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INTRODUCTION





This work is concentrated on developing a semi-automatic processing structure, which 

is able to reduce complexity of processing tasks by techniques similar to task 

decomposition. It is also able in part to attune to classification processing task by using a 

family of statistical methods called Complexity Estimation techniques. The goal is to 

minimalize the need for user intervention and efficiently process data automatically. By 

linking together statistical methods in order to reconnaissance the task and universal data 

processors as Artificial Neural Networks we are expecting to make that objective a little 

closer. Our approach is called Treelike Divide To Simplify (T-DTS in short). T-DTS has 

modular structure. The modules are based on Artificial Neural Networks, because they are 

universal data processors and from their nature are well suited for modular processing. 

ANNs are so universal as data processors because they are cross between mathematics, 

statistics and informatics sciences, gaining the properties algorithms from all those 

disciplines when necessary. T-DTS decomposes the processing task into clusters in 

recurrent way and process them separately in order to ease and speed up the processing, as 

well as use less complicated processing modules. In most cases decomposition of problem 

will also result in decreasing overall processing complexity for complicated tasks that are 

difficult to process as a whole, due to great complexity or excess processing times. Task 

decomposition makes possible parallel processing that result in reduction of processing 

time. 

Artificial Neural Networks are described in first chapter in order to give ideas about 

their universality and particular usefulness in modular approach. Chapter two presents 

complexity estimation that is used in part of experiments in order to auto-organize the 

modular T-DTS structure and presents good perspectives for the further development of 

auto-organizing structure. T-DTS approach is presented in detail in chapter 3, including 

methods and strategies for building the modular structure, decomposition of databases and 

finally processing and obtaining the results. Chapter four is aimed at evaluating the 

universality of T-DTS approach, by showing its applications to different classes of 

processing problems. Finally chapter five is a conclusion and essence of the work, giving 

also the perspectives for the future development of T-DTS system. 
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Motivation: This chapter is concentrated on Artificial Neural Networks that are the 

substance and base of T-DTS solution. Artificial Neural Networks are especially useful in 

modular solutions, as they have by itself modular and universal structure, that simplifies 

connecting and cooperation between modules. These properties are desired in T-DTS 

approach, so processing modules were based entirely on ANNs. 

Artificial Neural Networks (ANNs) are grand and powerful data processing tools, 

basically being a cross between mathematics and informatics. Their most important 

features are distributed processing and adaptive morphology. Due to these properties, they 

are connected to many other disciplines, like: neurobiology, mathematics, computer 

science, statistics, physics and engineering. Artificial neural networks are applied with 

success in many areas: modeling, classification, pattern recognition, signal processing, 

time series analysis and others. 

Section 1.1 presents main ideas concerning ANNs. Section 1.2 presents learning tasks 

applicable with ANNs. Section 1.3 presents similarities in build of artificial and biological 

neurons, and discuses the artificial neuron activation functions. Section 1.4 introduces 

general ideas about architecture of layered networks. Section 1.5 presents general ideas of 

most popular ANNs’ learning algorithms. Section 1.6 presents most popular ANNs 

architectures and algorithms. Section 1.7 shows parallelism between statistical methods 

and ANNs’ models. Section 1.8 presents history of ANN, and section 1.9 discuses popular 

domains of application of ANNs. Conclusion ends this chapter.

1.1 Main ideas 

Artificial Neural Networks are inspired by biological nervous systems. Similarly to 

biological neural networks (i.e. human brain), ANNs are composed of relatively simple 

elements called neurons. Neurons are connected creating networks. Networks can be very 

large and have complicated structure. Network function is determined widely by the 

connections between neurons. Neural networks work in parallel way, which is a very 

important feature for many computation tasks. In nature, NN perform many various tasks, 

beginning from simple reaction to environment change in one-cell organisms up to still 

little known functions of human brain. ANNs also have this feature and although simple 

comparing to Neural Networks in the nature, they are very powerful and universal 

computation instrument. 
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ANNs similarly to natural NN usually learn through example. It means that first, a 

network of appropriate structure is built and then the network’s behavior is modified to 

meet the expectations. The mechanism is similar to feedback known in electronics and 

other areas. It is depicted on figure 1-1. 

Figure 1-1 Neural network learning by example 

Depending on the comparison between an output from NN and a requested output 

(known as target) we adjust its connections (called connection weights) and possibly 

structure in a way which is expected to ameliorate its performance. This mechanism is 

called supervised learning, as it needs a supervisor who will compare the results with 

expected values and perform an action depending on it.  

ANN can be trained to solve problems that are difficult for human beings and for 

conventional computing methods. They have proven their efficiency in a number of 

applications, among others: pattern recognition, identification, classification, speech, 

vision and control systems. 

Two other important ways of training ANN are called unsupervised learning and 

direct design methods. Unsupervised learning can be used for instance to identify and 

localize a group of data. Certain types of linear networks as Hopfield networks are 

designed directly. Unsupervised learning and direct design methods are thoroughly 

described in subsequently sections 1.6. 

In summary there is a great variety of possible network architectures and learning 

methods which are used in very different areas of applications. 

Artificial Neural Networks have following properties: 

Adjust 
parameters 

Input Output 
Compare 

Desired 
output 

Artificial
Neural Network 
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1. Uniformity of analysis and design – ANNs are universal data processors, so it 

is possible to share theories, learning algorithms in different applications of 

neural networks. It is possible also to connect the different types of ANNs’ 

modules. This paradigm is known as Multiple Neural Network (MNN) [ARBI 

89]. It is very important to this work. 

2. Nonlinearity – when network includes nonlinear artificial neurons it is 

nonlinear. Nonlinearity is important property, when underlying physical 

mechanism responsible for generation of the output signal is inherently 

nonlinear.

3. Input-output mapping – ANNs are capable of constructing a mapping between 

input and output, based on the training examples. From a statistical point of 

view, the process is similar to nonparametric statistical inference (model-free 

estimation) [HAND 01] and from biological viewpoint tabula rasa learning 

[GEMA 92]. 

4. Adaptivity – ANNs are able to adapt their work to minor changes in operating 

environment. They can be also used in constantly changing (nonstationary) 

environment where they change their synaptic weights in real time. To make a 

full benefit of adaptivity, the NN should ignore spurious (short) disturbances 

and respond to meaningful changes in environment. The problem is referred to 

as stability-plasticity dilemma [GROS 88]. 

5. Fault tolerance – ANNs implemented in hardware form are prone to faults. 

However, due to distributed nature of ANNs, usually damage has to be 

extensive, before the overall response of system is impaired seriously. In 

general ANN exhibits gradual degradation of performance rather than 

catastrophic failure. 

6. VLSI implementability – due to their distributed and parallel structure, ANNs 

are potentially well suited for implementation using Very-Large-Scale-

Integrated technology circuits [ARBI 89]. 

7. Evidential response – in the context of pattern classification, ANNs can 

provide not only predicted response, but also the confidence about the decision 

made. This information can be used later to improve the classification 
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performance of network by rejecting ambiguous patterns or to present the 

doubtful patterns to another system (i.e. human expert). 

8. Neurobiological analogy – “The design of a neural network is motivated by 

analogy with the brain, which is a living proof that fault tolerant parallel 

processing is not only physically possible but also fast and powerful.” [HAYK 

99].

9. Statistical analogy – ANN’s ideas are frequently known in the optimalization 

and statistics area [SARL 94]. The use of parallel and distributed representation 

of data processing elements makes them however easier to integrate and 

connect with other ideas.

In the morphology ANN one can distinguish several concepts: 

artificial neurons 

structure (organization) of neurons 

learning algorithms 

The subsequent sections 1.2, 1.3, 1.4 and 1.5 will describe consequently these three 

aspects of ANN. Section 1.2 will introduce the concept of artificial neuron as a heritage of 

biological neuron. Section 1.3 presents Artificial Neural Networks architectures. Section 

1.4 will present learning tasks in general manner, while section 1.5 will give details on 

machine learning.  

1.2 Biological neuron and its artificial models 

Brain is composed of about 10 billion (1010) neurons. The biological neurons are 

interconnected cells, processing and transmitting information in parallel way. A simplified 

model of biological neuron is presented in figure 1-2. 
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Figure 1-2 Biological neuron 

“A neuron’s dendritic tree is connected to a thousand neighboring neurons. When one 

of those neurons fires, a positive or negative charge is received by one of the dendrites. 

The strengths of all the received charges are added together through the processes of 

spatial and temporal summation. Spatial summation occurs when several weak signals are 

converted into a single large one, while temporal summation converts a rapid series of 

weak pulses from one source into one large signal. The aggregate input is then passed to 

the soma (cell body). The soma and the enclosed nucleus don’t play a significant role in 

the processing of incoming and outgoing data. Their primary function is to perform the 

continuous maintenance required to keep the neuron functional. The part of the soma that 

does concern itself with the signal is the axon hillock. If the aggregate input is greater than 

the axon hillock’s threshold value, then the neuron fires, and an output signal is transmitted 

down the axon. The strength of the output is constant, regardless of whether the input was 

just above the threshold, or a hundred times as great. The output strength is unaffected by 

the many divisions in the axon; it reaches each terminal button with the same intensity it 

had at the axon hillock. This uniformity is critical in an analogue device such as a brain, 

where small errors can snowball, and where error correction is more difficult than in a 

digital system. 

Each terminal button is connected to other neurons across a small gap called a synapse 

[left]. The physical and neurochemical characteristics of each synapse determine the 

strength and polarity of the new input signal. This is where the brain is the most flexible, 

and the most vulnerable. Changing the constitution of various neuro-transmitter chemicals 

can increase or decrease the amount of stimulation that the firing axon imparts on the 
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neighboring dendrite. Altering the neurotransmitters can also change whether the 

stimulation is excitatory or inhibitory.” [CHUR 92] 

Artificial neuron inherits many biological neuron properties. There exist many 

artificial neuron models, the properties in common are distributed processing and high 

connectivity of elements. In this section the most popular and general neuron model will be 

presented.

General artificial neuron model is depicted on the figure 1-3.  

Figure 1-3 Artificial neuron model 

This model is similar to biological neuron: The inputs x (electrical charges in 

biological neuron) are weighted by synaptic weights wkj (properties of the dendrites) and 

summed creating linear combiner output uk.

m

j
jkjk xwu

1

Summing node (soma) adds linear combiner input and bias bk what results in induced

local field vk (also known as activation potential).

kkk buv

Induced local field is modified by transfer function (·) producing output yk and 

propagated through output (axon) to other neurons.

)(),(
1

k

m

j
jkjkkkk bxwbuvy

kkk buy
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(·)

Bias
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Activation
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Summing
node

vk

x1

x2

xm

Inputs

Output
yk



Chapter 1 – Artificial Neural Networks 

Mariusz Rybnik -– Ph.D. Thesis - 25 – 

The model is a greatly simplified version of the mechanism created by nature, although 

it shows great capabilities and universality.

Artificial neuron output value a is a function (called transfer function) of weighted 

input values p1..pk and bias b. In the biological neuron one can find also output values 

called axons and inputs called dendrons. In fact, transfer function in biological neuron is 

much more complicated than in artificial one. Biological neural networks show great 

complexity and functionality not even approximately met by their artificial descendant. 

Most known transfer functions used with the model are:

Piecewise-linear function 

2
1

2
1

2
1

2
1

,1
,
,1

v
vv

v

This transfer function can be seen as approximation of non-linear amplifier. The 

amplification factor in the linear region is here equal to 1. By modification of the 

amplification one can achieve many different functions in particular:

signum function, when linear region length is reduced to 0 by setting amplifier 

factor to plus infinity; 

threshold function, similar shape to signum function; just with different values; 

linear combiner function, when linear region is maintained in the whole area. 

sigmoid function 

ave
v

1
1

Figure 1-4 Sigmoid (logistic) transfer function 
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This is the most common transfer function, which exhibits a balance between linear 

and nonlinear behavior. By modifying the parameter a one can achieve different slopes of 

the function. Sigmoid function is differentiable, which is an important feature, as it allows 

achieving efficient learning algorithm optimizations used in the learning session. 

hyperbolic tangent function 

Figure 1-5 Hyperbolic tangent transfer function 

vv tanh

Hyperbolic tangent function is similar to sigmoid function, but it is antisymmetric and 

its values are ranged in [-1,1], which sometimes shows analytical benefits. (ch4,Haykin).

Next section will show how the artificial neurons are linked together to create more 

powerful structures. 

1.3 Neural Networks architectures 

Neural layer is a combination of several (sometimes also only one) neurons working 

in parallel way. In general, an ANN consists of several layers of neurons. In fact large part 

of functionality of ANN depends on the connections between neurons, propagation of 

values between them (current similar to biological neural impulses) and whole layers.

Depending on the direction of information flow, ANNs can be classified as follows: 

Feedforward networks – Information in that structure flows only forward, i.e. layer 

doesn’t contain internal feedback paths.  

The simple form of such network is single-layer feedforward network. It contains 

input layer of source nodes that projects onto a output layer of neurons. An example of 

such network is depicted in the Figure  1-6.
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Figure 1-6 Example of single layer feedforward network 

Multilayer feedforward networks – the structure consists of not only input and 

output layers, but also one or more hidden layers (consisting of hidden neurons also 

referred as hidden units). By adding hidden layers a network is enabled to extract higher-

order statistics. Extra set of synaptic connections enable the network to acquire a global 

perspective [CHUR 92].

The network is fully connected if each neuron from the preceding layer has a 

connection with each neuron form the succeeding layer. If some connections are missing 

the network is partially connected.

An example of fully connected ANN feed-forward structure with one hidden layer is 

depicted on the Figure  1-7. 
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Figure 1-7 Example of multilayer feedforward network structure 

Recurrent networks are networks, which contain at least one internal feedback loop. 

A self feedback loop is a delayed connection from a neuron to itself. Recurrent networks 

can contain hidden layers. They are able to show dynamical (depending on the previous 

conditions) behavior. An example of recurrent network is depicted on the Figure  1-8

Figure 1-8 Example of recurrent network with no self-feedback loops
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Feed-forward ANNs cannot perform temporal computation like recurrent ANNs, but 

building and training of recurrent ANNs is more difficult. 

In the next section learning tasks will be presented to show the most popular goals of 

data processing techniques. 

1.4 Learning tasks 

Artificial Neural Networks are used in many tasks. In this chapter, learning tasks 

taxonomy is presented showing the main application classes. The specific applications of 

ANNs are presented in the Annex C. 

1.4.1 Pattern recognition 

Pattern recognition is a process where a signal is assigned to one of prescribed classes 

(categories). Neural network first undergoes a training session, during which a network is 

repeatedly presented a set of input pattern together with the class to which each pattern 

belongs. Later a network is presented with input patterns unlearnt and NN is able to 

classify (attach a class) the patterns using the knowledge extracted from the learning 

session.

The patterns are represented as points in multidimensional (feature) decision space.

The decision space is divided into regions; each one is assigned with a class. The decision 

boundaries are determined by the learning process. 

Pattern recognition system using ANN can take two forms: 

the system consists of two parts: first part (unsupervised network) is used to do 

feature selection (transformation from input pattern x into feature vector y). The 

transformation may result in dimensionality reduction (data compression), which is 

expected to ease the classification task. The second part (supervised network) is a 

classifier which maps feature vector y to class labels. 

The system is designed as a single multilayer feedforward network using a 

supervised learning algorithm. In this case, the task of feature extraction can be 

considered as performed in explicit way by hidden layer(s) of the network. 
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1.4.2 Pattern association 

Association is a process of linking objects. Network is required to respond to a key

pattern xk with a memorized pattern yk:

, ..., q,kyx kk 21

Association takes two forms: autoassociation and heteroassociation. In 

autoassociation task, network is required to store a set of patterns and respond to a 

distorted version of original pattern with that particular pattern. In heteroassociation task, 

key pattern and memorized pattern can be completely different (i.e. dimensionality).These 

two patterns are paired (associated to each other). The associative memory is a set of such 

pairs.

There are two phases of operation of an associative memory: 

Storage phase – when network is trained by presenting the patterns; 

Recall phase – when network is presented with a key pattern and responds with a 

memorized pattern. 

When associative memory responds with wrong pattern, it is said to make an error in 

recall. The number of patterns stored in memory provides a direct measure of the storage 

capacity of the network. In designing of associative memory, the goal is to enhance the 

storage capacity and efficiency and minimalize the recall errors. 

1.4.3 Function approximation 

The aim here is to create a model function M(·) which imitates the activity of unknown 

system. The activity of system is marked as function f(·), which is usually unknown and 

can be approximated by analyzing the input-output relation of system. 

xfy  - y are outputs of real system f(·) to inputs x

The approximation can be exploited in two ways:  

system identification, when model M(x) imitates explicitly a function f(x). Both 

original system and model are given input values x, the responses are compared to 

determine error e, which is used to train the system identification model. The model 

M(x) produces in this case estimations of output values d , given real input values 

x. )(xMy . The performance of system is measured by taking into account 
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absolute difference between responses of system and model to input patterns: 

)()( xfxM .

inverse system, when model M(x) imitates the function f -1(x), which is reverse to 

system behavior. The model M(x) produces thus estimations of input values x ,

given real output values y of system: )(yMx . The system’s performance is 

measured by taking into account absolute difference between responses of model 

(estimated input pattern) and real input pattern (unknown to model): xyM )( .

System identification and inverse system computation are detailed in Annex B. 

1.4.4 Filtering 

The filtering is a process of extracting interesting properties from a set of noisy data. 

Filters can be used to three basic tasks: 

filtering – extraction of information about a quality of interest at discrete time n by 

using data measured up to and including time n. 

smoothing - extraction of information about a quality of interest at discrete time n 

by using data measured before and after time n. In statistical sense, smoothing is 

expected to be more accurate than filtering, because it can use more data. 

prediction – forecasting information about a quality of interest at discrete time n+no

by using data measured up to and including time n. This task is most difficult. 

Figure 1-9 Nonlinear prediction 

A spatial form of filtering is known as beamforming. It is used to distinguish between 

the spatial properties of a target signal and background noise. Beamforming is commonly 

used in radar and sonar systems where the primary task is to detect and track a target of 

interest in the presence of noise and interfering signals. 

x(n)
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Next section gives details on learning algorithms, which lead to accomplishment of the 

learning tasks. 

1.5 Learning algorithms 

Learning algorithm in ANN approach is an algorithm which is used to modify the 

weights, biases and/or structure of ANN. By these modifications, the performance of ANN 

is expected to be improved. 

One of possible morphology of learning algorithms is as follows: 

Learning with a teacher (supervised learning)  

error correction learning

incremental training 

batch training 

Learning without a teacher 

Reinforcement learning/neurodynamic programming 

Unsupervised learning 

Competitive learning 

Memory based learning 

Boltzmann learning 

1.5.1 Learning with a teacher 

Learning with a teacher is also called supervised learning. To adjust the parameters 

of learning system, one uses an error signal, which is a difference between actual system 

response and desired (optimal) response given by teacher. 
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Figure 1-10 Learning with a teacher (supervised) 

In incremental training, weights and biases are updated each time a new input vector 

and corresponding target is presented to the network; i.e. sequentially; Incremental 

learning can be applied to both static and dynamic networks, but is most commonly used 

with dynamic networks, such as adaptive filters. In batch training, weights and biases are 

updated after whole learning database (learning examples and corresponding targets) was 

presented; i.e. concurrently. 

1.5.1.1 Error correction learning 

Error of neuron k with m synapses given a signal vector x(n) at time step n is equal to: 

)()()( nyndne kkk

Figure 1-11 Error computation
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where yk(n) denotes neuron output, dk(n) is a desired output of neuron k, ek(n) denotes 

error signal. The corrective mechanism is expected to minimalize this error. This is 

accomplished by minimalizing a cost function or index of performance:

)(
2
1)( 2 nen k

E(n) is the instantaneous value of error energy. The corrections are continued until 

system is in stabilized state. One of the ways to minimalize the error energy is the Widrow-

Hoff rule or delta rule. The adjustment to the j-th synaptic weight of neuron k equals: 

)()()( nxnenw jkkj

where  is the positive constant called rate of learning, wkj(n) is the synaptic weight 

value of neuron k, when excited by element xj(n) of input vector x(n) at time step n. The 

adjustment is proportional to the product of error signal and the input signal of the synapse. 

The updated value of synapse wkj at time n+1 is computed: 

)()()1( nwnwnw kjkjkj

The network with new values of synapses is expected to achieve better performance. 

The very early approach was perceptron learning rule [ROSE 56]. The most popular 

techniques in error correction learning are based on backpropagation of gradient [ARBI 

89], [HAYK 99], which is a generalization of the perceptron learning rule. 

1.5.2 Learning without a teacher 

In learning without a teacher, there are no examples given to the system. In 

reinforcement learning the learning of input-output mapping is performed through 

continued interaction with the environment in order to minimalize a scalar index of 

performance. 
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Figure 1-12 Reinforcement learning 

Critic converts primary reinforcement signal received from an environment into a 

higher quality reinforcement signal called heuristic reinforcement learning. The system 

incorporates delayed reinforcement which means that system is able to observe temporal 

sequence of state vectors. The goal is to minimalize a cost-to-go function defined as an 

expectation of the cumulative cost of actions taken over a sequence of steps. 

Reinforcement learning is related to dynamic programming [BELL 57], which provides 

the mathematical formalism for sequential decision making. 

1.5.2.1 Hebbian learning 

Hebb’s postulate of learning [HEBB 49] says that if a neuron A repeatedly excites 

other neuron B, then the connection from A to B them (axon) becomes more efficient. The 

postulate was made in neurobiological context. The idea expanded by Changeeux and 

Danchin says as follows: 

1. If two neurons on either side of a synapse (connection) are activated 

simultaneously (i.e., synchronously), then the strength of that synapse is selectively 

increased. 

2. If two neurons on either side of synapse are activated asynchronously, then that 

synapse is selectively weakened or eliminated 

Hebbian synapse is characterized by four properties: 
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1. time-dependent mechanism – modification of the Hebbian synapse depend on the 

exact time of occurrence of the presynaptic and postsynaptic signals. 

2. local mechanism – the modifications are local and are triggered by local 

conditions.

3. interactive mechanism – Hebbian form of learning depend on interaction between 

presynaptic and postsynaptic signals two neurons. 

4. conjunctional or correlational mechanism – correlation over time between 

presynaptic and postsynaptic signals is viewed as being responsible for change.

General form of Hebbian adjustment of synapse wkj of neuron k at time step n is 

expressed as follows: 

nxnyFnw jkkj ,

where F(·,·) is a function of presynaptic and postsynaptic signals, yk is postsynaptic 

signal and xj is presynaptic signal. 

Hebb’s hypothesis in the simplest form (only development of synapse, no weakening) 

is realized by adjustment of following form: 

nxnynw jkkj

where  is the learning rate parameter. 

Covariance hypothesis [SEJN 77] expands the functionality by taking into account 

average values yx and  of respectively presynaptic and postsynaptic signals: 

yyxxw kjkj

where  is the learning rate parameter. The covariance hypothesis realizes Hebbian 

learning in the full form, described by Changeeux and Danchin, by making synapse 

stronger or weaker depending on the pre- and post synaptic activities. In particular the 

synaptic adjustment achieves negative value (with minimum of yxx j ), where 

synapse is weakened. When presynaptic activity xj or postsynaptic activity yk equal the 

average values respectively yx and  the synapse remains unchanged. 

There is a psychological evidence for the occurrence of Hebbian learning in the area of 

brain called hippocampus [BLIS 73]. 
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1.5.2.2 Unsupervised learning 

In Unsupervised or self-organized learning the stress is placed on independent measure 

of the quality of network representation.

Figure 1-13 Unsupervised learning 

1.5.2.3 Competitive learning 

In competitive learning the output neurons of NN compete among themselves to 

become active. Only one neuron in the output layer can be active (fire) at the same time 

(opposite to Hebbian learning, where many output neurons can be active simultaneously). 

Basic elements of competitive learning rule are: 

a set of neurons which are the same except for the synaptic weights. Therefore they 

respond differently to a given set of input patterns 

a limit of the “strength” of each neuron 

a mechanism which forces the competition between neurons, so only one of the 

group is active at a time [RUME 85]. 

The individual neurons specialize on ensembles of similar patterns, so they became 

feature detectors of input patterns.

A mechanism called lateral inhibition is a set of negative feedbacks connections 

linking excited neuron to other neurons. It means that when the neuron is excited it 

decreases the possibility that other neurons are excited. Lateral inhibition is also present in 

the neurobiological systems like eye retina, ear cochlea and pressure sensitive nerves of the 

skin [ARBI 89]. 

Each neuron in the structure is allocated a fixed amount of synaptic weight (all weights 

are positive): 
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to ensure that neuron learns by shifting the synaptic weights from inactive to active 

input nodes. 

To be a winning neuron, the neuron’s induced local field vk must be the largest among 

all neurons in the network.

k

m

j
jkjk bxwv

1

The output of winning neuron is then set to 1, the outputs of other neurons are set to 0. 

The winning neuron is moved towards the input pattern x by competitive learning rule:

ncompetitio thelosesneuronif
ncompetitio thesneuron winif

0
kjj

kj

wx
w

where  is the learning parameter. 

1.5.3 Memory-based learning 

In memory-based learning, all or part of the experiences are stored in memory of 

correctly classified examples. When classification of test vector xtest is requested, the 

algorithm searches the memory for the similar examples of xtest (“local neighborhood”)

and produces an output depending on the values of the memorized similar examples. 

Memory-based algorithms have two properties: 

definition of local neighborhood of the test vector xtest

learning rule applied to the local neighborhood of xtest

The memory based learning simplest example is the k-nearest neighbor classification 

[HAND 01]. ANNs which use memory learning are for example radial-basis function 

network.

1.5.4 Boltzmann learning 

The Boltzmann learning rule [AART 89] is a stochastic learning algorithm derived 

form statistical mechanics. A neural network designed on the basis of the Boltzmann 

learning rule is called a Boltzmann machine.

In a Boltzmann machine, the neurons constitute a structure and operate in a quasi-

binary way (two possible states of neurons: 1 and -1). The machine is characterized by 

energy function EB:
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j k
jkkj xxwEB

2
1

where xj,xk are the states of neurons j and k, wkj is the synaptic weight connecting 

neuron j to neuron k. None of the neurons in the machine has self-feedback. The machine 

operates by choosing a neuron at random and flipping the state of the neuron with 

probability: 

TEB
xxP

k
kk exp1

1

where EBk is the change in the energy of the machine resulting form such a flip and T

is a pseudotemperature - parameter used to control the uncertainty in firing. 

The goal is to achieve thermal equilibrium – steady state of the machine. 

1.5.5 Conclusion 

In this section a number of learning algorithms for single structure have been 

presented; all of them are well suited for machine learning (and in particular ANN). In the 

next section the concept of many collaborating structures will be introduced. 

1.6 Multi Neural Networks - Committee Machines 

The committee machines are based on engineering principle divide and conquer.

According to that rule, a complex computational task is solved by dividing it into a number 

of computationally simple tasks and then combining the solutions of these tasks. In 

supervised learning, the learning task is distributed among a number of experts which 

divides the space into a set of subspaces. The combination of experts is called committee 

machine. Committee machine fuses knowledge of experts to achieve an overall decision, 

which is supposedly superior to that achieved by any of the experts alone. Committee 

machines are universal approximators. 

The taxonomy of committee machines could be as follows: 

1. Static structures 

a. Ensemble averaging 

b. Boosting

2. Dynamic structures 
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a. Mixture of experts 

b. Hierarchical mixture of experts 

1.6.1 Ensemble averaging 

In ensemble averaging technique [HAYK 99], [ARBI 89], a number of differently 

trained neural networks (i.e. experts) share a common input and their outputs are combined 

to produce an overall output value y.

Figure 1-14 Ensemble averaging structure 

The advantage of such structure over a single neural network is that the variance of the 

ensembled average function FI(x) is smaller than the variance of single neural network 

F(x). Simultaneously both functions have the same bias. These two facts lead to a training 

strategy for reducing the overall error produced by a committee machine due to varying 

initial conditions [NAFT 97]: the experts are purposely overtrained, what results in 

reducing the bias at the cost of variance. The variance is subsequently reduced by 

averaging the experts, leaving the bias unchanged. 

1.6.2 Boosting 

In boosting [SCHA 99] (in contrast with the ensemble averaging) the experts are 

trained on the data sets with entirely different distributions; it is a general method which 

can improve the performance of any learning algorithm. 

Boosting can be implemented in three different ways: 

1. Boosting by filtering – the training examples are filtered by different versions of a 

weak learning algorithm with the examples either discarded or kept during training. 
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2. Boosting by subsampling - the second approach works with a sample of fixed 

size. The examples are resampled according to given probability distribution during 

training.

3. Boosting by reweighing – the approach works with a fixed training sample and 

assumes that the weak learning algorithm can receive “weighted” samples. 

1.6.3 Mixture of experts 

Mixture of experts consists of K supervised models called expert networks and a 

gating network, which performs a function of mediator among expert networks. The output 

is a sum of experts’ outputs (weighted by gating network). It is assumed that the different 

networks work best in different regions of the input space, in accordance with the 

probabilistic generative model [JORD 95]. 

Figure 1-15 Mixture of Experts 

The gating network consists of K neurons, with every neuron assigned to specific 

expert.

Input x 

Expert 1 

Expert 2 

Expert K

...

Output y 

Gating 
network 

gK

g1

g2

...

...

yK

y2

y1



Chapter 1 – Artificial Neural Networks 

Mariusz Rybnik -– Ph.D. Thesis - 42 – 

Figure 1-16 Structure of gating network 

The neurons in gating network are nonlinear with activation function defined by: 
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where uk is the inner product of the input vector x and synaptic weight vector wk for the 

neuron k:

,xwu T
kk   k=1, 2, …, K 

The transfer function is a differentiable version of “winner-takes-all” operation of 

picking the maximum value. It is referred to as “softmax” transfer function [BRIN 90]. 

The use of “softmax” as the activation function for the gating network induces the 

following properties: 
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The gating network maps the input vector into multinomial probabilities, so the 

different experts will be able to match the desired response [JORD 95].  

The output is a sum of experts’ outputs and is equal to: 
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The mixture of experts is an associative Gaussian mixture model, which is a 

generalization of traditional Gaussian mixture model [TITT 85], [MACL 88]. 

Conclusion

Multi Neural Networks present obvious advantages over single structures. Bu using a 

structure of simple network one can obtain good results without a need for creating large 

and complicated networks. 

1.7 ANN Conclusion 

ANNs present huge variety of architectures and learning algorithms. The area is 

developing rapidly. Consequently, they are used as powerful tools in many problems, 

especially problems characterized by: 

lack of physical or statistical understanding of a problem 

statistical variations in the data 

nonlinear mechanism underlying the problem 

ANN have many advantages: 

uniformity of analysis and design – it’s possible to share theories and learning 

algorithms in different applications of ANNs 

adaptive morphology – ANNs can adapt to major changes in the operating 

environment, ignoring the minor changes 

input-output mapping – model building based on training examples 

universality - many areas of interest, i.e. modeling, pattern recognition, signal 

processing, time series analysis 

nonlinearity – ANN are capable of solving non-linear problems 

fault tolerance - resistance to faults in hardware implementation (due to distributed 

structure) 

easy VLSI implementability,

distributed processing – ANNs are capable of parallel data processing

evidential response – can produce decisions with confidence rates 
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neurobiological and statistical analogies - in term of morphology and algorithms

ANNs have also limitations, mainly due to distributed and randomized way of 

working:

the given solution is often unpredictable

if ANN doesn’t work as expected it’s sometimes not trivial to find the way to fix 

that behavior 

Some tasks are more suited to an algorithmic approach (like arithmetic operations), 

where ANNs are much less efficient than conventional computation methods and 

algorithms 

For some learning algorithms and structures the examples must be selected 

carefully, otherwise useful time is wasted or even worse - the network might be 

functioning incorrectly 

Lack of universality - ANN once trained is fixed on some data and cannot process 

other task until trained again, Once ANN was designed for some task its design 

may be found inappropriate for other tasks 

Possibly large number of training examples and long training periods 

Knowledge embodied in ANN is usually not accessible (not understandable) 

outside of the ANN (i.e. ANN decides that patient needs a surgery, but the reason is 

unknown)

It’s hard to incorporate prior knowledge into network 

Next section will introduce complexity estimation – methods to estimate the 

complication of classification task. Incorporation of the techniques can provide knowledge 

about efficient methods for designing the problem solution, in particular modification of T-

DTS structure. It can be also as a knowledge source for a system that adapts itself to 

problem. 
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Motivation:  

This chapter concerns complexity estimation methods. Complexity estimation is a 

supportive tool for classification. Complexity estimation is used as a knowledge harvester 

that provides clues about organization of processing structure. The goal of complexity 

estimation is to verify and measure the difficulty of classification task, yet before proper 

processing, in order to modify the processing parameters. The goal is to reduce the user 

intervention to minimum, while keeping processing efficient and accommodated to the 

processing task. This technique is one of possible tools that could lead finally to automate 

processing of computation task.  

Structure of this chapter is as follows: section 2.1 introduces complexity estimation as 

a possibly supportive tool for classification, because complexity estimation is used in 

classification. Section 2.2 introduces the basics of classification as a special case of 

prediction. Section 2.3 proposes taxonomy of complexity estimation methods. Section 2.4 

exhibits main ideas about complexity estimation methods. Section 2.5 tries to compare 

complexity estimation methods. Conclusion ends the chapter. 

2.1 Complexity estimation – definition of a problem 

Complexity estimation methods are intended for estimating difficulty of data in 

classification problem. Classification complexity estimation is used to understand the 

behavior of classifiers and for feature selection. It can be also used to choose or adjust 

classifier depending on the measured characteristics of the problem. 

Bayes error [IRVI 65] is a theoretical probability of classification error, resulting from 

the ambiguity of classification task. It is considered as a target classification rate - no 

classification algorithm is expected to achieve better results on the unseen data. It is also 

the optimal complexity estimator. It is explained in details in section 2.2. There is a great 

impact of Bayes error on the most of classification complexity techniques. Bayes error is 

however difficult to calculate directly for three main reasons: 

conditional density estimation p(ck|x) is an ill-posed problem [DEVR 87], 

class probabilities p(x) are needed, 

difficulty of numerical integration increases with dimensionality. 
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Many approaches aims at estimating Bayes error in indirect way, i.e. propose a 

measure which is a lower or higher bound of Bayes error but easier to calculate than direct 

estimation. Correlation to Bayes error is a desirable property for other measures. 

To understand why classifiers are not successful, it is important to identify sources of 

classification problem errors. Relevant effects of geometrical complexity are described by 

Basu [HO 01]: 

Class ambiguity – some problems are known to have nonzero Bayes error [HO 

97], it means that samples from two different classes may have identical feature 

values. (Bayes error sets a lower bound on achievable error rate.) According to Ho 

[HO 00], this can happen regardless of class boundary shape and feature space 

dimension. Some problems may be intrinsically ambiguous; other problems may be 

ambiguous only due to poor features selection. The ambiguity is intrinsic if the 

given feature set is complete for reconstruction of the patterns. Otherwise 

redefining the features can remove the ambiguity.  

Curvature of boundary / imperfectly modeled boundary complexity – some 

problems have complicated optimal decision boundary. In other words, some are 

much more difficult than others. Classifying algorithm should have enough 

capacity to cope with the problem, otherwise boundary is imperfectly modeled and 

classification error will occur (avoidable by reference to Bayes error). This effect is 

independent of class ambiguity, sampling density and feature space dimensionality 

Non-representative sample size and feature space dimensionality – sometimes 

training set does not represent whole classification problem well. Classification 

algorithm considers a problem simple when in fact it is complex but insufficiently 

represented. This easily happens in high dimensional space where the class 

boundary can vary with a larger degree of freedom. The representativeness of 

training set is a subject of study in many theoretical and practical considerations, 

like Vapnik’s statistical learning theory [VAPN 98], Kleinberg’s arguments on M-

representativeness [KLEI 96], Berlind’s hierarchy of indicernibility [BERL 94], 

Raundy’s and Jain’s work [RAUN 91] and many others [FUKU 71], [KITT 82], 

[TOUS 74]. 

Before presenting specific classification complexity methods, classification and its 

complexity related properties will be discussed. 
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2.2 Classification as an aspect of Predictive Modelling 

Predictive modelling aim is to predict unknown value of variable when provided with 

known values of other variables. Predictive modelling can be thought of as a learning of 

mapping from an input set of features x to estimated scalar output . To learn, the 

mapping model is provided with training data Dtrain (consisting of pairs of measurements: 

vector x(i) with corresponding true output value target y). The goal of predictive modeling 

is to estimate (using training data Dtrain) a function representing the model =M(x; ) that

generates estimated values of output , which are expected to be close to true value of 

output y. That function is given an input vector x(i) and a set of estimated parameters for 

a model M. There are two kinds of task in predictive modelling: 

Classification – values y of output set Y are categorical 

Regression - values y of output set Y are real 

To build a predictive model one have to choose three elements:  

1. a model M

2. a score function S for determining how well the model fits the original 

problem (how far are real values from results estimated by model f)

3. optimalization strategy, also known in literature as training algorithm, the 

aim of it is to minimize the score function S as function of 

The choice of model is difficult, as huge number of solutions exists in literature. The 

advantages of simple models are that they are easier to interpret and usually more stable. 

They can be just too simple for complicated problems and don’t achieve satisfactory 

results. Relatively new idea is a combination of multiple simple models in some way (i.e. 

Multiple Neural Networks [ARBI 89]), which can possibly lead to satisfactory results 

without overcomplicating. 

Score function (also known as error function) is a function of difference from observed 

real output values y and predicted output values :

trainD
iyiydS )(ˆ),()(

trainD
ixfiyd ));((),(
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where sum is taken over the tuples (x(i),y(i)) in the training data set and d defines a 

distance between real output y and predicted output  for the same input vector x(i).

Distance function d(·) is usually defined as squared distance (Euclidean) for real-valued 

outputs y or an indicator function for categorical values of y. Function d(·) has scalar 

values. Most known distance functions for real-valued outputs, between feature vectors i

and j where dim is the total number of dimensions (features), are: 

Euclidean distance: 

2
1

dim

1

2)()(,
k

kkE jxixjid

Weighted Euclidean distance: 

2
1

dim

1

2)()(,
k

kkkWE jxixujid

where vector uk defines the importance weights for features. 

Manhattan (Hamming) distance: 

dim

1
)()(,

k
kkMH jxixjid

Minkovsky distance: 

1
dim

1
)()(,

k
kkMI jxixjid

which is a generalization of Euclidean and Manhattan distance. Minkovsky distance 

when =2 equals Euclidean distance and Minkovsky distance with =1 equals Manhattan 

distance. 

Mahalanobis distance: 

2
1

)()()()( 1 jxixjxixd T
MH

where x(i) and x(j) are the feature vectors, T represents the transpose,  is the p x p

covariance matrix. The purpose of using -1 is to standardize the data relative to covariance 

matrix. The formula can be used also as a data complexity criterion as described in section 

1.4.1.5.
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Tchebyshev distance: 

)()(max),( ,...,2,1 jxixjid kkpiT

Tchebyshev distance is a generalization of Minkovsky distance when  approaches 
infinity. 

Canberra distance:  
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k kk
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jid
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Optimalization strategy (commonly known in Neural Network literature as training 

algorithm) depends amongst others on type of predictive modelling task (classification or 

regression), specificity of task, chosen model M and score function S(·) used. 

In classification we wish to learn a mapping (function) from feature vectors x to

categorical values from space C (class labels). Class labels take values in the set {c1,…,

cm}.

The most popular approach to deal with classification problems is to use discriminative 

classification, which is described in next section. 

2.2.1 Discriminative classification 

In a discriminative approach, a classification model f(x; ) (prediction model for 

classification task is known as classifier) takes input vector x and assigns to it a value from 

the set of classes{ c1,…, cm}.

Decision region for class ci (where i [1, m]) is union of all regions in the input 

feature space where output takes value of ci. In other words, decision region for ci is a set 

of all input values for whose output is ci. Complement of this decision region is the 

decision region for all others classes. 

Decision boundaries or decision hyperplanes separate the decision regions. 

Mathematical form of decision boundaries can be straight lines or planes (linear 

boundaries), curves boundaries such as polynomials and other. 

In most real classification problems, the classes are not perfectly separable in feature

space. The situation when relatively very close input vectors x are from different classes is 

referred to as classes overlapping. It leads to another way of seeing classification problem 

– we can seek a function f(x; ) which maximalizes some measure of separation between 
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classes. Such functions are called discriminant functions. The earliest formal approach to 

classification, Fisher’s linear discriminant [FISH 00], was based on this idea. It sought 

the optimal linear combination of the variables in input space. The goal was to maximally 

discriminate two classes. 

2.2.2 Probabilistic models for classification 

Let p(ck) be the probability that object comes from class ck. Then, if classes are 

exclusive and exhaustive we have 1)(
k kcp . Often p(ck) are referred to as prior 

probabilities since they represent the class probabilities before observing the vector x.

Objects from class ck are assumed to have measurement vectors x distributed 

according to probability distribution (density function) p(x|ck, k), where k are unknown 

parameters distribution. For example, the estimated distribution may be multivariate 

Gaussian (normal), and the parameters k may represent the mean and variance of that 

distribution.

Once the distributions have been estimated, we can yield the posterior probabilities:

m

i ii

kk
k
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1
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If one knew the true posterior probabilities (instead of estimating them), then it would 

be possible to make optimal classifications.  

Figure 2-1 presents two Gaussian distributions (cases from two classes: c1 and c2) in 

one-dimensional space: 

Figure 2-1 Two Gaussian distributions and Bayes error 

The values of x axis represent values of feature X, and the values on the y axis 

represent posterior probabilities of classes (in other words distributions, scaled using prior

xbo

p(x)
p(x| c2, 2)p(c2)

p(x|c1, 1)p(c1)
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probabilities). There is an area, where the distributions overlap each other. In the 

overlapping area, classification errors cannot be avoided, as cases from both classes have 

the same feature values (the situation is referred to as class ambiguity). The inevitable 

classification error occurs only in the dashed area. To classify in an optimal way, one 

should take most probable class along the X space.. Overlap means that there is a non-zero 

probability that the data comes from other class than the locally optimal. Bayes error of

classifier f(x; ) is the minimal probability of misclassification in whole input space X:

dxxpxcp kk
)(max1

That value corresponds to dashed area. This is the minimum error rate. It is a lower-

bound on the best possible classifier for the problem. No classifier is expected to achieve 

lower error on unseen data due to problem ambiguity. 

Bayes optimal classifier is a classifier which error rate is equal to Bayes error. 

Bayes optimal classifier is done as: 

icx , such as )|(max)|( xcpxcp kki

Usually in real problem we don’t know however conditional probabilities p(ck|x).

In the example above, Bayes optimal classifier is a classifier which separates the 

classes using a threshold value bo marked in the figure 2-1, assigns cases with feature value 

less than bo class label c1 and with values greater or equal bo class label c2.

Methods to compute Bayes error: 

Analytical – difficult to calculate, depends on distribution parameters, 

Experimental – estimate class densities basing on non-parametric methods. 

Next section describes the various ways to build classifiers depending on the theory 

presented above. 

2.2.3 Approaches to build classifiers 

In order to build classifiers many techniques can be used. One can identify three main 

approaches:

1. The discriminative approach – find direct mapping from inputs x to one of m

class label c1,… cm. No attempt to model class conditional or posterior class 
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probabilities. Ex. perceptron, Multi Layered Perceptron, Support Vector 

Machines [ARBI 89], [HAYK 99]. 

2. The regression approach – The posterior class probabilities p(ck|x) are modelled 

explicitly, and for prediction, the maximum of these probabilities weighted 

by cost function is chosen. Ex.: logistic regression [COLL 00]. 

3. The class-conditional approaches – The class-conditionals p(x|ck, k) (where k

represent distribution parameters) are modelled explicitly along with 

estimates of p(ck) and both are used to compute p(ck|x). Also known as 

generative approach and classifiers as “Bayesian” classifiers.  

2.2.4 Classification methods 

The classification methods may cover the whole input space with one model or use 

submodels, where each submodel covers small area of space, and at last the union of the 

submodels covers the whole input space. Depending on that feature one can categorize 

classification methods: 

1. Global approximation – there is only one model which covers all data feature 

space.

a. Fisher discriminant function - , 

b. Perceptron -,  

c. Logistic Discriminant Analysis -

d. Linear discriminants - the method is based on the search of the linear 

combination of the variables which separates best the classes, 

e. Nearest neighbor methods - to classify a new object one examines k nearest

neighbors of object and assigns the object to the class that has the majority of 

points amongst these k neighbors,

f. Feed-forward NN – perceptron, Multi Layered Perceptron, 

g. Support Vector Machines – they are long cousin of perceptron. Perceptron 

searches linear hyperplane that perfectly seprates the data from different 

classes, SVM work in similar way, extending the feature space to include 

transformations of the raw variables and searching linear decision surface in 
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the enhanced space. This conforms to nonlinear decision surface in the raw 

measurement space. 

h. The Naive Bayes model – 

i. Bayesian model averaging -

j. Projection pursuit methods – they consist of linear combinations of 

nonlinear transformations of the raw variables. They are data-driven.

k. Probabilistic Neural Networks – model is built depending on the learning 

examples presented to network. 

2. Local approximation – model consists of many smaller models (sub-models). Each  

sub-model covers a part of data feature space. 

a. Mixture models – approximate each class-conditional distribution by a 

mixture of simpler distributions (for example multivariate Gaussian 

distributions),

b. Radial basis functions (RBF) – NN approach similar to mixture models, 

they combine many models of local influence to produce a mixture model, 

c. Mixture of experts – NN approach parallel to mixture models.

d. Tree models – basic principle is to partition in a recursive manner the space 

spanned by the input variables to maximalize some score of data separability. 

Artificial Neural Networks are frequently used with success to solve classification 

problems. Most popular ANNs used in this purpose are: perceptron, multilayered feed-

forward neural networks, (especially MLP), mixture of experts, radial basis function, 

projection pursuits, Support Vector Machines. Most of these structures are described in 

Annex B.

There are methods to evaluate the efficiency of classification and compare them to 

others. Two most known methods are described in the next section. 

2.2.5 Evaluating and comparing classifiers 

Leaving-one-out method – from known data of n vectors, we create n training sets by 

leaving one vector each time for generalization (testing set). Thus we train the model n

times, and verify obtained classification rates on left vector, which is unseen by the model 
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(not included in learning). By using this method one can use whole available data for 

learning and classify whole set, keeping generalization free of data known from learning. 

Bootstrap methods – model the relation between unknown true distributions and the 

sample by analyzing the relation between the sample and subsample of the same size 

drawn from the sample. 

2.2.6 Feature reduction 

Not all variables measured are always necessary to build a model. In fact 

overwhelming number of variables may lead to worse models. It is not obvious which 

variables are non relevant and can be deleted. General strategies to reduce the number of 

variables without much loss of important information are: 

Variable selection – the idea is to select a sub-database of variables of the original set 

of features. There is a combinatorially large search space of variable sub-databases which 

may be considered.  

Variable Transformations – transform the original measurements by some linear or 

non-linear functions in order to diminish the number of variables and thus simplify further 

processing. Examples: 

Principal component analysis [TIPP 97] – modification of directions in space in 

order to achieve maximum variance; 

Projection pursuit [HUBE 85]  – search for interesting linear projections; 

Factor analysis [GORS 83] – linear transformation of data in search for interesting 

properties;

Independent component analysis [COMO 91] – extracting maximally independent 

components form data. 

2.3 Taxonomy of complexity estimation methods 

Significant part of complexity estimation methods are related to Bayes error 

estimation. Due to the difficulties with direct Bayes error computation, some approaches 

try to estimate Bayes error in indirect way, i.e. propose a measure which is a lower or 

higher bound of it but easier to calculate than direct estimation. Another method is to use 

non-parametric methods to estimate Bayes error.  
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Correlation to Bayes error is a desirable property for other measures. Some of them 

take advantage from space partitioning. Thus, one can divide the measures into four 

classes:

indirect Bayes error estimation (probabilistic distance measures) – parametric 

estimates of Bayes error;

non-parametric Bayes error estimation – methods which are proven to estimate 

Bayes error but in non-parametric way; 

methods based on space partitioning – they are connected to some space 

partitioning algorithms; 

other methods – the ideas are different, but always high correlation between 

measures and Bayes error is a desired property. 

Figure 2-2 Proposed taxonomy of complexity estimation methods 

2.4 Presentation of selected methods 

Complexity estimation is not a very popular subject. Regarding that fact, this section 

present in detail classification complexity estimation methods, categorized as stated in 

previous section. Section 2.4.1 presents indirect Bayes error methods, section 2.4.2 

exhibits non-parametric Bayes error estimation methods, section 2.4.3 familiarizes with 

measures related to space partitioning and section 2.4.4 stages other methods. Section 2.4.5 

talks briefly about a possibility of creating ensembles of estimators, which correctly used 

can inhibit advantages over solo methods. 

Complexity estimation methods

Bayes error estimation 

Non-parametric Indirect

Space partitioning Other 
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2.4.1 Indirect Bayes error estimation 

To avoid the difficulties related to direct estimation of the Bayes error, a popular 

approach is to estimate a measure directly related to the Bayes error, but easier to calculate. 

Usually one assumes that the data distribution is normal (Gaussian). 

Statistical methods grounded in the estimation of probability distributions are most 

frequently used. The drawback of these is that they assume data normality. A number of 

limitations have been documented in literature [VAPN 98]. 

construction of model could be time consuming; 

model verification could be difficult; 

as data dimensionality increases, a much larger number of samples is needed to 

estimate accurately class conditional probabilities; 

if sample does not sufficiently represent the problem, the probability distribution 

function cannot be reliably approximated and Bayes error cannot be accurately 

estimated; 

with a large number of classes present, estimating a priori probabilities is quite 

difficult. This can be only partially overcome by assuming equal class probabilities 

[FUKU 90], [HO 02]. 

we normally do not know the density form (distribution function); 

most distributions in practice are multimodal, while models are unimodal; 

approximating a multimodal distributions as a product of univariate distributions do 

not work well in practice. 

Following subsections will present complexity measures based on indirect Bayes error 

estimation. 

2.4.1.1 Normalized mean distance  

Normalized mean distance is a very simple complexity measure for Gaussian unimodal 

distribution. It raises when the distributions are distant (measured by distance between 

means) and not overlapping. 

21

21
normd
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The main drawback of that estimator is that it is inadequate (as a measure of 

separability) when both classes have the same mean values. 

2.4.1.2 Chernoff bound 

The Bayes error for the two class case can be expressed as: 

dxcxpcP kki
|)(min

Through modifications, we can obtain a Chernoff bound u, which is an upper bound 

on  for the two class case: 

dxcxpcxpcPcP ssss
u )|()|()()( 2

1
1

1
21  for 0 s 1.

The tightness of bound varies with s.

2.4.1.3 Bhattacharyya bound 

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical 

evidence indicates that optimal value for Chernoff bound is close to 1/2 when the majority 

of separation comes from the difference in class means. Under a Gaussian assumption, the 

expression of the Bhattacharyya bound is: 
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and µi and i are respectively the means and covariances of classes i {1,2}.

2.4.1.4 Divergence

Measure of divergence [LIN 91] (separability) is related to verisimilitude ratio. 

Verisimilitude ratio L12 between two classes c1 and c2 is defined as: 

2

1
12 |

|)(
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Divergence is defined as function of logarithm of verisimilitude ratio: 

22111212 |)(|)( cXLEcXLED ,

and after transformations: 
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The measure of divergence has the following properties: 

1. 012D

2. Symmetry: 2112 DD

3. If probabilities distributions P(X|c1) and P(X|c2) are equal then divergence D12

equals 0. In particular D11=0.

4. If variables X1, X2,…,Xd are statistically independent, i.e. 
d

k
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5. As consequence of properties 1 and 4:
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That property is important because it means that divergence will increase with 
addition of new variables. 

Calculation of the divergence is significantly simplified when distributions of variables 

are normal. In that case divergence equals: 

TtrtrD 2121
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where tr signifies trace of a matrix, µ1 and µ2 class means, 1and 2 class covariance 
matrices.

Divergence measures the degree of separability between two classes. Therefore in 

order to evaluate multi class case one should count an average of all two-element 

combination of classes. Computational cost of divergence is significant. 

Transformed divergence is defined as: 

8
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Transformed divergence takes values from range [0,2] and increases with class 

separability. 

2.4.1.5 Mahalanobis distance 

Mahalanobis distance [TAKE 87] is defined as follows: 
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MD is the Mahalanobis distance between two classes. The classes’ means are µ1 and µ2

and  is the covariance matrix. Mahalanobis distance is used in statistics to measure the 

similarity of two data distributions. It is sensitive to distribution of points in both samples. 

The Mahalanobis distance is measured in units of standard deviation, so it is possible to 

assign statistical probabilities (that the data comes from the same class) to the specific 

measure values. Mahalanobis distance greater than 3 is considered as a signal that data are 

not homogenous (does not come from the same distribution).  

Similar practice is applied in complexity estimation: high values of Mahalanobis 

measure indicate that classes in discrimination problem are well separated. 

2.4.1.6 Jeffries-Matusita distance 

Jeffries-Matusita [MATU 67] distance between classes c1 and c2 is defined as: 

xD dxcXpcXpJM
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If c1 and c2 distributions are normal Jeffries-Matusita distance reduces to: 
eJM D 12 , where 
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Matusita distance is bounded within range [0, 2] where high values signify high 

separation between classes c1 and c2.

2.4.1.7 Entropy measures 

Examining the dependence between the data vector x and the class c gives a measure 

of how much information these two distributions contain about each other. The proof is as 

follows – for the extreme case when x and c are independent, p(c|x) and p(c) are 

equivalent. It means that data provides no information about which class it should belong 

to. Therefore the data is worthless for classification. That logic leads to information 

theoretic measures for class separability. The procedure is to observe x and compute the a

posteriori probabilities p(ci|x) to determine the amount of class information contained in 

the observation. One of the most popular measures is Shannon’s measure: 

L
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L is the number of classes. Unlike the Chernoff and Bhattacharyya distances, this 

equation is not limited to the two classes but neither is directly related to Bayes error. The 

probability densities are needed, that implies that entropy based measures suffer from 

difficulties of estimating Bayes error directly. It is known however that the variances 

associated with entropy measures of class separability are normally lower than those 

associated with direct Bayes error estimation. 

2.4.2 Non-Parametric Bayes error estimation and bounds 

Non-parametric Bayes error estimation methods make no assumptions about the 

specific distributions involved. They use some intuitive methods and then prove the 

relation to Bayes error. Non-parametric techniques do not suffer from problems with 

parametric techniques: 

2.4.2.1 Error of the classifier itself 

This is the most intuitive measure. However it varies much depending on the type of 

classifier used and, as such, it is not very reliable unless one uses many classification 

methods and averages the results. Last solution is certainly not computationally efficient. 

2.4.2.2 k Nearest Neighbours, (k-NN) 

K- Nearest Neighbours [COVE 67] technique relays on the concept of setting a local 

region (x) around each sample x and examining the ratio of the number of samples 

enclosed k to the total number of samples N, normalized with respect to region volume v:

vN
xkxp )()(

K-NN technique fixes the number of samples enclosed by the local region (k becomes 

constant). The density estimation equation for k-NN becomes: 

Nxv
kxp

)(
1)(

where p(x) represent probability of specific class appearance and v(x) represent local 

region volume.  

K-NN is used to estimate Bayes error by either providing an asymptotic bound or 

through direct estimation. Asymptotic bounds are derived by an application of the voting  



Chapter 2 – Complexity estimation 

Mariusz Rybnik -– Ph.D. Thesis - 65 – 

k-NN procedure. For the two class case, where ekNN represents the k-NN estimate of ,

these estimates form a bound on by:

2......
2
1

1342 NNNNNNNN eeee

As N  asymptotically the estimations are closer to . For the L class case, as N ,

we obtain the following bound: 

2
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The k-NN estimate of Bayes error can exhibit significant biases and variances when N 

is finite. K-NN can directly estimate  by first estimating the expected value of the risk that 

the biases and variances will influence the estimation. The formula for this estimate is: 
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This estimate is not known to bound Bayes error but it is known to have a smaller 

variance than the estimate found through the voting k-NN procedure. 

K-NN estimation is computationally complex. 

2.4.2.3 Parzen Estimation 

Parzen techniques relay on the same concept as k-NN: setting a local region (x)

around each sample x and examining the ratio of the samples enclosed k, to the total 

number of samples N, normalized with respect to region volume v:

vN
kxp )(

The difference according to k-NN is that Parzen fixes the volume of local region v.

Then the density estimation equation becomes: 

vN
xkxp )()(

where p(x) represents density and k(x) represents number of samples enclosed in 

volume. 
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Estimating the Bayes error using the Parzen estimate is done by forming the log 

likelihood ratio functions based upon the Parzen density estimates and then using 

resubstitution and leave-one-out methodologies to find an optimistic and pessimistic value 

for error estimate. Parzen estimates are however not known to bound the Bayes error. 

Parzen estimation is computationally complex. 

2.4.2.4 Boundary methods 

The boundary methods are described in the work of Pierson [PIER 98]. Data from each 

class is enclosed within a boundary of specified shape according to some criteria. The 

boundaries can be generated using general shapes like: ellipses, convex hulls, splines and 

others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it 

is a natural representation of those. The boundaries may be made compact by excluding 

outlying observations. Since most decision boundaries pass through overlap regions a 

count of these samples may give a measure related to misclassification rate. Collapsing 

boundaries iteratively in a structured manner and counting the measure again lead to a 

series of decreasing values related to misclassification error. The rate of overlap region 

decay provides information about the separability of classes. Pierson discuses in his work a 

way in which the process from two classes in two dimensions can be expanded to higher 

dimension with more classes. Pierson has demonstrated that the measure of separability 

called the Overlap Sum is directly related to Bayes error with a much more simple 

computational complexity. It does not require any exact knowledge of the a posteriori 

distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to 

progressive collapsing iterations: 
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where to is the step size, m is the maximum number of iteration (collapsing 

boundaries), N is the number of data points in whole dataset and s(kt0) is the number of 

points in the differential overlap. 

In his partial PhD work entitled “Using boundary methods for estimating class 

separability“ [PIER 98] Pierson writes that: “BMs (Boundary Methods) provide a measure 

of class separability, the overlap sum (OS), which is strongly correlated with Bayes error 

and easily computed. These properties suggest BMs can be used as an alternative to 

traditional Bayes error estimation techniques.” The advantage of using Overlap Sum over 
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estimating Bayes error is that Overlap Sum doesn’t require knowledge about a posteriori

distributions. Overlap Sum is correlated to Bayes error, which is a measure of class 

separability known to be optimal. Pierson shows theoretically and empirically in his work 

that there is a direct relationship between BM and Bayes error. Furthermore, he shows an 

advantage of Overlap Sum complexity measure over k-NN due to computational 

complexity.

2.4.3 Measures related to space partitioning 

Measures related to space partitioning are connected to space partitioning algorithms. 

Space partitioning algorithms divide the feature space into sub-spaces. That allow to obtain 

some advantages, like information about the distribution of class instances in the sub-

spaces. Then the local information is globalized in some manner to obtain information 

about the whole database, not only the parts of it. 

2.4.3.1 Class Discriminability Measures  

Class Discriminability Measures (CDM) [KOHN 96] are based on the idea of 

inhomogeneous buckets. The idea here is to divide the feature space into a number of 

hypercuboids. Each of those hypercuboids is called a “box”. The dividing stops when any 

of following criterias is fulfilled: 

1. box contains data from only one class 

2. box is non-homogenous but linearly separable 

3. number of samples in a box is lower that N0.375, where N is the total number of 

samples in dataset 

If the stopping criteria are not satisfied, the box is partitioned into two boxes along the 

axis that has the highest range in term of samples, as a point of division using among 

others median of the data. 

Final result will be a number of boxes which can be:  

homogenous terminal boxes (HTB) 

non-linearly separable terminal boxes (NLSTB) 

non-homogenous non-linearly separable terminal boxes (NNLSTB) 
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In order to measure complexity, CDM uses only Not Linearly Separable Terminal 

Boxes, as, according to author, only these contribute to Bayes error. That is however not 

true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors of 

the boxes – partitioning (and in fact nothing) cannot by itself diminish the Bayes error of 

the whole dataset, however it can help classifiers in approaching the Bayes error optimum. 

 The formula for CDM is: 
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where k(i) is the total number of samples in the ith NNLSTB, k(j|i) is the number of 

samples from class j in the ith NNLSTB and N is the total number of samples. For task that 

lead to only non-homogenous but linearly separable boxes, this measure equals zero. 

2.4.3.2 Purity

Purity measure [SING 02A] is developed by Singh and it is presented with connection 

to his idea based on feature space partitioning called PRISM (Pattern Recognition using 

Information Slicing Method). PRISM divides the space into cells within defined resolution 

B. Then for each cell probability of class i in cell l is: 
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where njl is the number of points of class j in cell l, nil is the number of points of class i

in cell l and Kl is the total number of classes.  

Degree of separability in cell l is given by: 
k

i
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These values are averaged for all classes, obtaining overall degree of separability: 
totalH

l

l

lHH N
NSS

1
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where Nl signifies the number of points in the l-th cell, and N signifies total number of 

points.
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If this value was computed at resolution B then it is weighted by factor Bw
2
1  for 

,31)1,(0,B . Considering the curve (SH versus normalized resolution) as a closed 

polygon with vertices (xi,yi), the area under the curve called purity for a total of n vertices 

is given as: 

1

1
112

1 n

i
iiiiH xyyxAS

The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing 

process maximum possible value is 0.702, thus the value is rescaled once again to be 

between [0, 1] range. 

The main drawback of purity measure is that if in a given cell, the number of points 

from each class is equal, then the purity measure is zero despite that in fact the distribution 

may be linearly separable. Purity measure does not depend on the distribution of data in 

space of single cell, but the distribution of data into the cells is obviously associated with 

data distribution. 

2.4.3.3 Neighbourhood Separability 

Neighbourhood Separability [SING 02A] measure is developed by Singh. Similarly to 

purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest 

neighbours are found. Then one measure a proportion pk of nearest neighbours that come 

from the same class to total number of nearest neighbours. For each number of neighbours 

k, 1<=k<= il calculate the area under the curve that plots pk against k as j. Then compute 

the average proportion for cell Hl as: 

lN

j
jll N

p
1

1

Overall separability of data is given as: 

N
NpS

lH

l
lNN

total

1

One compute the NNM measure for each resolution B=(0, 1, … ,31). Finally, the area 

ANNM under the curve NNM versus resolution gives the measure of neighbourhood 

separability for a given data set. The value is rescaled as 702.0
NN

NN
ASAS  to be in 

range [0, 1]. 
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2.4.3.4 Collective entropy 

Collective entropy [SING 02B], [SING 02C] measures degree of uncertainty. High 

values of entropy represent disordered systems. The measure is connected to data 

partitioning algorithm called PRISM. 

Calculate the entropy measure for each cell Hl:
lK

i
ilill ppE

1
log

Estimate overall entropy of data as weighted by the number of data in each cell: 
totalH

l

l

l N
NEE

1

Collective entropy for data at given partition resolution is defined as: 

EEC 1

This is to keep consistency with other measures: maximal value of 1 signifies complete 

certainty and minimum value of 0 uncertainty and disorder. 

Collective entropy is measured at multiple partition resolutions B=(0,…31) and scaled 

by factor )(2
1

Bw  to promote lower resolution. Area under the curve of Collective 

Entropy versus resolution gives a measure of uncertainty for a given data set. That measure 

should be scaled as 702.0
E

E
ASAS  to keep the values in [0,1] range. 

2.4.4 Other Measures 

The measures described here are difficult to classify as they are very different in idea 

and do not resemble others. 

2.4.4.1 Correlation-based approach 

Correlation-based approach [RAHM 98] is described by Rahman and Fairhust. In 

their work, databases are ranked by the complexity of images within them. The degree of 

similarity in database is measured as the correlation between a given image and the rest 

images in database. It indicates how homogenous the database is. For separable data, the 

correlation between data of different classes should be low. 
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2.4.4.2 Fisher discriminant ratio 

Fisher discriminant ratio [FISH 00] originates from Linear Discriminant Analysis 

(LDA). The idea of linear discriminant approach is to seek a linear combination of the 

variables which separates two classes in best way. The Fisher discriminant ratio is given 

as:

2
2

2
1

2
21

1f
,

where µ1, µ2, 1, 2 are the means and variances of two classes respectively. The 

measure is calculated in each dimension separately and afterwards the maximum of the 

values is taken. It takes values from [0,+ ]; high value signifies high class separability. To 

use it for multi class problem it is necessary however to compute Fisher discriminant ratios 

for each two-element combination of classes and later average the values. 

Important feature of the measurement is that it is strongly related to the structure of 

data. The main drawback is that it acts more like a detector of linearly separable classes 

than complexity measure. The advantage is very low computational complexity. 

2.4.4.3 Interclass distance measures (scatter matrices) 

The interclass distance measures [FUKU 90] are founded upon the idea that class 

separability increases as class means separate and class covariances become tighter. We 

define:

Within-class scatter matrix: 
L

i
iiw PS

1
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Between-class scatter matrix: 
L

i

T
iiib PS

1
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Mixture (total) scatter matrix: 

bwm SSS

where µi are class means, P(ci) are the class probabilities, i are class covariance 

matrices, and L

i iiP
10 )(  is the mean of all classes. 
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Many intuitive measures of class separability come from manipulating these matrices 

which are formulated to capture the separation of class means and class covariance 

compactness. Some of the popular measures are: 

)( 1
1

21 SStrJ , 1
1

22 ln SSJ
, )(

)(

2

1
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StrJ

where S1, S2 are a tuple from among {Sb, Sw, Sm}, and tr signifies trace of a matrix. 

Frequently many of these combinations and criteria result in the same optimal features. 

2.4.4.4 Volume of the overlap region 

We can find volume of the overlap region [HO 98] by finding the lengths of 

overlapping of two classes’ combination across all dimensions. The lengths are then 

divided by overall range of values in the dimension (normalized): 

minmax dd
d

r o
d

where do represents length of overlapping region, dmax and dmin represent consequently 

maximum and minimum feature values in specified dimension. 

Resulting ratios are multiplied across all dimensions dim to achieve volume of 

overlapping ratio for the 2-class case (normalized with respect to feature space) 

dim

1i
do rv

It should be noted that the value is zero as long as there is at least one dimension in 

which the classed don’t overlap. In order to expand the measure to multi class case, one 

should take the average of the values computed for all two elements classes’ combinations. 

2.4.4.5 Feature efficiency 

The feature efficiency [HO 98] measure describes the efficiency of features in 

differentiating the classes. It doesn’t however contribute to the joint effect of features. If 

there is an overlap in feature values for two classes we consider the classes ambiguous in 

that region (along that dimension). If the problem is linearly separable then there exists at 

least one dimension in which the classes don’t overlap each other. For other problems that 

are globally ambiguous one may progressively remove the ambiguity by separating only 

the points that lie outside of overlapping region in each chosen dimension. The individual 
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feature efficiency may be defined as the fraction of the remaining points separated by that 

feature.

2.4.4.6 Minimum Spanning Tree (MST) 

The method is based on use of the Minimum Spanning Tree (MST)I [FRIE 79]. One 

constructs a MST that connects all data points to their nearest neighbours regardless of 

class labels. The number of data points connected to an opposite class by an edge of MST 

is then computed. The fraction of remaining points to the size of dataset is used as a 

measure of complexity. The flaw of the approach is that it is disrupted by a small margin 

narrower than the distance between points of the same class. 

2.4.4.7 Inter-intra cluster distance 

The average inter-cluster distance is computed by considering all data in both clusters 

(classes): 

21

21
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where l1 and l2 are the numbers of samples in the two clusters and Swi, Swj represent 

consequently inter-cluster distance of cluster i and inter-cluster distance of cluster j.

Between-cluster distance Sb is computed in analogical way, by considering the distance 

between the point pairs across clusters. 

The ratio Sw/Sb shows how separate are the two classes. The measure is bounded within 

range [0;+ ]. A low value indicates that the two datasets are separable. A measure of 

multi-class problem is done by averaging the values of (Sw/Sb) across all class combination 

and all features. 

2.4.4.8 Space covered by epsilon neighbourhoods 

The main idea of space covered by epsilon neighbourhoods is to enclose each class in 

largest hypersphere possible excluding other classes. The number and size of that 

hyperspheres define the classification complexity of the problem [HO 00]. 

The algorithm for the space by epsilon neighbourhoods is as follows: 

1. compute the starting radius of hypersphere value rh,
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2. for each data point we grow the size of the hypersphere in increments of rh, and 

terminate the process when increasing the hypersphere leads to inclusion of 

samples from other classes. 

Average proportional size in terms of number of members in each hypersphere divided 

by the total number of data points is used as a measure of complexity. 

2.4.5 Ensemble of estimators 

The idea here is to combine several methods, for example: use weighted average of 

them. It is possible that a single measure of complexity may be not suitable for practical 

applications; instead a hierarchy of estimators may be more appropriate [MADD 90]. The 

computation of several methods at once is potentially more difficult than one, but using 

several simple methods could be faster than one complex method. 

2.5 Complexity Estimation Conclusion 

Classification complexity estimation methods present great variability. The methods 

which are derived from Bayes error are most reliable in term of performance, as they are 

theoretically stated. The most obvious drawback is that they have to do assumptions about 

a priori probability distributions. The methods which are designed on experimental 

(empirical) basis are very various and their performance is difficult to predict. The 

advantage of the last is that they frequently base uniquely on experimental data and do not 

need probability density estimates of distributions, as they obtain that in experimental way 

during the processing. Not every method is suitable to estimate a complexity of multi-class 

classification problem – some are designed only to two-class problems, and as such they 

need special procedures to accommodate them to multi-class problem (like counting the 

average of complexities of all two-class combinations) what usually result in combinatorial 

increase in computational complexity. 

Table 2-1 Comparison of complexity estimation techniques 

Technique Relation to 
Bayes error

Computational 
complexity Advantages Disdvantages 

Chernoff bound direct   Need pdf estimates, 2 
class only 

Bhattacharyya bound direct   Need pdf estimates, 2 
class only 

Divergence  high  2 class only 
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Mahalanobis distance    2 class only 

Matusita distance    2 class only 

Entropy measures not 
equivalent 

not limited class 
number 

Classifier error potential 
depends on 
the classifier 
used 

Depends on the 
characteristics of 
classifier used – not 
reliable 

k-Nearest Neighbours direct high pdf estimates not 
needed 

Parzen estimation not known high pdf estimates not 
needed 

Boundary methods yes medium pdf estimates not 
needed 

Class Discriminability 
Measures  low?   

Purity no high   

Neighbourhood 
separability  high    

Collective entropy no high   

Correlation based approach     

Fisher discriminant ratio  very low  2 class only 

Interclass distance 
measures (scatter matrices) 

not 
equivalent    

Volume of the overlap 
region  low   

Feature efficiency     

Minimum Spanning Tree     

Inter-intra cluster distance  high  2 class only 

Space covered by epsilon 
neighbourhoods     

Ensemble of estimators ? 
probably high 
as multiple 
methods used 

potentially more 
reliable than single 
method 

The complexity estimation methods are interesting in many ways, but in this work we 

are interested mainly in autoadaptation of processing system to the data. Complexity 

estimation is essential in the process, as it allows obtaining significant knowledge. The 

knowledge may be used to plan and adjust the processing system yet before any processing 

would start. This idea led to development of complexity driven Neural Networks based 

classifier. 
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Next chapter will present the Treelike-Divide To Simplify (T-DTS) approach, which 

represent the main work of this PhD thesis, as a system which aims on data decomposition 

and usage of multiple processing models. 







3 TREELIKE-DIVIDE TO SIMPLIFY
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Motivation:  This chapter has to present in detail the new Treelike-Divide To Simplify 

approach, define its structure, and describe the types of modules that are used in the 

structure. It will present also in detail procedures and algorithms that are used for the 

creation, execution and modification of modules. It will discuss also advantages and 

disadvantages of T-DTS approach and compare it with other approaches. 

In a very large number of cases, dealing with real world dilemmas and applications 

(system identification, industrial processes and manufacturing regulation and optimization, 

decision, pattern recognition, systems and plants safety, etc.), information is available as 

data stored in files (databases etc.). Especially in industrial areas, efficient processing of 

data is the chief condition to solve problems. Efficiency concerns not only performance in 

term of correct processing, but also temporal aspect of calculations. In the most of those 

cases, processing efficiency is closely related to several issues among which are:  

Data nature: the properties of data; includes complexity, quality and 

representativeness:

o Data complexity, related to nonlinearity, may affect the processing 

efficiency.

o Quality (noisy data, etc.): may influence processing success and expected 

results quality.

o Representativeness: concerning scarcity of pertinent data, could affect 

processing achievement.

Processing technique related issues: including model choice, processing 

complexity and intrinsic processing delay.  

The choice or availability of appropriated theoretical model describing the behaviour 

related to the processed data is of major importance. Processing technique and algorithm 

complexity (designing, precision, etc) shapes the processing effectiveness. Intrinsic 

processing delay or processing time is related to the processing technique’s 

implementation (software or hardware related issues). 

One of the key points on which one can act is the complexity reduction. It concerns not 

only the problem solution level but also appears at processing procedure level. The 

constraints relative to the nature of data to be processed, difficult dilemma related to the 

choice of appropriated processing techniques and allied parameters make complexity 
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reduction a key point on both data and processing levels. T-DTS (Treelike Divide To 

Simplify) paradigm which is a lead motive of this thesis is able to reduce complexity on 

both data and processing levels. The main idea of the T-DTS is based on the notion 

“Divide et impera” (Julius Caesar), transformed here to “Divide To Simplify” (DTS).  

The main idea is to split a complex problem into many easier subproblems. T-DTS 

have a modular structure that allows parallel processing and simplification of the problem. 

The purpose is based on the use of a small set of specialized mapping Neural Networks, 

called Neural Network Models (NNM), supervised by a Decomposition Unit (DU). 

Decomposition Unit could be a prototype based neural network, Markovian decision 

process, etc. The modules responsible for processing in the structure are Artificial Neural 

Networks (models). The T-DTS paradigm allows us to build a tree structure. At the node’s 

level, the input space is decomposed into a set of subspaces of smaller sizes. At the leaf’s 

level the aim is to learn the relations between inputs and outputs relatives to one of sub-

spaces, obtained from splitting.  

The organization of this chapter is as follows: next section is an introduction to 

modular algorithms that is followed by general description of T-DTS. Sections 3.1 to 3.6 

concentrate on specific aspects of T-DTS algorithm: 3.1 - building of decomposition 

structure, 3.2 - decomposition of learning database, 3.3 - training of Neural Network 

models, 3.4 - decomposition of generalization database, 3.5 - using trained NNModels on 

data, 3.6 - combining obtained results. Section 3.7 discuses properties of T-DTS, pointing 

out the advantages and the disadvantages of the paradigm.  

Introduction - Modular algorithms 

Apart from explicit solution of problem by specialized “one-piece” algorithm, there 

exist a number of solutions, which have modular structure. Such modular structure when 

modules are Neural Networks is usually called Multi Neural Network (MNN).

The approaches most close to presented in this work are known as Committee 

Machines, which are based on the principle “Divide et impera” (Julius Caesar). The main 

frame of the principle can be expressed as: 

Break up problem into two (or more) smaller subproblems of similar structure. 

Solve subproblems 

Combine results to produce solution to original problem. 
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The ways in which the original problem is split differ as well as the algorithms of 

solving subproblems and combining the sub-solutions. The splitting of the problem can be 

done in recursive way. Very known algorithm using the paradigm is Quicksort [HOAR 

62], which splits recursively data in order to sort them in defined order. In the ANN area 

the most known algorithm of similar structure is Mixture of Experts. 

An issue could be model complexity reduction by splitting of a complex problem into 

a set of simpler problems: multi-modelling where a set of simple models is used to sculpt a 

complex behaviour [GOON 96]. Another promising approach to reduce complexity takes 

advantage from hybridization [KROG 95]. Several ANN based approaches were suggested 

allowing complexity and computing time reduction. Among proposed approaches, one can 

note the Intelligent Hybrids Systems [KROG 95], Neural Network Ensemble concept 

[HANN 93], Models or experts mixture ([BRUS 95], [SUNG 95]), Dynamic Cell Structure 

architecture [LANG 98] and active learning approaches [FAHL 90]. 

There is a great variety of intelligent software agents and structures. T-DTS approach 

processing leaves (NN Models) can be classified as computational, software and task-

specific agents. The agents are created, modified and directed by Decomposition Units 

(DU), creating a tree structure. One can see a strong resemblance to Distributed Artificial 

Intelligence (DAI) [WOOL 02] systems. 

Systems with distributed artificial intelligence (DAI) use agents as units of processing. 

“Agent” is someone who acts on behalf of someone other. Information agents are loosely 

analogous to travel agents, insurance agents, etc. Here follows a list of characteristic agent 

qualities:

Autonomous: an agent is able to take initiative and exercise a non-trivial degree of 

control over its own actions:

Goal-oriented: an agent accepts high-level requests indicating what a human wants 

and is responsible for deciding how and where to satisfy the requests.

Collaborative: an agent does not blindly obey commands, but has the ability to 

modify requests, ask clarification questions, or even refuse to satisfy certain 

requests.
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Flexible: the agent’s actions are not “scripted”; it is able to dynamically choose 

which actions to invoke, and in what sequence, in response to the state of its 

external environment.

Self-starting: unlike standard programs which are directly invoked by the user, an 

agent can sense changes to its environment and decide when to act. 

Temporal continuity: an agent is a continuously running process, not a “one-shot”

computation that maps a single input to a single output, then terminates.

Character: an agent has a well-defined, believable “personality” and emotional 

state.

Communicative: the agent is able to engage in complex communication with other 

agents, including people, in order to obtain information or enlist their help in 

accomplishing its goals.

Adaptive: the agent automatically customizes itself to the preferences of its user 

based on previous experience. The agent also automatically adapts to changes in its 

environment.

Mobile: an agent is able to transport itself from one machine to another and across 

different system architectures and platforms.

Classification of agents by task: 

Interface Agents - “[C]omputer programs that employ artificial intelligence 

techniques in order to provide assistance to a user dealing with a particular 

application ...The metaphor is that of a personal assistant who is collaborating with 

the user in the same work environment.” [MAES 94] 

Information Agents – “An information agent is an agent that has access to at least 

one, and potentially many information sources, and is able to collate and 

manipulate information obtained from these sources to answer queries posed by 

users and other information agents... “ [WOOL 95]. 

Commerce Agents - a commerce agent is an agent that provides commercial 

services (e.g., selling, buying and prices’ advice) for a human user or for another 

agent.
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Entertainment Agents - “ ... artistically interesting, highly interactive, simulated 

worlds ... to give users the experience of living in (not merely watching) 

dramatically rich worlds that include moderately competent, emotional agents” 

[BATE 92]. 

Figure 3-1 Classification of intelligent artificial agents considering origin [FRAN 99]: 

Agents can communicate, cooperate and negotiate with other agents. The basic idea 

behind Multi Agent systems is to build many agents with small areas of specialized 

knowledge and link them together to create structure which is much more powerful than 

the single agent itself. This is similar to T-DTS paradigm, where the NNModels are 

specialized in small areas and conjunction of the areas covers whole problem space.

The theoretical basis for multiple agents is given in research field known as 

distributed artificial intelligence (DAI), which is a part of distributed problems solving. 

DAI is the study of distributed but centrally designed AI systems [AVOU 92] and involves 

design of multiple-agents distributed system. The aim is to solve a problem or accomplish 

a task. The DAI decomposes the task into subtasks, each of which is processed by an 

agent. It is assumed also that there exist a single control structure which can influence the 

preferences and control the agents. The DAI infrastructure can be constructed with an 

architecture known as blackboard [AVOU 92].  

DAI systems contrast with multiagent systems. In multiagent systems, there is no 

single control structure (designer) which controls all agents. Each of these agents can work 

on different goals, sometimes in parallel and sometimes in contradictory. Both cooperation 

and competition is possible among agents [DECK 99]. In multiagent systems, a complex 

Autonomous agents 

Biological agents Robotic agents Computational agents 

Software agents Artificial life agents 

Task-specific agents Entertainment agents Viruses 
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problem is decomposed into subproblems, each of which is assigned and agent that works 

independently of others and is supported by a knowledge base. The agents make acquiring 

and interpretation of information by using deductive and inductive methods as well as 

computations. The resulting data is sent to coordinator who chooses one or more solutions.  

General description of T-DTS 

This section will present the general overview of T-DTS algorithm. Particular 

procedures will be explained in detail in the consecutive sections of the chapter.  

T-DTS (Treelike Divide To Simplify) is a data driven Neural Networks based 

Multiple Processing (multiple model) structure. The idea is based on problem 

decomposition paradigm. It is able to reduce complexity on both data and processing chain 

levels [MADA 03B]. T-DTS constructs a treelike architecture, where nodes are 

decomposition/decision units (DUs) and leaves correspond to Neural Network Models 

(NNM), as presented in figure 3-2. The structure is used to decompose the learning 

database into sub-databases and can be used to assign the generalization database to 

models. NN Models process specific segments of feature space, and are trained using 

learning sub-databases. The NN Models are trained in supervised mode. 

Figure 3-2 T-DTS architecture 
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T-DTS algorithm consist of two main phases, first is connected to structure building 

and model training, while the second is equal to using the trained structure on 

generalization data. The detailed algorithm is as follows: 

T-DTS algorithm in detail: 

1. Learning phase

a) Building of decomposition structure using training data, 

b) decomposition of training dataset, 

c) training of NNModels using learning data sub-databases. 

2. Operation phase 

a) Vector to model assignment of generalization dataset, 

b) using corresponding NNModels on data sub-databases, 

c) combining the results obtained from NNModels. 

The T-DTS compounds of two main operation modes. The first phase is the learning 

phase, when T-DTS system decomposes the input data and provides processing 

substructures and tools for decomposed sets of data. The second phase is the operation 

phase (usage of the system to process unlearned data). There could be also a preprocessing 

phase at the beginning, which arranges (prepares) data to be processed.

Preprocessing phase could include several steps (conventional or neural stages). 

Preprocessing is expected to ease the processing of data. During preprocessing, several 

operations such as data normalizing, data scaling, data dimensionality reduction could be 

performed. Preprocessing could also include other kind of operations, as removing outliers 

or Principal Component Analysis [TIPP 97] to enhance input data quality, eliminate 

redundancy in data, etc. 

The learning phase is an important phase during which T-DTS performs key 

operations: building the decomposition tree, splitting the learning database into many sub-

databases, constructing (dynamically) a treelike structure of Decomposition Unit (DU) and 

building a set of submodels (NNM) at leaf level of the treelike structure (corresponding to 

each sub-database). 

The splitting (during the learning phase) could lead to two general cases. The first one 

corresponds to the situation where the splitting process doesn’t modify the feature space 



Chapter 3 – Treelike-Divide To Simplify 

Mariusz Rybnik -– Ph.D. Thesis - 88 – 

dimension. That means that the initial problem’s is decomposed into M sub-problems. 

Instead of building one complex model T-DTS builds M easier models describing 

behaviour in each related sub-problem. That correspond to the situation where the splitting 

process divides the initial feature space into M feature spaces with smaller dimensions 

(that doesn’t means that the obtained feature sub-spaces will be orthogonal). So, in this 

case, the activation of appropriated NNM will not depend on the complete input vector but 

on some partial input vector n
i , with nn

i .

Let i be an n -dimensional input pattern vector, where n
i . Let 

Ynn
kF :  be the k-th NNM’s transfer function. Yn

k iY  will be then the k-th

( Mk ,,1 ) model’s output vector of dimension ny. Let MBS ),,( , where 

1,0B , be the Decomposition Unit’s (DU) output, called also Scheduling Function, 

which depends on (i), but which may also depend on some parameters  and/or 

conditions . k represents some particular values of parameter  and k denotes some 

particular value of condition , respectively, obtained from learning phase process for the 

k-th sub-dataset.
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The scheduling vector ),,( kkiS  will activate (select) the k-th NNM, and so the 

processing of an unlearned input data conform to parameter k and condition k will be 

given by the output of the selected NNM: 

ikki FiYY )(   (2) 

The output is then gathered from NNModels by the same multiplexer structure, which 

joins together the output values form individual modules to achieve output for the whole 

database.

3.1 Building of decomposition structure

For each sub-database k, T-DTS constructs a neural based model describing the 

relations between inputs and outputs. The decomposition structure in T-DTS approach is a 

tree. The creation of decomposition tree is data-driven. It means that the decision to-split-
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or-not and how-to-split is made depending on the properties of the current data sub-

database (data sub-database which had arrived to some position at decomposition tree).  

For each database the decision to-split-or-not should be made. After positive to-split-

or-not decision a Decomposition Unit (DU) is created which divides the achieved data and 

distributes the resulting sub-databases creating children in the tree. If the decision is 

negative the decomposition of this data sub-database (and tree branch) is over and a 

NNModel should be built for the sub-database. The type of the tree child depends though 

on the result of decision made for the current sub-database (and in some cases also on other 

parameters, as described in section  3.1.1). The tree is built beginning from the root which 

achieves the complete learning database. The process results in a tree which has DUs at 

nodes and NNModels in tree leaves.

Figure  3-3 shows decomposition tree structure (in case of binary tree) and its recurrent 

construction in time, while question marks mean decomposition decisions.

Figure 3-3 T-DTS decomposition tree creation in time 
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Complexity indicators could be used in our approach in order to reach one of the 

following ways: 

Global decomposition control - estimator which evaluates the difficulty of 

classification of the whole dataset and chooses decomposition strategy and 

parameters before any decomposition has started,  

Local decomposition control - estimator which evaluates the difficulty of 

classification of the current sub-database during decomposition of dataset, in 

particular:

o Estimator which evaluates the difficulty of classification of the current sub-

database during decomposition of dataset, to produce decomposition 

decision (if to divide the current sub-database or not); 

o Estimator which can be used to determine type of used classifier or its 

properties and parameters. 

Mixed approach - use of many techniques mentioned above at once, for example: 

usage of Global decomposition control to determine the parameters of local 

decomposition control.  

The local and global decomposition control may seem similar, but they are in fact very 

different. In general case, estimation of whole dataset complexity is much more difficult 

and prone to faults (occurs only once, large size of data) than estimation of sub-database 

(occurs multiple times, data size is reduced; especially on lower levels of decomposition 

tree, data complexity is reduced). Estimation of current sub-database‘s complexity can be 

done by less advanced techniques as it is relatively small part of system comparing to the 

global decomposition control that affects directly all calculations. One should mention also 

that estimation of sub-database complexity occurs for each sub-database dividing decision 

thus computational complexity of the algorithm should rather be small. Thus it doesn’t 

require advanced complexity estimation methods. Considering these features, the second 

option – estimation during decomposition – has been chosen in our experiments in order to 

achieve auto-adaptation feature of system. 

The decomposition decision can be based on many techniques; we have used two 

approaches: local decomposition control based on standard deviation threshold and local

decomposition control based on complexity estimation.
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3.1.1 Decomposition Node 

The purpose of Decomposition Node is to divide the database into several sub-

databases. This task is referred in the literature as clustering. To accomplish this task a 

plenty of methods are known. We are using unsupervised competitive Neural Networks 

and in particular Kohonen Self-Organizing Maps. These methods are based on prototype,

that represent the centre of cluster (cluster = group of vectors). In out approach cluster is 

referred to as sub-database. 

3.1.2 Local decomposition control based on standard 

deviation estimation threshold 

Local decomposition control, in particular an approach called by us AVStd threshold, 

is based on the Standard Deviation measurements. It allows achieving regular 

decomposition in term of vectors distribution in problem space dissections. It is 

unsupervised in term that doesn’t need the targets (output values, i.e. classes), but only 

their features (coordinates in feature space). It could be applied to any input-output

mapping problem, and the decomposition amount can be controlled by operator by 

changing the AVStd threshold. 

The whole set of data is normalized at beginning to achieve standard deviation equal to 

one. (Additional advantage of normalization is that some distance-based algorithms treat 

variables in “democratic” way) Then the recurrent decomposition starts. The threshold for 

deciding about current set decomposition is based on standard deviation of set. Specifically 

it could be: 

maximum value of standard deviations (by dimension); 

average value of standard deviations (by dimension); 

minimum value of standard deviations (by dimension), etc.  

The standard deviations of sub-databases will decrease gradually as the sub-databases 

will be more and more divided. The standard deviation was equal to one in original (not-

divided) database, so the standard deviations of sub-databases will be monotonically 

dropping form 1 to 0 (0 means that there is only one vector in sub-database or all vectors in 

sub-database are equal). When the standard deviation of currently analyzed sub-database 

will be lower than globally defined threshold value, then the decomposition of the sub-
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database is abandoned. The decomposition at its extreme leads to as many sub-databases as 

the number of data vector in the original database is. This is of course not interesting for 

us, as the goal is somewhere between - we want to achieve sub-problems that are less 

difficult than original database, but still large enough to be efficiently processed by leaves - 

processing modules. 

The decomposition obtained in such way takes into account in non-explicit way the 

area occupied by sub-database and the dispersion of data in sub-database. With use of 

competitive NN as decomposition algorithms it allows to achieve regular decomposition, 

as could be seen in figure 3-4. 

Figure 3-4 Decomposition using AVStd threshold

The splitting process starts by evaluating the average of standard deviation of the 

learning database. If the obtained standard deviation is greater that the AvStd, then a 

distance based competitive NN (for example Kohonen SOM) divides the learning database 

into sub-databases. These operations are repeated until the standard deviation relative to 

each created sub-database doesn’t exceed the AvStd value.  

3.1.3 Local decomposition control based on classification 

Complexity Estimation technique (Fisher discriminant 

ratio)

Local decomposition control with classification complexity estimation could be 

applied only to classification problem, because classification complexity methods could be 

applied only in classification. The decomposition degree can be controlled by operator or  

also measured by classification complexity estimation and controlled automatically. The 
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automatic statement of decomposition parameters was however not included in our 

experiments. Local decomposition control is supervised in term that it needs both feature 

values and class labels to measure the classification complexity.  

T-DTS could be used as an auto-adapting system, i.e. system which structure adapts to 

difficulty of data [RYBN 03A]. Thus it needs to measure the amount of necessary 

decomposition. The goal here is to adjust the decomposition according to the complication 

of task. This is done by using classification complexity estimation methods. Then it can 

achieve desired quasi-constant performance (in term of misclassifications at cost of 

increased computational effort) with datasets of various difficulties, see section  4.5 for 

details.

T-DTS in classification-like application can incorporate classification complexity 

estimation indicators (described thoroughly in chapter 2). Then the complexity estimation 

take place to determine if actual set of data should be decomposed using DU, or rather a 

NNM can be created directly (assuming that NNM can process it efficiently). The bloc 

diagram of T-DTS with incorporated complexity estimation is depicted in figure Figure 

 3-5. 

Figure 3-5 Bloc diagram of T-DTS, when using complexity estimation
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3.2 Decomposition of learning database 

The learning database is split into M learning sub-databases by DUs during building of 

the decomposition tree. The learning database decomposition is should be equivalent to 

“following the decomposition tree” decomposition strategy (section 3.5.1). The resulting 

learning sub-databases could be used for NNM learning. Each subdatabase has then 

NNModel attached. The NNModels are trained using the corresponding learning sub-

database.

Figure 3-6 Decomposition of learning database using “following the decomposition 

tree” strategy 

3.3 Training of Neural Network Models 

Training of NNModels is performed using standard supervised training techniques, 

possibly most appropriate for the learning task required. In this work only Neural 

Networks are used, however there should be no difficulty to use other modelization 

techniques.

NNModel is provided with a data sub-database and target data. It is expected to model 

the input/output mapping underlying the subspace as reflected by the data sub-database 

provided. The trained model is used later in processing of the data patterns assigned to the 

NNModel by assignment rules, as specified in the previous section. 

NNModels used in this work are: LVQ, MLP, LN, Perceptrons, GRNN, and 

Probabilistic Networks. 

Learning  
database 

NNM

NNM

NNM

DU

DU

DU

DU

NNM

NNM
DU

NNM

NNM
DU

Learning  
sub-database

Learning  

bLearning  
sub-database

Learning  
sub-database

Learning  
sub-database

Learning  
sub-database

Learning  
sub-database



Chapter 3 – Treelike-Divide To Simplify 

Mariusz Rybnik -– Ph.D. Thesis - 95 – 

3.4 Decomposition of generalization database - rules 

of pattern assignment to models 

When the generalization database is to be processed each vector from the database 

should be assigned to a model. In other words there should be defined a function that for 

each generalization vector returns processing model that should process this vector. This is 

done by using assigniment rules. The rules of assignment are expected to determine 

which model will process the given input pattern  in generalization phase, given learning 

sub-databases. In particular the learning sub-databases can be represented by prototypes 

and characterized by other techniques and attributes. Each k-th sub-database has NNModel 

assigned, which was built to process the k-th sub-database.

Pattern assignment can be performed in two general manners: 

- following the decomposition tree (based on the decomposition tree): 

as decision tree and making decisions at each branch node, starting 

from the root 

- decomposition based on learning sub-databases: using the properties 

of learning sub-database to determine the similarity between pattern and 

learning sub-database. In particular the prototypes of learning sub-

databases are represented by learning sub-databases prototypes, and 

the similarity could be measured between the prototype and pattern 

(called here prototypes based assignment). Then some criterion is used 

to choose the most appropriate prototype for each vector or use more 

than one and combine somehow the results. 
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3.4.1 Following the decomposition tree 

Figure 3-7 Decomposition of learning database using “following the decomposition 

tree” strategy 

Following the decomposition tree seems to be in line with decomposition tree creation 

technique. Following the tree requires many decisions for each data vector.  

3.4.2 Prototypes based assignment 

Using of prototypes based assignment seems to be more autonomous in a way that it’s 

independent of decomposition tree creation technique. Prototypes based assignment

requires only one decision per data vector. Decision used in prototypes based assignment

could be based on similarity criterion. Similarity criterion could be commonly used 

distance measures (described in section 2.2). Next two sections present two Prototypes

based assignment rules. 

3.4.2.1 Prototypes similarity assignment rule 

In this case, splitting process dividing the initial complex problem into M reduced sub-

problems is based on similarity criterion. The activation of an appropriate NNM will be 

issued from similarity measure between an unlearned input vector i and the k-th cluster 

prototype representative (Wk). As previously, it is supposed that the initial feature space 

has been decomposed into M clusters by a competitive network decomposition tree.  

The similarity criterion could be based on prototypes of learning sub-databases. A

prototype is a vector representing the set of vectors, obtained in some way. We use usually 
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a prototype obtained from Competitive Network during building of decomposition tree. 

Then the similarity criterion is expressed as a distance between data vector and prototype.  

The most natural distance function is the one used during decomposition phase, but there is 

plenty of distance functions available, some of them are described in section 2.2. 

Figure 3-8 Decomposition of generalization database using “similarity matching” 

strategy

Properties of similarity assignment: 

universality – can use any measure of similarity 

deterministic or fuzzy assignment 
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The Scheduling vector (DU output) will be conform to relation (1), with sk( ,Wk)

given by (5). 
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feature vector is directed not only to one NNModel like in maximum similarity 

assignment, but to many of them at certain degree.  

j
ji

ki
kik W

W
Ws ,

The output for i-th feature vector is then weighted sum of outputs of all NNModels.  

j
jijii NNMsNNMoo ),(),()(

In this way a feature vector is processed by all NNModels, but the influence of 

NNModel output on the output is proportional to the similarity between feature vector and 

learning sub-database corresponding to the NNModel. 

That technique could be improved by considering only output of specified number of 

closest NNModels (when only one NNModel is considered this approach is equal to 

maximum similarity assignment). The number of closest NNModels could be determined 

by…

 That significantly reduces the number of calculations and allows the NNModels to be 

local.

3.4.2.2 Probabilistic assignment rule  

In this case, the activation of an appropriate NNM is given in term of probability of 

activation the k-th NMM among M neural network based models. If the k-th NNM has 

been obtained with respect to the k-th learning sub-database, then the probability of 

activation of the corresponding NNM, Pk( (t)), could be expressed by relation (3), where 

k( ) is some Gaussian approximation of k-th learning sub-database density. 

M

k k

k
kP

1

)(   with 
2)(
k

k
T

k
k Exp    (3) 

where k represents the average prototype’s center and k denoting the learned 

prototypes standard deviation. The approach has following properties: 

Pk( (t)) and k( ) are reverse proportional to the distance between the input vector 

and sub-database prototype; 
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Pk( (t)) and k( ) are reverse proportional to the learned prototypes standard 

deviation k;

The exponential function strongly awards the prototypes that are close to and

punishes the prototypes that are far from ;

Sum of probabilities is equal to 1. 

Probabilistic assignment 

The Scheduling vector (DU output) could be determined randomly with probabilities 

of assignment to NN models defined above. 

Maximum probability assignment 

The Scheduling vector could be expressed according to relation (1), where sk( , k) is 

given by (4) with .,,1 Ml .

Else
PMaxPif

Ps lk
kik 0

1
,  (4) 

Then the assignment is deterministic and the model associated with sub-database most 

close to input pattern vector wins. The assignment could be unfair when two or more 

models have similar values of probabilities for given input pattern. 

3.5 Using trained NNModels on data 

NNModels used in our approach can be of any origin. In fact they could be also not 

based on Artificial Neural Networks at all. The structure used depend on the type of 

learning task, we use: 

for classification – MLP, LVQ, Probabilistic Networks, RBF, Linear 

Networks;

for regression – MLP, RBF; 

for model identification – MLP. 

NNModels are created and trained (section 3.3) in the learning phase of T-DTS 

algorithm, using learning sub-databases assigned by decomposition structure (section 3.2). 

In the generalization phase, they are provided with generalization vectors assigned to them 
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by pattern assignment rules (section 3.4). The vectors form generalization sub-databases 

that are processed by NNModels. Each NNModel produce some set of approximated 

output vectors. 

3.6 Combining the results 

The sets of output vectors are combined to produce the output set for the whole 

generalization database. Figure 3-11 represents the dataflow of output values, when DU 

units compose a binary tree.  

Figure 3-9 Dataflow of T-DTS: gathering of the results from individual NNMs 

On the figure 3-11 one can notice a tree structure of DU nodes and NNM leaves. A set 

of neural network based models (trained from sub-databases) is available at leaf level and 

model the system behaviour region-by-region in the problem’s feature space. Each 

incoming input vector is assigned to specific NNM leaf by pattern assignment rules. Then 

the processed data is gathered together from NNModels by the DUs (in reverse direction).

3.7 Conclusion - Discussion of T-DTS properties

T-DTS (Treelike Divide To Simplify) is a multiple model (in particular Multiple 

Neural Networks) processing structure. It is able to reduce complexity on both data and 

processing chain levels [MADA 03B]. T-DTS constructs a treelike evolutionary 

architecture of models, where nodes (DU) are decision units and leaves correspond to 

Neural Network - based Models (NNM). That results in splitting the learning database into 

set of sub-databases. For each sub-database a separate model is built. 
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Advantages:

allows simplification of the problem – using many simple local models; 

allows parallel processing – after decomposition, the sub-databases can be 

processed independently and joined together after processing; 

task decomposition is useful in cases when information about system is distributed 

locally and the models used are limited in strength in term of computational 

difficulty or processing (modelization) power 

modular structure gives universality: it allows using of specialized processing 

structures as well as replacing Decomposition Nodes with another clustering 

techniques,

classification complexity estimation and other statistical techniques may influence 

on the parameters to automate the processing i.e. decrease the need for user 

intervention 

Disadvantages:

if the problem doesn’t require simplification (problem is solved efficiently with 

single model) then Task Decomposition may decrease the time performance, as 

learning or executing of some problems divided into subproblems is slower than 

learning or executing of not split problem; especially if using sequential processing 

(in opposition to parallel processing), 

some problems may be naturally suited to solve by one-piece model, 

too much decomposition leads to very small learning sub-databases, that may lose 

generalization properties, in extreme case leading to problem solution based only 

on distance to learning examples, so equal to nearest-neighbor classification 

method. 
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Motivation:  

This chapter has to answer in part to the question if D-TDS approach is universal or 

not? The answer is yet not simple. T-DTS was validated in number of applications, 

including classification, system identification and pattern recognition. It is impossible 

however to imagine and test all the cases in which such approach could be used. This 

chapter will however try to present the applications of T-DTS to the most popular classes 

of computing problems.  

Section 4.1 presents application of T-DTS to signal identification academic problem. 

Section 4.2 presents application of T-DTS to real industrial signal identification problem. 

Section 4.3 show application of T-DTS to two spiral problem - academic classification 

problem similar to generalized Exclusive Or (XOR). Section 4.4 presents application of T-

DTS with participation of original feature extraction algorithm to Pattern Recognition 

problem. Section 4.5 presents usage of complexity estimation techniques in order to 

automatically classify data of various difficulties.  

4.1 Model identification – non linear academic 

problem

To evaluate T-DTS in system identification task, the T-DTS paradigm has been 

applied to identify a dynamic non linear system [MADA 02]. This system is described by 

the following equations: 

nnnnnn iiiOOO 2.018.06.03.018.0 23
21

where o  represent the system output and i  the system input. 

In the learning phase, the signal til  is used as system input, in the generalization 

phase signal tig  is used as system input. 

30
2sin3.0

300
2sin7.0)( tttil

300
2sin7.0)( tti g

As decomposition engine (DU) a competitive network of 2 neurons is used. As Neural 

Network Models, multilayer perceptrons were used (1 hidden layer with 4 neurons) with 
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Levenberg-Marquadt learning rule (variety of back-propagation learning). MLP input 

patterns are constituted as an Auto Regressive Moving Average ARMAX(6,6) vector.

6

1

5

0 j
jnj

j
jnjn oaibo

The T-DTS algorithm builds a tree structure as represented in figure 4-1. This tree is 

constituted by 3 DU at the node level and 4 Neural Network Models at the leaf level. The 

initial problem space is splitted in two sub-databases 1a and 1b. The algorithm decides to 

end decomposition for sub-database 1a and decides to decompose the second subspace, 1b, 

in to two sub-spaces 2a and 2b. Then it decide to end decomposition for the subspace 2a

(NNM 2) and split the subspace 2b into sub-databases 3a and 3b. The sub-databases 3a and 

3b are not decomposed any further. That ends decomposition tree building phase. Then the 

models 1, 2, 3 and 4 are created and trained using the learning sub-databases that have 

arrived to their location in the tree. That ends T-DTS learning phase. 

Figure 4-1 Decomposition tree for the model identification experiment 

Figure  4-2 represents the patterns that have been used to train the 4 NNMs. Figure 4-3 

represent the mean square error evolution in the training step for the 4 NNMs. Figure 4-4 

represents the T-DTS model output in the learning and generalization steps. 
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Figure 4-2 Aggregations of patterns created by decomposition 
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Figure 4-3 Evolution of learning error for models (LM learning) 
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Figure 4-4 Learning signals (left) and generalization signals (right) 

The construction of the T-DTS structure is user independent. The decision of splitting 

a subspace is learned from data by an unsupervised neural network, competitive network in 

this case. The splitting process produces learning databases which contain similar patterns. 

T-DTS does problem simplification thus NNMs training is fast, few epochs or recursion 

are needed to reach a 10-6 mean square error. The difference between the system output 

and the T-DTS estimated output, in the learning and generalization step, is very low so a 

faithful model was built, proving the efficiency of T-DTS in system identification task. 

4.2 Model identification – drilling rubber problem 

This is presented in [MADA 03A]. This section presents application of T-DTS 

paradigm to real industrial problem. The problem is a non-linear process identification, in 

industrial process control problem. The process is a drilling rubber process used in plastic 

manufacturing industry. Several non-linear parameters influence the manufacturing 

process. To perform an efficient control of the manufacturing quality (process quality), one 

should identify the global process.
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Figure 4-5 Implemented industrial processing loop using T-DTS identifier. 

Similar approach, as described in the previous section  4.1, has been implemented. 

Input patterns have M-ARMAX shape (Multi inputs ARMAX model). Figure  4-6 shows 

some of process signals shapes. Figures present the main parameters that are involved in 

the drilling rubber process. Other parameters, that are less significant, have been omitted. 

Figure 4-6 Example process input order, output (metric properties of produced 

profiles) and some of process parameters (confidential) shapes. 

Kohonen SOM based DecompositionUnit (DU) uses a 4x3 grid leading to 12 feature 

sub-spaces. Consequently, 12 Neural Network based Models (NNM) have been generated 

and trained (from learning database). Figure 4-7 shows examples of database splitting after 

T-DTS learning phase, giving four among twelve obtained sub-databases. It shows also, 

the learning phase validation presenting the learned process output identification. Figure 4-

8 shows system output in the generalization phase. One can conclude that estimated output 

is in accord with the measured one. 
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Figure 4-7 Examples of database splitting after T-DTS learning phase: four 

amongst twelve obtained sub-databases (left). Learned process output identification 

(right).

Figure 4-8 Identification of an unlearned sequence of drilling rubber plant’s 

output in the generalization phase. 

T-DTS were used here to identify complicated industrial process with many input 

features. The original data was splitted into several sub-databases, allowing faster 

processing and simplification of modeling task. The models then were built for each sub-

database resulting in good estimation properties of resulting system. 

4.3 Classification - two spirals problem 

Two-spiral problem [CHEB 02] is an academic classification problem, which is often 

used as a benchmark. This problem, used for performances comparison, especially in 

classification problems, is similar to a generalized Exclusive Or. The data is composed of 

two classes, where decision boundary is a spiral; as presented in figure 4-9.
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Figure 4-9 Example of Two Spiral problem’s database with 1000 patterns to be 

classified

Construction of neural tree to treat the problem consists of decomposing the input 

space into a set of subspaces (using Decomposition Units), then performing classification 

in each subspace by a specialized neural unit (NNM) at leaf’s level. The database used for 

evaluation and validation includes 1000 patterns. The learning was performed on half of 

the database, while the other half was used for generalization.

T-DTS use here local decomposition evaluation based on decomposition parameter 

AVStd (as described in 3.2.3).The T-DTS structure on which the validation has been 

performed includes two kinds of Decomposition Unit’s (DU): Competitive Network (CN) 

and Self Organization Map (SOM) [KOHO 82]. Different configurations, concerning 

number of neurones (for CN) and network’s topology (different topologies for SOM as: 

2x2, 3x2, 3x3, 4x4 or 5x5), have been implemented. In the case where Kohonen maps have 

a grid 2x1 topology, T-DTS builds a binary decision tree.The implemented splitting 

criterion corresponds to the similarity matching based on AVStd, which defines the 

standard deviation maximum value (in each dimension) in a given sub-database. 

Concerning Neural Networks based Models (processing units) several possibilities have 

been implemented: LVQ (Learning Vector Quantization), LN (Linear Neuron), RBF 

(Radial Basis Functions) and MLP (Multi-Layers Perceptron). 
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Figure 4-10 Classification Rate as a function of number of neurons (for 

competitive DU) and as a function of topology (for Kohonen DU).  
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Figure 4-11 Learning and generalization evolution rates vs. AVStd value, when 

LVQ models are used 

Figure 4-10 gives a comparative study, expressed as “Correct Classification Rate” as a 

function of number of neurons (for competitive DU) and as a function of considered 

topology (for Kohonen DU). Figure 4-11 gives learning and generalization performances, 

expressed in term of Classification Rates, according to the maximum standard deviation 

threshold value’s evolution. Tables 4-1 compares the processing time for the case of 

competitive Decomposition based T-DTS and for different NNM structures. For the 

presented case, AVStd=0.12 leads to 107 sub-databases. 

By dividing the initial database into several sub-databases and by dedicated processing 

of each of those data sub-databases, the proposed ANN based data driven Multiple Model 

generator (T-DTS) reduces the initial problem’s complexity at several levels, especially at 

processing and modeling ones. De facto, dividing the initial problem into several sub-

problems with reduced sizes, on the one hand, simplifies both the learning complexity and 

duration (learning of relations between inputs and outputs), on the other hand reduces the 

processing procedure’s or unit’s complexity. Finally, it decreases globally implementation 

and parameters optimization constraints.  

Table 4-1. Processing time for both DU construction and NNM learning and 

generalization in the case of a Competitive-like NN based splitting (AVStd=0.12 

leading to 107 sub-databases). 
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Splitting (107 nodes) NNM 

Type

Learning

Database

Testing

Database

LVQ 261.51 s 6.33 s 

LN 4.77 s 4.84 s 

RBF 37.67 s 5.84 s 
159.88 s 

MLP 110.91 s 8.46 s 

Results obtained in this benchmark show efficiency of such multiple model structure to 

enhance processing capability by reducing complexity on both processing and data levels. 

In the next section the T-DTS driven by complexity estimation technique will be 

presented, as well as its advantages over the static decomposition parameter. 

4.4 Pattern recognition 

In order to use T-DTS in pattern recognition problem [RYBN 03B], a data extraction 

scheme can be used. A feature extraction method, called View-Based approach, is used for 

feature extracting and coding. Encoded data are fed to T-DTS. That entirely composes an 

original pattern recognition system method. T-DTS, embedding problem complexity 

estimation, decomposes a complex problem into several less complex ones, and builds a 

set of models for resulting sub-problems. The method has been applied with success to 

recognize separated printed letters of various shapes. 

View-Based Approach 

View-Based approach [SAEE 02], [SAEE 03] is based on fact, that for correct 

character or image recognition one usually need only information about its silhouette or 

contour.

This method consists in examining four “views” of a single character. On that ground 

characteristic vector is allocated, which describes that character. The view is a set of pixels 

belonging to the contour of a character and having extreme values of one of its coordinates. 

One can distinguish four views – top, down, left and right (Fig. 4.12). For example, top 

view of a letter is a set of points having maximal y coordinate for a given x coordinate.
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 (a) (b) 

 ©  (d)  (e)  (f) 

Figure 4-12 Concept of views. (a) Example letters, (b) letters’ 

contour, (c) top view, (d) down view, (e) left view, (f) right view 

Next, characteristic points are marked out on the surface of each view, which describes 

shape of that view. The method of choosing these points and number of them may vary. In 

experiments seven uniformly distributed points were selected for every view (Fig. 4.13). 

Figure 4-13 Choosing characteristic points for four views 

The next step is calculation of y coordinates for points on top (yT1, ..., yT7) and down 

(yD1, ..., yD7) views, and x coordinates for points on left (xL1, ..., xL7) and right (xR1, ..., xR7)

views (Figure 4-14). These values are normalized, so they are in range <0, 1>. 
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Figure 4-14 Receiving coordinates of characteristic points 

Then from these 28 obtained values the characteristic vector is created: 

< yT1, ..., yT7, yD1, ..., yD7, xL1, ..., xL7, xR1, ..., xR7>,

which describes given letter, and is a base for further analysis and classification. 

To validate the approach, a database of letters were used. It consisted of 26 capital 

letters of Latin alphabet written in 66 different styles (fonts). That gives a total of 1716 

cases from 26 classes. The data is stored as images without noise. The data varies 

significantly within-class by shape, slope, size (thus image resolution), some fonts are bold 

and others have sheriff lines. That increases the difficulty of classification task. A sample 

of the database is shown in the figure 4-15. 

Figure 4-15 Database sample 

The images have been encoded using View-Based approach. The views of each letter 

have been sampled and normalized. After that process, letter image is represented as vector 

of 28 features. This is the data format fetched to T-DTS. 

T-DTS has been learnt on randomly picked 50% of the total data, called Learning Set. 

For decomposition decision, the modified Fisher discriminant ratio was used. As 

decomposition algorithm, the Competitive Network composed of two neurons was used, 

which means splitting a set in two sub-databases each time, what leads to binary tree 

structure. One of T-DTS decomposition trees obtained during the experiments is depicted 

in the figure 4-16. 
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After decomposition, a set of models were created, using Probabilistic Neural 

Networks [WASS 93] as classifiers. For each Processing Leaf, a Probabilistic Neural 

Network is built, which allowed us to achieve approximately 90% of correct classification 

total and 80% of correct classification on the unseen data.

Figure 4-16 T-DTS decomposition tree obtained during experiments 

The misclassifications have arisen probably from class ambiguity – similarity of 

samples from different classes. This error is unavoidable on the data processing level and 

is also referred as Bayes error (see chapter 2.1 for more information). On the feature 

extraction level it is sometimes possible to avoid that effect by unambiguous feature 

encoding. Another argument for that assumption is occurrence of misclassifications 

between distant (by intuition) classes. This is probably caused by great variability of the 

letters in general. It implies that Bayes error is nonzero [HO 00], [PIER 98], [SING 03]. 

Considering this, a way to increase the performance of system is to decrease class 

ambiguity by using preprocessing techniques like thinning and slope correction.

The T-DTS with View-based data extraction is a hybrid pattern recognition technique. 

The performance of the hybrid intelligent system has been validated on the varied non-

homogenous database of patterns, what resulted in successfully recognized 80% of 

separated printed capital letters of various shapes.
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Further work in the area will be concentrated on preprocessing of the images. 

Especially thinning and slope correction [COVI 96] should be useful in decreasing within-

class variability, which should result in better classification performance. Concerning 

classification performance, there are two directions: one is enhancement of View-Based 

feature extraction algorithm, second T-DTS capabilities improvement. 

4.5 Classification with complexity estimation 

In the example that follows T-DTS is studied as an auto-adapting system, i.e. system 

which structure adapts to difficulty of data [RYBN 03A]. The goal here is to adjust the 

decomposition according to the complication of task. This is done by using classification 

complexity estimation methods.  

Experimental T-DTS Evaluation through an Academic Classification Benchmark 

The goal is to examine the adapting of the system to data of various difficulties. Thus a 

sequence of simple datasets of intuitively increasing complexity has been created. They are 

presented in the figure 4-17. The sequence contains both linearly separable datasets and 

non-linear separable datasets (spirals of different shape). For linearly separable datasets the 

complexity increases with fragmentation of clusters. For non-linearly separable data the 

complexity increases as the clusters are twisted more and more around the center. The idea 

here was to make the data obviously different in complexity and observe the behavior of 

the T-DTS (driven by complexity estimator). The behavior could be verified by comparing 

with intuitive complexities sequence. 
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Figure 4-17 Sequence of datasets of increasing complexity 

T-DTS were used in two cases to validate the assumptions about the increasing 

difficulty of the benchmark problems. In first case, the decomposition tree is composed of 

quasi-static structure - T-DTS generates here approximately the same tree structure and 

number of processing leaves. AVStd measure was used here as decomposition criterion to 

achieve similar degree of decomposition. In the second case, a classification complexity 

estimator was used in order to accommodate the decomposition structure to case difficulty. 

On the figure 4-18 there are results for static decomposition structure. classification 

rates drop significantly for more complicated datasets (going to right). Processing times are 

approximately the same for each dataset. This is due to fact that the decomposition tree 

structures are practically identical and they are too simple for more difficult datasets. 
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Figure 4-18 Statistics of computational effort for T-DTS without adaptation 

When T-DTS adapts to classification complexity, Fisher discriminant ratio were used 

as decomposition threshold. Fisher decomposition ratio measures the separability of 

different class clusters. The results are depicted on figure 4-19. 
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Figure 4-19 Statistics of computational effort for T-DTS adapting to problem 

difficulty

One can notice in figure 4-19, that classification rates for learning phase are alike, and 

for generalization rates there is only small dropping tendency. Number of prototypes 

(related to processing time) significantly increases for more complex datasets. This fact is 

in contrast with the experiments with static structure presented on figure 4-18. Thus T-DTS 
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structure with complexity estimation adapts to difficulty of dataset, creating tree structure 

of size proportional to data complication. 

4.6 Computer implementation of T-DTS 

T-DTS is currently implemented in Matlab 6.1 language, using GUIDE user interface. 

Figure 4.20 gives overall view of main application window.

Figure 4-20 T-DTS implementation  

One can see groups of controls related to input parameters, decomposition criterion, 

classification complexity, experiment run and output presentation. 

4.6.1 Structure of functions call of main frame 

Figure  4-21 presents dynamic structure of most important T-DTS functions. 
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Figure 4-21 Static functions structure 

The functions will be consequently described. 

4.6.1.1 Graphical user Interface (GUI) function (aaa) 

This function creates a window (presented in figure 4-20), which presents graphically 

most used parameters and allows fast modifications and experiment conduction with 

presentation of results. The code here was implemented with support of GUIDE (Graphica 

User Interface Development Environment) incorporated in Matlab. Button callback 

functions in the file call functions related to T-DTS experiment execution as well as 

presentations of data and results. 

4.6.1.2 Invocation

The function is a wrapper for any T-DTS experiment, loads the data, chooses the 

learning set (if necessary), calls T-DTS structure building and learning, finally obtains the 

results for learning and generalization set. 

GUI window (aaa) 

Invocation 

Choose Learning Set DTS Execute Learning Set Execute Testing Set 

Main 

Preprocess
Count

NMMDataMining 
ForNNM

CutInto Subsets Divide

FlatCutIntoSubsets Find Prototypes 
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4.6.1.3 ChooseLearningSet

This function is responsible for random dividing the dataset fed to system into learning 

set and generalization set. It could be based on the learning database percentage ratio 

parameter called Percentage.

4.6.1.4 DTS

The function invokes all task connected with. It calls Main which creates and performs 

learning of T-DTS structure. 

4.6.1.5 ExecuteLearningSet

That function uses T-DTS processing structure created by DTS function to process 

learning data. 

4.6.1.6 ExecuteTestingSet

That function uses T-DTS processing structure created by DTS function to process 

generalization data. 

4.6.1.7 Main

It creates and performs learning of T-DTS structure. That includes preprocessing 

(preprocess count), recurrent dividing of the sub-databases by DU (divide), final dividing 

of the learning set according to dividing prototypes structure created by divide, choosing of 

the NNM (DataminingForNNM) and creation of NNModels for each prototype (sub-

database) of the learning set. 

4.6.1.8 PreprocessCount 

This function preprocesses the incoming data, what can include normalization and 

reduction of input’s dimensionality by Principal Component Analysis (PCA). 

4.6.1.9 Divide

The function performs dividing of given dataset into sub-databases. It is called 

recurrently. It works by finding prototypes by using Decomposition Nodes, which perform 

unsupervised learning and dividing the set into sub-databases. 
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4.6.1.10 CutIntoSubsets

The function finally divides the learning set according to dividing prototypes structure 

created by divide. 

4.6.1.11 DataMiningForNNM

The function chooses the structure and parameters of NNModel to process the specific 

data sub-database. 

4.6.1.12 NNM

The function performs learning of NN model for the sub-database data. 

4.6.1.13 FindPrototype

This function uses Decomposition Node with unsupervised competitive neural network 

structures to find prototypes for given sub-database of data. 

4.6.1.14 FlatCutIntoSubsets

This function uses prototypes to divide given set of data into sub-databases. 

4.6.2 User interface 

As marked in the figure there are five groups of controls. There will be subsequently 

explicated.

4.6.2.1 T-DTS input parameters 

These concern T-DTS algorithm parameters as well as database preprocessing.

MNN choosing combo box allows selection of DU decomposition algorithm. One can 

choose either Competitive Network (CN) or Kohonen Self Organizing Map (SOM). Some 

detailed parameters (like structure of the Map or number of neurons for competitive 

network are available only on programming level. 

Using NNM choosing combo box one can specify the type of NN processing Model at 

leaf level of the decomposition tree. The possible choices are: Learning Vector 

Quantization (LVQ), Linear Neuron (LN), Radial Basis Function (RBF), Multi-Layer 

Perceptron with Levenberg-Marquadt learning (MLP_LM), Probabilistic Neural Network 

(PNN), Generalized Regression Neural Network (GRNN). 

By using data combo box, one can choose one of databases to process or choose empty 

one and load it manually from Matlab command line (using symbol ‘*’). 
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‘Normalize’ combo box allows choosing if and what type of normalization the system 

will apply to database. Available types are: ‘norm’ – Normalization to achieve Gaussian 

distribution in each data dimension separately; ‘ones’ – normalization to compartment <-

1,1>; and finally ‘none’ when no data normalization is required. 

By checking the box marked as ‘Princ. Comp. A’ one can order Principal Component 

Analysis on the data before feeding it to further processing. The process is expected to 

eliminate redundancy in data and reduce the number of dimensions. 

Slider and edit box marked ‘Percent. to learn’ allows to choose the amount of database 

available to learning algorithm. 

Finally ‘Print params’ button displays all learning parameters in the Matlab command 

window.

4.6.2.2 Decomposition criterion controls 

The controls in the box allow choosing and setting value for the decomposition 

criterion. ‘AVStd’ parameter is a decomposition parameter described in chapter 3.2.3. 

‘Fisher ratio’ is a threshold based on Fisher discriminant ratio (classification complexity 

estimator described widely in chapter 2.4.4.2). Purity parameter is a threshold based on 

purity classification complexity estimator described in 2.4.3.2. 

4.6.2.3 Output presentation methods 

These controls are designed to present the results obtained by T-DTS.  

‘Plot sub-databases’ shows first two dimensions of data and its decomposition by 

color marking the data sub-databases. The decomposition is marked separately for the 

learning and generalization data. The button ‘v.2’ on the right draws the same without 

color using different symbols. 

Button ‘Print NNM properties’ outputs in Matlab command window structure and 

parameters of NNModels created during learning. 

‘Plot tree’ shows first two dimensions of data, draws the data and shows the process of 

decomposition tree creation in time. The button ‘v.2’ on the right draws the same with 

alternate colors. 

‘Plot A and C’ is used only in signal processing task and shows the original desired 

signal in comparison with signal outputted by the system. 
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‘Print result’ and ‘All’ allows outputting consequently last and all experiment results 

obtained by T-DTS. 

‘Post regression’ button shows regression analysis of output signal and desired signal 

dependence, to verify the performance. 

4.6.2.4 Classification Complexity computation for a set of databases 

This buttons allow computation of classification complexity for a set of databases. 

‘Complexities –means’ shows computed complexities for a set of databases. 

‘Count complexities dbc’ performs the set of T-DTS experiments on structure 

containing a set of databases in order to compare the results of multiple databases for the 

same T-DTS configuration (contained in cell array variable dbc).

4.6.2.5 Launching buttons 

Launching buttons allow initialization (‘Init’), saving the T-DTS configuration data 

(‘Save’) and starting of experiment (‘Go’). To perform repeated experiments one can check 

the box marked as ‘Multiple Times’. Unless the mentioned box is checked system will 

make only a single experiment. 

4.6.3 T-DTS Controlling Parameters structure 

T-DTS parameters are stored in PARAMS structure available at command line level 

and stored in file paramsfileat. Most important parameters are available visually from GUI 

level as controls (as described in 3.5.2.1). Here follow all the parameters with explanation: 

PARAMS =  

Compm: [1x1 struct] 
Method: ‘AVStd’ 
Purity: 0.2000 
Fisher: 10 
AVStd: 0.2000 
Preprocess: [1x1 struct] 
Normalization: ‘ones’ 
PrinComp: [1x1 struct] 
Percentage: 0.3000 
nPar: [1x1 struct] 
NNM: ‘LVQ’ 
MNN: ‘CN’ 
Dataname: ‘spirals’ 
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GoAll: 0 
Clustering: ‘independent’ 
IntOut: 1 
ConsPro: 0 
AVStd: 0.4000 
Percentage: 0.5000 
Showdisplay: 0 
MaxClusters: 1000 
DistanceFunction: ‘dist’ 
Display: [1x1 struct] 
PlotControlPar: 1 
DecU: ‘normal’
Compm - holds decomposition complexity method currently selected and thresholds 

for all complexity methods available. 

Preprocess - contains preprocessing related parameters: selected normalization 

method, Principal Component Analysis related parameters, default percentage of database 

taken for learning, normalization shift and magnifier are stored in nPar structure. 

NNM - type of NN Method selected to process (model) all leaf level sub-databases. 

MNN - specifies type of Decomposition Unit selected to perform decomposition of 

dataset 

Dataname – contains name of frequently used at file which will be load to do 

experiment. If that field contains ‘*’ no file will be load and the data will be taken from 

command line workspace instead. 

GoAll – the boolean value will specify if the experiments will be performed by all NN 

Models available to compare the efficiency of modeling. 

Clustering – defines clustering strategy – independent means that final clustering is 

done with all prototypes taken together independently of tree structure after dividing, while 

‘treelike’ means that final clustering is done simultaneously with dividing. 

IntOut – parameter specifying the output format of processing task, for regression NN 

Models it’s sometimes necessary to convert floating point numbers to integer ones. 

ConsPro – the parameter specifies if the prototypes are to be taken from previous 

experiments. That allows to speed up processing by skipping the decomposition phase and 

doing only modeling phase. 

AVStd, Percentage – ancient and obsolete parameters, moved to branches of the 

structure.
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Showdisplay – the parameter allows skipping some displaying of computation in case 

one doesn’t want to watch them, it speeds the processing. 

MaxClusters – specifies maximum number of clusters allowed to system, it’s a safety 

valve if clustering algorithm went out of control. 

DistanceFunction – specifies distance function used during clustering phase by DUs, 

possible values are: ‘dist’ – Euclidean distance, ‘’streetdist’ – Manhattan (street) distance. 

Another distance functions can be added by editing the code in CutIntoSub-databases. 

Display – parameters related with display, PlotControlPar – parameter used in 

PlotControl function to decide if the sub-databases point representation should be colored 

or should differ with shape. 

DecU – parameter allowing restructuring the decomposition tree, possible values: 

‘Normal’, or ‘restructure’.

4.7 Conclusions 

This chapter has presented T-DTS in different classes of applications: system 

identification, classification and Pattern Recognition. Generally speaking, solutions based 

on modular structure are universal, as it is easy to replace modules and thus modify part of 

system. This is also the case for T-DTS, where not only processing modules can be 

replaced this way, as well as data decomposition (clustering) modules and knowledge 

acquisition modules (complexity estimators and other techniques that are used to optimize 

the structure and parameters). This proves universality of T-DTS approach up to some 

point.

Next chapter is a overall conclusion of all work presented in the thesis. 





5 CONCLUSIONS



Main idea of T-DTS is to take advantage from distributed processing and task 

simplification. Another goal is to decrease the amount of user intervention in specifying 

processing parameters, by using statistical techniques of Classification Estimation. When 

dealing with classification, identification or regression task T-DTS decomposes the 

problem using Decomposition Units and thus creates decomposition tree. The 

decomposition tree is used to decompose data into sub-databases. Neural Network Models 

are then used to process resulting data sub-databases. The processing phase can be done 

using distributed parallel processing. 

The efficiency of T-DTS design was shown in academic classification problem of 

Two-Spirals classification. Next classification complexity method was incorporated into T-

DTS to aid the decomposition, what allows the system to be user-independent and adapt to 

classification task difficulty automatically. System identification task was studied with two 

examples. The first was academic system identification problem, the second real complex 

industrial problem. In both cases T-DTS decomposed the data to reduce processing 

complexity and build a set of models to identify the partial signals of data sub-databases. In 

both cases T-DTS was proven to build faithful models. Finally T-DTS was linked together 

with feature extraction technique (View-Based Approach) to build a pattern classification 

system. That combination allowed achieving 80% recognition rate of non-homogenous and 

rather difficult letters set.  

T-DTS were tested in classification, Pattern Recognition and system identification 

area. Solutions based on modular structure are generally universal, as it is easy to replace 

modules and thus modify some part of system. T-DTS processing modules can be replaced 

this way, as well as data decomposition modules and knowledge acquisition modules. This 

proves universality of T-DTS approach to some point. 

One may criticize the T-DTS approach as unsuitable for the tasks that are solved well 

with classical methods (of any kind). There is however always a possibility of 

incorporating such classical method as a processing tool in T-DTS and allow task 

decomposition that in such case may prove itself useful by decreasing the processing time 

with parallel processing. It is also frequent and almost natural that a solution individually 

designed for a specific problem will outperform solution that is universal and can serve 

many purposes (not just this particular problem). The power of universal solution lies 

though in widespread area of applications, so one doesn’t need to design a new tool that is 



individually suited for the problem but modify and use a universal tool that is already 

created and ready to go.

T-DTS is implemented in Matlab 6.1 language with addition use of GUIDE 

environment to create user interface. Matlab environment gives easy access to library of 

useful functions. GUIDE environment although rather simple comparing to other GUI 

environments is sufficient to build a system of academic use. 

The user-independent and automated processing of data is a very distant goal. By 

linking together statistical methods and universal data processors as Artificial Neural 

Networks one can expect to make that objective a little closer. T-DTS was intended to be a 

small step in that direction. The further development of the system could be  in two main 

directions. The first is development of task processing tools library in order to process 

efficiently many tasks of different nature. The second is connected to identify nature of 

processing task in order to choose most appropriate tool from tools library. 
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Annex A - History of ANN 

The field of NN has a history of about 60 years. However ANNs have found solid 

application only in past 20 years. This field is still developing rapidly. Due to their relative 

short age and rapid development the terminology of ANN area is not entirely clear like 

other fields i.e. optimization and control systems, where the terminology, design 

procedures and mathematical basics are known and applied for many years.  

First approach in modern era was a paper of McCulloch and Pitts in 1943, which 

describes a logical calculus of neural networks that unifies neurophysiology and 

mathematical logic. They described a network composed of all-or-none neurons and have 

proved that such structure can, in principle, compute any computable function. 

In 1949 Hebb published his book “The organization of behavior”, where physiological 

learning rule of synaptic modification was presented. Hebb states that the brain 

connectivity is continually changing, as organism learns different function tasks, and 

neural assemblies are created by such changes. Hebb introduces a postulate of learning,

which declared that the effectiveness of variable synapse between two neurons is increased 

by the repeated activation (charges or data flow) across that synapse. The paper of 

Rochester, Holland, Haibt and Duda from 1956 [ROCH 56] describes a computer 

simulation which tests with success Hebb’s postulate of learning.

In 1950 Taylor initiated work on the associative memory. This was followed by the 

introduction of learning matrix by Steinbuch in 1961; this matrix consists of a planar 

network of switches interposed between arrays or “sensory” receptors and “motor” 

effectors. In 1972 Anderson, Kohonen and Nakano independently introduced the idea of a 

correlation matrix memory based on the outer product learning rule. 

In 1954 Gabor proposed an idea of nonlinear adaptive filters. He has built such a 

machine, where learning were accomplished by feeding samples from stochastic process 

into machine, together with the target function, that the machine was expected to produce. 

Very important approach to the pattern recognition area was the work of Rosenblatt on 

the supervised learning method called perceptron. In 1960 Widrow and Hoff introduced 

least mean square (LMS) algorithm and used it to formulate Adaline (adaptive linear 

element). It was expanded in 1962 by Widrow and his students, who introduced Madaline 
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(multiple-adaline), which is one of the earliest trainable layered neural networks with 

multiple trainable elements. 

In the 70’tees, von der Malsburg as first demonstrated the idea of self-organizing 

maps using competitive networks. In 1976 von der Malsburg and Willshaw published a 

paper on the formulation of self-organizing maps, motivated by topologically ordered maps 

in the brain. The work was continued with success by Kohonen in 1982, who introduce one 

or two-dimensional lattice structure. 

Grossberg building on his previous work on the self-organizing networks established a 

new principle of self-organization known as adaptive resonance theory (ART). The theory 

involves a bottom-up recognition layer and a top-down generative layer. If the input 

pattern and learned feedback pattern match, a dynamical state called “adaptive resonance” 

(amplification and prolongation of neural activity) takes place. This formulates the 

principle of forward/backward projections.

In 1975, Little and Shaw described a probabilistic model of a neuron and used the 

model to create a theory of short-term memory.  

In 1982, Hopfield basing on the idea of an energy function has formulated a new way 

of understanding the computation performed by recurrent networks with symmetric 

synaptic connections. He created a connection between such recurrent networks called 

Hopfield networks and an Ising model used in statistical physics. 

In 1983, Kirkpatrick, Gelatt and Vecchi described a new procedure called simulated 

annealing, useful for solving combinatorial optimization problems. Simulated annealing is 

rooted in statistical mechanics. It is based on a relatively simple technique used first in 

computer simulation by Metropolis et al. (1953). The idea was used later in the work of 

Ackley, Hinton and Seynowski (1985) in the development of a stochastic machine called 

Boltzmann machine, which was the first successful realization of multilayer neural 

network. The Boltzmann machine was later used for subsequent development of sigmoid 

belief networks by Neal.

In 1986 Rumelhart, Hinton and Williams reported a development of a back-

propagation algorithm. In fact, the Backpropagation algorithm was discovered 

independently in two other places about the same time (Parker, 1985; LeCun, 1985). After 

the discovery of the back-propagation algorithm in the mid-1980s, it turned out that the 
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algorithm was described earlier by Werbos in his PhD thesis at Harvard University in 

August 1974. 

In 1988 Broomhead and Lowe described a design procedure of layered feedforward 

networks using Radial Basis Functions (RBF). The idea of RBF is based on method of 

potential functions, originally proposed by Bashkirov, Braverman and Muchnik in 1964 

and developed by Aizerman, Braverman, and Rozonoer [AIZE 64]. 

In 1989 a book of Mead entitled “Analog VLSI and Neural Systems” provided a mix of 

concepts from neurobiology and VLSI technology. Most significant ideas contained there 

are silicon retina and silicon cochlea.

In 1990 Vapnik and coworkers introduced a powerful class of supervised learning 

networks called Support Vector Machines (SVM). SVM can be used to solve pattern 

recognition, regression and density estimation problems. This method is based on the 

results in theory of learning with finite samples sizes. SVM in natural way incorporated an 

idea of Vapnik-Chervonenkis (VC) dimension in their design. The VC dimension provides 

a measure for the capacity of neural network to learn from a set of examples. 
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Annex B - System identification 

Both original system and model are given input values xi, the responses are compared 

to determine error ei, which is used to train the NN model. 

xfd  - d are outputs of real system f(·) to inputs x

)(xMy  - y are outputs of model M(·) to inputs x

Figure B-6-1 System identification 

Inverse system 

Original system is provided with input data xi, its output is given to inverse model 

which produces values yi expected to be close to original input xi.

xfd , where d are outputs of real system f(·) to inputs x
)(dMy , where y are outputs of model M(·) to original system outputs d

The error ei is determined by comparing yi and xi, and used to tune the inverse model. 

The inverse model may be described as inverse function of f(·):

dfx 1

Model
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system 

+
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Figure B-6-2 Inverse system modeling 

Control

Control of plant (important process, usually in real time). The objective of the 

controller (NN) is to supply appropriate inputs to the plant to make its outputs y track the 

reference signal d. In order to train the controller (adjust free NN parameters) it is provided 

with error signal e from comparison between reference signal d and plant output y. The 

controller has to invert the plant’s input-output behavior. 

Figure B-6-3 Feedback control system 
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Annex C - Applications of ANN 

Applications below are listed in Defense Advanced Research Projects Agency [DARP] 

(DARPA) Neural Network Study. 

Aerospace

High performance aircraft autopilot, flight path simulation, aircraft control systems, 

autopilot enhancements, aircraft component simulation, aircraft component fault 

detection.[SIMO 01], [SANJ 98], [DURA 00]. 

Automotive 

Automobile automatic guidance system, warranty activity analysis [JOU 99]. 

Banking 

Check and other document reading, credit application evaluation [RUDO 95]. 

Defense

Weapon steering, target tracking, object discrimination, facial recognition, new kinds 

of sensors, sonar, radar and image signal processing including data compression, feature 

extraction and noise suppression, signal/image identification [BARA 91]. 

Electronics 

Code sequence prediction, integrated circuit chip layout, process control, chip failure 

analysis, machine vision, voice synthesis, nonlinear modeling [FANN 99]. 

Entertainment

Animation, special effects, market forecasting [GRAN 98]. 

Financial

Real estate appraisal, loan advisor, mortgage screening, corporate bond rating, credit 

line use analysis, portfolio trading program, corporate financial analysis, currency price 

prediction [TRIP 92]. 

Insurance
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Policy application evaluation, product optimization [AGAR 01]. 

Manufacturing

Manufacturing process control, product design and analysis, process and machine 

diagnosis, real-time particle identification, visual quality inspection systems, beer testing, 

welding quality analysis, paper quality prediction, computer chip quality analysis, analysis 

of grinding operations, chemical product design analysis, machine maintenance analysis, 

project bidding, planning and management, dynamic modeling of chemical process system 

[ALIF 01]. 

Medical:

Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, optimization of 

transplant times, hospital expense reduction, hospital quality improvement, and emergency 

room test advisement [LO 98], [DUJA 03]. 

Oil and Gas 

Exploration [VUKE 96], [YILM 02]. 

Robotics

Trajectory control, forklift robot, manipulator controllers, vision systems [LIN 99]. 

Speech

Speech recognition, speech compression, vowel classification, text to speech synthesis 

[LI 03]. 

Securities

Market analysis, automatic bond rating , stock trading advisory systems [BOTH 02]. 

Telecommunications

Image and data compression, automated information services, real-time translation of 

spoken language, customer payment processing systems [ANSA 94]. 

Transportation

Truck brake diagnosis systems, vehicle scheduling, routing systems [SMIT 95]. 
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Annex D - Artificial Neural Networks’ 

structures

In this Annex some of the most popular neural network architectures are presented. 

D.1 Single-layer perceptron 

Perceptron is one of the simplest, oldest and most known ANN structure. [HDB1996] 

Rosenblatt created many variations of the perceptron [ROSE 61]. One of the simplest was 

a single layer network which weights and biases could be trained to produce a correct 

target vector when presented with the corresponding input vector. 

Perceptron neuron uses a threshold transfer function: 

Figure D-1 Perceptron neuron 

bWxbxwy
l

jj 0if0
0if1

v
v

Perceptron output is either 0 or 1, as it contains threshold transfer function (·) (see 

section 1.4). Thus, its activity can be seen as transformation from k-dimensional surface of 

inputs into output values {0;1}. Perceptron boundary is the so-called hyperplane.

Perceptron hyperplane can be seen here as a plane in k-dimensional space, which classifies 

all the points in space as zeros or ones. Simple example of hyperplane in two-dimensional 

space is depicted in the figure 1-21. 

(·)

Threshold
functionw1

w2

wm

v
x1

x2

xm

Output
y

b



Annexes

Mariusz Rybnik -– Ph.D. Thesis - 146 – 

Figure D-2 Perceptron hyperplane 

Position and orientation of classifying surface depends on the perceptron input weights 

and bias. It is changed by training technique called the perceptron learning rule: 

yte
ebb

exWW T

where W is the perceptron weights matrix, x is a single input vector, b is the perceptron 

bias value and e is the error of classification for specified input vector (difference between 

desired target value t and real output value y).

Single perceptron neuron use is limited to so-called linearly separable problems. It 

means that it should be possible to separates the input values originating from different 

classes by hyperplane. In the other case, perceptron will not be able to classify them 

correctly. Another limitation of perceptron use is that it can produce only two values: zero 

and one. These limitations can be overcome by using layer of perceptron neurons. For 

example two perceptrons can take values {(0;0), (0;1),(1;0), (1;1)}, which in fact is 

equivalent to four classes. However single layer of perceptron neurons is still able to solve 

only linearly separable problems. To overcome this limitation a multiple layers of 

perceptron neurons are needed.  

D.2 Linear networks 
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Linear networks are similar to perceptron, but instead of hard-limit transfer function 

they use linear transfer function. That allows their outputs to take any value, while 

Perceptron output is limited to values {0, 1}. However used as classifiers they can model 

only linearly separable problems (like perceptrons). They can be however used for 

regression i.e. to produce continuous output from compartment <- ; + >.

Example of linear network hyperplane in two-dimensional space is given in the figure 

1-22.

Figure D-3 Linear network example 

Line corresponds to network output equal to zero, upper right gray area represents 

values greater than zero and lower left white area represent values lower than zero. If 

presented in three-dimensional space then linear network values form a surface. 

Very popular algorithm used to train linear network is called The Least Mean Square 

Error (LMS). It is known well in optimalization area. Learning rule is provided with a set 

of k examples of desired network behavior: 

kk tptptp ,,,,,, 2211

Here pi is an input to network, ti is corresponding target output. The error is calculated 

as the difference between real output and target output. The goal is to minimize average 

squared sum of errors (called also L2 metric): 
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The LMS algorithm adjusts the weights and biases of the linear network so as to 

minimize this mean square error function. 

The mean square error is a quadratic function, thus it will have either one global 

minimum, weak minimum or no minimum, depending on the characteristics of the input 

vectors.

D.3 Multi-Layer Perceptron 

Multi-Layer Perceptron is one of the most popular structures for general applications 

like pattern recognition. MLPs are multilayer feedforward networks, which consist of input 

layer (sensors), one or more hidden layers and an output layer. 

Figure D-4 Example of MLP network 

MLP has three distinctive characteristics: 

1. Neurons in the network have nonlinear transition functions. The important 

property of the function is that the nonlinearity is smooth (the function is 

differentiable everywhere). Commonly used function is sigmoid nonlinearity 

defined by the logistic function: 

jv
v
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where vj is the induced local field (weighted sum of all synaptic outputs plus 

the bias) of neuron j. The nonlinearity is important because otherwise the 

functionality of the network could be reduced to that of a single-layer 

perceptron. The use of logistic transfer function is biologically motivated, 

because it attempts to account for the refractory phase of real neurons. 

2. The network contains one or more hidden layers. These hidden layers enable 

the network to extract progressively more meaningful properties of input 

patterns. 

3. High degree of connectivity between the neurons. 

Error back-propagation is a standard algorithm for the training of multilayer 

perceptrons. This algorithm is based on the error correction learning rule. It may be seen as 

a generalization of least-mean-square (LMS) algorithm for the special case of single 

linear neuron. 

Back-propagation learning consists of two phases. In the first phase (forward pass),

an activity pattern is applied to the network and the network produces response. In the 

backward pass the synaptic weights are adjusted according to the error-correction rule. 

This is based on the error signal which is a difference between actual response of network, 

and desired response. The error signal is propagated backward through the network. 

Backpropagation algorithm with sequential updating of weights composes of following 

steps:

1. Initialization – pick the synaptic weights and thresholds 

2. Sequential presentation of training examples – n-th presentation to the network 

with an epoch of training examples. For each example in the set perform steps 3 

and 4. 

3. Forward computation – the weights remain unaltered while an example is 

propagated through the network and error signal e(n) is computed: 

d(n)-o(n)e(n)

where d(n) is the desired output and o(n) is the real output of network for current 
example. 

4. Backward computation 
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Adjust the synaptic weights of the network according to the generalized delta rule 

nwnwnw jijiji 1  where wji(n) represent weight connecting neuron i to 

neuron j at time step n; wji(n+1) represent the same weight in time step n+1 (after back-

propagation learning) and wji(n) represent weight correction. 

Weight correction equals nynw ijji , where  is the learning parameter, 

j(n) is local gradient and yi(n) is the input signal of neuron j.

Local gradients of the network j(n) are computed depending on the location of 

neurons:

for the output layer neurons 

nvnen jjjj
')()( , where ej(n) is the error signal for the output neuron j, ’

is the derivative of neuron transfer function and vj(n) is the induced field of neuron j.

for the hidden neurons 

k
kjkjk

l
j nwnnvn ')( )( , where vj(n) is the induced field of neuron j at 

time step n,

Finally the adjustment of the weight connecting neuron i to neuron j equals: 

)()()()1( )1()()()( nynnwnw l
i

l
j

l
ji

l
ji

where )()( nw l
ji  is the synaptic weight of the neuron j in layer l that is fed from neuron 

i in layer l-1; )()1( ny l
i  is the output signal of neuron i in the previous layer l-1 at iteration 

n; )()( nl
j  is the local gradient j in layer l and  is the learning rate parameter. 
Additional technique to ameliorate the performance is adding the momentum: 

)()()1()()1( )1()()()()( nynnwnwnw l
i

l
j

l
ji

l
ji

l
ji

where  is the momentum constant 

D.4 Radial-Basis Function Networks 

Structure of Radial-Basis Function (RBF) network is unusual because it has only one 

hidden layer and its hidden neurons are completely different from that of its output units. 

Theory in that field is linked closely with radial basic functions theory, which is one of the 

main fields of study in numerical analysis [SING 92]. Their outputs layer with linear 
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weights is on the other hand closely linked with literature on linear adaptive filters [HAYK 

99].

RBF networks [POWE 88] have form of a function F: 
N

i
ii xxwxF

1
)(

where (·) is a set of N nonlinear functions known as radial-basis functions., and || . || 

denotes a distance which is usually Euclidean. The known points xi are the centers of the 

radial-basis functions (points in the input space). Weighting matrix w determines the 

influence of radial-basis functions on the network output. Radial basis function is a 

function of distance mentioned above. It can take many forms, for example: 

2

)( ixxex

where x denotes input pattern and xi denotes center of the radial basis function. 

Figure D-5 Example of RBF network structure  

The number of radial basis functions (in network called RBF hidden neurons ) is 

usually smaller than the number of available training examples (generalized RBF network). 

In the regularization RBF network, it is however equal to number of learning examples. 
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Interesting property of RBF is that it constructs local approximations of nonlinear input-

output mappings; it is in opposite to MLP which constructs global approximations. 

Learning strategies for RBF networks: 

1. fixed centers selected at random – radial-basis function are fixed and their centers 

are chosen randomly. Then the only parameters that would need to be learned are 

the linear weights matrix of the output layer. The drawback is that the method may 

need a large training set to achieve satisfactory performance 

2. self-organized selection of centers – the methods compounds of two steps, first 

estimating appropriate location for the RBF centers, and then estimating the linear 

weights for the output layer by supervised learning. For the first step, one need a 

clustering algorithm, example of which can be k-means algorithm, [DUDA 73] 

which is a special case of self-organizing map – neural network technique 

described in section 1.6.5. Simple method to estimate the output weights in the 

second phase is to use Least Mean Squares algorithm 

3. supervised selection of centers – all free parameters of the network and the centers 

of RBFs undergo a supervised learning process. Such a process can be an error 

correction learning using a gradient-descent procedure, which is a generalization of 

the LMS algorithm 

4. strict interpolation with regularization [YEE 88] – the method uses elements of 

the regularization theory and the kernel regression estimation 

The input-output mapping function of a Gaussian RBF network is similar to that 

realized by mixture of experts (section 1.6.6). 

D.5 Competitive networks and Self Organizing Maps 

Output neurons during competitive learning compete among themselves to be 

activated (fired). Only one neuron or one neuron per group is active. A neuron which wins 

the competition is called a winning neuron of winner-takes-all neuron. One of the 

methods of inducing the competition between neurons is to establish negative feedback 

path between them [ROSE 56]. 

In a self-organizing map, the neurons are placed at the nodes of a lattice (usually one- 

or two-dimensional). The winning neurons become selectively tuned to various input 
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patterns during the competitive learning and finally they form a topographic map of the 

input patterns in which the spatial locations of the neurons in the lattice indicate intrinsic 

statistical features contained in the input patterns. 

First model of self-organizing map was proposed by Willshaw and von der Malsburg. 

It consisted of two two-dimensional lattices of neurons, one representing presynaptic 

(input) layer and second postsynaptic (output) layer. The two lattices are interconnected by 

synapses of Hebbian type. 

The second model of self-organizing map was introduced by Kohonen [KOHO 82]. 

The model provides a topological mapping that optimally places a fixed number of vectors 

into a higher dimensional place, therefore makes data compression easier. It consists of one 

lattice of neurons, which are fully connected to the source nodes in input layer. The model 

may be able to dimensional reduction on the input (compression). The Kohonen model 

belongs to the class of vector encoding algorithms.  

D.6 Support Vector Machines 

Support Vector Machine (SVM) is a linear machine. The technique can be used to 

pattern classification and nonlinear regression.

SVM works as an approximate implementation of the method of structural risk 

minimalization. It depends on the fact that error rate on test data is bounded by the sum of 

the training-error rate and a term that depends on the Vapnik-Chervonenkis (VC) 

dimension.

The base notion for the construction of SVM is the inner-product kernel between 

“support vector” xi and the vector x drawn from the input space. The support vectors 

consist of small sub-database of the training data extracted by the algorithm. Depending on 

how the inner-product is generated, one can construct different learning machines, in 

particular:

Polynomial learning machines 

Radial-basis function networks 

Two-layer perceptrons (i.e. with a single hidden layer) 
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For each of these feedforward networks, we may use support vector learning to 

implement the learning process using a given set of training data, automatically 

determining the required number of hidden units. The support vector machines learning 

algorithm has wide applicability and can be used with many network structures. 

Annex E - Neuron transfer functions 

E.1 Signum function 

Figure D-6 Signum transfer function
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It is sometimes desirable to have output values from range [-1, 1]. The signum function 

is an odd function (antisymmetric). 

E.2 Threshold (Heaviside) function 

Figure D-7 Threshold transfer function  
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Threshold function is also referred in literature as linear threshold gate. Neuron with 

threshold transfer function is known also as McCulloch-Pitts model [ROJA 96]. Behavior

of this model is described as all-or-none because it produces either 0 or 1. Slight 

modification of this function is the signum transfer function.

E.3 Linear combiner function 

Figure D-8 Linear combiner transfer function

vv
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