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Abstract — This article presents a new approach
to the evolution of controllers for autonomous agents.
We propose the evolution of a connectionist structure
where each node has an associated program, evolved
using genetic programming. We call this structure a
Genetically Programmed Network and use it to suc-
cessfully evolve control systems with very different
architectures, by making small restrictions to the
evolutionary process. Experimental results of apply-
ing this method to evolve neura networks, distrib-
uted programs and rule-based systems all capable of
solving a common benchmark problem, the Ant
Problem, are presented. Comparisons with other
known genetic programming based approaches, show
that our method requires less effort to find a solution.

1 —Introduction

One of the many questions still without answer in
the emergent field of evolutionary robotics concerns
the choice of the most appropriate architecture to be
evolved as the control system of the autonomous ro-
bots [Nolfi94]. The same problem poses itself in
other areas where there is a need to evolve controllers
for autonomous agents, e.g. in artificia life. In the
literature we can find several approaches to this
problem, the most promising of which seem to be:

Neural Networks - This is undoubtedly the
architecture more often chosen (and more
strongly defended) to be evolved as the control
system for autonomous agents [Cliff92)
[Floreano94] [Harvey93]. The topology of the
networks, however, varies substantially between
approaches, and so does what is realy evolved:
connections weights, weights and connections;
weights, connections, and number of neurones,
etc...

Programs — Several authors propose the use of
extended versions of genetic programming (GP)
[Koza92] to evolve programs capable of control-
ling the robot. [Brooks92] suggests the use of GP
with a high level behavioural language.
[Bhanzaf97] uses GP to evolve assembly code,

which maps sensorial inputs into actuator ac-
tions.

Rule Based Systems - [Dorigo93] and
[Grefenstette94] use several forms of classifier
systems, or rule based systems, where the rules
are genetically evolved to obtain valid control-
lers.

. Input
. Internal Node . External Node

—» Feedforward Connection
--+ Recurrent Connection

. Output

Figure 1: A Genetically Programmed Network.
Every node has an associated program, generated
by genetic programming.

In this paper we propose a new approach to con-
troller evolution based on a connectionist structure
we call Genetically Programmed Network (GPN). A
GPN is constituted by a set of nodes, where each one
node has an attached program, several connections
between these nodes, a set of inputs and a set of out-
puts (see Figure 1).

The nodes are the computing elements in the net-
work and each one uses the attached program to
compute its output based on data flowing in from its
connections. Connections act as a mean of transpor-
tation for data between the networks inputs and
nodes, from node to node and from nodes to the net-
work’s outputs. The network’s inputs receive infor-
mation from the agent, e.g. sensorial information, and
make it available (by the existing connections) to
every node in the network. Outputs present the result
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of the network computation to the agent to be used as
anew command.

Programs are evolved using genetic programming
in an evolutionary process that will, hopefully, pro-
duce a GPN capable of controlling the agent in away
it can achieve its goals. Genetic programmed net-
works are described in detail in section 2 and the
evolutionary process used to evolve valid controllers
from a GPN population is explained in section 3.

Section 4 describes the application of GPN to a
benchmark problem, the Ant Problem. Controllers
based on three different architectures, distributed
programs, recurrent neural networks and rule-based
systems, are successfully evolved using GPN and
with better results than al other approaches known to
us. In section 5 we draw some conclusions about this
first results and we outline ongoing and future work
in section 6.

2 — Genetically Programmed Networ ks

Genetically Programmed Networks were primar-
ily designed to be used as controllers for intelligent
agents. The role of the agent will be that of using its
sensors to gather information about the environment
and its actuators to act on it, while the GPN generates
commands for the actuators based on the sensoria
information available and its current interna state.
The GPN itself can be seen as an agent, using its in-
puts as sensors and outputs as actuators. At a deeper
level, the GPN has severa nodes, each one with an
associated program, inputs and one output. Each node
can aso be thought of as an agent, which makes a
GPN an agent society were each member acts blindly
for the common good: a high fitness value for the
GPN individual. In this article we will use the word
agent while referring to the entity being controlled by
the GPN. When the term environment is used it is the
environment where this entity dwells that is being
mentioned.

2.1 -GPN General Structure

A Genetically Programmed Network is consti-
tuted by (Figure 1):

A set of inputs, whose values are received from
the agent.

A set of outputs, whose vaues are computed by
the GPN and should be interpreted by the agent
as acommand.

Two sets of nodes. internal nodes and externd
nodes.

A set of connections, which link the previous
componentsinto a network.

Every node in the GPN is congtituted by (Figure
2):

A set of inputs.

One output only.

A genetically evolved program.
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Figure 2: A GPN node accepts inputs from the
connections with other nodes and GPN inputs and
computes its own output.

A node's input values at a certain iteration t can
have three origins:

1. They can be the values of the inputs from the
agent to the network at iteration t.

2. They can be the output values of other nodes in
the network at iteration t.

3. They can be the output values of other nodes in
the network at iteration t-1.

The structure of a particular GPN is partially de-
fined at the start of the evolutionary process, since
the networks' inputs and outputs, as well as the num-
ber of internal and external nodes are set a priori.
Connections are developed as the programs associ-
ated with each node are evolved, so the structure will
also be dependent on the evolutionary process.

2.2 - GPN Behaviour

The desired behaviour of a GPN is to compute,
based on the inputs presented by the agent, an an-
swer, codified in its outputs, which the agent can
understand as a command. This command, or a se-
guence of commands, should lead the agent to per-
form as well as possible in some problem the envi-
ronment poses to the agent. This behaviour is
achieved by executing the programs associated with
the network’ s nodes. These programs define the con-
nections between nodes and compute each node out-
put based on the inputs available to it.



2.2.1—-ThePrograms

The program associated which each node can be
evolved using any variant of GP. The approach to GP
we use is adapted from [Keith90] and it uses C++
instead of Lisp for extra speed and flexibility. What
is particular to GPN is the termina and function set.
While in GP, typically, both of these sets are specifi-
caly chosen for the problem which is being solved,
in GPN the redtrictions are mainly architectural.
What this means is that we choose terminals and
functions accordingly with the architecture we want
to evolve, i.e. evolving a neural network will require
different functions and terminals than evolving a
rule-based system. This point will be made clearer in
section 4 when we apply our method to a specific
problem.

Theterminal set is of extreme importance, since it
must contain atermina for each input available to the
node the program is associated with. This way a ter-
mina set T can have the following terminals (see
Figure 2):

T={lis, 02, ..., 118, @, ..., 8m D1, Dy, ..., Dn,.0 )

with i; representing the value of the j"™ network
input, g representing the value of the ™ of a subset of
m nodes whose outputs at iteration t this node has
access to, and by representing the value of the output
of the j™ node at instant t-1. This means that every
node has access to every other node’s output value at
iteration t-1, but only to the output value of a subset
of al nodes at instant t. This distinction is particu-
larly relevant when it comes to differentiate between
internal and external nodes. In fact, while externa
nodes can have aterminal set

Te:{ily iZ! sery i|,aly a, ..., Am, bl! bZ! ey bm"'}a
internal nodes have aterminal set
Ti:{il, iz, ey i|, bl, bg, cany bn,...},

which means they don’t have access to any other
node’ s output at iteration t.

Another difference between our system and GP is
the fact that we use two function sets. Beside the
usua function set F, whose members are al the
functions that can be a node in the program, we use a
specia function set caled the root set R. The mem-
bers of this set are the functions that can be chosen to
be the root node in the program’s tree. When no par-
ticular restrictions are applied to the root node, the
root set has the same members as the function set.
But in the cases when we want to evolve a particular
architecture, this set can have very different functions
than the ones in the function set.

2.2.2 — Egtablishing Connections

Letsfirst look at what happens when any program
associated with some node includes in its code one of

the above terminals. The value of a network’s input
or of other node's output becomes available to some
computation being done in this program, so we can
say that a connection has been established between
the node associated with the program an the input or
node corresponding to the included termina. De-
pending on the terminal we can have two types of
connections:

1. Feedforward connections — when ai; or &, ter-
minal isincluded in a program, this program will
have access to the values of the correspondent
network’s inputs and node's output in the same
iteration t the program is run. This creates con-
nections similar to the ones in feedforward neu-
ral networks. In our approach this connections
are alowed from network’s inputs to any node
and from internal nodes to external nodes. This
is guaranteed by the different termina sets avail-
able to the programs associated with external and
internal nodes. The main importance of feedfor-
ward connections in GPN is that they alow the
establishment of functional relations between
nodes, i.e. internal nodes can perform some
computations obtaining intermediate values that
external nodes can then use in more complex
computations.

2. Recurrent connections — when a b, terminal is
included in a program, it will have access to the
output value of the node correspondent to that
terminal in the iteration prior to the one in which
the program is being run. This way, arecurrent
connection is established from the node associ-
ated with the termina to the node associated
with the program that includes the terminal.
These connections are similar to the ones al-
lowed in recurrent neural networks or in cellular
automata and they can exist between any two
nodes in a network. Their extreme importance in
GPN comes from the fact that they alow tempo-
ral relations to be established between nodes.
This means that a sequence of n recurrent con-
nections between nodes can be used in a GPN to
keep available avalue computed n iterations ago.
The evolutionary process creates recurrent con-
nections between nodes to implement memory
needed to keep track of previous system’s states.

The process of establishing connectionsin a GPN
gives us the first difference between internal and ex-
ternal nodes. forward connections can only be estab-
lished from internal nodes to external ones. It also
explains two of the most interesting features of GPN:
the easy way of creating tempora and functional re-
lations between nodes and the implicit way this rela-
tions are created, which frees the evolutionary proc-
ess of maintaining any explicit representation for
connections between nodes.



2.2.3—Running the GPN

Programs evolved using genetic programming are
the processing elements in a GPN. To run the GPN
all the programs associated with the network’ s nodes
must aso be run. In an ided parale implementation
of a GPN all programs, or, a least, subsets of pro-
grams, could be run simultaneoudy. Like most
connectionist structures it seems that the most natural
implementation for a GPN would be a distributed
one. In a sequential implementation, internal nodes
are the first ones to be run, so that their outputs are
available to propagation by forward connections to
external nodes. Externa nodes are then run sequen-
tially and their output copied to the network’s out-
puts. This procedure emphasises the other major dif-
ference between internal and external nodes. each
externa node has an associated network’ s output and
the output value of the i external node at iteration t
corresponds to the value of the i network’s output.
This implies that the number of network’s outputs
and external nodes is always the same.

2.3—The Environment

The environment presents the agent with prob-
lems the GPN must lead the agent to solve. Sensoria
information obtained by the agent from the environ-
ment is fed to the GPN and the agent executes the
resulting output command. The sequence of executed
commands results in an attempt by the agent to solve
the proposed problem. The environment must supply
a procedure capable of computing a quantitative
measure of the agent fitness, or ability to solve the
problem. Like in all evolutionary techniques our
system relies on this fithess measure to drive the
search for a potential solution.

3 —Evolving Genetically Programmed
Networks

To successfully evolve a GPN, we must devise a
representation scheme for the individuals, as well as
the operators that will act on them.

A GPN individua has n chromosomes, one for
each node in the network. Since the chromosomes
correspond to the programmes associated with the
networks nodes, it follows that each individua I; (a
GPN) is smply represented by a sequence of pro-
grams.

Ii:{Ply PZ! ey PI"I}1

with P, the program associated with the network’s
n™ node. Order is important, since, like in the bio-
logical model, the genome operators are designed to
act on chromosomes with the same position in the
individuals they belong to.

3.1-Operators

The three main operators used in GP are also
needed to evolve GPNs, therefore we must define
reproduction, crossover and mutation in a way they
can be applied not only to a program but also to a
GPN, a segquence of programs. What we did was,
basicaly, to define the three operators at two differ-
ent levels: at individual level and at program level. At
individual (GPN) level we than have:

Reproduction — reproduction is an asexua op-
erator which, given a certain individual returns
an exact copy as its child. To achieve this, pro-
gram reproduction must be applied to every pro-
gram associated with the individua’s nodes. The
resulting programs will be associated with the
correspondent nodesin the new individual.

Crossover — crossover is a sexua operator
which, given two individuas, produces two chil-
dren by recombination of the origina individu-
as. Applying crossover to two individuals im-
plies applying program crossover to every pair of
correspondent programs in these individuals.

Mutation — mutation introduces random changes
into an individual. To produce a mutated child of
a given individual program, mutation is applied
to every program in the parent before it is copied
to the correspondent node in the child.

At program level operators are defined in a way
similar to GP:

Program Reproduction — the program repro-
duction operator returns an exact copy of the
parent program as the child program.

Program Crossover — The program crossover
operator takes two programs and returns two
children resulting from the recombination of the
parents. To do this, a sub-tree is identified in
each of the parents, with its root hode randomly
chosen. These sub-trees will then be swapped in
the new programs. When crossover is not possi-
ble (e.g. one of the children would be larger than
the maximum size allowed) copies of the two
parents are returned as the children, and cross-
over degenerates into program reproduction.

Program Mutation — A mutated child program
is obtained by substituting a randomly chosen
sub-tree of the program for a new, randomly
generated, sub-tree.

3.2-Thelnitial Population

An initial population composed of n individuals
with m nodes will imply the generation of n*m pro-
grams. Since that at this stage in our study of GPNs
we don’t alow the individuals number of nodes to
vary, neither inside a population nor during the evo-



lutionary process, this number will remain constant
during the evolutionary process. The generation of
this initial set of programs is done using what
[Koza92] calls the “grow” method: a restriction is
made on the tree's maximum depth and, while this
depth is not reached, nodes are randomly chosen
from the reunion of function and terminal sets. When
the maximum depth is reached nodes are randomly
chosen from the terminal set aone, which causes the
tree' s depth to be no greater then the maximum depth
allowed. This method creates trees of different sizes
and shapes and reveded itself appropriate to be used
with our approach.

3.3 - Sdlection and Evolution

Tournament selection, usualy of size n=4, was
used in al of our experiments. Candidates for repro-
duction are chosen after entering a tournament be-
tween n individuals randomly chosen from the cur-
rent population. The individual with the best raw
fitness is considered to be the winner and is copied
into a mating pool with the same size as the popula
tion. After the mating pool is full, reproduction is
applied to 10% of the individuals, mutation to 5% of
the individuals and crossover to the remaining ones.
The individuals resulting from the operator applica-
tion are copied into a new population. The process
ends at generation 50 (the initia population genera-
tion is considered to be generation 0) or when an in-
dividual with some goal fithessis found.

4 - Experimental Results
4.1 —The Ant Problem

As afirst test to the method described in the pre-
vious sections we needed a relatively simple control
problem, extensively studied in literature and pref-
erably having been the object of approaches using
evolutionary techniques. A problem that fulfils these
requirements is the usually caled Ant Problem.
Originaly presented in [Collins91], this problem
consists in developing a controller capable of guiding
an artificial ant in atoroida 32" 32 cell world so that
the ant correctly follows a discontinuous trail of
sugar. The ant has a rudimentary sensor, which in-
forms it if there is sugar in next cell in the direction
of its movement. The ant can perform four actions:
turning left or right while remaining in the same cell,
moving one cell in the current direction or doing
nothing. The total number of actions the ant can per-
form to follow the complete trail is usually limited.

We can find many evolutionary approachesto this
problem. [Collins91] uses a genetic algorithm (GA)
to evolve both neural networks and finite automata
capable of following the “John Muir” trail,
[Angelined3] and [Pujol98] use, respectively, a GA
and Pardlel Distributed Genetic Programming
(PDGP) to evolve neural networks capable of fol-

lowing the same trail. The variant of this problem we
will try to solve is called the “Santa F€’ trail and it
has been extensively used as a benchmark problem
for GP. It was first presented in [Koza92], and is
harder, with more levels of deception than the “John
Muir” trail. [Langdon98] presents an extensive study
of the program space for this problem in GP, and
compares the effort needed to find a solution with
random search, GP and several other search tech-
niques. Effort is defined as in [Koza92] to be number
of individuals that need to be evaluated to ensure a
solution is found, with probability z, and can be com-
puted using the following equations:

R(m,i,Z)zceHgaMQ

&log(1- P(Mi)) g
_ S(i)

P(m,i) ==y~
I(mji,z)=m” R(m,i,2)" (i +1)

with P(m,i) the cumulative probability of success
at iteration i with a population m; i) the number of
successful runs at iteration i, n the total number of
runs, R(m,i,2) the number of runs needed to find a
solution at iteration i, with a population m and prob-
ability z and I(m,i,2) the number of individuals that
must be evaluated to guarantee that a solution is
found with probability z. Table 1 presents, for com-
parative purposes, values of 1(m,i,z) for severa ap-
proaches. Most of these values were taken from
[Langdon98]. The vaue for evolutionary program-
ming (EP) was taken from [Chellapilla97].

Method I(m,i,2)

GP 450,000
Sub-Tree Mutation 426,000
PDGP 336,000
Strict Hill Climbing 186,000
EP 136,000

Table 1: Compar ative results over the number
of individuals that must be evaluated to find a
solution with probability 0.99 for the “Santa Fe”
trail.

From Table 1 we can see that the best results are
those obtained by [Chellapilla97]. These are obtained
using a form of evolutionary programming with three
mutation operators to evolve programs capable of
solving “Santa Fe’ trail problem. In [Langdon98d]
better results are obtained, but the problem is
changed: the ant is only allowed to see the next n
sugar cubes, and the next n are only inserted when
the previous n are collected.

4.2 —Using GPN to Solve the Ant Problem

In this section we will present three different ap-
proaches to the described problem by using GPNs to



evolve a distributed program, a rule-based system
and a neura network, all capable of leading the ant
trough the “Santa Fe’ trail. Table 2 presents the pa
rameters that are common to al experiments in this
section. Most of them are similar to ones used in pre-
vious approaches. We use a small population of only
100 individuals to make viable, given the computa-
tional needs of our system and the resources available
to us, the performance of a substantial number of
runs.

Objective Control an ant so that it eats
al 89 pieces of sugar on the
“Santa Fe” trail

Fitness Sugar eaten after 400 com-
mands

Population size 100

Number of gener. | 51

Number of runs 200

Selection method | Size 4 tournament
Crossover Prob. 85%
Reproduction 10%

Prob.
Mutation Prob. 5%

Table 2: Parameters common to all the ex-
periments on this section.

4.2.1 — Evolving a Distributed Program

In our first attempt to use a GPN to solve the Ant
Problem will try to evolve what we call a distributed
program. This is the simplest way of using GPN,
since it doesn't involve any particular restriction to
induce the evolution of some desired architecture.
Our first step in solving the problem will be the defi-
nition of the networks inputs and outputs. We chose
to use 2 inputs with the values 10 when there is sugar
in front of the ant and O1 when there is not. We use
three outputs, each one corresponding to an available
action: move, turn right, turn left (like in most GP
based approaches doing nothing is not used). The
action performed should correspond to the output
with larger value. The next step concerns the decision
on the number of internal and external nodes. As al-
ready described there must be an external node for
each output, sob there are three external nodes. Since
our method does not yet allow the number of internal
nodes to be evolved, we also have to decide on it.
After some empirical study we chose to use 6 internal
nodes. These parameters concerning GPN topology
were kept constant over al experiments and are
summarised in Table 3.

Number of Inputs
Number of Outputs
External Nodes
Internal Nodes

D|WIWIN

Table 3: GPN parameters kept constant over
all experiments.

To dlow the evolution of the GPN we must how
define the function set F, the root set R and the ter-
minal sets T; and T.. What we want the GPN to in-
volve into is a program, distributed over the severa
nodes of the network as smaller subprograms. These
programs must have access to each other output val-
ues and to the networks inputs so they can, working
co-operatively, compute a valid output in response to
the present inputs and the system state. An important
feature of the GPN is the way the system dtate is
kept. Much like recurrent neural networks, GPN im-
plement a memory of the system current state by al-
lowing the establishment of recurrent connections
between nodes, i.e. programs can access the outputs
of other programs in the previous iteration. To alow
the subprograms to access input values and other
programs output in the previous iteration, we must
include in the termina set, terminals corresponding
to this data. We could also allow feedforward con-
nections, i.e. alow the external nodes programs to
access the output of the internal nodes programs in
the current iteration. Since this doesn’'t seem neces-
sary to solve our problem, will keep the correspon-
dent terminals out of terminal set by now. This im-
plies that the terminal set for internal (T;) and externa
(Te) nodes will be the same. The function set must
have the functions needed to compute the output val-
ues. Since binary output values are enough for the
problem at hand, we will only include logical, com-
parative and an if function in the function set. Finaly,
the root set, which correspond to functions that can
be the root of the program tree. Since we don’'t want
to make any particular restrictions to the tree's root,
the root set will have the same elements as the func-
tion set. Terminal, function and root set for evolving
a distributed program capable of leading the ant
through the “ Santa Fe” trail are presented in Table 4.

Ti:{il, iz, a, dy, ..., ag}
Te={iy, i, &, @, ..., g}
F={and, or, not, >, <, ==, =, if}
R={and, or, not, >, <, ==, I=| if}

Table 4: Terminal, function and root sets for
evolving a distributed program capable of solving
the Ant Problem.

It is important to note that none of this terminals
or functions are problem dependent or have any kind
of secondary effect, as is usua in GP. Using the
above settings 200 independent runs were carried out
and in each run a population of 100 genetically pro-



grammed networks was evolved for 51 generations.
The obtained results are presented in Figure 3. The
topology of a successful distributed program is pre-
sented in Figure 4. Figure 5 shows a sample pro-
gram evolved for a node in this solution.

0.30 — 500000
. . 1 450000
2 400000
1 350000
1 300000
1 250000
1 200000
1 150000
...+ 100000
1 50000

T } t t t t t t t + 0
0 5 10 15 20 25 30 35 40 45 50

Ilm.i.z]

Generation

Figure 3: Results for evolving a GPN as a dis-
tributed program. The cumulative probability of
success, P(m,i), is 0.255 at generation 50, and the
smaller number of individuals that need to be
processed, 1(m,i,2), with z=0.99 is 81,600 achieved
at iteration 50.

Figure 4: Topology of a GPN solution for the
ant problem: a distributed program. There are no
forward connections from internal to external
nodes.

(or agent[6] (and (< (if (== agent[8] agent[6]) agent[0] agent[2])
(not (if (< agent[6] (!= (or agent[6] (and (not agent[6])
(not agent[4]))) (> (if agent[1] (!= (not agent[6]) agent[1])
(== agent[1] agent[6])) agent[4]))) agent[3] agent[3])))
(not (< (!= (or agent[1] agent[6]) agent[2]) agent[7]))))

Figure 5: Evolved program for a nodein a dis-
tributed program solution for the ant problem.
Agent terminals imply recurrent connections to
other nodes.

The results obtained with this approach are sub-
stantialy better, in terms of the number of individuals
that must be processed so that a solution is found

with 99% probability, than the ones obtained using
other methods. From Table 1 we can see that “stan-
dard” GP needed to evaluate 450,000 individuals,
while [Chellapilla97], using EP, has the best results
known to us, with 136,000 individuals. Using genetic
programming to evolve genetically programmed net-
works as distributed programs we need only to evalu-
ate 81,600 individuals.

4.2.2 — Evolving a Rule Based System

To fulfil our initial goal of allowing GPNs to be
evolved to different architectures we will evolve a
rule-based system capable of solving the Ant Prob-
lem. This system will be composed by a set of rules
of the form:

if <condition> then <conclusion1>

else <conclusion2>

The evolution of such a system is simply done by
applying some changes to the terminal, function and
root sets used in the previous point to evolve a dis-
tributed program. The main change is the removal of
the if function from function set while the root set is
modified to have only the same if function. This will
produce programs with the structure of the above
rule, where condition, conclusionl and conclusion2
will be subprograms composed of the instructions in
the function set. The knowledge produced by aruleis
the result of the subprogram executed as the rule con-
clusion. To alow this knowledge to be used by other
rules in the same iteration, forward connections are
allowed from internal nodes to external ones, and the
Te set is changed accordingly. Recurrent connections
are also allowed so the rules can use the knowledge
produced by other rules in the previous iteration.
Terminal, function and root sets used in this experi-
ence are presented in Table 5.

Ti:{ily iZ! al! aZ! ey ag}
Te:{ily iZ! al! aZ! ey a'gy bl! bZ! k) bﬁ}
F={and, or, not, >, <, ==, 1=}
R={if}
Table 5: Terminal, function and root sets for

evolving a rule-based system capable of solving
the Ant Problem

For the same 200 runs, we obtained the results
presented in Figure 6. The topology of a successful
rule based system is presented in Figure 7. Figure 8
shows a sample program evolved for an external
node in this solution. The results are till better than
the ones of al other non-GPN approaches but don’t
improve on the ones obtained when evolving the dis-
tributed program based sol ution.
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Figure 6: Results for evolving a GPN asa rule
based system. The cumulative probability of suc-
cess, P(m,i), is 0.245 at generation 50, and the
smaller number of individuals that need to be
processed, 1(m,i,2), with z=0.99 is 86,700 achieved
at iteration 50.

Figure 7: Topology of a GPN solution for the
ant problem: a rule based system. Forward con-
nections are allowed only from internal to external
nodes.

(if ag[1] (and (and (> (and in[0] (not ag[4])) (or (< in[1] dag[1])
(not (< ag[3] (= (== in[0] ag[2]) (!= (== (and ag[5] in[1])
ag[4]) (and in[1] dag[4]))))))) ag[0]) dag[4]) in[1])

Figure 8. Evolved program for an external
node in rule based solution for the ant problem.
Ag and dag terminals imply, respectively, forward
and recurrent connectionsto other nodes.

4.2.3 — Evolving a Recurrent Neural Network

To evolve arecurrent neural network, the changes
we have to make to the terminal, function and root
sets are more substantial. The most important task is
that of finding a way to evolve the connection’'s
weights, since the way of evolving the connections
themselves is inherent to our approach. The method
we use to evolve the weights in connections is based
in the attachment of a random number between 0 and
2.5 to every terminal appearing in a program. As the

only functions in the function set are add and sub-
tract, each program its no more than a linear combi-
nation of the node's available inputs multiplied by
different values each time they appear. This means
that for each terminal the evolutionary process will
try to find a correct combination of values so that a
correct weight for the correspondent connection is
produced. We aready mentioned that the function set
has only two members; add and subtract, but we ha-
ven't said anything about the root set. This has only
one element, the transference function transf. Transf
has only one argument and returns this argument if its
valueis between 0 and 1, returns O if the value isless
or equa to 0, and returns 1 if the value is more than
1. We could also have used several transference
functions, leaving to the evolutionary process the
selection of the most appropriate ones. Terminal,
function and root sets used in this experience are pre-
sented in Table 6. The w before the terminals means
they have an associated weight.

Ti:{\Nily Wi,, Way, Way, ..., Wag}
Te={ Wiy, Wio,Wa;,Wap, ..., Wag, Why, Wy, ..., Wb}
F={+, -}
R={transf}
Table 6: Terminal, function and root setsfor

evolving arecurrent neural network capable of
solving the Ant Problem

For the same 200 runs, we obtained the results
presented in Figure 9. The topology of a successful
neural network is presented in Figure 10. Figure 11
shows a sample program evolved for an external
node in this solution. These were the best results ob-
tained by us, only needing to evaluate 59,500 indi-
viduals to find, with a probability of 99% a neura
network capable of correctly guiding the ant to col-
lect al the 89 sugar cubes on the “Santa Fe” trail.
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Figure 9: Reaults for evolving a GPN as a re-
current neural network. The cumulative prob-
ability of success, P(m,i), is 0.315 at generation 50,
and the smaller number of individuals that need
to be processed, I(m,i,z), with z=0.99 is 59,500
achieved at iteration 34.



Figure 10: Topology of a GPN solution for the
ant problem: a recurrent neural network. For-
ward connections are allowed only from internal
to external nodes.

(transf (+ (+ (+ (+ (- (+ 0.57*dagent[5] (+ (- (+ (+ (+
(+ (+ (+ 2.32*dagent[4] 1.49*dagent[2])
(+ 1.49*dagent[2] 0.46*dagent[3])) 1.25%in[1])
(+ (- (- (- 0.87*in[1] 0.80*dagent[0]) 0.32*dagent[8])
0.84*dagent[3]) 0.88*dagent[3])) 0.57*dagent[5])
0.82*in[1]) 1.49*dagent[2]) 1.96*dagent[7]))
1.93*in[1]) (+ 1.78*in[1] 1.49*dagent[2]))
1.49*dagent[2]) 1.78*in[1]) 1.12*dagent[7]))

Figure 11: Evolved program for an internal
node in neural network based solution for the ant
problem. Agent and dagent terminals imply, re-
spectively, forward and recurrent connections to
other nodes.

Results obtained in the three GPN based ap-
proaches are summarised in Table 7, together with
the better non-GPN results.

Method I(m,i,2)
EP 136,000
GPN (Dist. Program) 81,600
GPN (Rule Based System) | 86,700
GPN (Neural Network) 59,500

Table 7: Comparative results over three GPN
based approaches and the best known non-GPN
approach for the “ Santa Fe’ trail problem.

5 —Conclusions

In this article we described a new method to gen-
erate several forms of distributed programs, and ap-
plied it to the evolution of controllers for simple
agents. This method is based on a connectionist
structure, which we call Genetically Programmed
Network, where each node has an associated pro-
gram, which is evolved using genetic programming.
Each GPN individua has severa nodes, so its ge-
nome is a sequence of chromosomes, each one corre-

sponding to a program. Manipulating the function,
terminal and root set of the programs, we showed that
it was possible to evolve GPNs into controllers with
very different architectures.

As an example, we applied the described method
to a commonly used benchmark problem, the * Santa
Fe’ trail problem, and evolved populations of GPNs
into distributed programs, rule based systems and
neural networks al capable of solving the given
problem. By comparing our results to the ones of
severa other approaches to this problem, we con-
cluded that the number of individuals we need to be
evaluated so that a solution is found, with a probabil-
ity of 0.99, was substantialy less using GPN than in
the best of those approaches. We believe this can be
justified by the highly connectionist nature of our
approach, which alows that both functional and tem-
pora relations between nodes can be easily created
by forward and recurrent connections. This implies
that memory mechanisms needed to solve problems
where the previous state of the system must be re-
membered could be easily implemented by recurrent
(delayed) connections between nodes. Forward con-
nections are expected to allow the straightforward
evolution of communities of small programs with
distributed functionality, which should be easier to
evolve than a larger, isolated, program capable of
providing the same functionality.

We must finally emphasise that the platicity of
genetically programmed networks could be useful in
bring us some insight into which architecture would
perform better or be easily evolved for a given prob-
lem. New or hybrid architectures should also be easy
to evolve and investigate. We also hope that by
choosing a distributed and connectionist structure as
the basis of this approach, and by evolving it using
genetic programming, another of bridge can be made
between connectionist and GP approaches.

6 - Ongoing and Future Work

In this work we have chosen to explore the poly-
morphic possibilities of the GPN, evolving severa
solutions with different architectures for the same
problem. To prove this method is of real interest we
must apply it to a range of other problems, and we
must be able to evolve yet more different control ar-
chitectures. Thisis part of the ongoing work on GPN.
Another important point concerns the current limita-
tion of our system to a fixed number of internal and
external nodes. We hope to deal with this limitation
in the near future.
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