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Abstract. This paper describes a new approach for promoting the evo-
lution of relatively complex behaviours in evolutionary robotics, based
on the use of noise in simulation. A ‘homing navigation’ behaviour is
evolved (in simulation) for the Khepera mobile robot, and it is shown
that high noise levels in the simulation promote the evolution of rela-
tively complex behavioural and neural dynamics. It is also demonstrated
that simulation noise can actually accelerate artificial evolution.

1 Introduction

The objectives of this paper are to illustrate two new ways in which the care-
ful use of noise can be of benefit to evolutionary robotics; a) by promoting
the evolution of relatively complex behaviours, and b) by accelerating the ar-
tificial evolution process. These objectives require that a particular approach
to evolutionary robotics be adopted; namely the evolution of robot controllers
in stmulation, with successful subsequent transference of evolved controllers to
the real world. The use of simulation permits the incorporation of specifiable
amounts of noise', and the condition of transference ensures that evolutionary
robotics remains faithful to real robots in the real world.

This approach, already shown to be viable (for example see Jakobi [4], Nolfi
[9], Miglino et al. [8]), stands in contrast to two major alternatives. The first,
evolution in real time on real robots (e.g. Floreano and Mondada [2]), does not
casily allow for the explicit, quantitative specification of noise levels? and is also
formidably time intensive. The second, evolution in simulation with significant
abstraction from reality (e.g. Sims [11]), removes evolutionary robotics from the
real world and therefore will not be pursued here.

In what follows, a simulation is used to evolve a ‘homing navigation’
behaviour; a behaviour originally evolved and investigated in the context

! Noise here consists of various aspects of a simulation incorporating degrees of ran-
domness; these aspects are detailed in section 4. It does not refer to stochastic aspects
of the search algorithm.

2 Qualitative noise levels can be manipulated in the real world, for example by intro-
ducing flashing lights into the vicinity of the robot (see e.g. Jakobi et al. [6]).



of real-world evolution by Floreano and Mondada [2]. It is demonstrated
that large amounts of simulation noise promote the evolution of robots with
relatively complex behaviours and neural dynamics compared to those evolved
in simulations with low noise levels. It is also demonstrated that high noise
levels can accelerate the evolutionary process.

The rest of this paper is organised as follows: section 2 discusses the role
of noise in simulation, and introduces some new perspectives. Sections 3 and 4
describe the experiments undertaken; briefly introducing the original real-world
study by Floreano and Mondada, and then describing the simulation replication
in detail. Section b presents some results, which are then discussed in section 6.

2 Noisy simulations

In contrast to the potential roles of noise outlined in section 1, evolutionary
robotics has, to date, concentrated on the discovery that noise in simulation can
help bridge the ‘reality gap’. Controllers evolved in simulations with appropriate
noise levels transfer to real robots and real situations (see e.g. Jakobi [5], Miglino
et al. [8]).

Jakobi ([5], [4]) has formalised the use of noise for facilitating transference by
distinguishing between base set features (those aspects of an agent-environment
system that may come to play a part in the eventual behaviour) and imple-
mentation features (those aspects which are either simulation artefacts, or not
relevant to the behaviour, or just real-world aspects that are difficult to model).
The idea is then that the base-set features should be modelled noisily, so they
that they will transfer to the real world, (this being base set ‘robustness’), and
that the implementation aspects should be made very unreliable, so that evolu-
tion cannot come to incorporate them in any viable controller, (this being base
set ‘exclusivity’).

The use of this approach, with its integral role for noise, thus also permits
the assessment of the effects of noise on the complexity of the evolved behaviour,
and on the speed of evolution. Both these ideas are new to evolutionary robotics,
but the former builds on previous work (Seth, [10]), in which noise is shown
to promote the evolution of strategies of increasing complexity in co-evolving
Iterated Prisoner’s Dilemma ecologies. In these studies, the ‘evolved complexity’
is reflected in the strategies deployed by the agents, which in turn is reflected in
the lengths of variable length genotypes. This paper is concerned with exploring
the same effect in an evolutionary robotics context.

3 A ‘homing navigation’ experiment

The context for this study is drawn from an experiment by Floreano and Mon-
dada 1996 [2]. Their work is briefly described below.

They demonstrate the real-world evolution of a ‘homing-navigation’ be-
haviour, using a Khepera robot [7]. This robot is equipped with an extra ‘floor



sensor’ in addition to the usual array of 8 infra-red proximity (and ambient light
level) sensors. The environment for the experiment was a 40cm by 45cm walled
arena, situated in a dark room, but with a small light tower placed in one corner.
This corner (denoted the ‘charging area’) also had black paint on the floor out
to a radius of 8cm (the floor being otherwise white).

The robot had a simulated battery of 50 ‘actions’®, after which it would ‘die’.
However, if it happened to pass over the charging area during its life, the battery
would be instantaneously recharged and the robot could carry on for another 50
actions (up to an arbitrary maximum of 150).

The sensor arrangement of the robot and the (fixed) architecture of the neural
net controller is shown in fig 1; with 8 input units corresponding to the 8 IR
sensors, 2 input units for the ambient light sensors 2 and 6 (on the front and
rear of the robot body), and one input unit each for the floor sensor and battery
level. These inputs were fed through to a 5 unit internally recurrent hidden layer,
which was in turn connected to a two unit motor output layer, which then set the
wheel speeds. Sigmoid activation functions were employed at all layers except
the input layer, which linearly scaled the sensory inputs to range from —0.5 to

+0.5.
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Fig. 1. Network architecture and sensor layout. For clarity, not all network connections
are shown. All input units are connected to all hidden units, and all hidden units are
connected to themselves and to every other hidden unit, as well as to both motors. The
central floor sensor is located beneath the robot base.

The fitness function used by Floreano and Mondada was very simple, calcu-
lated incrementally at every step (except when the robot was directly over the
charging area, where no score was awarded), and maximised by high speed and
low IR input (V is the scaled average wheel speed (taken as a vector), and 7 the
scaled activation value of the IR sensor with the highest value):

9=V(1—-1), 0<V<1 0<i<l1

? BEach action corresponded to one update of the controlling neural network, with
updates taking place about every 300ms.



There is nothing in this fitness function that explicitly specifies periodic re-
turn to the charging area, but robots that come to adopt this strategy will tend
to live longer and thus accrue higher fitness than those that do not.

Floreano and Mondada performed artificial evolution in the real world,
downloading candidate controllers onto real Khepera robots for each evaluation,
and using a simple tournament GA to evolve the weights and thresholds
of the network (which were then fixed for the duration of each individual).
Over the course of ten days (200 generations) fit individuals evolved. These
individuals typically explored their environment at high speed, returning to the
charging area at periodic intervals, usually just in time to avoid running out of
battery power. This work of Floreano and Mondada is therefore an impressive
demonstration of real-world evolutionary robotics, and also provides convincing
support for their primary thesis that simple fitness functions can be used to
evolve relatively complex behaviours.

The thrust of the present work is different. A simulation of the Khepera
robot, controller, and environment, supports the evolution of a similar ‘homing-
navigation’ behaviour to that described above. The present hypothesis, however,
is that the amount of noise present in the simulation strongly influences the
complexity of the behaviours (and underlying neural dynamics) that evolve. Tt
is also illustrated that noise can accelerate the artificial evolution process. A
subsidiary motivation is to provide a further example (in addition to e.g. Jakobi
[5], and Miglino et al. [8]) that long periods of real world evolution can be reduced
to very short periods of simulated evolution, without the sacrifice of real-world
efficacy.

4 The simulation

In order for the evolved behaviours to work in the real world, and to permit the
incorporation of quantitatively specifiable amounts of noise, Jakobi’s ‘minimal
simulation’ methodology was followed [4]. Three important ‘base set’ aspects of
the experiment were identified:

— the way in which the IR sensors respond, which depends on the orientation
of the robot and the distance of the robot from a wall at a given angle or a
corner of a given shape.

— the way in which the ambient light sensors respond to a distant light source,
which depends on the orientation of the robot, and the angle of the robot to
the light.

— the way in which the robot’s position and orientation changes, which depend
on the wheel speeds.

In order to simulate these factors, three look-up tables were employed
(adapted from [4]). One held the values that IR sensors would (roughly) hold if



the robot were to be positioned at 10cm from an infinitely long flat wall. This
table consisted of values for all 8 IR, sensors, for each of 10 robot orientations
from 0 to /2. To then calculate the actual values of the IR sensors, given walls
at different distances and orientations, and for robot orientations greater than
90 degrees, the values in this table were appropriately scaled (linear scaling be-
tween 0 and 1023). If the robot happened to be in a corner, two sets of IR sensor
readings were calculated, one for each of the walls involved. The maximum value
for each sensor was then taken to form a composite reading. The second look-
up table simply held the angles of the sensors with respect to the centre line
through the robot body. The angle of each sensor to the light source could then
be calculated as a function of an angle from this table, the orientation of the
robot, and the angle of the robot to the light. It was then a simple matter to
calculate whether or or not this angle (of sensor to light) fell within the angle of
acceptance of the sensor.

The third look up table simply held values for the changes in the z and y
coordinates of the robot, if it were travelling with a given speed in each of 36
different orientations. This could then be linearly scaled according to the actual
speed of the robot.

The other important aspect of the simulation was, of course, that a lot of
noise was employed, both during each trial and between trials (each individual
was evaluated over twelve separate trials in the GA). Intra-trial noise was applied
to the IR, light, and floor sensor values, also the robot position, orientation, and
rate of orientation change during turning, and finally the position of the robot
after impact with a wall. In the last case, these collisions were modelled by just
randomly repositioning the robot within about 2-3cm of the wall, with a large
orientation and speed change (also randomly determined). Inter-trial noise was
applied to the angle of acceptance of the light sensors, the arena dimensions
(including charging zone radius), and also the actual levels of TR, background
IR, and ambient light noise.

In terms of Jakobi’s ‘minimal simulation’ methodology discussed in Section
2, the intra-trial noise was designed to deliver base set robustness, and the inter-
trial noise was for ensuring base set exclusivity. Thus the simulation would be
expected to deliver transferable controllers. For the purpose of investigating the
complexity of the evolved behaviours and neural dynamics, and the speed of
evolution, two conditions were investigated; one with high levels of both inter-
and intra-trial noise, and another with zero inter-trial and very low intra-trial
noise. The actual levels used are given in Appendix 1.

The experiment proceeded by using a distributed GA, with a population of
100, to evolve the weights and thresholds for the controlling network as shown in
fig 1. These weights and thresholds were specified as unbounded floating point
numbers on a 102 allele genotype, with mutation and crossover being the only
genetic operators employed?.

* Crossover probability was set at 0.95, with a 0.03 probability of point mutation per
allele; a point mutation altered the value of the allele by a random value within the
range +0.5 (alleles were initialised within the range +1).



5 Simulation results

5.1 Basic performance and transference

Many evolutionary runs were performed, in both high noise and low noise con-
ditions. With high noise levels in the simulation, evolutionary runs of about
100 generations always produced very fit individuals. These runs took about 1
hour on a single user Sun SparcUltra (143MHz) workstation, orders of magni-
tude faster than the real world evolution reported in [2]. Equally fit individuals
evolved with low noise levels, although not nearly as rapidly as with high noise
levels (this result is discussed in section 5.4). An example graph charting the
progress of a ‘high-noise’ simulation is shown in fig 2.
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. ' Fig.3. A real khepera about its business,
Fig.2. An example evolutionary run of a controlled by a network evolved in a very
noisy stmulation, demonstrating the evo- noisy simulation.

lution of fit robots in a very short time.

Successful transfer to reality was consistently observed when networks from
the fittest robots, evolved in noisy conditions, were downloaded onto real Khep-
eras (see Jakobi [4] for further examples of successful transference using the same
simulation methodology). This transference was effortless, with evolved networks
effectively controlling real robots without any further ‘tinkering’ of the evolved
network or the real environment (which consisted of a cobbled together arrange-
ment of wooden walls and a torch balanced at one corner). Fig 3 illustrates a
real Khepera (powered externally, but with all processing on-board) just leaving
the recharging area halfway through a demonstration. The trajectories traced
by real Kheperas were very similar to those seen in simulation, except that the
real robot very occasionally impacted with the arena walls. These collisions did
not normally prevent the robot from recovering and reaching the charging area
when necessary. Robot controllers evolved in non-noisy conditions, however, did
not transfer effectively to the real world. The relevance of this is discussed in
section 6.



Ca)type A, NO  b)tgpe A, NC  c)type A, NL

" d)type B, NO  e)type B, NC  f)iype B, NL
Fig.4. Trajectory plots (in simulation) of robots evolved under noisy (a-c) or non-noisy
(d-f) conditions in either NO (a,d), NC (b,e), or NL (c,f) conditions. The charging area
18 located in the bottom left-hand corner of each plot, out to a radius of 8cm. The type
B robots maintain a simple trajectory regardless of the environmental manipulations,
but the type A robots clearly deploy more complex ‘searching’ and ‘circling’ behavioural
strategies.

The following analyses assess the contribution of high noise levels to the
evolution of neural and behavioural complexity.

5.2 Behavioural analysis

A set of twelve evolved robots were analysed - six from noisy simulations (hence-
forth type A robots), and six from non-noisy simulations, (type B robots). All
analysis took place in simulation. Initially, three environmental conditions were
analysed for each robot®; a normal (NO) condition (with light source and charg-
ing area - this 1s the condition in which the robot controllers were originally
evolved), a ‘no charging area’ (NC) condition, where the black paint is removed
and the robot cannot recharge, and a ‘no-light-source’ (NL) condition where,
although the charging area is present, the light source at the corner is removed.
Low noise levels were employed in all these conditions.

Fig 4 (a-c) illustrates typical overhead trajectory plots for the robots evolved
in noisy environments (type A4) in the three conditions, and (d-f) illustrate the
same for robots evolved in non-noisy environments (type B). In the NO condi-
tion, both A and B robots can repeatedly find the charging area (situated in

® These tests were also performed by Floreano and Mondada [2], who observed similar
results to those of the ‘noisy’ robots in the present study. However, the conclusions
drawn about the nature of the controlling network are different in the present work.



the lower left hand corner), and their trajectories are not obviously different.
However in the NC and NL conditions, there are clear differences. The B robots
maintain a behaviour pattern qualitatively similar to that displayed in the NO
condition, but the A robots do nothing of the kind.

The B robots seem only to have evolved to move in straight lines and to
turn upon encountering walls; a strategy which does indeed periodically return
the robot to the charging area in predictable environments. The A robots, by
contrast, are clearly affected by the presence (or absence) of the black charging
area and the light source. In the NC condition, these robots navigate towards
the charging area and remain in the vicinity, performing what could be described
as a searching behaviour. In the NL condition, the robots begin, as in normal
conditions, with a fairly linear trajectory, but shortly begin to circle, giving the
impression that the robot is trying to orient to a light source.

These searching and circling behaviours were also observed in real-world
Khepera behaviour, when the environment in fig 3 was manipulated in the appro-
priate way. All six A robots displayed similar searching and circling behaviours,
and all six B robots displayed the simple behaviour (as in fig 4 (d-f)).

In a further example of how the A robots deploy more complex behaviours
than B robots, one of each kind were compared in a (low noise) condition in
which the walls were removed (again in simulation), with the charging area
then extending in a complete circle around the light source. Fig 6 illustrates
that the B robot was completely impotent in such circumstances, hinting at its
reliance on IR stimulation. Only one typical run is shown, but out of 40 tests the
robot reached the charging area just once. By contrast, the A robot reached the
charging area 10 times out of 40, and in 4 cases returned more than once. Fig b
illustrates a particularly impressive A robot trajectory, and although in general
the robot 1s undeniably adversely affected by the lack of walls, the considerably
greater success rate enjoyed by the A robot suggests that a greater range of
environmental stimuli (not just TR) is being assimilated in the determination of
its behaviour. Indeed, the A robot is clearly able to turn in the absence of a wall,
and the B robot is not.

5.3 Neural analysis

In this section, it is shown that the neural dynamics of the type A robots are
also more complex than those of the type B robots, and in ways commensurate
with their behavioural differences.

Initially, activation plots for all 19 neurons in all three (simulation) conditions
(NO, NC, and NL) for all of the 12 robots (6 A, and 6 B) were collected. Figs 9
and 10 present example plots for one robot of each type in the NO condition.
These plots illustrate, (and this is true for all the plots), that whereas the hidden
units (HUs) of the B robots react almost solely to IR stimulation, the HUs of
the A robots react much more strongly to light, battery, and floor sense data.
For example, at time-steps 35, 60, 95, and 125 in fig 9, hidden unit and motor
output can be seen when there is no IR input. This is never the case in fig 10.
Indeed, in the ‘no-wall’ condition discussed in section 4.3 (and therefore in the



Fig.5. Type A robot in no-wall test; note
that the edge of the graph does not rep-
resent a wall, and that the charging area
18 situated in a circle around the origin.
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Fig.6. Type B robot in no-wall test;
again the edge of the graph does not rep-
resent a wall, and the charging area is a
full circle around the origin.

absence of any IR input) only the A robots display any significant HU activity

(figs 7 and 8).

1r— 10 20 30 40 50 60 70
g 0{

» . . . . . . ,

1 10 20 30 40 50 60 70

£ Om
-1

1, 10 20 30 40 50 60 70

<Ir Om

L . ; . . . ! )

1 10 20 30 40 50 60 70

Ed omm
-1

10 20 30 40 50 60 70

time steps

Fig.7. Type A robot HU activation in
the no-wall test; significant levels of
HU activation (only first 70 time-steps
shown).
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Fig.8. Type B robot HU activation in
the no-wall test; very little activation in
any units.

To explore these results in a non-behavioural context, short periods of high
activity (spikes) were injected into six combinations of input units, with the
subsequent activations of the hidden and motor units being recorded. The first
two conditions consisted of IR, inputs only; with either all 8 inputs active, or all
except the rear two®. The next two conditions tested combinations of ambient
light input spikes in the absence of IR input. The fifth condition injected a
negative floor sensor spike (as if the robot were over the charging area); again in

6 ‘Non-active’ units, in all conditions, were set to 0, except for floor sensor and battery

units, which were set to 1 (signifying a full battery, and a robot position away from

the charging area).
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the NO condition. HUs (H1-H5) seem to be predominantly reacting to IR input.



the absence of IR input, and the last condition injected a negative battery spike
(signifying an empty battery), also in the absence of IR input.

Fig 11 presents summary data for all 12 robots over all these six conditions,
in terms of the HU activity elicited. For example, the third and fourth conditions
involved light input spikes, and 45 percent of the type A robot HUs responded
strongly in these conditions, compared to 18 percent of the type B robot HUs.
Similarly, the sixth condition tested the responses to battery sense data, and
again more A HUs responded than B HUs. Thus, fig 11 makes it clear that the
A robots take greater account than the B robots of the light and battery sense
data. These conditions were statistically significant according to Mann-Whitney
U tests (U = 57.0;df = 6,6;p < 0.01), (U = 56.5;df = 6,6;p < 0.01)
respectively). And although the statistical test is not significant, the B robots
do appear to rely more heavily on IR input than the A robots.
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The results in this section are clearly suggestive of more complex evolved neu-
ral dynamics from noisy simulations than from non-noisy simulations (of course,
the neural architecture itself is the same in both cases). This additional complex-
ity is revealed primarily through type A HUs that respond to a wider range of
environmental stimuli. The neural dynamics must therefore also cope with meld-
ing these multimodal inputs into a coherent motor output. These observations
corroborate the behavioural data in that only the type A robots were strongly
affected by manipulations of the light source and charging area. This suggests
that these robots navigated to the charging zone by using the light, and could
act on the basis of some internal state influenced by remaining battery level.



5.4 Noise accelerates artificial evolution

As suggested in section 5.1, it was indeed observed that high noise actually
accelerated the evolutionary process, Figs 13 and 14 illustrate this effect, su-
perimposing plots (of many evolutionary runs) of the number of actions taken
(the lifetime) for the fittest robot of each generation, for many generations. This
result is discussed in the following section.

160 T T T T T T T T T 160

Fig.13. FEvolution without noise. The Fig. 14. Fvolution with noise. The fittest
fittest robot of each simulation reaches robot of each simulation reaches the maz-
the maximum lifetime relatively slowly. tmum lifeteme relatively quickly.

6 Discussion

This paper has demonstrated how the appropriate use of noise in simulation can
enhance the behavioural and neural complexity of the evolving robot controllers,
and can even accelerate the evolutionary process itself. This section briefly dis-
cusses how this enhanced complexity may relate to issues of robustness, and
(informally) how the effects of noise, in the present context, may be considered
in terms of evolutionary dynamics.

6.1 How do these results relate to robustness?

In section 5.1 it was observed that networks evolved in non-noisy environments
did not transfer effectively to the real world (this, however, was to be expected
from Jakobi et. al [6]). One effect of noise is therefore to endow the evolving
networks with real-world robustness. Indeed, one way to understand the results
presented here is that robustness is being achieved through evolution exploiting
the properties of a qualitatively different, more complex, behaviour. This evolu-
tionary strategy is possible because the fitness function employed is sufficiently
simple and non-specific, so to allow different behaviours to achieve similar fit-



ness scores’ (as noted in section 5). Future work will further address this issue of
robustness, by investigating behavioural differences engendered by two different
levels of noise, with both levels being sufficiently high to support transference to
the real world.

6.2 Some informal speculations in evolutionary dynamics

Hinton and Nowlan [3] show how learning can influence the course of evolution,
through the Baldwin effect [1]. Specifically, they show that sharp peaks in a
fitness landscape can be considerably smoothed if lifetime learning is allowed.
As an informal speculation, it may be that simulation noise is playing a similar
role in the present experiments, in ‘smoothing out’ any steep valleys that may
lie between maxima representing type B and type A behaviours®. This assumes
that the population travels across a landscape as a relatively converged mass
(fig 12 illustrates that the populations in the present experiments do converge
quickly).

To continue this informal discussion, noise selectively applied to only parts
of a simulated agent-environment system, could smooth some parts of a fitness
landscape more than others, and perhaps entirely eliminate certain local maxima.
In the present example, sufficiently high noise levels ensure that the simple type
B behaviour is not viable, and the corresponding maxima would no longer be
present in the landscape. Evolution could then proceed directly towards the
maximum representing the type A behaviour. Finally, and informally once again,
smoothing a fitness landscape with noise may reduce the total number of maxima
present in the landscape, thus allowing evolution to proceed with greater speed
to its ultimate maximum. This may help to explain the results presented in
section 5.4.

Appendix 1

The noise levels used in the simulations are given overleaf:

T Tt is, of course, possible that a more specific fitness function would allow a type A
behaviour to evolve in a non-noisy environment; however this paper does not claim
that noise can permit the evolution of behaviours that would be impossible to evolve
without noise.

& The learning algorithm employed by Hinton and Nowlan is simply random search,
which could be informally construed as ‘fitness evaluation noise’.



noisy levels non-noisy levels

IR (and background IR} =+50(+10) +10(0)
light (and floor sensor) +50 +5
robot position +0.1em 0
robot orientation +0.02rad 0
turning noise +0.2rads 0
friction +3cm 0
arena size +5Hem 0
charge radius +lem 0
light angle of acceptance =£0.25rad 0
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