

Human Driver Models
for AHS Simulations

Cem Ünsal

CMU-RI-TR-98-02

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania
15213-3890

February 1998

© 1998 Carnegie Mellon University

This work was supported by US Department of Transportation under Cooperative
Agreement number DTFH61-94-X-00001 as part of the National Automated Highway
System Consortium.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expresses or implied,
of the U.S. government.

Human Driver Models 1 02/03/98

Table of Contents
1 INTRODUCTION ... 2

2 GENERAL STRUCTURE .. 2

3 HUMAN DRIVER MODEL A .. 4

3.1 INPUTS, OUTPUTS, AND DISCRETE STATES.. 4
3.2 MODEL PARAMETERS AND VARIABLES.. 5
3.3 DISCRETE STATE TRANSITION RULES.. 5
3.4 OTHER ISSUES.. 5

4 HUMAN DRIVER MODEL B .. 6

4.1 INPUTS, OUTPUTS AND DISCRETE STATES ... 6
4.2 MODEL PARAMETERS AND VARIABLES.. 8
4.3 DISCRETE STATE TRANSITION RULES.. 9
4.4 OTHER ISSUES.. 9

5 HUMAN DRIVER MODEL C .. 10

5.1 INPUTS, OUTPUTS AND DISCRETE STATES ... 11
5.2 MODEL PARAMETERS AND VARIABLES.. 11
5.3 DISCRETE STATE TRANSITION RULES.. 11
5.4 OTHER ISSUES.. 11

6 SOURCE CODE.. 12

7 ADDITIONAL FILES FOR HDM SIMULATIONS .. 12

7.1 RANGE SENSOR MODELS.. 12
7.2 PURSUIT POINT MODEL .. 12

7.2.1 Source Code... 13
7.3 TWO-DIMENSIONAL VEHICLE MODEL.. 13
7.4 VEHICLE CONTROLLERS... 13
7.5 SIMPLEST DRIVER MODEL .. 13
7.6 MAIN VEHICLE DESCRIPTION FILE .. 13

8 SCENARIO DESCRIPTION FILES .. 14

9 ADDITIONAL INFORMATION .. 14

9.1 USING MULTIPLE VEHICLE/DRIVER TYPES IN A SINGLE SIMULATION ... 14
9.2 FILES ... 15

10 CONTACT INFORMATION ... 16

11 REFERENCES.. 16

Human Driver Models 2 02/03/98

1 Introduction
This document describes the human driver models designed for automated highway-vehicle systems
simulations in SHIFT/Smart-AHS. The models given in this document are defined using SHIFT
programming language, and some of the Automated Highway System components in Smart-AHS
platform [2,3]. Therefore, SHIFT and Smart-AHS packages provided at simulation web site [1] and
files described in [4] are required. Human driver models given here include simple two-dimensional
vehicle, vehicle controller, and sensor descriptions. All necessary files are available on-line at

http://www.cs.cmu.edu/~unsal/research/shift ; the source code is also given here and in
the document describing the sensors [4].

The next section describes the general structure of the human driver model in SHIFT. In order to
make decisions about vehicle motion, the driver model requires information about its lane position,
speed, relative positions of other vehicles, etc. These are provided by the sensor modules as well as the
vehicle roadway environment processor (VREP), a module defined in Smart-AHS library. Sections 3,
4 and 5 introduce three different driver models, and their discrete states (of mind) and decision
structures. Additional models required for the simulation are described in Section 7.

2 General Structure
The general structure for human driver models in SHIFT/Smart-AHS is given in Figure 1. A basic
simulation includes the decision and pursuit modules as well as additional definitions for vehicle
kinematics, vehicle controllers, sensor(s), vehicle roadway environment processor (VREP), and/or
sensor environment processor (SEP). The structures of different human driver models are very similar,
except a few differences in the sub-module definitions and, consequently, their connections.

The vehicle model is 2-D, and therefore some of the VREP inputs are zero. Information about the
vehicle and road orientation, lane position and road curvature is sent to the controller in order to
generate a steering command based on the road curvature and the relative position of the vehicle with
respect to the lane/road. Global and/or road positions as well as the current lane are connected to
appropriate sensor inputs for distance and azimuth calculations (See [4] for details). Global positions
are also used for Cell definitions in sensor environment processor (SEP).

The vehicle controller takes desired speed, desired lane position, and current values of the lane
position, vehicle/road orientation, wheel speed and road curvature to generate longitudinal acceleration
and steering. This module can be visualized as a driver’s control actions following his decisions, or as
an automated vehicle controller following manual speed and lane change commands.

Vehicle model is kinematic; it is a standard bicycle model with wheel base definition. The center of
gravity of the vehicle is assumed to be at the middle of rear axle. The longitudinal and lateral
displacement as well as the vehicle rotation around its axis normal to the ground are defined as outputs,
and connected to vehicle roadway environment processor (VREP).

The sensor module uses the information provided by VREP, SEP and/or global set of vehicles to
evaluate one or more of the following (depending on its type), and sends these to the decision module:

x distance to the closest vehicle
x azimuth angle to the closest vehicle
x headway distance
x tailway distance
x longitudinal distance to the closest vehicles in the side lanes, front and back
x longitudinal distance to the second closest vehicle in the same lane or adjoining lanes (front and

back)
x rate of change in headway distance

Human Driver Models 3 02/03/98

xDot

yDot

thetaDot

xDot

yDot

wz

wy

wx

zDot

followLane

rxp

gxp

gyp

lyp

section

lane

rgamvgamcurvature

speed

acc

steering

VEHICLE VREPCONTROLLER

des_lyp

lyp_act

spd_actspd_des

long_acc

steering

rgamvgam curvature

SENSOR(S)

rxp

gxp

gyp

section

lane
left/right
front/back
detection

distance

angle Cell

target_spd

target_lyp

cur_spd

azimuth

headway

left/right
front/back
detection

DECISION

PURSUIT SEP

cur_lyptarget_lyp

des_lyp_pur

gxp

gyp

Cell

0

0

0

0

DRIVER

lane

lane

lane

synchronization

lane

Figure 1. General structure of the Human Driver Model in SHIFT.

If the number of vehicles in the simulation is large, then geometric hashing methods can be used for
sensor measurements and/or vehicle detection. The two alternative are (a) the cell structure defined as
part of the roadway description in Smart-AHS [2] and (b) the sensor environment processor and the
global grid of cells [4].

For the description of cell structure in roadway definitions, see Smart-AHS manual pages [5]. The
sensor environment processor (SEP) uses the global position of its associated vehicle, and the global
set of Cells to evaluate the current cell the vehicle is travelling in. This information is then sent to the
sensor module to be used in the definition of the subset of vehicles to be checked by the sensor.

 The decision module (main part of the driver model) takes current distance (headway), azimuth,
left/right detection and/or current speed information to make an intelligent decision on the target speed
and lane position. Target speed is directly sent to the vehicle controller model while the target lane
position is passed on to the pure pursuit point model.

Human Driver Models 4 02/03/98

Pure pursuit point model evaluates the desired pursuit point location on the lane based on the target
lane position indicated by the driver module and the current lane position of the vehicle provided by
VREP. Pursuit and decision modules are synchronized to lane change transition of associated VREP.

The driver models are described in Sections 3, 4, and 5. All other modules and the main vehicle
description mentioned above are introduced in Section 7.

3 Human Driver Model A
This first model is designed to keep a predefined headway distance. The target speed, which is sent to
the vehicle controller module, is adjusted so that the headway distance is close to desired headway,
which is a function of the current vehicle speed. If the headway distance is less than a minimum
acceptable value, the target speed is set to zero. If the distance is larger than a predefined value, the
driver transitions to cruise state where it tries to match a preset value.

The driver also takes random actions by a predetermined frequency. Possible actions are changing
lanes –if there are no vehicles in the side sensor range- and a random change in the cruise speed.

The behavior of this driver model can be adjusted by using the parameters defined in Section 3.2.

3.1 Inputs, Outputs, and Discrete States
Human driver model A has the following inputs:

x current speed (current_spd)
x current headway (current_hdwy)
x detection information from side sensors (sensor_lf, sensor_lb, sensor_rf, sensor_rb)

The speed input is connected directly to the vehicle model, but an additional sensor model can be
placed between vehicle and driver modules. The headway and side detection data are provided by the
sensor modules described in [4].

The following are the outputs of the driver module:

x target speed (target_spd)
x target lane position (target_lyp)
x desired headway (des_hdwy; not connected)

Target speed is directly sent to the vehicle controller. Target lane position is sent to the pursuit
module, which is used to implement lane-changing behavior of a human or automated driver. Detailed
information on pursuit model can be found in Section 7.2. The details of the connections are shown in
Figure 1.

There are five different discrete states for the driver model A:

x Cruise (cruise)
x Follow (follow)
x Stop (stop)
x Change left (change_left)
x Change right (change_right)

The behavior of the driver in each discrete state is defined using flow equations in SHIFT [1]. In state
cruise, the driver tries to match its desired cruise speed. The change in the target speed is proportional
to the difference in the target and desired speeds.

In follow mode, the driver adjust her speed to match the desired headway distance, which is defined
as a function of the current vehicle speed. Current headway and desired headway distance are
compared, and the desired change in the target speed is calculated. If the calculated target speed is

Human Driver Models 5 02/03/98

larger than the maximum acceptable speed, then the change is reset to zero. (See source code in
Section 6 for details.)

In stop mode, the target speed is set to zero. Change left and change right modes forces the driver to
keep its last target speed definition before transition, and change the target lane position value to +/-
lane width for lane change. This target lane value is kept until lane change is indicated by an external
event of VREP.

3.2 Model Parameters and Variables
The model parameters and variables used in this simple driver model are:

x speed_change Evaluated change in target speed (m/s2).
x speed_change2 Change in target speed; input to the limiting function (m/s2).
x aa Preset acceleration and deceleration values for follow mode (m/s2);
x dd used to change target speed.
x max_speed Maximum possible speed for the driver (m/s).

x min_hdwy Headway distance limit for transition between states stop and follow (m).
x des_hdwy_limn Parameters defining the comfort region around the desired headway value (m).
x des_hdwy_limp
x hlim Limiting value of the headway distance for transition between states follow

and cruise (m).

x lwi Lane width (m).

x cruise_ speed Desired speed for cruise mode (m/s).
x ad Proportional gain constant for tracking cruise_speed (1/s).

x t Time (s).
x action Value indicating the random action to be taken at t = actiontime.
x actiontime Random time interval for actions; defined at the setup phase (s).

x myrrep Associated VREP.

3.3 Discrete State Transition Rules
Table 1 on page 6 gives the conditions under which the discrete state transitions take place. The
parameters, model variables and the system inputs are described in the previous section.

3.4 Other Issues
Certain sets of parameters may result in oscillatory behavior in vehicle speed (and consequently

headway distance) in follow mode. The parameters are to be adjusted carefully. If necessary, the
follow behavior can be slightly changed to “do not follow vehicle when the rate of change in headway
is positive.”

Human Driver Models 6 02/03/98

Table 1. State transitions.

From To When

1 cruise stop current_hdwy � PLQBKGZ\

2 follow stop current_hdwy � PLQBKGZ\

3 stop follow current_hdwy � PLQBKGZ\
 ���

4 cruise follow current_hdwy < hlim

5 follow cruise current_hdwy � KOLP

6

follow change_left

t � DFWLRQWLPH

AND action < 1

AND sensor_lb = -1 AND sensor_lf = -1

7

follow change_right

t � DFWLRQWLPH

AND action � � $1' DFWLRQ � �

AND sensor_rb = -1 AND sensor_rf = -1

8

cruise change_left

t � DFWLRQWLPH

AND action < 1

AND sensor_lb = -1 AND sensor_lf = -1

9

cruise change_right

t � DFWLRQWLPH

AND action � � $1' DFWLRQ � �

AND sensor_rb = -1 AND sensor_rf = -1

10 cruise cruise t � DFWLRQWLPH $1' DFWLRQ � �

11 change_left cruise External event synchronization myvrep:UpdateLaneLeft

12 change_right cruise External event synchronization myvrep:UpdateLaneRight

4 Human Driver Model B
The second human driver model is designed to keep a desired headway distance when there is a
vehicle in predefined sensor range, and to keep a desired speed otherwise. If the headway distance is
too close or its rate of change is a large negative value, the driver changes lanes to avoid a collision. If
lane change is not possible, the driver tries to stop. Details of the driver behavior are given in the
following sections. The behavior of this driver model can be adjusted by using the parameters defined
in Section 4.2.

4.1 Inputs, Outputs and Discrete States
Human driver model B takes the following as inputs:

x current speed (current_spd)
x current headway (current_hdwy)
x detection information from side sensors (sensor_lf, sensor_lb, sensor_rf, sensor_rb)

The speed input is connected directly to the vehicle model, but an additional sensor model can be
placed between vehicle and driver modules. The headway and side detection data are provided by the
sensor modules described in [4].

Human Driver Models 7 02/03/98

The following are the outputs of the driver module:

x target speed (target_spd)
x target lane position (target_lyp)
x desired headway (des_hdwy; not connected)

Target speed is directly sent to the vehicle controller. Target lane position is sent to the pursuit
module, which is used to implement lane-changing behavior of a human or automated driver. Detailed
information on pursuit model can be found in Section 7.2. The connections are shown in Figure 1.

There are six different discrete states for the driver model B. These are:

x Cruise (cruise)
x Follow (follow)
x Follow closely (followc)
x Change left (change_left)
x Change right (change_right)
x Stop (stop)

The behavior of the driver in each discrete state is defined in flow equations in SHIFT [1]. In state
cruise, the driver tries to match its desired cruise speed. The change in the target speed is proportional
to the difference in the target and desired speeds.

In follow and follow closely modes, the driver adjusts its speed according to available headway
distance. Desired headway distance where the driver is comfortable is defined by a function of the
current speed. Current headway and desired headway distance are compared, and the desired change in
the target speed is calculated using headway rate as an additional constraint. The behavior is
summarized in Table 2 and Table 3. If the current headway distance is close to the desired headway
value, then no change in the target speed is made. If the current headway value differs from the desired
value by a large amount (define by lim2p and lim2n) then preset acceleration/deceleration values are
used to adjust target speed. For smaller deviations (defined by lim1n and lim1p) target speed is
adjusted if the rate of change of the headway is appropriate.

The only difference between two follow modes is the definition of the parameters. These and the
transition rules between states are discussed in the following sections.

Change left and change right modes force the driver to keep its last target speed definition before
transition, and change the target lane position value to +/- lane width for lane change. This target lane
value is kept until lane change is indicated by a VREP event.

In discrete state stop, the driver’s target speed is set to zero.

Table 2.Calculation of change in target speed in follow modes.

Current headway region

 - dh – lim2n dh – lim1n dh dh + lim1p dh + lim2p +

Value of
a1

-dd
 If h’ < 0
 then –dd
 else 0

0 0
 if h’ > 0

 then aa
 else 0

Aa

dh = f(current speed) : desired headway
limxn, limxp (x = 1, 2) : limiting values defining the regions
aa, dd : preset acceleration, deceleration values

Human Driver Models 8 02/03/98

Table 3. Limiting function on the change in target speed.

Current target_speed region

 - 1 max. speed +

Value of
target_speed’

max (a1, 0) a1 min (a1, 0)

4.2 Model Parameters and Variables
This section describes the model parameters and variables used in the simulations. These are:

x hdwy_delay_t Delay in seconds for headway rate calculations (sec).
x min_hdwy Headway distance limit for transition from state follow(c) to stop (m).
x min_hdwy2 Headway distance limit for transition from state cruise to stop (m).

x des_hdwy_lim1pParameters defining the regions around the desired headway value
x des_hdwy_lim2p(in meters; See Table 2 and Table 3).
x des_hdwy_lim1n
x des_hdwy_lim2n

x aa Preset acceleration and deceleration values for follow modes (m/s2);
x dd used to change target speed.

x lane_shift_hdwy Limiting value of headway distance for lane changing decision (m).
x lane_shift_hrate Limiting value of headway rate for lane changing action;

used with lane_shift_hdwy (m).
x lane_shift_hrate2Limiting value of headway rate for lane changing action (m).

x cruise_speed Desired speed for cruise mode (m/s).
x ad Proportional gain constant for tracking cruise_speed (1/s).

x hlim Limiting value of headway distance for transition between states follow and
cruise (m).

x hlim_delay Limiting value of headway distance for transition between states follow
and followc; also used to adjust command delay according to mode (m).

x lwi Lane width (m).

x cmd_delay Delay in speed command for follow mode (sec).
x cmd_delay2 Delay in speed command for folllowc mode (sec).

x max_speed Maximum possible speed for the driver (m/s).
x target_speed Calculated target speed; input to the command delayers,

 i.e., target_spd(t + cmd_delay) (m/s).
x speed_change Evaluated change in target speed; a1 in Table 2 (m/s2).
x speed_change2 Change in target speed; input to the limiting function (m/s2).

x myvrep Associated VREP.

x delayer_hdwy Delayer for headway measurements.
x delayer_cmd Delayer for speed command (follow mode).
x delayer_cmd2 Delayer for speed command (followc mode).
x delayed_hdwy Headway measurement delayed by hdwy_delay_t using delay_hdwy (m).
x headway_rate Rate of change in headway distance (m/s).

Human Driver Models 9 02/03/98

Some of the above parameters must be defined carefully in order obtain an intelligent driver model.
Figure 2. shows some of the parameters and variables that are related to headway control structure.
Desired headway and limiting value of the headway distance for lane changes are functions of the
current vehicle speed, and therefore continuous variables. While the current headway measurement is
compared with the desired headway, its value is also checked against other constant parameters (such
as min_hdwy, min_hdwy2, hlim, hlim_delay) to adjust driver state. There are two separate functions for
the limiting value of the headway distance for lane shifting actions (lane_shift_hdwy); one for each
follow modes.

des_hdwy

des_hdwy + lim1p

des_hdwy + lim2p

des_hdwy - lim1n

des_hdwy - lim2n

min_hdwy

min_hdwy2

lane_shift_hdwy

hlim

hlim_delay

f1 (current_spd)

f2 (current_spd)

Figure 2. Relation between headway control parameters.

4.3 Discrete State Transition Rules
Table 4 on page 10 gives the conditions under which the discrete state transitions take place. The
parameters, model variables and the system inputs are described in the previous sections.

4.4 Other Issues
For each discrete driver state, target speed is defined either algebraically or by using differential
equations. In both cases, the evaluated value is fed into a command delayer that emulates driver’s
reaction to events. The evaluated target speed is sent to two separate delayers operating with different
delay times. One of the delayer outputs is chosen depending on the current headway: for closer
headway distances the reaction time is shorter. Delay times are defined in the setup phase.

The headway and side sensor measurements are not delayed. Adding delay to, say, headway
measurements will provide a simple model for driver perception lag. Adding delay to sensor
measurements (especially to the headway), would create a new set of programming problems,
especially during lane changing maneuvers. Since a driver is more attentive during lane changes, it
may be possible to remove perception delay during the lane changing maneuvers, and then switch back
to normal operation mode (in terms of perception delay) once the associated VREP indicates lane
change.

More complicated lane changing decision mechanisms is possible based on longitudinal distance
measurements provided by the side sensors; the sensors are capable of providing distance and rate
information. The details are given in [4].

Human Driver Models 10 02/03/98

Table 4. State Transitions

From To When

1 cruise stop current_hdwy < min_hdwy2

2 follow stop current_hdwy < min_hdwy

3 followc stop

(current_hdwy < min_hdwy AND hdwy_rate � � �

OR

current_hdwy � PLQBKGZ\�

4 stop followc current_hdwy > min_hdwy AND hdwy_rate > 0

5 follow followc current_hdwy � KOLPBGHOD\

6 followc follow current_hdwy > hlim_delay

7 cruise follow current_hdwy < hlim

8 follow cruise current_hdwy � KOLP

9 follow change_left

((current_hdwy < lane_shift_hdwy AND hdwy_rate < lane_shift_hrate)

 OR

 hdwy_rate < lane_shift_hrate2)

AND sensor_lb = -1 AND sensor_lf = -1

10 follow change_right

((current_hdwy < lane_shift_hdwy AND hdwy_rate < lane_shift_hrate)

 OR

 hdwy_rate < lane_shift_hrate2)

AND sensor_rb = -1 AND sensor_rf = -1

11 followc change_left

((current_hdwy < lane_shift_hdwy AND hdwy_rate < lane_shift_hrate)

 OR

 hdwy_rate < lane_shift_hrate2)

AND sensor_lb = -1 AND sensor_lf = -1

12 followc change_right

((current_hdwy < lane_shift_hdwy AND hdwy_rate < lane_shift_hrate)

 OR

 hdwy_rate < lane_shift_hrate2)

AND sensor_rb = -1 AND sensor_rf = -1

13 change_left cruise External event synchronization myrep: updateLaneLeft

14 change_right cruise External event synchronization myrep: updateLaneRight

5 Human Driver Model C
The third human driver model also keeps a desired headway distance when there is a vehicle in range,
and otherwise tries to keep a desired cruise speed otherwise. Lane changing behavior is parameterized
using a set of time flags. If the current vehicle speed differs from the desired cruise speed by a certain
amount for a predefined time interval, the driver decides to change lanes. At this point, the lane change
is arbitrary if both left and right lanes are open. If both adjacent lanes (if they exist) are occupied by
other vehicles (for a certain longitudinal range), and the flag for lane change is set for a predefined
time interval, then the driver decides to slow down hoping that this action will provide an opening in

Human Driver Models 11 02/03/98

adjacent lanes. The decrease in vehicle speed is provided by changing the evaluation function for the
headway. (See following sections and the source code given in Section 6 for details.)

It may also be possible to use additional information from the sensor modules and define more
complex behavior rules using the same driver structure given in this section.

5.1 Inputs, Outputs and Discrete States
Human driver model C has the same inputs, outputs and discrete states as the driver model B given in
Section 4. The behavior of the driver in each discrete state is also similar. The only difference between
driver models B and C is in the decision to make lane changes.

In follow and follow closely modes, the model tracks the time passed since the last lane change. If the
vehicle is not traveling at the desired cruise speed, a flag is set after a predefined time interval (driver’s
patience has expired). After the flag is set, the driver changes lanes if the adjacent lane is not occupied
by another vehicle. At this point, the model checks the whole range of side sensors, front and back
(See sensor definitions in [4]) for vehicles; more complex decision rules are possible. If both left and
right adjacent lanes (if they exist) are occupied, the driver decides to decrease her speed after a
specified time interval hoping for an opening. Forcing a speed increase or a sequence of actions are
possible by minor changes in the code.

5.2 Model Parameters and Variables
The parameters/variables for drive model C is very similar to the previous model in Section 4, except
that the following parameters are added instead of lane_shift_hrate, lane_shift_hrate2:

x lsft Time passed since last transition to follow mode (s).
x lsiflagt Time interval for setting the flag for lane shift (s).
x lsflagt2 Time interval for starting the speed decrease for a possible lane opening.
x lsfspeedlim Acceptable speed difference beyond which the flag timer starts counting (m/s).

The parameter lane_shift_hdwy is kept in order to guarantee safe operation. If the headway distance
drop below this value, the lane changing decision is made. The relative position of this parameter on
the real axis with respect to parameters min_hdwy and min_hdwy2 affects the behavior of the driver:
the transition to state stop from follow states may never occur.

5.3 Discrete State Transition Rules
Human driver model C differs from the previous model given in Section 4 only in its rules for
transition to lane changing states. Therefore, only the transition with new rules are given in Table 5 on
page 12. All other transitions are the same as those given in Table 4. Also, see the source code given in
Section 6 for use of the second flag lsflagt2 for speed adjustment.

5.4 Other Issues
Any combination of the models given in Sections 3, 4, and 5can be created with minor changes in the

source codes. Although the models given here are designed for populating the highway during
simulations and therefore, detailed behavior definitions may not be necessary, nor significant for the
simulation, additional rules/transition for aborting lane changing actions can be added for more
realistic behaviors.

Human Driver Models 12 02/03/98

Table 5. State transitions.

From To When

9 follow change_left (lsft � OVIODJW 25 FXUUHQWBKGZ\ � ODQHBKLIWBKGZ\�

AND sensor_lb = -1 AND sensor_lf = -1

10 follow change_right (lsft � OVIODJW 25 FXUUHQWBKGZ\ � ODQHBKLIWBKGZ\�

AND sensor_rb = -1 AND sensor_rf = -1

11 followc change_left (lsft � OVIODJW 25 FXUUHQWBKGZ\ � ODQHBKLIWBKGZ\�

AND sensor_lb = -1 AND sensor_lf = -1

12 followc change_right (lsft � OVIODJW 25 FXUUHQWBKGZ\ � ODQHBKLIWBKGZ\�

AND sensor_rb = -1 AND sensor_rf = -1

6 Source Code
Source code for human driver model discussed in Sections 3, 4, and 5 are given below:

<humandrivers.hs>

7 Additional Files for HDM Simulations
This section briefly describes the files used in HDM simulations. Some of these files/modules are
described in [4] as indicated; other types such as the pure-pursuit point follower model, simple driver
model and an example definition of the type vehicle are defined here.

7.1 Range Sensor Models
The following range sensors models used with the driver models given in this document can be found
in [4]:

x frontsensor.hs
x leftsensor.hs
x rightsensor.hs
x backsensor.hs
x backsensor2.hs
x frontsensor2.hs
x leftsensor2.hs
x rightsensor2.hs
x frontsensor2_rate.hs

7.2 Pursuit Point Model
SHIFT type Pursuit is used to take the target lane position information from the driver (or the higher
decision level in the control hierarchy), and relays it to the (lateral) vehicle controller with a predefined
rate of change. This subroutine is required in order to make sure that the lateral controller is able to
track the pursuit point.

A second task for this type is to guarantee smooth transitions for the desired lane position (lateral
deviation) input to the lateral controller during lane changes. As seen in the highway and vehicle
environment processor VREP descriptions in Smart-AHS [3], the lateral lane deviation value lyp
“jumps” 2lw� to 2lw during left lane changes, or vice versa (lw indicates the lane width). The

driver (or higher control level in the hierarchy) model currently uses a lane deviation value of rlw to

Human Driver Models 13 02/03/98

indicate a desired lane change. Due to the change in the actual value at transition from one lane to the
other, the value of the desired deviation also needs to be changed to guarantee smooth operation. The
type Pursuit uses a conditional transition waiting for the lane change to take care of this problem.
This module takes target lane position from driver module, current lane position and current lane for
VREP as inputs, and generates desired pursuit point as output. The rate of change for the desired lane
position and its maximum value are user-defined parameters. See the source code given below for
details.

7.2.1 Source Code
The SHIFT code for pursuit point evaluation is given below:

<pursuit.hs>

7.3 Two-dimensional Vehicle Model
Description of the two-dimensional kinematic model of the vehicle as well as the source code can be
found in [4].

7.4 Vehicle Controllers
Descriptions of the lateral and longitudinal controllers used with the 2-D kinematic vehicle model as
well as the source code are given in [4].

7.5 Simplest Driver Model
SHIFT type Driver0 is designed to follow a predefined trajectory. It uses the same input output
structure as the driver models described in Sections 3, 4, and 5. This model does not make any
intelligent decisions on its speed, nor lateral position, except slowing down with predefined parameters
when there is a vehicle in front of it. This model is used to test other driver models under different
highway conditions.

The SHIFT code for the simplest driver model is given in Section 6.

7.6 Main Vehicle Description File
An example file (ExVehicle.hs) is included here to illustrate subtype definitions for a manually
controlled vehicle simulation in Smart-AHS/SHIFT platform. As seen in the SHIFT code below, the
set of vehicles is defined globally. Subtypes defined for the vehicle require inclusion of additional files
for the SHIFT compiler. A generic type Vehicle includes a two-dimensional vehicle model (subtype
Vehicle_Kinematics), a lateral and longitudinal control models (Controller), the pursuit subroutine
(Pursuit), a simple driver model (e.g., DriverA), and several sensor models (e.g., RangeSensor_PV) as
well as vehicle roadway environment processor (VREP), a source (Source), a sink (Sink), and/or a
sensor environment processor (SEP). Global position, the velocity and the width and length of the
vehicle can be defined as outputs for the vehicle.

In the setup phase, sensor, controller, and other model parameters are defined; the newly created
vehicle is added to the set of vehicles. The initial location of the vehicle is inherited from the
associated source. Figure 1. in Section 2 illustrates possible links between the subtypes constituting the
vehicle.

The SHIFT code for the example vehicle description is below:

<ExVehicle.hs>

Human Driver Models 14 02/03/98

8 Scenario Description Files
Figure 3. illustrates the 4-section racetrack given in file racetrack.hs . The file includes four
sources in the lower left section. For details, see the source code below and the web page
http://www.cs.cmu.edu/~unsal/research/shift/track.html.

Figure 3. Racetrack with 4 sections, 3+4+1+4 =12 segments, and 3 lanes.

The SHIFT code for the racetrack description is given below:

<racetrack.hs>

9 Additional Information

9.1 Using Multiple Vehicle/Driver Types in a Single Simulation
As indicated in this document and in [4], several modules (i.e., SHIFT types) use the global set of
vehicles for sensing, detecting, and making decisions. It is also possible to define different types of
vehicles (e.g., one source creating vehicles taking random actions, another creating vehicle with
decision-making drivers) and combine these into a single global set of vehicles using SHIFT class and
hierarchy definitions.

Human Driver Models 15 02/03/98

However, our attempts to remove ego-vehicle from this heterogeneous set of vehicles for sensor
evaluations resulted in run-time errors. A possible explanation of this condition is incomplete
implementation of class hierarchy in simulation platform. It is possible to add different types of vehicle
to the global set provided that all subtypes of vehicles belonging to the same class in the set; but
extracting a specific vehicle from the set is not.

On the other hand, it is always feasible to define multiple sets for different types of vehicles. This
solution will of course introduce additional calculations and/or repeated loops in implementation of
every SHIFT type directly or indirectly related to range sensing and detection algorithms.

9.2 Files
All source code files listed below as well as this documentation are provided at
http://www.cs.cmu.edu/~unsal/research/shift/index.html

x 2dkinectrl.hs
x 2dkineveh.hs
x backsensor.hs
x backsensor2.hs
x cell.hs
x frontsensor.hs
x frontsensor2.hs
x frontsensor_rate.hs
x gps.hs
x grid.hs
x grid_simpler.hs
x humandrivers.hs
x leftsensor.hs
x leftsensor.hs
x noise.hs
x pursuit.hs
x racetrack.hs
x rightsensor.hs
x sep.hs
x source_grid.hs

Sensor models and related files described here are compatible with Smart-AHS versions 0.45 and
0.60 [2], and were tested under SHIFT ver. 2.12 using Sun SPARC¤ Station 4 running SunOS 4.1.4.

The following text must included in the directory where the source files are located, under the name
CONDITIONS:

/**\
* The files in this directory are distributed under the following *
* conditions: *
* *
* 1. The recipient shall refrain from disclosing the software, *
* in any form, to third parties without prior written *
* authorization from Carnegie-Mellon University. The *
* recipient shall have the right to use and copy the *
* software on, or in connection with the operation of, any *
* computer system owned or operated by it. In addition, *
* the recipient shall have the right to modify or merge *
* the software to form updated works. *
* *
* 2. If the recipient receives a request from any third party *
* to furnish all or a portion of the software to any third *
* party, it will refer such a request to Carnegie-Mellon *
* University. *

Human Driver Models 16 02/03/98

* *
* 3. Carnegie-Mellon University shall not be held liable for any *
* damages resulting from the use or misuse of the software *
* provided by it. Furthermore, Carnegie-Mellon University *
* remains without obligation to assist in its installation *
* or maintenance. *
* *
* 4. The recipient agrees to acknowledge Carnegie-Mellon *
* University in appropriate citations appearing in public *
* literature when reference is made to the software provided *
* above. *
* *
* 5. If the recipient develops any enhancements to the software *
* which materially improves its operation, the recipient *
* agrees to make such enhancements available to Carnegie- *
* Mellon University without charge, provided Carnegie- *
* Mellon University agrees in writing to receive such *
* enhancements in confidence, if requested to do so. *
* *
* 6. This header comment must remain attached to the source *
* code of the provided software. *
* *
* Bug reports and suggestions can be mailed to Cem Unsal by *
* electronic mail addressed to: "unsal@ri.cmu.edu". As mentioned *
* in condition 3 above, the author is not obligated to fix any *
* such bugs, or even to acknowledge receipt of the bug report. *
* *
**/

10 Contact Information
The author of this document can be contacted at:

Cem Ünsal
 Robotics Institute

 Carnegie Mellon University
 5000 Forbes Avenue
 Pittsburgh, PA 15213-3890

(412) 268-5594
(412) 268-5571 (fax)
unsal@ri.cmu.edu
http://www.cs.cmu.edu/~unsal/

11 References
[1]The SHIFT Team, “SHIFT, the Hybrid System Simulation Programming Language,” California
PATH/University of California-Berkeley, http://www.path.berkeley.edu/shift (September 19, 1997).

[2] The SHIFT Team, “California PATH Smart-AHS,” California PATH/University of California-
Berkeley, http://www.path.berkeley.edu/smart-ahs (September 19, 1997).

[3] A. Deshpande, “AHS Components in SHIFT,” California PATH/University of California-Berkeley
Report, http://www.path.berkeley.edu/shift/doc/ahs.ps.gz (September 19, 1997).

[4] C. Ünsal , “Sensor Models for AHS Simulations,” Technical Report CMU-RI-TR-98-01, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, February 1998,
http://www.cs.cmu.edu/~unsal/research/shift/sensor.pdf.

[5] M. Antoniotti, and A. Deshpande, “SmartAHS 1.x User’s Manual,” California PATH/University of
California-Berkeley, http://www.path.berkeley.edu/smart-ahs/smart-ahs-user-man.html (January 27,
1998).

