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Abstract� This paper describes a new approach for promoting the evo�
lution of relatively complex behaviours in evolutionary robotics� based
on the use of noise in simulation� A �homing navigation� behaviour is
evolved �in simulation� for the Khepera mobile robot� and it is shown
that high noise levels in the simulation promote the evolution of rela�
tively complex behavioural and neural dynamics� It is also demonstrated
that simulation noise can actually accelerate arti	cial evolution�

� Introduction

The objectives of this paper are to illustrate two new ways in which the care�
ful use of noise can be of bene�t to evolutionary robotics� a� by promoting
the evolution of relatively complex behaviours� and b� by accelerating the ar�
ti�cial evolution process� These objectives require that a particular approach
to evolutionary robotics be adopted� namely the evolution of robot controllers
in simulation� with successful subsequent transference of evolved controllers to
the real world� The use of simulation permits the incorporation of speci�able
amounts of noise�� and the condition of transference ensures that evolutionary
robotics remains faithful to real robots in the real world�

This approach� already shown to be viable �for example see Jakobi ���� Nol�
�	�� Miglino et al� �
��� stands in contrast to two major alternatives� The �rst�
evolution in real time on real robots �e�g� Floreano and Mondada ����� does not
easily allow for the explicit� quantitative speci�cation of noise levels� and is also
formidably time intensive� The second� evolution in simulation with signi�cant
abstraction from reality �e�g� Sims �

��� removes evolutionary robotics from the
real world and therefore will not be pursued here�

In what follows� a simulation is used to evolve a �homing navigation�
behaviour� a behaviour originally evolved and investigated in the context

� Noise here consists of various aspects of a simulation incorporating degrees of ran�
domness
 these aspects are detailed in section �� It does not refer to stochastic aspects
of the search algorithm�

� Qualitative noise levels can be manipulated in the real world� for example by intro�
ducing �ashing lights into the vicinity of the robot �see e�g� Jakobi et al� 
����



of real�world evolution by Floreano and Mondada ���� It is demonstrated
that large amounts of simulation noise promote the evolution of robots with
relatively complex behaviours and neural dynamics compared to those evolved
in simulations with low noise levels� It is also demonstrated that high noise
levels can accelerate the evolutionary process�

The rest of this paper is organised as follows� section � discusses the role
of noise in simulation� and introduces some new perspectives� Sections � and �
describe the experiments undertaken� brie�y introducing the original real�world
study by Floreano and Mondada� and then describing the simulation replication
in detail� Section � presents some results� which are then discussed in section ��

� Noisy simulations

In contrast to the potential roles of noise outlined in section 
� evolutionary
robotics has� to date� concentrated on the discovery that noise in simulation can
help bridge the �reality gap�� Controllers evolved in simulations with appropriate
noise levels transfer to real robots and real situations �see e�g� Jakobi ���� Miglino
et al� �
���

Jakobi ����� ���� has formalised the use of noise for facilitating transference by
distinguishing between base set features �those aspects of an agent�environment
system that may come to play a part in the eventual behaviour� and imple�
mentation features �those aspects which are either simulation artefacts� or not
relevant to the behaviour� or just real�world aspects that are di�cult to model��
The idea is then that the base�set features should be modelled noisily� so they
that they will transfer to the real world� �this being base set �robustness��� and
that the implementation aspects should be made very unreliable� so that evolu�
tion cannot come to incorporate them in any viable controller� �this being base
set �exclusivity���

The use of this approach� with its integral role for noise� thus also permits
the assessment of the e�ects of noise on the complexity of the evolved behaviour�
and on the speed of evolution� Both these ideas are new to evolutionary robotics�
but the former builds on previous work �Seth� �
���� in which noise is shown
to promote the evolution of strategies of increasing complexity in co�evolving
Iterated Prisoner�s Dilemma ecologies� In these studies� the �evolved complexity�
is re�ected in the strategies deployed by the agents� which in turn is re�ected in
the lengths of variable length genotypes� This paper is concerned with exploring
the same e�ect in an evolutionary robotics context�

� A �homing navigation� experiment

The context for this study is drawn from an experiment by Floreano and Mon�
dada 
		� ���� Their work is brie�y described below�

They demonstrate the real�world evolution of a �homing�navigation� be�
haviour� using a Khepera robot ���� This robot is equipped with an extra ��oor



sensor� in addition to the usual array of 
 infra�red proximity �and ambient light
level� sensors� The environment for the experiment was a ��cm by ��cm walled
arena� situated in a dark room� but with a small light tower placed in one corner�
This corner �denoted the �charging area�� also had black paint on the �oor out
to a radius of 
cm �the �oor being otherwise white��

The robot had a simulated battery of �� �actions��� after which it would �die��
However� if it happened to pass over the charging area during its life� the battery
would be instantaneously recharged and the robot could carry on for another ��
actions �up to an arbitrary maximum of 
����

The sensor arrangement of the robot and the ��xed� architecture of the neural
net controller is shown in �g 
� with 
 input units corresponding to the 
 IR
sensors� � input units for the ambient light sensors � and � �on the front and
rear of the robot body�� and one input unit each for the �oor sensor and battery
level� These inputs were fed through to a � unit internally recurrent hidden layer�
which was in turn connected to a two unit motor output layer� which then set the
wheel speeds� Sigmoid activation functions were employed at all layers except
the input layer� which linearly scaled the sensory inputs to range from ���� to
�����

Left Motor

Hidden Layer

Light Floor Battery

Right Motor

Infra-Red Sensors
IR and Ambient Light Sensors

IR sensors

Fig� �� Network architecture and sensor layout� For clarity� not all network connections
are shown� All input units are connected to all hidden units� and all hidden units are
connected to themselves and to every other hidden unit� as well as to both motors� The
central �oor sensor is located beneath the robot base�

The �tness function used by Floreano and Mondada was very simple� calcu�
lated incrementally at every step �except when the robot was directly over the
charging area� where no score was awarded�� and maximised by high speed and
low IR input �V is the scaled average wheel speed �taken as a vector�� and i the
scaled activation value of the IR sensor with the highest value��

� � V ��� i�� � � V � �� � � i � �

� Each action corresponded to one update of the controlling neural network� with
updates taking place about every ���ms�



There is nothing in this �tness function that explicitly speci�es periodic re�
turn to the charging area� but robots that come to adopt this strategy will tend
to live longer and thus accrue higher �tness than those that do not�

Floreano and Mondada performed arti�cial evolution in the real world�
downloading candidate controllers onto real Khepera robots for each evaluation�
and using a simple tournament GA to evolve the weights and thresholds
of the network �which were then �xed for the duration of each individual��
Over the course of ten days ���� generations� �t individuals evolved� These
individuals typically explored their environment at high speed� returning to the
charging area at periodic intervals� usually just in time to avoid running out of
battery power� This work of Floreano and Mondada is therefore an impressive
demonstration of real�world evolutionary robotics� and also provides convincing
support for their primary thesis that simple �tness functions can be used to
evolve relatively complex behaviours�

The thrust of the present work is di�erent� A simulation of the Khepera
robot� controller� and environment� supports the evolution of a similar �homing�
navigation� behaviour to that described above� The present hypothesis� however�
is that the amount of noise present in the simulation strongly in�uences the
complexity of the behaviours �and underlying neural dynamics� that evolve� It
is also illustrated that noise can accelerate the arti�cial evolution process� A
subsidiary motivation is to provide a further example �in addition to e�g� Jakobi
���� and Miglino et al� �
�� that long periods of real world evolution can be reduced
to very short periods of simulated evolution� without the sacri�ce of real�world
e�cacy�

� The simulation

In order for the evolved behaviours to work in the real world� and to permit the
incorporation of quantitatively speci�able amounts of noise� Jakobi�s �minimal
simulation� methodology was followed ���� Three important �base set� aspects of
the experiment were identi�ed�

� the way in which the IR sensors respond� which depends on the orientation
of the robot and the distance of the robot from a wall at a given angle or a
corner of a given shape�

� the way in which the ambient light sensors respond to a distant light source�
which depends on the orientation of the robot� and the angle of the robot to
the light�

� the way in which the robot�s position and orientation changes� which depend
on the wheel speeds�

In order to simulate these factors� three look�up tables were employed
�adapted from ����� One held the values that IR sensors would �roughly� hold if



the robot were to be positioned at 
�cm from an in�nitely long �at wall� This
table consisted of values for all 
 IR sensors� for each of 
� robot orientations
from � to ���� To then calculate the actual values of the IR sensors� given walls
at di�erent distances and orientations� and for robot orientations greater than
	� degrees� the values in this table were appropriately scaled �linear scaling be�
tween � and 
����� If the robot happened to be in a corner� two sets of IR sensor
readings were calculated� one for each of the walls involved� The maximumvalue
for each sensor was then taken to form a composite reading� The second look�
up table simply held the angles of the sensors with respect to the centre line
through the robot body� The angle of each sensor to the light source could then
be calculated as a function of an angle from this table� the orientation of the
robot� and the angle of the robot to the light� It was then a simple matter to
calculate whether or or not this angle �of sensor to light� fell within the angle of
acceptance of the sensor�

The third look up table simply held values for the changes in the x and y
coordinates of the robot� if it were travelling with a given speed in each of ��
di�erent orientations� This could then be linearly scaled according to the actual
speed of the robot�

The other important aspect of the simulation was� of course� that a lot of
noise was employed� both during each trial and between trials �each individual
was evaluated over twelve separate trials in the GA�� Intra�trial noise was applied
to the IR� light� and �oor sensor values� also the robot position� orientation� and
rate of orientation change during turning� and �nally the position of the robot
after impact with a wall� In the last case� these collisions were modelled by just
randomly repositioning the robot within about ���cm of the wall� with a large
orientation and speed change �also randomly determined�� Inter�trial noise was
applied to the angle of acceptance of the light sensors� the arena dimensions
�including charging zone radius�� and also the actual levels of IR� background
IR� and ambient light noise�

In terms of Jakobi�s �minimal simulation� methodology discussed in Section
�� the intra�trial noise was designed to deliver base set robustness� and the inter�
trial noise was for ensuring base set exclusivity� Thus the simulation would be
expected to deliver transferable controllers� For the purpose of investigating the
complexity of the evolved behaviours and neural dynamics� and the speed of
evolution� two conditions were investigated� one with high levels of both inter�
and intra�trial noise� and another with zero inter�trial and very low intra�trial
noise� The actual levels used are given in Appendix 
�

The experiment proceeded by using a distributed GA� with a population of

��� to evolve the weights and thresholds for the controlling network as shown in
�g 
� These weights and thresholds were speci�ed as unbounded �oating point
numbers on a 
�� allele genotype� with mutation and crossover being the only
genetic operators employed��

� Crossover probability was set at ����� with a ���� probability of point mutation per
allele
 a point mutation altered the value of the allele by a random value within the
range ���� �alleles were initialised within the range ����



� Simulation results

��� Basic performance and transference

Many evolutionary runs were performed� in both high noise and low noise con�
ditions� With high noise levels in the simulation� evolutionary runs of about

�� generations always produced very �t individuals� These runs took about 

hour on a single user Sun SparcUltra �
��MHz� workstation� orders of magni�
tude faster than the real world evolution reported in ���� Equally �t individuals
evolved with low noise levels� although not nearly as rapidly as with high noise
levels �this result is discussed in section ����� An example graph charting the
progress of a �high�noise� simulation is shown in �g ��
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Fig� �� An example evolutionary run of a
noisy simulation� demonstrating the evo�
lution of �t robots in a very short time�

Fig� �� A real khepera about its business�
controlled by a network evolved in a very
noisy simulation�

Successful transfer to reality was consistently observed when networks from
the �ttest robots� evolved in noisy conditions� were downloaded onto real Khep�
eras �see Jakobi ��� for further examples of successful transference using the same
simulationmethodology�� This transference was e�ortless� with evolved networks
e�ectively controlling real robots without any further �tinkering� of the evolved
network or the real environment �which consisted of a cobbled together arrange�
ment of wooden walls and a torch balanced at one corner�� Fig � illustrates a
real Khepera �powered externally� but with all processing on�board� just leaving
the recharging area halfway through a demonstration� The trajectories traced
by real Kheperas were very similar to those seen in simulation� except that the
real robot very occasionally impacted with the arena walls� These collisions did
not normally prevent the robot from recovering and reaching the charging area
when necessary� Robot controllers evolved in non�noisy conditions� however� did
not transfer e�ectively to the real world� The relevance of this is discussed in
section ��



0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

a� type A� NO b� type A� NC c� type A� NL

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

d� type B� NO e� type B� NC f� type B� NL

Fig� �� Trajectory plots �in simulation� of robots evolved under noisy �a�c� or non�noisy
�d�f� conditions in either NO �a�d�� NC �b�e�� or NL �c�f� conditions� The charging area
is located in the bottom left�hand corner of each plot� out to a radius of �cm� The type
B robots maintain a simple trajectory regardless of the environmental manipulations�
but the type A robots clearly deploy more complex �searching� and �circling� behavioural
strategies�

The following analyses assess the contribution of high noise levels to the
evolution of neural and behavioural complexity�

��� Behavioural analysis

A set of twelve evolved robots were analysed � six from noisy simulations �hence�
forth type A robots�� and six from non�noisy simulations� �type B robots�� All
analysis took place in simulation� Initially� three environmental conditions were
analysed for each robot�� a normal �NO� condition �with light source and charg�
ing area � this is the condition in which the robot controllers were originally
evolved�� a �no charging area� �NC� condition� where the black paint is removed
and the robot cannot recharge� and a �no�light�source� �NL� condition where�
although the charging area is present� the light source at the corner is removed�
Low noise levels were employed in all these conditions�

Fig � �a�c� illustrates typical overhead trajectory plots for the robots evolved
in noisy environments �type A� in the three conditions� and �d�f� illustrate the
same for robots evolved in non�noisy environments �type B�� In the NO condi�
tion� both A and B robots can repeatedly �nd the charging area �situated in

� These tests were also performed by Floreano and Mondada 
��� who observed similar
results to those of the �noisy� robots in the present study� However� the conclusions
drawn about the nature of the controlling network are di�erent in the present work�



the lower left hand corner�� and their trajectories are not obviously di�erent�
However in the NC and NL conditions� there are clear di�erences� The B robots
maintain a behaviour pattern qualitatively similar to that displayed in the NO
condition� but the A robots do nothing of the kind�

The B robots seem only to have evolved to move in straight lines and to
turn upon encountering walls� a strategy which does indeed periodically return
the robot to the charging area in predictable environments� The A robots� by
contrast� are clearly a�ected by the presence �or absence� of the black charging
area and the light source� In the NC condition� these robots navigate towards
the charging area and remain in the vicinity� performing what could be described
as a searching behaviour� In the NL condition� the robots begin� as in normal
conditions� with a fairly linear trajectory� but shortly begin to circle� giving the
impression that the robot is trying to orient to a light source�

These searching and circling behaviours were also observed in real�world
Khepera behaviour� when the environment in �g � was manipulated in the appro�
priate way� All six A robots displayed similar searching and circling behaviours�
and all six B robots displayed the simple behaviour �as in �g � �d�f���

In a further example of how the A robots deploy more complex behaviours
than B robots� one of each kind were compared in a �low noise� condition in
which the walls were removed �again in simulation�� with the charging area
then extending in a complete circle around the light source� Fig � illustrates
that the B robot was completely impotent in such circumstances� hinting at its
reliance on IR stimulation� Only one typical run is shown� but out of �� tests the
robot reached the charging area just once� By contrast� the A robot reached the
charging area 
� times out of ��� and in � cases returned more than once� Fig �
illustrates a particularly impressive A robot trajectory� and although in general
the robot is undeniably adversely a�ected by the lack of walls� the considerably
greater success rate enjoyed by the A robot suggests that a greater range of
environmental stimuli �not just IR� is being assimilated in the determination of
its behaviour� Indeed� the A robot is clearly able to turn in the absence of a wall�
and the B robot is not�

��� Neural analysis

In this section� it is shown that the neural dynamics of the type A robots are
also more complex than those of the type B robots� and in ways commensurate
with their behavioural di�erences�

Initially� activation plots for all 
	 neurons in all three �simulation� conditions
�NO� NC� and NL� for all of the 
� robots �� A� and � B� were collected� Figs 	
and 
� present example plots for one robot of each type in the NO condition�
These plots illustrate� �and this is true for all the plots�� that whereas the hidden
units �HUs� of the B robots react almost solely to IR stimulation� the HUs of
the A robots react much more strongly to light� battery� and �oor sense data�
For example� at time�steps ��� ��� 	�� and 
�� in �g 	� hidden unit and motor
output can be seen when there is no IR input� This is never the case in �g 
��
Indeed� in the �no�wall� condition discussed in section ��� �and therefore in the



-50

-40

-30

-20

-10

0

10

20

30

40

50

-30 -20 -10 0 10 20 30 40

Fig� �� Type A robot in no�wall test	 note
that the edge of the graph does not rep�
resent a wall� and that the charging area
is situated in a circle around the origin�

-40

-20

0

20

40

60

80

100

120

-40 -20 0 20 40 60

Fig� �� Type B robot in no�wall test	
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absence of any IR input� only the A robots display any signi�cant HU activity
��gs � and 
��
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Fig� �� Type B robot HU activation in
the no�wall test	 very little activation in
any units�

To explore these results in a non�behavioural context� short periods of high
activity �spikes� were injected into six combinations of input units� with the
subsequent activations of the hidden and motor units being recorded� The �rst
two conditions consisted of IR inputs only� with either all 
 inputs active� or all
except the rear two�� The next two conditions tested combinations of ambient
light input spikes in the absence of IR input� The �fth condition injected a
negative �oor sensor spike �as if the robot were over the charging area�� again in

� �Non�active� units� in all conditions� were set to �� except for �oor sensor and battery
units� which were set to � �signifying a full battery� and a robot position away from
the charging area��
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Fig� 	� Neuron pro�le for type A robot �evolved in noisy conditions�� tested in the NO
condition� HUs �H��H
� and motor units display activity not correlated with IR input
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Fig� �
� Neuron pro�le for type B robot �evolved in non�noisy conditions�� tested in
the NO condition� HUs �H��H
� seem to be predominantly reacting to IR input�



the absence of IR input� and the last condition injected a negative battery spike
�signifying an empty battery�� also in the absence of IR input�

Fig 

 presents summary data for all 
� robots over all these six conditions�
in terms of the HU activity elicited� For example� the third and fourth conditions
involved light input spikes� and �� percent of the type A robot HUs responded
strongly in these conditions� compared to 

 percent of the type B robot HUs�
Similarly� the sixth condition tested the responses to battery sense data� and
again more A HUs responded than B HUs� Thus� �g 

 makes it clear that the
A robots take greater account than the B robots of the light and battery sense
data� These conditions were statistically signi�cant according to Mann�Whitney
U tests ��U � ����� df � �� �� p � ���
�� �U � ����� df � �� �� p � ���
�
respectively�� And although the statistical test is not signi�cant� the B robots
do appear to rely more heavily on IR input than the A robots�
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runs of a noisy simulation �superim�
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an average Hamming distance of about
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The results in this section are clearly suggestive of more complex evolved neu�
ral dynamics from noisy simulations than from non�noisy simulations �of course�
the neural architecture itself is the same in both cases�� This additional complex�
ity is revealed primarily through type A HUs that respond to a wider range of
environmental stimuli� The neural dynamics must therefore also cope with meld�
ing these multimodal inputs into a coherent motor output� These observations
corroborate the behavioural data in that only the type A robots were strongly
a�ected by manipulations of the light source and charging area� This suggests
that these robots navigated to the charging zone by using the light� and could
act on the basis of some internal state in�uenced by remaining battery level�



��� Noise accelerates arti�cial evolution

As suggested in section ��
� it was indeed observed that high noise actually
accelerated the evolutionary process� Figs 
� and 
� illustrate this e�ect� su�
perimposing plots �of many evolutionary runs� of the number of actions taken
�the lifetime� for the �ttest robot of each generation� for many generations� This
result is discussed in the following section�
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imum lifetime relatively quickly�

� Discussion

This paper has demonstrated how the appropriate use of noise in simulation can
enhance the behavioural and neural complexity of the evolving robot controllers�
and can even accelerate the evolutionary process itself� This section brie�y dis�
cusses how this enhanced complexity may relate to issues of robustness� and
�informally� how the e�ects of noise� in the present context� may be considered
in terms of evolutionary dynamics�

��� How do these results relate to robustness	

In section ��
 it was observed that networks evolved in non�noisy environments
did not transfer e�ectively to the real world �this� however� was to be expected
from Jakobi et� al ����� One e�ect of noise is therefore to endow the evolving
networks with real�world robustness� Indeed� one way to understand the results
presented here is that robustness is being achieved through evolution exploiting
the properties of a qualitatively di�erent� more complex� behaviour� This evolu�
tionary strategy is possible because the �tness function employed is su�ciently
simple and non�speci�c� so to allow di�erent behaviours to achieve similar �t�



ness scores� �as noted in section ��� Future work will further address this issue of
robustness� by investigating behavioural di�erences engendered by two di�erent
levels of noise� with both levels being su�ciently high to support transference to
the real world�

��� Some informal speculations in evolutionary dynamics

Hinton and Nowlan ��� show how learning can in�uence the course of evolution�
through the Baldwin e�ect �
�� Speci�cally� they show that sharp peaks in a
�tness landscape can be considerably smoothed if lifetime learning is allowed�
As an informal speculation� it may be that simulation noise is playing a similar
role in the present experiments� in �smoothing out� any steep valleys that may
lie between maxima representing type B and type A behaviours�� This assumes
that the population travels across a landscape as a relatively converged mass
��g 
� illustrates that the populations in the present experiments do converge
quickly��

To continue this informal discussion� noise selectively applied to only parts
of a simulated agent�environment system� could smooth some parts of a �tness
landscape more than others� and perhaps entirely eliminate certain local maxima�
In the present example� su�ciently high noise levels ensure that the simple type
B behaviour is not viable� and the corresponding maxima would no longer be
present in the landscape� Evolution could then proceed directly towards the
maximumrepresenting the type A behaviour� Finally� and informally once again�
smoothing a �tness landscape with noise may reduce the total number of maxima
present in the landscape� thus allowing evolution to proceed with greater speed
to its ultimate maximum� This may help to explain the results presented in
section ����

Appendix �

The noise levels used in the simulations are given overleaf�

� It is� of course� possible that a more speci	c 	tness function would allow a type A
behaviour to evolve in a non�noisy environment
 however this paper does not claim
that noise can permit the evolution of behaviours that would be impossible to evolve
without noise�

� The learning algorithm employed by Hinton and Nowlan is simply random search�
which could be informally construed as �	tness evaluation noise��



noisy levels non�noisy levels

IR �and background IR� �����
�� �
����
light �and �oor sensor� ��� ��
robot position ���
cm �
robot orientation �����rad �
turning noise ����rads �
friction ��cm �
arena size ��cm �
charge radius �
cm �
light angle of acceptance �����rad �
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