the form of a tree with the Q-values stored at each leaf 
node. The memory is padded with blank states until it 
reaches a minimum usable size. 

 
A technique of short-term memory that is used in 

this paper is known as Nearest Sequence Memory 

(NSM) [4] which records raw experiences in the form of a 
linear chain. Another form of memory representation known 
as the Utile Suffix Memory (USM) [4] has also been 
implemented. However, it is preferable to have the length of 
histories stored in the memory or in other words the memory 
length as a variable, in order to speed up the learning process 
and make it adaptable to the different forms of perceptual 
aliasing encountered in the map. For this purpose, a 
technique of variable memory, namely U-Trees [2] can be 
used. However, in this paper we restrict ourselves to 
memories of fixed length only. 

 
Figure 2. shows a sample memory tree obtained during 

an agent’s learning process. Successive states of a history are 
stored along a chain from root to leaf, with the leaf 
containing the Q-value for the history. 
 

 
 
 

                Figure 2. A sample Memory Tree 
 

The above tree has memory size = 3 states and a blank 
state B is used to pad the memory with empty observations 
until it reaches the full size. Every path in the tree from Root 
to leaf represents a history of observations perceived by the 
agent. Thus the chain consisting of Root-So-S2-S5 represents 
the history wherein the last 3 observations were S5, S2 and 
So respectively, in that order. 

 
Next, we build a hierarchy of levels for navigation, 

wherein each level of the hierarchy uses such a memory tree 
to store the observations perceived in that level. 

 
The Hierarchy used in this particular solution consists of 

2 levels that are defined as follows: 
 

Level 1 (Higher Level): This level consists of landmarks on 
the map, which in this case are all corridor intersections. At 
this level, the agent picks a direction to move in. 
 
Level 2 (Lower Level): This level consists of the hallways or 
corridors in the map and the agent learns to navigate through 
a corridor, avoiding obstacles. The actions available to the 
agent in the lower level are primitive actions such as Turn 
Left, Turn Right or Move Forward, or an option [14] 
consisting of a temporally extended combination of these 
actions. 
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3.3 Implementation 
 
Level 1 of the Hierarchy (Higher Level): 
 

i. Picks one of the available directions to move in, 
at an intersection 

ii. Passes control to level 2 after exiting the 
intersection along that direction 

 
A total of 13 different are intersections possible, 4 

of which are shown below. Others can be obtained from 
rotation/reflection of these figures. 

 

 
 
 

                  Figure 3. Types of intersections 
 

Figure 3. shows simple corridor intersections with 
uniform thickness and having no obstacles, which is an 
elementary case. The actual map may contain corridors 
of varying thickness with randomly located obstacles. 
 
Level 2 of the Hierarchy (Lower Level): 
 

i. Uses an option to navigate within a corridor, 
avoiding obstacles 

ii. The option is trained separately in a training 
corridor 

iii. Terminates and passes control back to Level 1 
on reaching an intersection 

 
Training: 
 

The option used in the lower level must be capable 
of navigating within a corridor/hallway avoiding any 
obstacles that may be present there. For this purpose the 
agent is first trained in a Training Corridor, using the 
same Memory-Based SARSA algorithm, so that it learns 
to navigate within a corridor effectively. Once this is 
learnt, the same option is used throughout the map in 
level 2 of the hierarchy. 

 
Figure 4. shows a sample training corridor where 

the green tile represents the start state and the red tile, 
the end state. 

 

 
 

                  Figure 4. Training Corridor   

The agent is repeatedly trained in such a training 
corridor and as the agent learns, the observation histories and 
corresponding Q-values are entered into the memory tree. 
This knowledge is then used by the agent while navigating 
the main map. 
 
Learning and Updating Q-functions: 
 

In each of the two levels, the corresponding Q-function 
is updated after each move as follows: 

 
Level 1: 
 
Q(s,a) = Q(s,a) + � [ (�0 + �1 + ... + �n-1).r  + �n.Q(s’,a’) – 
Q(s,a) ]                         (1) 
 
where n = of steps taken from previous intersection, � = 
learning rate and � = discount function 
 
Level 2: 
  
Q(s,a) = Q(s,a) + � [ r + �.Q(s’,a’) – Q(s,a) ]                    (2) 
 

The learning and updating process continues until the 
goal state is reached. As this is run over several iterations, 
the agent learns the optimal control policy C, which it then 
uses to navigate the map efficiently. 
 
4. Testing and Analysis 
 

The algorithm explained in this paper for navigating 
partially observable domains has been tested 
comprehensively across a wide range of simulated maps, and 
the results obtained on two such maps are displayed in the 
following section. 

 
These maps represent the actual physical structure of the 

world, and are not accessible to the agent. The agent’s 
observation of a state on the map consists of only the 8 
readings that it acquires as input from its sonars. Based on a 
history of such readings and the reward obtained, the agent 
learns a control policy by updating the corresponding value 
functions in its memory. 

 
Also, it is observed that occasional errors in the sonar 

and noisy readings do not affect the learning process in the 
long run since they are not used directly by the agent for 
constructing a map of the world. Hence this design 
consisting of sonars is feasible for real-time implementation.  
 
 
 
 
 
 
 
 
 



The 2nd International Conference on Ubiquitous Robots and Ambient Intelligence 
 

4.1 Results Obtained 
 
Map 1: 
 

 
 

Figure 5. Map 1 – Without Obstacles 
 
• Size : 25 x 25 
• Start : (6, 6) 
• Destination : (20, 17) 
• Optimal No. of Steps = 34 
 

 
 
                  Figure 6. Map 1 – Learning Curve 
 

Figure 6. shows that the Hierarchical Memory 
Based approach learns significantly well in the case of a 
corridor without obstacles (ie. Map 1). 
 
Map 2: 
 

 
 

Figure 7. Map 2 – With Obstacles 
 
 

• Size : 28 x 26 
• Start : (7, 17) 
• Destination : (20, 19) 
• Optimal No. of Steps = 18 
 
In Map 2, we have compared the Hierarchical Memory 
Based learning algorithm with a flat, memory-less algorithm 
and obtained the following results: 
 

 

 
 
 

Figure 8. Map 2 – Learning Curve (Without Memory) 
 

 
 
 

Figure 9. Map 2 – Learning Curve (With Hierarchical Memory) 
 

In Figure 8. the curve is haphazard and the agent shows 
no signs of learning. This is due to the fact that the algorithm 
is unable to overcome the problem of perceptual aliasing 
without the use of memory. However in Figure 9. we notice 
that the agent learns the optimal policy for navigation. 
 

The agent is thus able to learn the optimal control policy 
efficiently in both maps when it uses the Hierarchical 
Memory Based approach. But, we also notice that the 
learning process is significantly faster in the absence of 
obstacles on the map. 
 



The 2nd International Conference on Ubiquitous Robots and Ambient Intelligence 
 

5. Conclusion 
 
5.1 Hurdles faced in the Implementation 
 

i. It was not possible to uniquely determine a 
state as belonging to Level 1 or Level 2 of the 
hierarchy. 

ii. Moving the agent out of intersections could not 
be entirely automated and some manual 
prodding was necessary. 

iii. The learning process would be disrupted if the 
goal state was hidden inside corridors. 

iv. The agent had problems in navigating around 
irregular-shaped obstacles until it was fully 
trained. 

 
5.2 Optimizations 
  

The following list of optimizations can be 
applied to the above implementation, in order to 
improve the accuracy and efficiency of the learning 
process. 

 
i. Using an implementation of variable length 

memory such as U-Trees, instead of the fixed-
size memory that is being used at present. 

ii. Implementing goal regression and prioritized 
sweep. 

iii. Addition of eligibility traces to speed up 
learning. 

iv. Exploration vs Exploitation trade-off : 
Decaying the value of � gradually to obtain 
optimal solutions after learning has stabilized . 

v. Incorporating transformations in histories to 
exploit symmetry and other similarities 
between histories. 

vi. Use of a closest match algorithm to determine a 
match from the memory tree with highest 
degree of closeness to the history. 

 
5.3 Computational Issues 
 

The technique of Reinforcement Learning used 
in this paper is strictly iterative and as in any such 
problem, the efficiency of learning is greatly 
dependent on the complexity of the map. 

 
However, when compared to a one-level 

learning scheme, Hierarchical learning requires 
fewer states to be remembered because of its two-
level organization. This greatly reduces the space 
complexity of the algorithm and in turn the search-
time and time complexity, the extent of this 
reduction being dependent on the definition of 
levels of the hierarchy. 

 
 

Thus we infer that the Hierarchical Memory-Based 
approach performs significantly better than the flat state-
based approach for navigating in partially observable 
domains, in terms of the learning speed as well as the 
efficiency. 
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