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INTRODUCTION






This work is concentrated on developing a semi-automatic processing structure, which
is able to reduce complexity of processing tasks by techniques similar to task
decomposition. It is also able in part to attune to classification processing task by using a
family of statistical methods called Complexity Estimation techniques. The goal is to
minimalize the need for user intervention and efficiently process data automatically. By
linking together statistical methods in order to reconnaissance the task and universal data
processors as Artificial Neural Networks we are expecting to make that objective a little
closer. Our approach is called Treelike Divide To Simplify (T-DTS in short). T-DTS has
modular structure. The modules are based on Artificial Neural Networks, because they are
universal data processors and from their nature are well suited for modular processing.
ANNSs are so universal as data processors because they are cross between mathematics,
statistics and informatics sciences, gaining the properties algorithms from all those
disciplines when necessary. T-DTS decomposes the processing task into clusters in
recurrent way and process them separately in order to ease and speed up the processing, as
well as use less complicated processing modules. In most cases decomposition of problem
will also result in decreasing overall processing complexity for complicated tasks that are
difficult to process as a whole, due to great complexity or excess processing times. Task
decomposition makes possible parallel processing that result in reduction of processing

time.

Artificial Neural Networks are described in first chapter in order to give ideas about
their universality and particular usefulness in modular approach. Chapter two presents
complexity estimation that is used in part of experiments in order to auto-organize the
modular T-DTS structure and presents good perspectives for the further development of
auto-organizing structure. T-DTS approach is presented in detail in chapter 3, including
methods and strategies for building the modular structure, decomposition of databases and
finally processing and obtaining the results. Chapter four is aimed at evaluating the
universality of T-DTS approach, by showing its applications to different classes of
processing problems. Finally chapter five is a conclusion and essence of the work, giving
also the perspectives for the future development of T-DTS system.






ARTIFICIAL NEURAL NETWORKS






Chapter 1 — Artificial Neural Networks

Motivation: This chapter is concentrated on Artificial Neural Networks that are the
substance and base of T-DTS solution. Artificial Neural Networks are especially useful in
modular solutions, as they have by itself modular and universal structure, that simplifies
connecting and cooperation between modules. These properties are desired in T-DTS

approach, so processing modules were based entirely on ANNs.

Artificial Neural Networks (ANNs) are grand and powerful data processing tools,
basically being a cross between mathematics and informatics. Their most important
features are distributed processing and adaptive morphology. Due to these properties, they
are connected to many other disciplines, like: neurobiology, mathematics, computer
science, statistics, physics and engineering. Artificial neural networks are applied with
success in many areas: modeling, classification, pattern recognition, signal processing,

time series analysis and others.

Section 1.1 presents main ideas concerning ANNS. Section 1.2 presents learning tasks
applicable with ANNSs. Section 1.3 presents similarities in build of artificial and biological
neurons, and discuses the artificial neuron activation functions. Section 1.4 introduces
general ideas about architecture of layered networks. Section 1.5 presents general ideas of
most popular ANNs’ learning algorithms. Section 1.6 presents most popular ANNSs
architectures and algorithms. Section 1.7 shows parallelism between statistical methods
and ANNs’ models. Section 1.8 presents history of ANN, and section 1.9 discuses popular

domains of application of ANNSs. Conclusion ends this chapter.

1.1 Main ideas

Artificial Neural Networks are inspired by biological nervous systems. Similarly to
biological neural networks (i.e. human brain), ANNs are composed of relatively simple
elements called neurons. Neurons are connected creating networks. Networks can be very
large and have complicated structure. Network function is determined widely by the
connections between neurons. Neural networks work in parallel way, which is a very
important feature for many computation tasks. In nature, NN perform many various tasks,
beginning from simple reaction to environment change in one-cell organisms up to still
little known functions of human brain. ANNSs also have this feature and although simple
comparing to Neural Networks in the nature, they are very powerful and universal

computation instrument.
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Chapter 1 — Artificial Neural Networks

ANNs similarly to natural NN usually learn through example. It means that first, a
network of appropriate structure is built and then the network’s behavior is modified to
meet the expectations. The mechanism is similar to feedback known in electronics and
other areas. It is depicted on figure 1-1.

Desired
output

AN

Artificial
Neural Network

\ Adjust

parameters

Input
Compare

A 4

Figure 1-1 Neural network learning by example

Depending on the comparison between an output from NN and a requested output
(known as targef) we adjust its connections (called connection weights) and possibly
structure in a way which is expected to ameliorate its performance. This mechanism is
called supervised learning, as it needs a supervisor who will compare the results with

expected values and perform an action depending on it.

ANN can be trained to solve problems that are difficult for human beings and for
conventional computing methods. They have proven their efficiency in a number of
applications, among others: pattern recognition, identification, classification, speech,

vision and control systems.

Two other important ways of training ANN are called unsupervised learning and
direct design methods. Unsupervised learning can be used for instance to identify and
localize a group of data. Certain types of linear networks as Hopfield networks are
designed directly. Unsupervised learning and direct design methods are thoroughly

described in subsequently sections 1.6.

In summary there is a great variety of possible network architectures and learning

methods which are used in very different areas of applications.

Acrtificial Neural Networks have following properties:
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1.

Uniformity of analysis and design — ANNSs are universal data processors, so it
is possible to share theories, learning algorithms in different applications of
neural networks. It is possible also to connect the different types of ANNs’
modules. This paradigm is known as Multiple Neural Network (MNN) [ARBI

89]. It is very important to this work.

Nonlinearity — when network includes nonlinear artificial neurons it is
nonlinear. Nonlinearity is important property, when underlying physical
mechanism responsible for generation of the output signal is inherently

nonlinear.

Input-output mapping — ANNs are capable of constructing a mapping between
input and output, based on the training examples. From a statistical point of
view, the process is similar to nonparametric statistical inference (model-free
estimation) [HAND 01] and from biological viewpoint tabula rasa learning
[GEMA 92].

Adaptivity — ANNs are able to adapt their work to minor changes in operating
environment. They can be also used in constantly changing (nonstationary)
environment where they change their synaptic weights in real time. To make a
full benefit of adaptivity, the NN should ignore spurious (short) disturbances
and respond to meaningful changes in environment. The problem is referred to

as stability-plasticity dilemma [GROS 88].

Fault tolerance — ANNs implemented in hardware form are prone to faults.
However, due to distributed nature of ANNSs, usually damage has to be
extensive, before the overall response of system is impaired seriously. In
general ANN exhibits gradual degradation of performance rather than

catastrophic failure.

VLSI implementability — due to their distributed and parallel structure, ANNs
are potentially well suited for implementation using Very-Large-Scale-

Integrated technology circuits [ARBI 89].

. Evidential response — in the context of pattern classification, ANNs can

provide not only predicted response, but also the confidence about the decision

made. This information can be used later to improve the classification
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performance of network by rejecting ambiguous patterns or to present the

doubtful patterns to another system (i.e. human expert).

8. Neurobiological analogy — “The design of a neural network is motivated by
analogy with the brain, which is a living proof that fault tolerant parallel
processing is not only physically possible but also fast and powerful.” [HAYK
99].

9. Statistical analogy — ANN’s ideas are frequently known in the optimalization
and statistics area [SARL 94]. The use of parallel and distributed representation
of data processing elements makes them however easier to integrate and
connect with other ideas.

In the morphology ANN one can distinguish several concepts:

e artificial neurons
e structure (organization) of neurons
e learning algorithms

The subsequent sections 1.2, 1.3, 1.4 and 1.5 will describe consequently these three
aspects of ANN. Section 1.2 will introduce the concept of artificial neuron as a heritage of
biological neuron. Section 1.3 presents Artificial Neural Networks architectures. Section
1.4 will present learning tasks in general manner, while section 1.5 will give details on

machine learning.

1.2 Biological neuron and its artificial models

Brain is composed of about 10 billion (10'®) neurons. The biological neurons are
interconnected cells, processing and transmitting information in parallel way. A simplified

model of biological neuron is presented in figure 1-2.
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Figure 1-2 Biological neuron

“A neuron’s dendritic tree is connected to a thousand neighboring neurons. When one
of those neurons fires, a positive or negative charge is received by one of the dendrites.
The strengths of all the received charges are added together through the processes of
spatial and temporal summation. Spatial summation occurs when several weak signals are
converted into a single large one, while temporal summation converts a rapid series of
weak pulses from one source into one large signal. The aggregate input is then passed to
the soma (cell body). The soma and the enclosed nucleus don’t play a significant role in
the processing of incoming and outgoing data. Their primary function is to perform the
continuous maintenance required to keep the neuron functional. The part of the soma that
does concern itself with the signal is the axon hillock. If the aggregate input is greater than
the axon hillock’s threshold value, then the neuron fires, and an output signal is transmitted
down the axon. The strength of the output is constant, regardless of whether the input was
just above the threshold, or a hundred times as great. The output strength is unaffected by
the many divisions in the axon; it reaches each terminal button with the same intensity it
had at the axon hillock. This uniformity is critical in an analogue device such as a brain,
where small errors can snowball, and where error correction is more difficult than in a

digital system.

Each terminal button is connected to other neurons across a small gap called a synapse
[left]. The physical and neurochemical characteristics of each synapse determine the
strength and polarity of the new input signal. This is where the brain is the most flexible,
and the most vulnerable. Changing the constitution of various neuro-transmitter chemicals

can increase or decrease the amount of stimulation that the firing axon imparts on the
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neighboring dendrite. Altering the neurotransmitters can also change whether the

stimulation is excitatory or inhibitory.” [CHUR 92]

Artificial neuron inherits many biological neuron properties. There exist many
artificial neuron models, the properties in common are distributed processing and high
connectivity of elements. In this section the most popular and general neuron model will be

presented.

General artificial neuron model is depicted on the figure 1-3.

Activation
function

X2[} D()—>

Output
Yk

Inputs  Synaptic
weights

Figure 1-3 Artificial neuron model

This model is similar to biological neuron: The inputs x (electrical charges in
biological neuron) are weighted by synaptic weights w,; (properties of the dendrites) and

summed creating linear combiner output uy.
m
Uy = D WX |
j-1

Summing node (soma) adds linear combiner input and bias bk what results in induced

local field vy (also known as activation potential).
v, =u, +b,

Induced local field is modified by transfer function ¢(:) producing output yx and

propagated through output (axon) to other neurons.
Y = (P(Vk): o(u,,b,) = (ﬂ(zwij it by)
j=1

Yk :§0(Uk +bk)
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The model is a greatly simplified version of the mechanism created by nature, although

it shows great capabilities and universality.

Artificial neuron output value a is a function (called transfer function) of weighted
input values p;..px and bias b. In the biological neuron one can find also output values
called axons and inputs called dendrons. In fact, transfer function in biological neuron is
much more complicated than in artificial one. Biological neural networks show great

complexity and functionality not even approximately met by their artificial descendant.

Most known transfer functions used-with-the-medel-are:

e Piecewise-linear function

=
<
\Y
< N
\Y4
|
N[~

|
=
< N[~
AV
|
N[~

This transfer function can be seen as approximation of non-linear amplifier. The
amplification factor in the linear region is here equal to 1. By modification of the

amplification one can achieve many different functions in particular:

e signum function, when linear region length is reduced to 0 by setting amplifier

factor to plus infinity;

threshold function, similar shape to signum function; just with different values;

e linear combiner function, when linear region is maintained in the whole area.

sigmoid function

Figure 1-4 Sigmoid (logistic) transfer function
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This is the most common transfer function, which exhibits a balance between linear
and nonlinear behavior. By modifying the parameter a one can achieve different slopes of
the function. Sigmoid function is differentiable, which is an important feature, as it allows

achieving efficient learning algorithm optimizations used in the learning session.

e hyperbolic tangent function

Figure 1-5 Hyperbolic tangent transfer function
o(v) = tanh(v)

Hyperbolic tangent function is similar to sigmoid function, but it is antisymmetric and

its values are ranged in [-1,1], which sometimes shows analytical benefits. {sh4-Haykin-

Next section will show how the artificial neurons are linked together to create more

powerful structures.

1.3 Neural Networks architectures

Neural layer is a combination of several (sometimes also only one) neurons working
in parallel way. In general, an ANN consists of several layers of neurons. In fact large part
of functionality of ANN depends on the connections between neurons, propagation of

values between them (current similar to biological neural impulses) and whole layers.

Depending on the direction of information flow, ANNs can be classified as follows:
e Feedforward networks — Information in that structure flows only forward, i.e. layer

doesn’t contain internal feedback paths.

The simple form of such network is single-layer feedforward network. It contains
input layer of source nodes that projects onto a output layer of neurons. An example of

such network is depicted in the Figure 1-6.

Mariusz Rybnik — Ph.D. Thesis -26 -



Chapter 1 — Artificial Neural Networks
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Figure 1-6 Example of single layer feedforward network

Multilayer feedforward networks — the structure consists of not only input and
output layers, but also one or more hidden layers (consisting of hidden neurons also
referred as hidden units). By adding hidden layers a network is enabled to extract higher-
order statistics. Extra set of synaptic connections enable the network to acquire a global
perspective [CHUR 92].

The network is fully connected if each neuron from the preceding layer has a
connection with each neuron form the succeeding layer. If some connections are missing

the network is partially connected.

An example of fully connected ANN feed-forward structure with one hidden layer is
depicted on the Figure 1-7.
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Figure 1-7 Example of multilayer feedforward network structure

Recurrent networks are networks, which contain at least one internal feedback loop.
A self feedback loop is a delayed connection from a neuron to itself. Recurrent networks
can contain hidden layers. They are able to show dynamical (depending on the previous

conditions) behavior. An example of recurrent network is depicted on the Figure 1-8

N
> -
N

ZI Unit delay
— operators

;]

1

Figure 1-8 Example of recurrent network with no self-feedback loops
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Feed-forward ANNs cannot perform temporal computation like recurrent ANNs, but

building and training of recurrent ANNs is more difficult.

In the next section learning tasks will be presented to show the most popular goals of

data processing techniques.

1.4 Learning tasks

Artificial Neural Networks are used in many tasks. In this chapter, learning tasks
taxonomy is presented showing the main application classes. The specific applications of

ANNs are presented in the Annex C.

1.4.1 Pattern recognition

Pattern recognition is a process where a signal is assigned to one of prescribed classes
(categories). Neural network first undergoes a training session, during which a network is
repeatedly presented a set of input pattern together with the class to which each pattern
belongs. Later a network is presented with input patterns unlearnt and NN is able to
classify (attach a class) the patterns using the knowledge extracted from the learning

session.

The patterns are represented as points in multidimensional (feature) decision space.
The decision space is divided into regions; each one is assigned with a class. The decision

boundaries are determined by the learning process.

Pattern recognition system using ANN can take two forms:

e the system consists of two parts: first part (unsupervised network) is used to do
feature selection (transformation from input pattern x into feature vector y). The
transformation may result in dimensionality reduction (data compression), which is
expected to ease the classification task. The second part (supervised network) is a

classifier which maps feature vector y to class labels.

e The system is designed as a single multilayer feedforward network using a
supervised learning algorithm. In this case, the task of feature extraction can be
considered as performed in explicit way by hidden layer(s) of the network.
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1.4.2 Pattern association

Association is a process of linking objects. Network is required to respond to a key

pattern x; With a memorized pattern yy:
X, =Y, k=12,..q

Association takes two forms: autoassociation and heteroassociation. In
autoassociation task, network is required to store a set of patterns and respond to a
distorted version of original pattern with that particular pattern. In heteroassociation task,
key pattern and memorized pattern can be completely different (i.e. dimensionality).These
two patterns are paired (associated to each other). The associative memory is a set of such

pairs.

There are two phases of operation of an associative memory:

e Storage phase — when network is trained by presenting the patterns;

e Recall phase — when network is presented with a key pattern and responds with a

memorized pattern.

When associative memory responds with wrong pattern, it is said to make an error in
recall. The number of patterns stored in memory provides a direct measure of the storage
capacity of the network. In designing of associative memory, the goal is to enhance the

storage capacity and efficiency and minimalize the recall errors.

1.4.3 Function approximation

The aim here is to create a model function M(-) which imitates the activity of unknown
system. The activity of system is marked as function f{-), which is usually unknown and
can be approximated by analyzing the input-output relation of system.

y = f(x) -y are outputs of real system f(-) to inputs x
The approximation can be exploited in two ways:
e system identification, when model M(x) imitates explicitly a function f(x). Both
original system and model are given input values X, the responses are compared to

determine error e, which is used to train the system identification model. The model

M(x) produces in this case estimations of output values d , given real input values

X. y=M(x) . The performance of system is measured by taking into account
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absolute difference between responses of system and model to input patterns:

IM(x) - f (%)

e inverse system, when model M(x) imitates the function f *(x), which is reverse to
system behavior. The model M(x) produces thus estimations of input values X,

given real output values y of system: Xx=M(y). The system’s performance is
measured by taking into account absolute difference between responses of model

(estimated input pattern) and real input pattern (unknown to model): [M (y) - x| .

System identification and inverse system computation are detailed in Annex B.
1.4.4 Filtering

The filtering is a process of extracting interesting properties from a set of noisy data.

Filters can be used to three basic tasks:

e filtering — extraction of information about a quality of interest at discrete time n by

using data measured up to and including time n.

e smoothing - extraction of information about a quality of interest at discrete time n
by using data measured before and after time n. In statistical sense, smoothing is

expected to be more accurate than filtering, because it can use more data.

e prediction — forecasting information about a quality of interest at discrete time n+n,

by using data measured up to and including time n. This task is most difficult.

x(n)O

/

Model

(

Figure 1-9 Nonlinear prediction

X(n-T) O———»
oO——» K(n) K(n)

X(n-mT) O———»|

A spatial form of filtering is known as beamforming. It is used to distinguish between
the spatial properties of a target signal and background noise. Beamforming is commonly
used in radar and sonar systems where the primary task is to detect and track a target of

interest in the presence of noise and interfering signals.
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Next section gives details on learning algorithms, which lead to accomplishment of the

learning tasks.

1.5 Learning algorithms

Learning algorithm in ANN approach is an algorithm which is used to modify the
weights, biases and/or structure of ANN. By these modifications, the performance of ANN

is expected to be improved.

One of possible morphology of learning algorithms is as follows:

Learning with a teacher (supervised learning)
o error correction learning
= incremental training
= batch training
e Learning without a teacher
s Reinforcement learning/neurodynamic programming
s Unsupervised learning
o Competitive learning
e Memory based learning

e Boltzmann learning

1.5.1 Learning with a teacher

Learning with a teacher is also called supervised learning. To adjust the parameters
of learning system, one uses an error signal, which is a difference between actual system
response and desired (optimal) response given by teacher.
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Figure 1-10 Learning with a teacher (supervised)

In incremental training, weights and biases are updated each time a new input vector
and corresponding target is presented to the network; i.e. sequentially; Incremental
learning can be applied to both static and dynamic networks, but is most commonly used
with dynamic networks, such as adaptive filters. In batch training, weights and biases are
updated after whole learning database (learning examples and corresponding targets) was

presented; i.e. concurrently.

1.5.1.1 Error correction learning

Error of neuron k with m synapses given a signal vector x(n) at time step n is equal to:
e, (n) =d,(n) -y, (n)

O(") Yk

+

di

Figure 1-11 Error computation
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where yi(n) denotes neuron output, dy(n) is a desired output of neuron k, ex(n) denotes
error signal. The corrective mechanism is expected to minimalize this error. This is

accomplished by minimalizing a cost function or index of performance:
1
E() =€t (0

E(n) is the instantaneous value of error energy. The corrections are continued until
system is in stabilized state. One of the ways to minimalize the error energy is the Widrow-

Hoff rule or delta rule. The adjustment to the j-th synaptic weight of neuron k equals:
Aw,; (n) =77, (n)x; (n)

where 7 is the positive constant called rate of learning, wij(n) is the synaptic weight
value of neuron k, when excited by element x;(n) of input vector x(n) at time step n. The
adjustment is proportional to the product of error signal and the input signal of the synapse.

The updated value of synapse w,; at time n+1 is computed:
W,; (N +1) = w,; () + Aw,, (n)

The network with new values of synapses is expected to achieve better performance.

The very early approach was perceptron learning rule [ROSE 56]. The most popular
techniques in error correction learning are based on backpropagation of gradient [ARBI
89], [HAYK 99], which is a generalization of the perceptron learning rule.

1.5.2 Learning without a teacher

In learning without a teacher, there are no examples given to the system. In
reinforcement learning the learning of input-output mapping is performed through
continued interaction with the environment in order to minimalize a scalar index of

performance.
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Figure 1-12 Reinforcement learning

Critic converts primary reinforcement signal received from an environment into a
higher quality reinforcement signal called heuristic reinforcement learning. The system
incorporates delayed reinforcement which means that system is able to observe temporal
sequence of state vectors. The goal is to minimalize a cost-to-go function defined as an
expectation of the cumulative cost of actions taken over a sequence of steps.
Reinforcement learning is related to dynamic programming [BELL 57], which provides
the mathematical formalism for sequential decision making.

1.5.2.1 Hebbian learning

Hebb’s postulate of learning [HEBB 49] says that if a neuron A repeatedly excites
other neuron B, then the connection from A to B them (axon) becomes more efficient. The
postulate was made in neurobiological context. The idea expanded by Changeeux and

Danchin says as follows:

1. If two neurons on either side of a synapse (connection) are activated
simultaneously (i.e., synchronously), then the strength of that synapse is selectively

increased.

2. If two neurons on either side of synapse are activated asynchronously, then that

synapse is selectively weakened or eliminated

Hebbian synapse is characterized by four properties:
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1. time-dependent mechanism — modification of the Hebbian synapse depend on the

exact time of occurrence of the presynaptic and postsynaptic signals.

2. local mechanism — the modifications are local and are triggered by local

conditions.

3. interactive mechanism — Hebbian form of learning depend on interaction between

presynaptic-and-postsynaptic-sighals two neurons.

4. conjunctional or correlational mechanism — correlation over time between

presynaptic and postsynaptic signals is viewed as being responsible for change.

General form of Hebbian adjustment of synapse wy; of neuron k at time step n is

expressed as follows:

Aij (I’l)z F(Yk (n)’ X; (n))

where F(:,-) is a function of presynaptic and postsynaptic signals, yk is postsynaptic
signal and x; is presynaptic signal.

Hebb’s hypothesis in the simplest form (only development of synapse, no weakening)

is realized by adjustment of following form:

Aij (n) =1y (n)xj (n)
where 1 is the learning rate parameter.
Covariance hypothesis [SEJN 77] expands the functionality by taking into account

average values X and y of respectively presynaptic and postsynaptic signals:
AW, :U(Xj - XXYk - 7)

where n is the learning rate parameter. The covariance hypothesis realizes Hebbian
learning in the full form, described by Changeeux and Danchin, by making synapse
stronger or weaker depending on the pre-—and-pest-synaptic activities. In particular the

synaptic adjustment achieves negative value (with minimum of —77(xj —X)y), where
synapse is weakened. When presynaptic activity x; or postsynaptic activity yx equal the

average values respectively X and y the synapse remains unchanged.

There is a psychological evidence for the occurrence of Hebbian learning in the area of

brain called hippocampus [BLIS 73].
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1.5.2.2 Unsupervised learning

In Unsupervised or self-organized learning the stress is placed on independent measure

of the quality of network representation.

Vector describing
state of the
environment

Environment Learning system

v

Figure 1-13 Unsupervised learning

1.5.2.3 Competitive learning

In competitive learning the output neurons of NN compete among themselves to
become active. Only one neuron in the output layer can be active (fire) at the same time

(opposite to Hebbian learning, where many output neurons can be active simultaneously).

Basic elements of competitive learning rule are:
e aset of neurons which are the same except for the synaptic weights. Therefore they

respond differently to a given set of input patterns
e a limit of the “strength” of each neuron

e a mechanism which forces the competition between neurons, so only one of the

group is active at a time [RUME 85].

The individual neurons specialize on ensembles of similar patterns, so they became

feature detectors Of input patterns.

A mechanism called lateral inhibition is a set of negative feedbacks connections
linking excited neuron to other neurons. It means that when the neuron is excited it
decreases the possibility that other neurons are excited. Lateral inhibition is also present in
the neurobiological systems like eye retina, ear cochlea and pressure sensitive nerves of the
skin [ARBI 89].

Each neuron in the structure is allocated a fixed amount of synaptic weight (all weights

are positive):

Zwkj =1
]
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to ensure that neuron learns by shifting the synaptic weights from inactive to active

input nodes.

To be a winning neuron, the neuron’s induced local field v must be the largest among

all neurons in the network.
m
Vi =D WX | +Db,
j=1

The output of winning neuron is then set to 1, the outputs of other neurons are set to 0.

The winning neuron is moved towards the input pattern x by competitive learning rule:
Aw 77(xj - wkj) if neuron win s the competitio n
W 0 if neuron loses the competitio n

where 1 is the learning parameter.
1.5.3 Memory-based learning

In memory-based learning, all or part of the experiences are stored in memory of
correctly classified examples. When classification of test vector X IS requested, the
algorithm searches the memory for the similar examples of Xwst (“local neighborhood”)
and produces an output depending on the values of the memorized similar examples.
Memory-based algorithms have two properties:

e definition of local neighborhood of the test vector Xest
e learning rule applied to the local neighborhood of Xest

The memory based learning simplest example is the k-nearest neighbor classification
[HAND 01]. ANNs which use memory learning are for example radial-basis function
network.

1.5.4 Boltzmann learning

The Boltzmann learning rule [AART 89] is a stochastic learning algorithm derived
form statistical mechanics. A neural network designed on the basis of the Boltzmann

learning rule is called a Boltzmann machine.

In a Boltzmann machine, the neurons constitute a structure and operate in a quasi-
binary way (two possible states of neurons: 1 and -1). The machine is characterized by

energy function EB:
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1
EB:—EZZWHXKXJ-
Tk

where XX are the states of neurons j and k, wi; is the synaptic weight connecting
neuron j to neuron k. None of the neurons in the machine has self-feedback. The machine
operates by choosing a neuron at random and flipping the state of the neuron with
probability:

1
1+exp(- AEB, /T)

P(Xk - _Xk):

where AEBy is the change in the energy of the machine resulting form such a flip and T

is a pseudotemperature - parameter used to control the uncertainty in firing.

The goal is to achieve thermal equilibrium — steady state of the machine.

1.5.5 Conclusion

In this section a number of learning algorithms for single structure have been
presented; all of them are well suited for machine learning (and in particular ANN). In the

next section the concept of many collaborating structures will be introduced.

1.6 Multi Neural Networks - Committee Machines

The committee machines are based on engineering principle divide and conquer.
According to that rule, a complex computational task is solved by dividing it into a number
of computationally simple tasks and then combining the solutions of these tasks. In
supervised learning, the learning task is distributed among a number of experts which
divides the space into a set of subspaces. The combination of experts is called committee
machine. Committee machine fuses knowledge of experts to achieve an overall decision,
which is supposedly superior to that achieved by any of the experts alone. Committee

machines are universal approximators.

The taxonomy of committee machines could be as follows:
1. Static structures

a. Ensemble averaging
b. Boosting

2. Dynamic structures
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a. Mixture of experts

b. Hierarchical mixture of experts

1.6.1 Ensemble averaging

In ensemble averaging technique [HAYK 99], [ARBI 89], a number of differently
trained neural networks (i.e. experts) share a common input and their outputs are combined

to produce an overall output value y.

yi(n)

Expert 1

\ 4

Input x(n) ya(n) Output y(n)

Combiner

A 4

Expert 2

L

Expert K yx(n)

A 4

Figure 1-14 Ensemble averaging structure

The advantage of such structure over a single neural network is that the variance of the
ensembled average function F(x) is smaller than the variance of single neural network
F(x). Simultaneously both functions have the same bias. These two facts lead to a training
strategy for reducing the overall error produced by a committee machine due to varying
initial conditions [NAFT 97]: the experts are purposely overtrained, what results in
reducing the bias at the cost of variance. The variance is subsequently reduced by

averaging the experts, leaving the bias unchanged.

1.6.2 Boosting

In boosting [SCHA 99] (in contrast with the ensemble averaging) the experts are
trained on the data sets with entirely different distributions; it is a general method which

can improve the performance of any learning algorithm.

Boosting can be implemented in three different ways:
1. Boosting by filtering — the training examples are filtered by different versions of a

weak learning algorithm with the examples either discarded or kept during training.
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2. Boosting by subsampling - the second approach works with a sample of fixed
size. The examples are resampled according to given probability distribution during

training.

3. Boosting by reweighing — the approach works with a fixed training sample and
assumes that the weak learning algorithm can receive “weighted” samples.

1.6.3 Mixture of experts

Mixture of experts consists of K supervised models called expert networks and a
gating network, which performs a function of mediator among expert networks. The output
is a sum of experts’ outputs (weighted by gating network). It is assumed that the different
networks work best in different regions of the input space, in accordance with the
probabilistic generative model [JORD 95].

» Expertl
P 01 Y1
Output y
Input x » Expert?2 2,
02
q Yk
» ExpertK O
Gating
> network

Figure 1-15 Mixture of Experts

The gating network consists of K neurons, with every neuron assigned to specific
expert.
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Figure 1-16 Structure of gating network

The neurons in gating network are nonlinear with activation function defined by:

exp(u
= o) k=1,2, ..., K
> exp(u;)
j=1
where u is the inner product of the input vector x and synaptic weight vector wy for the
neuron k:
U, =W X, k=1, 2,...,K

The transfer function is a differentiable version of “winner-takes-all” operation of

picking the maximum value. It is referred to as “softmax” transfer function [BRIN 90].

The use of “softmax” as the activation function for the gating network induces the

following properties:

0<g, <1 forallk

The gating network maps the input vector into multinomial probabilities, so the

different experts will be able to match the desired response [JORD 95].

The output is a sum of experts’ outputs and is equal to:

K
y=>.9,Y,
i=1
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The mixture of experts is an associative Gaussian mixture model, which is a
generalization of traditional Gaussian mixture model [TITT 85], [MACL 88].

Conclusion

Multi Neural Networks present obvious advantages over single structures. Bu using a
structure of simple network one can obtain good results without a need for creating large

and complicated networks.

1.7 ANN Conclusion

ANNs present huge variety of architectures and learning algorithms. The area is
developing rapidly. Consequently, they are used as powerful tools in many problems,
especially problems characterized by:

e lack of physical or statistical understanding of a problem
e statistical variations in the data

¢ nonlinear mechanism underlying the problem

ANN have many advantages:

o uniformity of analysis and design — it’s possible to share theories and learning
algorithms in different applications of ANNs

e adaptive morphology — ANNs can adapt to major changes in the operating

environment, ignoring the minor changes
e input-output mapping — model building based on training examples

e universality - many areas of interest, i.e. modeling, pattern recognition, signal

processing, time series analysis
e nonlinearity — ANN are capable of solving non-linear problems

o fault tolerance - resistance to faults in hardware implementation (due to distributed

structure)
e easy VLSI implementability,

o distributed processing — ANNSs are capable of parallel data processing

evidential response — can produce decisions with confidence rates
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neurobiological and statistical analogies - in term of morphology and algorithms

ANNs have also limitations, mainly due to distributed and randomized way of

working:

the given solution is often unpredictable

if ANN doesn’t work as expected it’s sometimes not trivial to find the way to fix

that behavior

Some tasks are more suited to an algorithmic approach (like arithmetic operations),
where ANNs are much less efficient than conventional computation methods and

algorithms

For some learning algorithms and structures the examples must be selected
carefully, otherwise useful time is wasted or even worse - the network might be

functioning incorrectly

Lack of universality - ANN once trained is fixed on some data and cannot process
other task until trained again, Once ANN was designed for some task its design
may be found inappropriate for other tasks

Possibly large number of training examples and long training periods

Knowledge embodied in ANN is usually not accessible (not understandable)
outside of the ANN (i.e. ANN decides that patient needs a surgery, but the reason is

unknown)

It’s hard to incorporate prior knowledge into network

Next section will introduce complexity estimation — methods to estimate the

complication of classification task. Incorporation of the techniques can provide knowledge

about efficient methods for designing the problem solution, in particular modification of T-

DTS structure. It can be also as a knowledge source for a system that adapts itself to

problem.
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Motivation:

This chapter concerns complexity estimation methods. Complexity estimation is a
supportive tool for classification. Complexity estimation is used as a knowledge harvester
that provides clues about organization of processing structure. The goal of complexity
estimation is to verify and measure the difficulty of classification task, yet before proper
processing, in order to modify the processing parameters. The goal is to reduce the user
intervention to minimum, while keeping processing efficient and accommodated to the
processing task. This technique is one of possible tools that could lead finally to automate
processing of computation task.

Structure of this chapter is as follows: section 2.1 introduces complexity estimation as
a possibly supportive tool for classification, because complexity estimation is used in
classification. Section 2.2 introduces the basics of classification as a special case of
prediction. Section 2.3 proposes taxonomy of complexity estimation methods. Section 2.4
exhibits main ideas about complexity estimation methods. Section 2.5 tries to compare

complexity estimation methods. Conclusion ends the chapter.

2.1 Complexity estimation — definition of a problem

Complexity estimation methods are intended for estimating difficulty of data in
classification problem. Classification complexity estimation is used to understand the
behavior of classifiers and for feature selection. It can be also used to choose or adjust

classifier depending on the measured characteristics of the problem.

Bayes error [IRVI 65] is a theoretical probability of classification error, resulting from
the ambiguity of classification task. It is considered as a target classification rate - no
classification algorithm is expected to achieve better results on the unseen data. It is also
the optimal complexity estimator. It is explained in details in section 2.2. There is a great
impact of Bayes error on the most of classification complexity techniques. Bayes error is
however difficult to calculate directly for three main reasons:

e conditional density estimation p(ck|x) is an ill-posed problem [DEVR 87],
o class probabilities p(x) are needed,

o difficulty of numerical integration increases with dimensionality.
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Many approaches aims at estimating Bayes error in indirect way, i.e. propose a
measure which is a lower or higher bound of Bayes error but easier to calculate than direct

estimation. Correlation to Bayes error is a desirable property for other measures.

To understand why classifiers are not successful, it is important to identify sources of
classification problem errors. Relevant effects of geometrical complexity are described by
Basu [HO 01]:

e Class ambiguity — some problems are known to have nonzero Bayes error [HO
97], it means that samples from two different classes may have identical feature
values. (Bayes error sets a lower bound on achievable error rate.) According to Ho
[HO 00], this can happen regardless of class boundary shape and feature space
dimension. Some problems may be intrinsically ambiguous; other problems may be
ambiguous only due to poor features selection. The ambiguity is intrinsic if the

given feature set is complete fer—reconstruction—ofthe—patterns. Otherwise

redefining the features can remove the ambiguity.

e Curvature of boundary / imperfectly modeled boundary complexity — some
problems have complicated optimal decision boundary. In other words, some are
much more difficult than others. Classifying algorithm should have enough
capacity to cope with the problem, otherwise boundary is imperfectly modeled and
classification error will occur (avoidable by reference to Bayes error). This effect is
independent of class ambiguity, sampling density and feature space dimensionality

e Non-representative sample size and feature space dimensionality — sometimes
training set does not represent whole classification problem well. Classification
algorithm considers a problem simple when in fact it is complex but insufficiently
represented. This easily happens in high dimensional space where the class
boundary can vary with a larger degree of freedom. The representativeness of
training set is a subject of study in many theoretical and practical considerations,
like Vapnik’s statistical learning theory [VAPN 98], Kleinberg’s arguments on M-
representativeness [KLEI 96], Berlind’s hierarchy of indicernibility [BERL 94],
Raundy’s and Jain’s work [RAUN 91] and many others [FUKU 71], [KITT 82],
[TOUS 74].

Before presenting specific classification complexity methods, classification and its

complexity related properties will be discussed.
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2.2 Classification as an aspect of Predictive Modelling

Predictive modelling aim is to predict unknown value of variable when provided with
known values of other variables. Predictive modelling can be thought of as a learning of
mapping from an input set of features x to estimated scalar output y. To learn, the
mapping model is provided with training data D, (consisting of pairs of measurements:
vector x(i) with corresponding true output value target y). The goal of predictive modeling
is to estimate (using training data Dy.,i) a function representing the model y=M(x;0) that
generates estimated values of output y, which are expected to be close to true value of
output y. That function is given an input vector x(i) and a set of estimated parameters 6 for

a model M. There are two kinds of task in predictive modelling:
e Classification — values y of output set Y are categorical
e Regression - values y of output set Y are real
To build a predictive model one have to choose three elements:
1. amodel M

2. a score function S for determining how well the model fits the original

problem (how far are real values from results estimated by model f)

3. optimalization strategy, also known in literature as training algorithm, the

aim of it is to minimize the score function S as function of 8

The choice of model is difficult, as huge number of solutions exists in literature. The
advantages of simple models are that they are easier to interpret and usually more stable.
They can be just too simple for complicated problems and don’t achieve satisfactory
results. Relatively new idea is a combination of multiple simple models in some way (i.e.
Multiple Neural Networks [ARBI 89]), which can possibly lead to satisfactory results

without overcomplicating.

Score function (also known as error function) is a function of difference from observed

real output values y and predicted output values y:

S(@) =Y _d(y(i),y)

train

= > d(y(i), f(x(i);0))

Dtrain
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where sum is taken over the tuples (x(i),y(i)) in the training data set and d defines a
distance between real output y and predicted output y for the same input vector x(i).
Distance function d(-) is usually defined as squared distance (Euclidean) for real-valued
outputs y or an indicator function for categorical values of y. Function d(:) has scalar
values. Most known distance functions for real-valued outputs, between feature vectors i

and j where dim is the total number of dimensions (features), are:

e Euclidean distance:

dE(i,j){diZm(xk(i)—xk(j))zf

k=1

e Weighted Euclidean distance:

dWE(i,J){mZmuk(xk(i)—xk(j))z]Z

where vector uk defines the importance weights for features.

e Manhattan (Hamming) distance:

dim

dMH (i’ J): Z|Xk (i)_xk(j)|

e Minkovsky distance:

dy i, )= (dizm(xk (i) Xk(j))ﬂji

k=1

which is a generalization of Euclidean and Manhattan distance. Minkovsky distance
when A=2 equals Euclidean distance and Minkovsky distance with A=1 equals Manhattan

distance.

e Mahalanobis distance:
du = ((<0) (D)= (x(i) ~ x(D))

where x(i) and x(j) are the feature vectors, T represents the transpose, X is the p x p
covariance matrix. The purpose of using £ is to standardize the data relative to covariance
matrix. The formula can be used also as a data complexity criterion as described in section
1.4.15.
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e Tchebyshev distance:

dT (i, J) =maxX;_, |Xk (') Xy (J)|

Tchebyshev distance is a generalization of Minkovsky distance when A approaches
infinity.

e Canberra distance:

|Xk (i) - Xk(J)|
7 1% (@) + %, (J)

do (i, J) = Z

Optimalization strategy (commonly known in Neural Network literature as training
algorithm) depends amongst others on type of predictive modelling task (classification or

regression), specificity of task, chosen model M and score function S(:) used.

In classification we wish to learn a mapping (function) from feature vectors x to

categorical values from space C (class labels). Class labels take values in the set {ci,...,
Cm}-

The most popular approach to deal with classification problems is to use discriminative

classification, which is described in next section.

2.2.1 Discriminative classification

In a discriminative approach, a classification model f(x; 6) (prediction model for
classification task is known as classifier) takes input vector x and assigns to it a value from

the set of classes{ ci,..., Cm}.

Decision region for class c¢; (where ie[1, m]) is union of all regions in the input
feature space where output takes value of c;. In other words, decision region for ¢; is a set
of all input values for whose output is ci. Complement of this decision region is the

decision region for all others classes.

Decision boundaries or decision hyperplanes separate the decision regions.
Mathematical form of decision boundaries can be straight lines or planes (linear

boundaries), curves boundaries such as polynomials and other.

In most real classification problems, the classes are not perfectly separable in feature
space. The situation when relatively very close input vectors x are from different classes is
referred to as classes overlapping. 1t leads to another way of seeing classification problem

— we can seek a function f(x; 6) which maximalizes some measure of separation between
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classes. Such functions are called discriminant functions. The earliest formal approach to
classification, Fisher’s linear discriminant [FISH 00], was based on this idea. It sought
the optimal linear combination of the variables in input space. The goal was to maximally

discriminate two classes.

2.2.2 Probabilistic models for classification

Let p(ck) be the probability that object comes from class cx. Then, if classes are

exclusive and exhaustive we have Zk p(c,)=1. Often p(ck) are referred to as prior
probabilities since they represent the class probabilities before observing the vector x.

Objects from class cx are assumed to have measurement vectors x distributed
according to probability distribution (density function) p(x|ck, &), where 6 are unknown
parameters distribution. For example, the estimated distribution may be multivariate
Gaussian (normal), and the parameters 6 may represent the mean and variance of that

distribution.

Once the distributions have been estimated, we can yield the posterior probabilities:

PXIC.OPE) 1<k <m
> p(xlc;, 0)p(c)

p(C, [X) =

If one knew the true posterior probabilities (instead of estimating them), then it would

be possible to make optimal classifications.

Figure 2-1 presents two Gaussian distributions (cases from two classes: ¢; and ¢y) in

one-dimensional space:

P(X| c2,02)p(c2)

p(x)
p(x|c1,61)p(c1)

Figure 2-1 Two Gaussian distributions and Bayes error

The values of x axis represent values of feature X, and the values on the y axis

represent posterior probabilities of classes (in other words distributions, scaled using prior

Mariusz Rybnik — Ph.D. Thesis -54 -



Chapter 2 — Complexity estimation

probabilities). There is an area, where the distributions overlap each other. In the
overlapping area, classification errors cannot be avoided, as cases from both classes have
the same feature values (the situation is referred to as class ambiguity). The inevitable
classification error occurs only in the dashed area. To classify in an optimal way, one
should take most probable class along the X space.. Overlap means that there is a non-zero
probability that the data comes from other class than the locally optimal. Bayes error of

classifier f(x; 0) is the minimal probability of misclassification in whole input space X:
&= j(l— max p(ck|x))p(x)dx

That value corresponds to dashed area. This is the minimum error rate. It is a lower-
bound on the best possible classifier for the problem. No classifier is expected to achieve

lower error on unseen data due to problem ambiguity.
Bayes optimal classifier is a classifier which error rate is equal to Bayes error.
Bayes optimal classifier is done as:

X —C;,suchas p(c, |x)= max p(c, | X)

Usually in real problem we don’t know however conditional probabilities p(cy|X).

In the example above, Bayes optimal classifier is a classifier which separates the
classes using a threshold value b, marked in the figure 2-1, assigns cases with feature value

less than b, class label ¢; and with values greater or equal b, class label c,.
Methods to compute Bayes error:
e Analytical — difficult to calculate, depends on distribution parameters,
e Experimental — estimate class densities basing on non-parametric methods.
Next section describes the various ways to build classifiers depending on the theory
presented above.
2.2.3 Approaches to build classifiers

In order to build classifiers many techniques can be used. One can identify three main
approaches:

1. The discriminative approach — find direct mapping from inputs x to one of m

class label cs,... cm. No attempt to model class conditional or posterior class
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probabilities. Ex. perceptron, Multi Layered Perceptron, Support Vector
Machines [ARBI 89], [HAYK 99].

2. The regression approach — The posterior class probabilities p(cy|x) are modelled
explicitly, and for prediction, the maximum of these probabilities weighted

by cost function is chosen. Ex.: logistic regression [COLL 00].

3. The class-conditional approaches — The class-conditionals p(x|ck,6) (where 6
represent distribution parameters) are modelled explicitly along with
estimates of p(cy) and both are used to compute p(cy|x). Also known as

generative approach and classifiers as “Bayesian” classifiers.

2.2 4 Classification methods

The classification methods may cover the whole input space with one model or use
submodels, where each submodel covers small area of space, and at last the union of the
submodels covers the whole input space. Depending on that feature one can categorize

classification methods:

1. Global approximation — there is only one model which covers all data feature

space.
a. Fisher discriminant function -,
b. Perceptron -,
C. Logistic Discriminant Analysis -

d. Linear discriminants - the method is based on the search of the linear

combination of the variables which separates best the classes,

e. Nearest neighbor methods - to classify a new object one examines k nearest
neighbors of object and assigns the object to the class that has the majority of

points amongst these k neighbors,
f. Feed-forward NN — perceptron, Multi Layered Perceptron,

g. Support Vector Machines — they are long cousin of perceptron. Perceptron
searches linear hyperplane that perfectly seprates the data from different
classes, SVM work in similar way, extending the feature space to include

transformations of the raw variables and searching linear decision surface in
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the enhanced space. This conforms to nonlinear decision surface in the raw

measurement space.
The Naive Bayes model —
Bayesian model averaging -

Projection pursuit methods — they consist of linear combinations of

nonlinear transformations of the raw variables. They are data-driven.

Probabilistic Neural Networks — model is built depending on the learning

examples presented to network.

2. Local approximation — model consists of many smaller models (sub-models). Each

sub-model covers a part of data feature space.

a.

Mixture models — approximate each class-conditional distribution by a
mixture of simpler distributions (for example multivariate Gaussian

distributions),

Radial basis functions (RBF) — NN approach similar to mixture models,

they combine many models of local influence to produce a mixture model,
Mixture of experts — NN approach parallel to mixture models.

Tree models — basic principle is to partition in a recursive manner the space

spanned by the input variables to maximalize some score of data separability.

Artificial Neural Networks are frequently used with success to solve classification

problems. Most popular ANNs used in this purpose are: perceptron, multilayered feed-

forward neural networks, (especially MLP), mixture of experts, radial basis function,

projection pursuits, Support Vector Machines. Most of these structures are described in

Annex B.

There are methods to evaluate the efficiency of classification and compare them to

others. Two most known methods are described in the next section.

2.2.5 Evaluating and comparing classifiers

Leaving-one-out method — from known data of n vectors, we create n training sets by

leaving one vector each time for generalization (testing set). Thus we train the model n

times, and verify obtained classification rates on left vector, which is unseen by the model
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(not included in learning). By using this method one can use whole available data for

learning and classify whole set, keeping generalization free of data known from learning.

Bootstrap methods — model the relation between unknown true distributions and the
sample by analyzing the relation between the sample and subsample of the same size

drawn from the sample.

2.2.6 Feature reduction

Not all variables measured are always necessary to build a model. In fact
overwhelming number of variables may lead to worse models. It is not obvious which
variables are non relevant and can be deleted. General strategies to reduce the number of

variables without much loss of important information are:

Variable selection — the idea is to select a sub-database of variables of the original set
of features. There is a combinatorially large search space of variable sub-databases which

may be considered.

Variable Transformations — transform the original measurements by some linear or
non-linear functions in order to diminish the number of variables and thus simplify further

processing. Examples:

e Principal component analysis [TIPP 97] — modification of directions in space in

order to achieve maximum variance;
e Projection pursuit [HUBE 85] - search for interesting linear projections;

e Factor analysis [GORS 83] — linear transformation of data in search for interesting

properties;

¢ Independent component analysis [COMO 91] — extracting maximally independent
components form data.

2.3 Taxonomy of complexity estimation methods

Significant part of complexity estimation methods are related to Bayes error
estimation. Due to the difficulties with direct Bayes error computation, some approaches
try to estimate Bayes error in indirect way, i.e. propose a measure which is a lower or
higher bound of it but easier to calculate than direct estimation. Another method is to use

non-parametric methods to estimate Bayes error.

Mariusz Rybnik — Ph.D. Thesis -58 -



Chapter 2 — Complexity estimation

Correlation to Bayes error is a desirable property for other measures. Some of them
take advantage from space partitioning. Thus, one can divide the measures into four

classes:

e indirect Bayes error estimation (probabilistic distance measures) — parametric

estimates of Bayes error;

e non-parametric Bayes error estimation — methods which are proven to estimate

Bayes error but in non-parametric way;

e methods based on space partitioning — they are connected to some space
partitioning algorithms;

e other methods — the ideas are different, but always high correlation between
measures and Bayes error is a desired property.

Complexity estimation methods

Bayes error estimation Space partitioning Other

Indirect Non-parametric

Figure 2-2 Proposed taxonomy of complexity estimation methods

2.4 Presentation of selected methods

Complexity estimation is not a very popular subject. Regarding that fact, this section
present in detail classification complexity estimation methods, categorized as stated in
previous section. Section 2.4.1 presents indirect Bayes error methods, section 2.4.2
exhibits non-parametric Bayes error estimation methods, section 2.4.3 familiarizes with
measures related to space partitioning and section 2.4.4 stages other methods. Section 2.4.5
talks briefly about a possibility of creating ensembles of estimators, which correctly used

can inhibit advantages over solo methods.
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2.4.1 Indirect Bayes error estimation

To avoid the difficulties related to direct estimation of the Bayes error, a popular

approach is to estimate a measure directly related to the Bayes error, but easier to calculate.

Usually one assumes that the data distribution is normal (Gaussian).

Statistical methods grounded in the estimation of probability distributions are most

frequently used. The drawback of these is that they assume data normality. A number of

limitations have been documented in literature [VAPN 98].

construction of model could be time consuming;
model verification could be difficult;

as data dimensionality increases, a much larger number of samples is needed to

estimate accurately class conditional probabilities;

if sample does not sufficiently represent the problem, the probability distribution
function cannot be reliably approximated and Bayes error cannot be accurately

estimated;

with a large number of classes present, estimating a priori probabilities is quite
difficult. This can be only partially overcome by assuming equal class probabilities
[FUKU 901, [HO 02].

we normally do not know the density form (distribution function);
most distributions in practice are multimodal, while models are unimodal;

approximating a multimodal distributions as a product of univariate distributions do

not work well in practice.

Following subsections will present complexity measures based on indirect Bayes error

estimation.

2.4.1.1 Normalized mean distance

Normalized mean distance is a very simple complexity measure for Gaussian unimodal

distribution. It raises when the distributions are distant (measured by distance between

means) and not overlapping.

d

_ |/”1 _,u2|

norm
o, +02
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The main drawback of that estimator is that it is inadequate (as a measure of

separability) when both classes have the same mean values.

2.4.1.2 Chernoff bound

The Bayes error for the two class case can be expressed as:

£= Imiin[P(ck) p(x]c, )Jdx

Through modifications, we can obtain a Chernoff bound ¢, which is an upper bound
on ¢ for the two class case:

g, =P(c,)° P(c,)" Ip(xs lc,)p(x** | c,)dx for O<s<l.
The tightness of bound varies with s.

2.4.1.3 Bhattacharyya bound

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical
evidence indicates that optimal value for Chernoff bound is close to 1/2 when the majority
of separation comes from the difference in class means. Under a Gaussian assumption, the

expression of the Bhattacharyya bound is:

&y =4/ P(Cl)P(Cz)e_#WZ)

where:

2i+Z,

-1
1 . +X 1

u(1/2) =§(ﬂz - )’ {%} (1, —ﬂ1)+§|n—

DA

and ; and X; are respectively the means and covariances of classes ie{1,2}.

2.4.1.4 Divergence

Measure of divergence [LIN 91] (separability) is related to verisimilitude ratio.
Verisimilitude ratio L, between two classes ¢; and c; is defined as:

P(X |c,)

LH(X):W

Divergence is defined as function of logarithm of verisimilitude ratio:
Dy, = E[Lllz(x) | Cl]+ E[Lél(x) | Cz]’

and after transformations:
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P(X |c,)
D, = [(P(X|¢,)—(P(X|c,)In———22dx

2 = [(P(X 1)~ (P(Xc,) PX 1o

The measure of divergence has the following properties:

1. D, >0

N

Symmetry: D, = D,,

3. If probabilities distributions P(X|c1) and P(X|c,) are equal then divergence D,
equals 0. In particular D1;=0.

4. If variables X',  X?..,X® are statistically independent, i.e.

d d
P(X |C1):HP(Xk |c,) then D, (X) = Dlz(xlvle---lxd):ZDlz(Xk)
k=1 k=1

5. As consequence of properties 1 and 4:

D, (X5 X2, X4, X)) > D, (XY X2, X9)

That property is important because it means that divergence will increase with
addition of new variables.

Calculation of the divergence is significantly simplified when distributions of variables

are normal. In that case divergence equals:

D, = %tl’[(zl -2 )(251 -2 )]+ %trkzl_l +27 Xﬂl —H, )(;ul —H, )T J

where tr signifies trace of a matrix, p and p, class means, > jand Y, class covariance
matrices.

Divergence measures the degree of separability between two classes. Therefore in
order to evaluate multi class case one should count an average of all two-element

combination of classes. Computational cost of divergence is significant.

Transformed divergence is defined as:
7D12
D, =2[1—e % }
Transformed divergence takes values from range [0,2] and increases with class
separability.

2.4.1.5 Mahalanobis distance
Mahalanobis distance [TAKE 87] is defined as follows:

Mo = (et = 11) 21, — 11y)
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Mp is the Mahalanobis distance between two classes. The classes’ means are [y and
and X is the covariance matrix. Mahalanobis distance is used in statistics to measure the
similarity of two data distributions. It is sensitive to distribution of points in both samples.
The Mahalanobis distance is measured in units of standard deviation, so it is possible to
assign statistical probabilities (that the data comes from the same class) to the specific
measure values. Mahalanobis distance greater than 3 is considered as a signal that data are

not homogenous (does not come from the same distribution).

Similar practice is applied in complexity estimation: high values of Mahalanobis

measure indicate that classes in discrimination problem are well separated.

2.4.1.6 Jeffries-Matusita distance

Jeffries-Matusita [MATU 67] distance between classes c; and c; is defined as:

‘]MD = J;{\/p(x |C2)—\/p(x |C1)}2dX

If ¢, and ¢, distributions are normal Jeffries-Matusita distance reduces to:
M, =2(1-e)

, where

1 (2, +2,)" 1 dets
= (- g 22220 | (g, - py)+ 2 log,| 2=
o=k, #1)( > ) (k= 1)+ log, JoTE, —detz,

Matusita distance is bounded within range [0, 2] where high values signify high

separation between classes ¢; and ¢;,

2.4.1.7 Entropy measures

Examining the dependence between the data vector x and the class ¢ gives a measure
of how much information these two distributions contain about each other. The proof is as
follows — for the extreme case when x and c are independent, p(c|x) and p(c) are
equivalent. It means that data provides no information about which class it should belong
to. Therefore the data is worthless for classification. That logic leads to information
theoretic measures for class separability. The procedure is to observe x and compute the a
posteriori probabilities p(ci|x) to determine the amount of class information contained in

the observation. One of the most popular measures is Shannon’s measure:

3 == 2 p(@, 1) log; [p(@, [ )]p(dx
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L is the number of classes. Unlike the Chernoff and Bhattacharyya distances, this
equation is not limited to the two classes but neither is directly related to Bayes error. The
probability densities are needed, that implies that entropy based measures suffer from
difficulties of estimating Bayes error directly. It is known however that the variances
associated with entropy measures of class separability are normally lower than those

associated with direct Bayes error estimation.

2.4.2 Non-Parametric Bayes error estimation and bounds

Non-parametric Bayes error estimation methods make no assumptions about the
specific distributions involved. They use some intuitive methods and then prove the
relation to Bayes error. Non-parametric techniques do not suffer from problems with

parametric techniques:

2.4.2.1 Error of the classifier itself

This is the most intuitive measure. However it varies much depending on the type of
classifier used and, as such, it is not very reliable unless one uses many classification
methods and averages the results. Last solution is certainly not computationally efficient.

2.4.2.2 k Nearest Neighbours, (k-NN)

K- Nearest Neighbours [COVE 67] technique relays on the concept of setting a local
region 7(x) around each sample x and examining the ratio of the number of samples
enclosed k to the total number of samples N, normalized with respect to region volume v:

K-NN technique fixes the number of samples enclosed by the local region (k becomes

constant). The density estimation equation for k-NN becomes:

k-1
v(X)N

p(x) =
where p(x) represent probability of specific class appearance and v(x) represent local

region volume.

K-NN is used to estimate Bayes error by either providing an asymptotic bound or

through direct estimation. Asymptotic bounds are derived by an application of the voting
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k-NN procedure. For the two class case, where e represents the k-NN estimate of ¢,

these estimates form a bound on ¢ by:
1 < < <.<g<.< < <
Eg S S S esiS<ey Sepw S2¢

As N—oo asymptotically the estimations are closer to €. For the L class case, as N—oo,

we obtain the following bound:

L
ey S 26— Ph

The k-NN estimate of Bayes error can exhibit significant biases and variances when N
is finite. K-NN can directly estimate ¢ by first estimating the expected value of the risk that

the biases and variances will influence the estimation. The formula for this estimate is:

This estimate is not known to bound Bayes error but it is known to have a smaller

variance than the estimate found through the voting k-NN procedure.
K-NN estimation is computationally complex.
2.4.2.3 Parzen Estimation

Parzen techniques relay on the same concept as k-NN: setting a local region 7(x)
around each sample x and examining the ratio of the samples enclosed k, to the total

number of samples N, normalized with respect to region volume v:

- k
p(x) =N

The difference according to k-NN is that Parzen fixes the volume of local region v.

Then the density estimation equation becomes:

a0x) = KX)
p(x) = N

where p(x) represents density and k(x) represents number of samples enclosed in

volume.
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Estimating the Bayes error using the Parzen estimate is done by forming the log
likelihood ratio functions based upon the Parzen density estimates and then using
resubstitution and leave-one-out methodologies to find an optimistic and pessimistic value

for error estimate. Parzen estimates are however not known to bound the Bayes error.
Parzen estimation is computationally complex.
2.4.2.4 Boundary methods

The boundary methods are described in the work of Pierson [PIER 98]. Data from each
class is enclosed within a boundary of specified shape according to some criteria. The
boundaries can be generated using general shapes like: ellipses, convex hulls, splines and
others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it
Is a natural representation of those. The boundaries may be made compact by excluding
outlying observations. Since most decision boundaries pass through overlap regions a
count of these samples may give a measure related to misclassification rate. Collapsing
boundaries iteratively in a structured manner and counting the measure again lead to a
series of decreasing values related to misclassification error. The rate of overlap region
decay provides information about the separability of classes. Pierson discuses in his work a
way in which the process from two classes in two dimensions can be expanded to higher
dimension with more classes. Pierson has demonstrated that the measure of separability
called the Overlap Sum is directly related to Bayes error with a much more simple
computational complexity. It does not require any exact knowledge of the a posteriori
distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to

progressive collapsing iterations:

m

04 (mty) == 3" (Kt )As(kty)

k=1

where t, is the step size, m is the maximum number of iteration (collapsing
boundaries), N is the number of data points in whole dataset and As(kto) is the number of
points in the differential overlap.

In his partial PhD work entitled “Using boundary methods for estimating class
separability* [PIER 98] Pierson writes that: “BMs (Boundary Methods) provide a measure
of class separability, the overlap sum (OS), which is strongly correlated with Bayes error
and easily computed. These properties suggest BMs can be used as an alternative to
traditional Bayes error estimation techniques.” The advantage of using Overlap Sum over
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estimating Bayes error is that Overlap Sum doesn’t require knowledge about a posteriori
distributions. Overlap Sum is correlated to Bayes error, which is a measure of class
separability known to be optimal. Pierson shows theoretically and empirically in his work
that there is a direct relationship between BM and Bayes error. Furthermore, he shows an
advantage of Overlap Sum complexity measure over k-NN due to computational

complexity.

2.4.3 Measures related to space partitioning

Measures related to space partitioning are connected to space partitioning algorithms.
Space partitioning algorithms divide the feature space into sub-spaces. That allow to obtain
some advantages, like information about the distribution of class instances in the sub-
spaces. Then the local information is globalized in some manner to obtain information

about the whole database, not only the parts of it.

2.4.3.1 Class Discriminability Measures

Class Discriminability Measures (CDM) [KOHN 96] are based on the idea of
inhomogeneous buckets. The idea here is to divide the feature space into a number of
hypercuboids. Each of those hypercuboids is called a “box”. The dividing stops when any

of following criterias is fulfilled:
1. box contains data from only one class

2. box is non-homogenous but linearly separable

NO.375

3. number of samples in a box is lower that , Where N is the total number of

samples in dataset

If the stopping criteria are not satisfied, the box is partitioned into two boxes along the
axis that has the highest range in term of samples, as a point of division using among
others median of the data.

Final result will be a number of boxes which can be:

e homogenous terminal boxes (HTB)
e non-linearly separable terminal boxes (NLSTB)

e non-homogenous non-linearly separable terminal boxes (NNLSTB)
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In order to measure complexity, CDM uses only Not Linearly Separable Terminal
Boxes, as, according to author, only these contribute to Bayes error. That is however not
true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors of
the boxes — partitioning (and in fact nothing) cannot by itself diminish the Bayes error of

the whole dataset, however it can help classifiers in approaching the Bayes error optimum.

The formula for CDM is:

coM = 3 fk(i) - max(k(j )

1
N

where k(i) is the total number of samples in the i NNLSTB, k(j|i) is the number of
samples from class j in the i™ NNLSTB and N is the total number of samples. For task that

lead to only non-homogenous but linearly separable boxes, this measure equals zero.

2.4.3.2 Purity

Purity measure [SING 02A] is developed by Singh and it is presented with connection
to his idea based on feature space partitioning called PRISM (Pattern Recognition using
Information Slicing Method). PRISM divides the space into cells within defined resolution

B. Then for each cell probability of class i in cell I is:

=t

where n;; is the number of points of class j in cell I, nj; is the number of points of class i

in cell | and K is the total number of classes.

Degree of separability in cell | is given by:

S (S

i=1

These values are averaged for all classes, obtaining overall degree of separability:
H |
total N
Sy = Z Sun
= N

where N' signifies the number of points in the I-th cell, and N signifies total number of

points.
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If this value was computed at resolution B then it is weighted by factor sz% for

B=(0,1,...,31). Considering the curve (Sy versus normalized resolution) as a closed

polygon with vertices (X;,yi), the area under the curve called purity for a total of n vertices

IS given as:

1 n-1
AS, = E[Z(XI Yiir = ¥iXin )J

i=1

The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing
process maximum possible value is 0.702, thus the value is rescaled once again to be

between [0, 1] range.

The main drawback of purity measure is that if in a given cell, the number of points
from each class is equal, then the purity measure is zero despite that in fact the distribution
may be linearly separable. Purity measure does not depend on the distribution of data in
space of single cell, but the distribution of data into the cells is obviously associated with

data distribution.

2.4.3.3 Neighbourhood Separability

Neighbourhood Separability [SING 02A] measure is developed by Singh. Similarly to
purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest
neighbours are found. Then one measure a proportion px of nearest neighbours that come
from the same class to total number of nearest neighbours. For each number of neighbours
k, 1<=k<=A; calculate the area under the curve that plots pyx against k as ¢;. Then compute

the average proportion for cell H; as:

1
P = WJZ)%
Overall separability of data is given as:

H toral NI
Sw = Z P W
1=1

One compute the NNM measure for each resolution B=(0, 1, ... ,31). Finally, the area

ANNM under the curve NNM versus resolution gives the measure of neighbourhood
separability for a given data set. The value is rescaled as AS,, = ASN%mZ to be in

range [0, 1].
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2.4.3.4 Collective entropy

Collective entropy [SING 02B], [SING 02C] measures degree of uncertainty. High
values of entropy represent disordered systems. The measure is connected to data
partitioning algorithm called PRISM.

Calculate the entropy measure for each cell H;:
Ky
E, = Z(_ Pi 'Iog(pil ))
i=1
Estimate overall entropy of data as weighted by the number of data in each cell:
Hiotal N I
E = E .—
Z "N
Collective entropy for data at given partition resolution is defined as:

E. =1-E
This is to keep consistency with other measures: maximal value of 1 signifies complete
certainty and minimum value of 0 uncertainty and disorder.

Collective entropy is measured at multiple partition resolutions B=(0,...31) and scaled
1 : :
by factor W:W to promote lower resolution. Area under the curve of Collective

Entropy versus resolution gives a measure of uncertainty for a given data set. That measure

should be scaled as AS; = As%mz to keep the values in [0,1] range.

2.4.4 Other Measures

The measures described here are difficult to classify as they are very different in idea

and do not resemble others.

2.4.4.1 Correlation-based approach

Correlation-based approach [RAHM 98] is described by Rahman and Fairhust. In
their work, databases are ranked by the complexity of images within them. The degree of
similarity in database is measured as the correlation between a given image and the rest
images in database. It indicates how homogenous the database is. For separable data, the
correlation between data of different classes should be low.
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2.4.4.2 Fisher discriminant ratio

Fisher discriminant ratio [FISH 00] originates from Linear Discriminant Analysis
(LDA). The idea of linear discriminant approach is to seek a linear combination of the
variables which separates two classes in best way. The Fisher discriminant ratio is given

as:

fl _ (ﬂl —H2 )2

- 2
O'l +O'2
H

where Wi, W2, 01, 02 are the means and variances of two classes respectively. The
measure is calculated in each dimension separately and afterwards the maximum of the
values is taken. It takes values from [0,+oc]; high value signifies high class separability. To
use it for multi class problem it is necessary however to compute Fisher discriminant ratios

for each two-element combination of classes and later average the values.

Important feature of the measurement is that it is strongly related to the structure of
data. The main drawback is that it acts more like a detector of linearly separable classes

than complexity measure. The advantage is very low computational complexity.

2.4.4.3 Interclass distance measures (scatter matrices)

The interclass distance measures [FUKU 90] are founded upon the idea that class
separability increases as class means separate and class covariances become tighter. We

define;

Within-class scatter matrix:
L
SW = z P(a)| )ZI
i=1
Between-class scatter matrix:

Sp = Zp(a)i)(ﬂi — o) (14 _:uo)T

i=1
Mixture (total) scatter matrix:
S,=S,+S,
where ; are class means, P(c;) are the class probabilities, X; are class covariance

matrices, and g, = Z;P(a}i )4; is the mean of all classes.
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Many intuitive measures of class separability come from manipulating these matrices
which are formulated to capture the separation of class means and class covariance
compactness. Some of the popular measures are:

_tr(Sy)
3, =tr(S;ts,)  J.=In[s;'s| * T (s,)

where Sy, S, are a tuple from among {Sy, Sw, Sm}, and tr signifies trace of a matrix.

Frequently many of these combinations and criteria result in the same optimal features.

2.4.4.4 Volume of the overlap region

We can find volume of the overlap region [HO 98] by finding the lengths of
overlapping of two classes’ combination across all dimensions. The lengths are then
divided by overall range of values in the dimension (normalized):

—d

max min

where d, represents length of overlapping region, dmax and dmin represent consequently

maximum and minimum feature values in specified dimension.

Resulting ratios are multiplied across all dimensions dim to achieve volume of

overlapping ratio for the 2-class case (normalized with respect to feature space)

dim

v, = H r,
i=1

It should be noted that the value is zero as long as there is at least one dimension in
which the classed don’t overlap. In order to expand the measure to multi class case, one

should take the average of the values computed for all two elements classes’ combinations.

2.4.4.5 Feature efficiency

The feature efficiency [HO 98] measure describes the efficiency of features in
differentiating the classes. It doesn’t however contribute to the joint effect of features. If
there is an overlap in feature values for two classes we consider the classes ambiguous in
that region (along that dimension). If the problem is linearly separable then there exists at
least one dimension in which the classes don’t overlap each other. For other problems that
are globally ambiguous one may progressively remove the ambiguity by separating only

the points that lie outside of overlapping region in each chosen dimension. The individual
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feature efficiency may be defined as the fraction of the remaining points separated by that

feature.

2.4.4.6 Minimum Spanning Tree (MST)

The method is based on use of the Minimum Spanning Tree (MST)| [FRIE 79]. One
constructs a MST that connects all data points to their nearest neighbours regardless of
class labels. The number of data points connected to an opposite class by an edge of MST
is then computed. The fraction of remaining points to the size of dataset is used as a
measure of complexity. The flaw of the approach is that it is disrupted by a small margin
narrower than the distance between points of the same class.

2.4.4.7 Inter-intra cluster distance

The average inter-cluster distance is computed by considering all data in both clusters
(classes):

_ I1Swi + IZSWj

IC —
I, +1,

where |1 and |, are the numbers of samples in the two clusters and Syi, Sw; represent

consequently inter-cluster distance of cluster i and inter-cluster distance of cluster j.

Between-cluster distance Sy is computed in analogical way, by considering the distance

between the point pairs across clusters.

The ratio S,/Sp shows how separate are the two classes. The measure is bounded within
range [0;+x]. A low value indicates that the two datasets are separable. A measure of
multi-class problem is done by averaging the values of (S\/Sy) across all class combination

and all features.

2.4.4.8 Space covered by epsilon neighbourhoods

The main idea of space covered by epsilon neighbourhoods is to enclose each class in
largest hypersphere possible excluding other classes. The number and size of that

hyperspheres define the classification complexity of the problem [HO 00].

The algorithm for the space by epsilon neighbourhoods is as follows:
1. compute the starting radius of hypersphere value ry,
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2. for each data point we grow the size of the hypersphere in increments of r,, and
terminate the process when increasing the hypersphere leads to inclusion of

samples from other classes.

Average proportional size in terms of number of members in each hypersphere divided

by the total number of data points is used as a measure of complexity.

2.4.5 Ensemble of estimators

The idea here is to combine several methods, for example: use weighted average of
them. It is possible that a single measure of complexity may be not suitable for practical
applications; instead a hierarchy of estimators may be more appropriate [MADD 90]. The
computation of several methods at once is potentially more difficult than one, but using
several simple methods could be faster than one complex method.

2.5 Complexity Estimation Conclusion

Classification complexity estimation methods present great variability. The methods
which are derived from Bayes error are most reliable in term of performance, as they are
theoretically stated. The most obvious drawback is that they have to do assumptions about
a priori probability distributions. The methods which are designed on experimental
(empirical) basis are very various and their performance is difficult to predict. The
advantage of the last is that they frequently base uniquely on experimental data and do not
need probability density estimates of distributions, as they obtain that in experimental way
during the processing. Not every method is suitable to estimate a complexity of multi-class
classification problem — some are designed only to two-class problems, and as such they
need special procedures to accommodate them to multi-class problem (like counting the
average of complexities of all two-class combinations) what usually result in combinatorial

increase in computational complexity.

Table 2-1 Comparison of complexity estimation techniques

Technique Relation to Computgtlonal Advantages Disdvantages
Bayes error | complexity
Chernoff bound direct Need pdf estimates, 2
class only
Bhattacharyya bound direct Need pdf estimates, 2
class only
Divergence high 2 class only
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Mahalanobis distance 2 class only
Matusita distance 2 class only
E not not limited class
ntropy measures .
equivalent number
Depends on the
depends on -
- . - characteristics of
Classifier error potential the classifier .
classifier used — not
used -
reliable
k-Nearest Neighbours direct high pdf estimates not
needed
Parzen estimation not known | high pdf estimates not
needed
Boundary methods yes medium pdf estimates not
needed
Class Discriminability low?
Measures
Purity no high
Neighbourhood .
separability high
Collective entropy no high
Correlation based approach
Fisher discriminant ratio very low 2 class only
Interclass distance not
measures (scatter matrices) | equivalent
Volume of the overlap |
. ow
region
Feature efficiency
Minimum Spanning Tree
Inter-intra cluster distance high 2 class only
Space covered by epsilon
neighbourhoods
probably high | potentially more
Ensemble of estimators ? as multiple reliable than single
methods used | method

The complexity estimation methods are interesting in many ways, but in this work we
are interested mainly in autoadaptation of processing system to the data. Complexity
estimation is essential in the process, as it allows obtaining significant knowledge. The
knowledge may be used to plan and adjust the processing system yet before any processing
would start. This idea led to development of complexity driven Neural Networks based

classifier.
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Next chapter will present the Treelike-Divide To Simplify (T-DTS) approach, which
represent the main work of this PhD thesis, as a system which aims on data decomposition

and usage of multiple processing models.
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Chapter 3 — Treelike-Divide To Simplify

Motivation: This chapter has to present in detail the new Treelike-Divide To Simplify
approach, define its structure, and describe the types of modules that are used in the
structure. It will present also in detail procedures and algorithms that are used for the
creation, execution and modification of modules. It will discuss also advantages and

disadvantages of T-DTS approach and compare it with other approaches.

In a very large number of cases, dealing with real world dilemmas and applications
(system identification, industrial processes and manufacturing regulation and optimization,
decision, pattern recognition, systems and plants safety, etc.), information is available as
data stored in files (databases etc.). Especially in industrial areas, efficient processing of
data is the chief condition to solve problems. Efficiency concerns not only performance in
term of correct processing, but also temporal aspect of calculations. In the most of those

cases, processing efficiency is closely related to several issues among which are:

e Data nature: the properties of data; includes complexity, quality and

representativeness:

o Data complexity, related to nonlinearity, may affect the processing

efficiency.

0 Quality (noisy data, etc.): may influence processing success and expected

results quality.

0 Representativeness: concerning scarcity of pertinent data, could affect

processing achievement.

e Processing technique related issues: including model choice, processing

complexity and intrinsic processing delay.

The choice or availability of appropriated theoretical model describing the behaviour
related to the processed data is of major importance. Processing technique and algorithm
complexity (designing, precision, etc) shapes the processing effectiveness. Intrinsic
processing delay or processing time is related to the processing technique’s

implementation (software or hardware related issues).

One of the key points on which one can act is the complexity reduction. It concerns not
only the problem solution level but also appears at processing procedure level. The
constraints relative to the nature of data to be processed, difficult dilemma related to the

choice of appropriated processing techniques and allied parameters make complexity
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reduction a key point on both data and processing levels. T-DTS (Treelike Divide To
Simplify) paradigm which is a lead motive of this thesis is able to reduce complexity on
both data and processing levels. The main idea of the T-DTS is based on the notion
“Divide et impera” (Julius Caesar), transformed here to “Divide To Simplify” (DTS).

The main idea is to split a complex problem into many easier subproblems. T-DTS
have a modular structure that allows parallel processing and simplification of the problem.
The purpose is based on the use of a small set of specialized mapping Neural Networks,
called Neural Network Models (NNM), supervised by a Decomposition Unit (DU).
Decomposition Unit could be a prototype based neural network, Markovian decision
process, etc. The modules responsible for processing in the structure are Artificial Neural
Networks (models). The T-DTS paradigm allows us to build a tree structure. At the node’s
level, the input space is decomposed into a set of subspaces of smaller sizes. At the leaf’s
level the aim is to learn the relations between inputs and outputs relatives to one of sub-

spaces, obtained from splitting.

The organization of this chapter is as follows: next section is an introduction to
modular algorithms that is followed by general description of T-DTS. Sections 3.1 to 3.6
concentrate on specific aspects of T-DTS algorithm: 3.1 - building of decomposition
structure, 3.2 - decomposition of learning database, 3.3 - training of Neural Network
models, 3.4 - decomposition of generalization database, 3.5 - using trained NNModels on
data, 3.6 - combining obtained results. Section 3.7 discuses properties of T-DTS, pointing

out the advantages and the disadvantages of the paradigm.

Introduction - Modular algorithms

Apart from explicit solution of problem by specialized “one-piece” algorithm, there
exist a number of solutions, which have modular structure. Such modular structure when

modules are Neural Networks is usually called Multi Neural Network (MNN).

The approaches most close to presented in this work are known as Committee
Machines, which are based on the principle “Divide et impera” (Julius Caesar). The main

frame of the principle can be expressed as:
e Break up problem into two (or more) smaller subproblems of similar structure.
e Solve subproblems

e Combine results to produce solution to original problem.
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The ways in which the original problem is split differ as well as the algorithms of
solving subproblems and combining the sub-solutions. The splitting of the problem can be
done in recursive way. Very known algorithm using the paradigm is Quicksort [HOAR
62], which splits recursively data in order to sort them in defined order. In the ANN area

the most known algorithm of similar structure is Mixture of Experts.

An issue could be model complexity reduction by splitting of a complex problem into
a set of simpler problems: multi-modelling where a set of simple models is used to sculpt a
complex behaviour [GOON 96]. Another promising approach to reduce complexity takes
advantage from hybridization [KROG 95]. Several ANN based approaches were suggested
allowing complexity and computing time reduction. Among proposed approaches, one can
note the Intelligent Hybrids Systems [KROG 95], Neural Network Ensemble concept
[HANN 93], Models or experts mixture ([BRUS 95], [SUNG 95]), Dynamic Cell Structure
architecture [LANG 98] and active learning approaches [FAHL 90].

There is a great variety of intelligent software agents and structures. T-DTS approach
processing leaves (NN Models) can be classified as computational, software and task-

specific agents. The agents are created, modified and directed by Decomposition Units

(DU), creating a tree structure. One can see a strong resemblance to Distributed Artificial
Intelligence (DAI) [WOOL 02] systems.
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Classification of agents by task:

o Interface Agents - “[Clomputer programs that employ artificial intelligence
techniques in order to provide assistance to a user dealing with a particular
application ...The metaphor is that of a personal assistant who is collaborating with

the user in the same work environment.” [MAES 94]

e Information Agents — “An information agent is an agent that has access to at least
one, and potentially many information sources, and is able to collate and
manipulate information obtained from these sources to answer queries posed by

users and other information agents... “ [WOOL 95].

e Commerce Agents - a commerce agent is an agent that provides commercial
services (e.g., selling, buying and prices’ advice) for a human user or for another

agent.
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e Entertainment Agents - “ ... artistically interesting, highly interactive, simulated
worlds ... to give users the experience of living in (not merely watching)
dramatically rich worlds that include moderately competent, emotional agents”
[BATE 92].

Autonomous agents

el e

Biological agents Robotic agents Computational agents
Software agents Artificial life agents
Task-specific agents Entertainment agents Viruses

Figure 3-1 Classification of intelligent artificial agents considering origin [FRAN 99]:

Agents can communicate, cooperate and negotiate with other agents. The basic idea
behind Multi Agent systems is to build many agents with small areas of specialized
knowledge and link them together to create structure which is much more powerful than
the single agent itself. This is similar to T-DTS paradigm, where the NNModels are

specialized in small areas and conjunction of the areas covers whole problem space.

The theoretical basis for multiple agents is given in research field known as
distributed artificial intelligence (DAI), which is a part of distributed problems solving.
DA is the study of distributed but centrally designed Al systems [AVOU 92] and involves
design of multiple-agents distributed system. The aim is to solve a problem or accomplish
a task. The DAI decomposes the task into subtasks, each of which is processed by an
agent. It is assumed also that there exist a single control structure which can influence the
preferences and control the agents. The DAI infrastructure can be constructed with an
architecture known as blackboard [AVOU 92].

DAI systems contrast with multiagent systems. In multiagent systems, there is no
single control structure (designer) which controls all agents. Each of these agents can work
on different goals, sometimes in parallel and sometimes in contradictory. Both cooperation

and competition is possible among agents [DECK 99]. In multiagent systems, a complex
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problem is decomposed into subproblems, each of which is assigned and agent that works
independently of others and is supported by a knowledge base. The agents make acquiring
and interpretation of information by using deductive and inductive methods as well as

computations. The resulting data is sent to coordinator who chooses one or more solutions.

General description of T-DTS

This section will present the general overview of T-DTS algorithm. Particular

procedures will be explained in detail in the consecutive sections of the chapter.

T-DTS (Treelike Divide To Simplify) is a data driven Neural Networks based
Multiple Processing (multiple model) structure. The idea is based on problem
decomposition paradigm. It is able to reduce complexity on both data and processing chain
levels [MADA 03B]. T-DTS constructs a treelike architecture, where nodes are
decomposition/decision units (DUs) and leaves correspond to Neural Network Models
(NNM), as presented in figure 3-2. The structure is used to decompose the learning
database into sub-databases and can be used to assign the generalization database to
models. NN Models process specific segments of feature space, and are trained using

learning sub-databases. The NN Models are trained in supervised mode.
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Figure 3-2 T-DTS architecture
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T-DTS algorithm consist of two main phases, first is connected to structure building
and model training, while the second is equal to using the trained structure on

generalization data. The detailed algorithm is as follows:
T-DTS algorithm in detail:
1. Learning phase
a) Building of decomposition structure using training data,
b) decomposition of training dataset,
C) training of NNModels using learning data sub-databases.
2. Operation phase
a) Vector to model assignment of generalization dataset,
b) wusing corresponding NNModels on data sub-databases,
C) combining the results obtained from NNModels.

The T-DTS compounds of two main operation modes. The first phase is the learning
phase, when T-DTS system decomposes the input data and provides processing
substructures and tools for decomposed sets of data. The second phase is the operation
phase (usage of the system to process unlearned data). There could be also a preprocessing
phase at the beginning, which arranges (prepares) data to be processed.

Preprocessing phase could include several steps (conventional or neural stages).
Preprocessing is expected to ease the processing of data. During preprocessing, several
operations such as data normalizing, data scaling, data dimensionality reduction could be
performed. Preprocessing could also include other kind of operations, as removing outliers
or Principal Component Analysis [TIPP 97] to enhance input data quality, eliminate

redundancy in data, etc.

The learning phase is an important phase during which T-DTS performs key
operations: building the decomposition tree, splitting the learning database into many sub-
databases, constructing (dynamically) a treelike structure of Decomposition Unit (DU) and
building a set of submodels (NNM) at leaf level of the treelike structure (corresponding to

each sub-database).

The splitting (during the learning phase) could lead to two general cases. The first one

corresponds to the situation where the splitting process doesn’t modify the feature space
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dimension. That means that the initial problem’s is decomposed into M sub-problems.
Instead of building one complex model T-DTS builds M easier models describing
behaviour in each related sub-problem. That correspond to the situation where the splitting
process divides the initial feature space into M feature spaces with smaller dimensions
(that doesn’t means that the obtained feature sub-spaces will be orthogonal). So, in this
case, the activation of appropriated NNM will not depend on the complete input vector but

on some partial input vector @, e R™ , with @, e R™ < R™.

Let Wi be an ny-dimensional input pattern vector, where ¥, e®R™ . Let
F ():R™ — R™ be the k-th NNM’s transfer function. Y, (i)e ™ will be then the k-th

(kefl,--,M}) model’s output vector of dimension ny. Let S(¥,7,&)eB" , where
B:{O,l}, be the Decomposition Unit’s (DU) output, called also Scheduling Function,
which depends on W(i), but which may also depend on some parameters 7 and/or
conditions &. 7 represents some particular values of parameter t and & denotes some
particular value of condition &, respectively, obtained from learning phase process for the
k-th sub-dataset.

s, =1 ifr=randé=¢
s, =0 else

S(¥,,7,&) = (s,..8,...8,, )" Wwith [ (1)

The scheduling vector S(\;,7,,&,) will activate (select) the k-th NNM, and so the
processing of an unlearned input data conform to parameter t, and condition & will be
given by the output of the selected NNM:

Y(¥) =Y, (i)=F(¥) v

The output is then gathered from NNModels by the same multiplexer structure, which
joins together the output values form individual modules to achieve output for the whole

database.

3.1 Building of decomposition structure

For each sub-database k, T-DTS constructs a neural based model describing the
relations between inputs and outputs. The decomposition structure in T-DTS approach is a

tree. The creation of decomposition tree is data-driven. It means that the decision to-split-
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or-not and how-to-split is made depending on the properties of the current data sub-

database (data sub-database which had arrived to some position at decomposition tree).

For each database the decision to-split-or-not should be made. After positive to-split-
or-not decision a Decomposition Unit (DU) is created which divides the achieved data and
distributes the resulting sub-databases creating children in the tree. If the decision is
negative the decomposition of this data sub-database (and tree branch) is over and a
NNModel should be built for the sub-database. The type of the tree child depends though
on the result of decision made for the current sub-database (and in some cases also on other
parameters, as described in section 3.1.1). The tree is built beginning from the root which
achieves the complete learning database. The process results in a tree which has DUs at

nodes and NNModels in tree leaves.

Figure 3-3 shows decomposition tree structure (in case of binary tree) and its recurrent

construction in time, while question marks mean decomposition decisions.
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Figure 3-3 T-DTS decomposition tree creation in time
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Complexity indicators could be used in our approach in order to reach one of the

following ways:

e Global decomposition control - estimator which evaluates the difficulty of
classification of the whole dataset and chooses decomposition strategy and

parameters before any decomposition has started,

e Local decomposition control - estimator which evaluates the difficulty of
classification of the current sub-database during decomposition of dataset, in

particular:

o Estimator which evaluates the difficulty of classification of the current sub-
database during decomposition of dataset, to produce decomposition

decision (if to divide the current sub-database or not);

o Estimator which can be used to determine type of used classifier or its

properties and parameters.

e Mixed approach - use of many techniques mentioned above at once, for example:
usage of Global decomposition control to determine the parameters of local

decomposition control.

The local and global decomposition control may seem similar, but they are in fact very
different. In general case, estimation of whole dataset complexity is much more difficult
and prone to faults (occurs only once, large size of data) than estimation of sub-database
(occurs multiple times, data size is reduced; especially on lower levels of decomposition
tree, data complexity is reduced). Estimation of current sub-database‘s complexity can be
done by less advanced techniques as it is relatively small part of system comparing to the
global decomposition control that affects directly all calculations. One should mention also
that estimation of sub-database complexity occurs for each sub-database dividing decision
thus computational complexity of the algorithm should rather be small. Thus it doesn’t
require advanced complexity estimation methods. Considering these features, the second
option — estimation during decomposition — has been chosen in our experiments in order to

achieve auto-adaptation feature of system.

The decomposition decision can be based on many techniques; we have used two
approaches: local decomposition control based on standard deviation threshold and local

decomposition control based on complexity estimation.
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3.1.1 Decomposition Node

The purpose of Decomposition Node is to divide the database into several sub-
databases. This task is referred in the literature as clustering. To accomplish this task a
plenty of methods are known. We are using unsupervised competitive Neural Networks
and in particular Kohonen Self-Organizing Maps. These methods are based on prototype,
that represent the centre of cluster (cluster = group of vectors). In out approach cluster is
referred to as sub-database.

3.1.2 Local decomposition control based on standard

deviation estimation threshold

Local decomposition control, in particular an approach called by us AVStd threshold,
is based on the Standard Deviation measurements. It allows achieving regular
decomposition in term of vectors distribution in problem space dissections. It is
unsupervised in term that doesn’t need the targets (output values, i.e. classes), but only
their features (coordinates in feature space). It could be applied to any input-output
mapping problem, and the decomposition amount can be controlled by operator by
changing the AVStd threshold.

The whole set of data is normalized at beginning to achieve standard deviation equal to
one. (Additional advantage of normalization is that some distance-based algorithms treat
variables in “democratic” way) Then the recurrent decomposition starts. The threshold for
deciding about current set decomposition is based on standard deviation of set. Specifically

it could be:
e maximum value of standard deviations (by dimension);
e average value of standard deviations (by dimension);
e minimum value of standard deviations (by dimension), etc.

The standard deviations of sub-databases will decrease gradually as the sub-databases
will be more and more divided. The standard deviation was equal to one in original (not-
divided) database, so the standard deviations of sub-databases will be monotonically
dropping form 1 to 0 (0O means that there is only one vector in sub-database or all vectors in
sub-database are equal). When the standard deviation of currently analyzed sub-database
will be lower than globally defined threshold value, then the decomposition of the sub-
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database is abandoned. The decomposition at its extreme leads to as many sub-databases as
the number of data vector in the original database is. This is of course not interesting for
us, as the goal is somewhere between - we want to achieve sub-problems that are less
difficult than original database, but still large enough to be efficiently processed by leaves -

processing modules.

The decomposition obtained in such way takes into account in non-explicit way the
area occupied by sub-database and the dispersion of data in sub-database. With use of
competitive NN as decomposition algorithms it allows to achieve regular decomposition,
as could be seen in figure 3-4.
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Figure 3-4 Decomposition using AVStd threshold

The splitting process starts by evaluating the average of standard deviation of the
learning database. If the obtained standard deviation is greater that the AvStd, then a
distance based competitive NN (for example Kohonen SOM) divides the learning database
into sub-databases. These operations are repeated until the standard deviation relative to

each created sub-database doesn’t exceed the AvStd value.

3.1.3 Local decomposition control based on classification
Complexity Estimation technique (Fisher discriminant
ratio)

Local decomposition control with classification complexity estimation could be

applied only to classification problem, because classification complexity methods could be

applied only in classification. The decomposition degree can be controlled by operator or

also measured by classification complexity estimation and controlled automatically. The
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automatic statement of decomposition parameters was however not included in our
experiments. Local decomposition control is supervised in term that it needs both feature

values and class labels to measure the classification complexity.

T-DTS could be used as an auto-adapting system, i.e. system which structure adapts to
difficulty of data [RYBN 03A]. Thus it needs to measure the amount of necessary
decomposition. The goal here is to adjust the decomposition according to the complication
of task. This is done by using classification complexity estimation methods. Then it can
achieve desired quasi-constant performance (in term of misclassifications at cost of
increased computational effort) with datasets of various difficulties, see section 4.5 for

details.

T-DTS in classification-like application can incorporate classification complexity
estimation indicators (described thoroughly in chapter 2). Then the complexity estimation
take place to determine if actual set of data should be decomposed using DU, or rather a
NNM can be created directly (assuming that NNM can process it efficiently). The bloc

diagram of T-DTS with incorporated complexity estimation is depicted in figure Figure

3-5.
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Figure 3-5 Bloc diagram of T-DTS, when using complexity estimation
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3.2 Decomposition of learning database

The learning database is split into M learning sub-databases by DUs during building of
the decomposition tree. The learning database decomposition is shewd=be-equivalent to
“following the decomposition tree” decomposition strategy (section 3.5.1). The resulting
learning sub-databases could be used for NNM learning. Each subdatabase has then

NNModel attached. The NNModels are trained using the corresponding learning sub-

database.
Learning
o \NM sub-database
. Learning
o Al NNM
Learning /‘\ Learnifig
database e \\/, NNM Osub-database
’ \\ll Learning
_________ .~ NNM Osub-database

N Learning
. . NNM sub-database
: . Learning
T o NNM sub-database
. . Learning
NNM sub-database

Figure 3-6 Decomposition of learning database using “following the decomposition

tree” strategy

3.3 Training of Neural Network Models

Training of NNModels is performed using standard supervised training techniques,
possibly most appropriate for the learning task required. In this work only Neural
Networks are used, however there should be no difficulty to use other modelization

techniques.

NNModel is provided with a data sub-database and target data. It is expected to model
the input/output mapping underlying the subspace as reflected by the data sub-database
provided. The trained model is used later in processing of the data patterns assigned to the
NNModel by assignment rules, as specified in the previous section.

NNModels used in this work are: LVQ, MLP, LN, Perceptrons, GRNN, and

Probabilistic Networks.
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3.4 Decomposition of generalization database - rules

of pattern assignment to models

When the generalization database is to be processed each vector from the database
should be assigned to a model. In other words there should be defined a function that for
each generalization vector returns processing model that should process this vector. This is
done by using assigniment rules. The rules of assignment are expected to determine
which model will process the given input pattern ¥ in generalization phase, given learning
sub-databases. In particular the learning sub-databases can be represented by prototypes
and characterized by other techniques and attributes. Each k-th sub-database has NNModel

assigned, which was built to process the k-th sub-database.
Pattern assignment can be performed in two general manners:

- following the decomposition tree (based on the decomposition tree):
as decision tree and making decisions at each branch node, starting

from the root

- decomposition based on learning sub-databases: using the properties
of learning sub-database to determine the similarity between pattern and
learning sub-database. In particular the prototypes of learning sub-
databases are represented by learning sub-databases prototypes, and
the similarity could be measured between the prototype and pattern
(called here prototypes based assignment). Then some criterion is used
to choose the most appropriate prototype for each vector or use more

than one and combine somehow the results.
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3.4.1 Following the decomposition tree
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Figure 3-7 Decomposition of learning database using “following the decomposition
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Following the decomposition tree seems to be in line with decomposition tree creation

technique. Following the tree requires many decisions for each data vector.

3.4.2 Prototypes based assignment

Using of prototypes based assignment seems to be more autonomous in a way that it’s
independent of decomposition tree creation technique. Prototypes based assignment
requires only one decision per data vector. Decision used in prototypes based assignment
could be based on similarity criterion. Similarity criterion could be commonly used
distance measures (described in section 2.2). Next two sections present two Prototypes

based assignment rules.

3.4.2.1 Prototypes similarity assignment rule

In this case, splitting process dividing the initial complex problem into M reduced sub-
problems is based on similarity criterion. The activation of an appropriate NNM will be
issued from similarity measure between an unlearned input vector ¥; and the k-th cluster
prototype representative (Wy). As previously, it is supposed that the initial feature space

has been decomposed into M clusters by a competitive network decomposition tree.

The similarity criterion could be based on prototypes of learning sub-databases. 4

prototype is a vector representing the set of vectors, obtained in some way. We use usually
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a prototype obtained from Competitive Network during building of decomposition tree.
Then the similarity criterion is expressed as a distance between data vector and prototype.
The most natural distance function is the one used during decomposition phase, but there is

plenty of distance functions available, some of them are described in section 2.2.

Generalization
NNM sub-database
Generalization
NNM sub-database
Generalization
NNM sub-database
Generalization
NNM O sub-database

Generalization
sub-database

Generalization
NNM sub-database

Generalization
NNM sub-database

Figure 3-8 Decomposition of generalization database using “similarity matching”

Generalizatiol
database

Similarity
ciriterion

strategy
Properties of similarity assignment:
¢ universality — can use any measure of similarity

e deterministic or fuzzy assignment

Maximum similarity (minimum distance) deterministic assignment
The Scheduling vector éB5—eutput) will be conform to relation (1), with si(‘ ,Wx)
given by (5).

Lif %W = Min(¥, -w))  (5)

s (W.,\W, )=
k( i k) 0 ElSE

So to be specific: the closest model (minimum distance) is chosen to process pattern

Fusion similarity assignment

This approach is a generalization of maximum similarity assignment. Scheduling

vector contains here values for range <0,1>, with sum of all elements equal to 1. The
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feature vector is directed not only to one NNModel like in maximum similarity

assignment, but to many of them at certain degree.

W,

Z\W —Wj\

Sk (\Pi W, ) =

The output for i-th feature vector is then weighted sum of outputs of all NNModels.

o(¥,) = ZO(‘H ,NNM ;)s(¥;,NNM )

In this way a feature vector is processed by all NNModels, but the influence of
NNModel output on the output is proportional to the similarity between feature vector and

learning sub-database corresponding to the NNMaodel.

That technique could be improved by considering only output of specified number of
closest NNModels (when only one NNModel is considered this approach is equal to
maximum similarity assignment). The number of closest NNModels could be determined

by...

That significantly reduces the number of calculations and allows the NNModels to be

local.

3.4.2.2 Probabilistic assignment rule

In this case, the activation of an appropriate NNM is given in term of probability of
activation the k-th NMM among M neural network based models. If the k-th NNM has
been obtained with respect to the k-th learning sub-database, then the probability of
activation of the corresponding NNM, P, (¥(t)), could be expressed by relation (3), where

pk(P) is some Gaussian approximation of k-th learning sub-database density.

P
Pk (¥)= M X o!

(¥)  with , opy- Exp{_ (¥ =) (¥ = )} 3)
k:lpk(l[/)

where  represents the average prototype’s center and oy denoting the learned

prototypes standard deviation. The approach has following properties:

e Py (W(t) and pk('V) are reverse proportional to the distance between the input vector

and sub-database prototype;
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o Py(W(t)) and pk(V) are reverse proportional to the learned prototypes standard

deviation oy;

e The exponential function strongly awards the prototypes that are close to ¥, and

punishes the prototypes that are far from ¥

e Sum of probabilities is equal to 1.

Probabilistic assignment

The Scheduling vector (DU output) could be determined randomly with probabilities
of assignment to NN models defined above.

Maximum probability assignment

The Scheduling vector could be expressed according to relation (1), where sx(\¥ ,px) is
given by (4) with 1e{t,---,M}..

1 if B, =Max(R) @)
0 Else

sk(‘Pi,Pk):[

Then the assignment is deterministic and the model associated with sub-database most
close to input pattern vector wins. The assignment could be unfair when two or more

models have similar values of probabilities for given input pattern.

3.5 Using trained NNModels on data

NNModels used in our approach can be of any origin. In fact they could be also not
based on Artificial Neural Networks at all. The structure used depend on the type of

learning task, we use:

e for classification — MLP, LVQ, Probabilistic Networks, RBF, Linear
Networks;

e for regression — MLP, RBF;
e for model identification — MLP.

NNModels are created and trained (section 3.3) in the learning phase of T-DTS
algorithm, using learning sub-databases assigned by decomposition structure (section 3.2).

In the generalization phase, they are provided with generalization vectors assigned to them
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by pattern assignment rules (section 3.4). The vectors form generalization sub-databases
that are processed by NNModels. Each NNModel produce some set of approximated

output vectors.

3.6 Combining the results

The sets of output vectors are combined to produce the output set for the whole
generalization database. Figure 3-11 represents the dataflow of output values, when DU

units compose a binary tree.
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Figure 3-9 Dataflow of T-DTS: gathering of the results from individual NNMs
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On the figure 3-11 one can notice a tree structure of DU nodes and NNM leaves. A set
of neural network based models (trained from sub-databases) is available at leaf level and
model the system behaviour region-by-region in the problem’s feature space. Each
incoming input vector is assigned to specific NNM leaf by pattern assignment rules. Then
the processed data is gathered together from NNModels by the DUs (in reverse direction).

3.7 Conclusion - Discussion of T-DTS properties

T-DTS (Treelike Divide To Simplify) is a multiple model (in particular Multiple
Neural Networks) processing structure. It is able to reduce complexity on both data and
processing chain levels [MADA 03B]. T-DTS constructs a treelike evolutionary
architecture of models, where nodes (DU) are decision units and leaves correspond to
Neural Network - based Models (NNM). That results in splitting the learning database into

set of sub-databases. For each sub-database a separate model is built.
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Advantages:

allows simplification of the problem — using many simple local models;

allows parallel processing — after decomposition, the sub-databases can be

processed independently and joined together after processing;

task decomposition is useful in cases when information about system is distributed
locally and the models used are limited in strength in term of computational

difficulty or processing (modelization) power

modular structure gives universality: it allows using of specialized processing
structures as well as replacing Decomposition Nodes with another clustering

techniques,

classification complexity estimation and other statistical techniques may influence
on the parameters to automate the processing i.e. decrease the need for user

intervention

Disadvantages:

if the problem doesn’t require simplification (problem is solved efficiently with
single model) then Task Decomposition may decrease the time performance, as
learning or executing of some problems divided into subproblems is slower than
learning or executing of not split problem; especially if using sequential processing

(in opposition to parallel processing),
some problems may be naturally suited to solve by one-piece model,

too much decomposition leads to very small learning sub-databases, that may lose
generalization properties, in extreme case leading to problem solution based only
on distance to learning examples, so equal to nearest-neighbor classification

method.
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Chapter 4 - Applications

Motivation:

This chapter has to answer in part to the question if D-TDS approach is universal or
not? The answer is yet not simple. T-DTS was validated in number of applications,
including classification, system identification and pattern recognition. It is impossible
however to imagine and test all the cases in which such approach could be used. This
chapter will however try to present the applications of T-DTS to the most popular classes

of computing problems.

Section 4.1 presents application of T-DTS to signal identification academic problem.
Section 4.2 presents application of T-DTS to real industrial signal identification problem.
Section 4.3 show application of T-DTS to two spiral problem - academic classification
problem similar to generalized Exclusive Or (XOR). Section 4.4 presents application of T-
DTS with participation of original feature extraction algorithm to Pattern Recognition
problem. Section 4.5 presents usage of complexity estimation techniques in order to

automatically classify data of various difficulties.

4.1 Model identification - non linear academic

problem

To evaluate T-DTS in system identification task, the T-DTS paradigm has been
applied to identify a dynamic non linear system [MADA 02]. This system is described by

the following equations:
0, =0.180, , +0.30, , +0.6i ® +0.18i > — 0.2i,
where 0 represent the system output and i the system input.
In the learning phase, the signal i'(t) is used as system input, in the generalization
phase signal i°(t) is used as system input.

i' (1) = 0.7sin 22 |+ 0.3sin[ 22
300 30

Gy gein| 27
i (t)_0.75|n(300j

As decomposition engine (DU) a competitive network of 2 neurons is used. As Neural

Network Models, multilayer perceptrons were used (1 hidden layer with 4 neurons) with
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Levenberg-Marquadt learning rule (variety of back-propagation learning). MLP input

patterns are constituted as an Auto Regressive Moving Average ARMAX(6,6) vector.

The T-DTS algorithm builds a tree structure as represented in figure 4-1. This tree is
constituted by 3 DU at the node level and 4 Neural Network Models at the leaf level. The
initial problem space is splitted in two sub-databases 1a and 1b. The algorithm decides to
end decomposition for sub-database 1a and decides to decompose the second subspace, 1b,
in to two sub-spaces 2a and 2b. Then it decide to end decomposition for the subspace 2a
(NNM 2) and split the subspace 2b into sub-databases 3a and 3b. The sub-databases 3a and
3b are not decomposed any further. That ends decomposition tree building phase. Then the
models 1, 2, 3 and 4 are created and trained using the learning sub-databases that have

arrived to their location in the tree. That ends T-DTS learning phase.

NNM | 4

NNM | 3

Figure 4-1 Decomposition tree for the model identification experiment

Figure 4-2 represents the patterns that have been used to train the 4 NNMs. Figure 4-3
represent the mean square error evolution in the training step for the 4 NNMs. Figure 4-4

represents the T-DTS model output in the learning and generalization steps.
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Figure 4-2 Aggregations of patterns created by decomposition
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Figure 4-3 Evolution of learning error for models (LM learning)
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Figure 4-4 Learning signals (left) and generalization signals (right)

The construction of the T-DTS structure is user independent. The decision of splitting
a subspace is learned from data by an unsupervised neural network, competitive network in
this case. The splitting process produces learning databases which contain similar patterns.
T-DTS does problem simplification thus NNMs training is fast, few epochs or recursion
are needed to reach a 10 mean square error. The difference between the system output
and the T-DTS estimated output, in the learning and generalization step, is very low so a

faithful model was built, proving the efficiency of T-DTS in system identification task.

4.2 Model identification — drilling rubber problem

This is presented in [MADA 03A]. This section presents application of T-DTS
paradigm to real industrial problem. The problem is a non-linear process identification, in
industrial process control problem. The process is a drilling rubber process used in plastic
manufacturing industry. Several non-linear parameters influence the manufacturing
process. To perform an efficient control of the manufacturing quality (process quality), one

should identify the global process.

T-DTS based
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Figure 4-5 Implemented industrial processing loop using T-DTS identifier.

Similar approach, as described in the previous section 4.1, has been implemented.
Input patterns have M-ARMAX shape (Multi inputs ARMAX model). Figure 4-6 shows

some of process signals shapes. Figures present the main parameters that are involved in

the drilling rubber process. Other parameters, that are less significant, have been omitted.
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Figure 4-6 Example process input order, output (metric properties of produced

profiles) and some of process parameters (confidential) shapes.

Kohonen SOM based DecompositionUnit (DU) uses a 4x3 grid leading to 12 feature

sub-spaces. Consequently, 12 Neural Network based Models (NNM) have been generated

and trained (from learning database). Figure 4-7 shows examples of database splitting after

T-DTS learning phase, giving four among twelve obtained sub-databases. It shows also,

the learning phase validation presenting the learned process output identification. Figure 4-

8 shows system output in the generalization phase. One can conclude that estimated output

is in accord with the measured one.
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Figure 4-7 Examples of database splitting after T-DTS learning phase: four

amongst twelve obtained sub-databases (left). Learned process output identification

(right).
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Figure 4-8 Identification of an unlearned sequence of drilling rubber plant’s

output in the generalization phase.

T-DTS were used here to identify complicated industrial process with many input

features. The original data was splitted into several sub-databases, allowing faster

processing and simplification of modeling task. The models then were built for each sub-

database resulting in good estimation properties of resulting system.

4.3 Classification - two spirals problem

Two-spiral problem [CHEB 02] is an academic classification problem, which is often

used as a benchmark. This problem, used for performances comparison, especially in

classification problems, is similar to a generalized Exclusive Or. The data is composed of

two classes, where decision boundary is a spiral; as presented in figure 4-9.
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Figure 4-9 Example of Two Spiral problem’s database with 1000 patterns to be

classified

Construction of neural tree to treat the problem consists of decomposing the input
space into a set of subspaces (using Decomposition Units), then performing classification
in each subspace by a specialized neural unit (NNM) at leaf’s level. The database used for
evaluation and validation includes 1000 patterns. The learning was performed on half of

the database, while the other half was used for generalization.

T-DTS use here local decomposition evaluation based on decomposition parameter
AVStd (as described in 3.2.3).The T-DTS structure on which the validation has been
performed includes two kinds of Decomposition Unit’s (DU): Competitive Network (CN)
and Self Organization Map (SOM) [KOHO 82]. Different configurations, concerning
number of neurones (for CN) and network’s topology (different topologies for SOM as:
2x2, 3x2, 3x3, 4x4 or 5x5), have been implemented. In the case where Kohonen maps have
a grid 2x1 topology, T-DTS builds a binary decision tree.The implemented splitting
criterion corresponds to the similarity matching based on AVStd, which defines the
standard deviation maximum value (in each dimension) in a given sub-database.
Concerning Neural Networks based Models (processing units) several possibilities have
been implemented: LVQ (Learning Vector Quantization), LN (Linear Neuron), RBF
(Radial Basis Functions) and MLP (Multi-Layers Perceptron).

2 3 4 5 6 7 8 9 10 CN Number of Neurons
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05.00% | W_H
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-@-CN Testing
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84,00% - SOM Learning

- SOM Testing

82,00% -

80,00% -
2x1 2x2 3x2 4x2 5x2 3x3 4x3 5x3 4x4 5x4 5x5 SOM structure

Figure 4-10 Classification Rate as a function of number of neurons (for

competitive DU) and as a function of topology (for Kohonen DU).
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Figure 4-11 Learning and generalization evolution rates vs. AVStd value, when

LVQ models are used

Figure 4-10 gives a comparative study, expressed as “Correct Classification Rate” as a
function of number of neurons (for competitive DU) and as a function of considered
topology (for Kohonen DU). Figure 4-11 gives learning and generalization performances,
expressed in term of Classification Rates, according to the maximum standard deviation
threshold value’s evolution. Tables 4-1 compares the processing time for the case of
competitive Decomposition based T-DTS and for different NNM structures. For the
presented case, AVStd=0.12 leads to 107 sub-databases.

By dividing the initial database into several sub-databases and by dedicated processing
of each of those data sub-databases, the proposed ANN based data driven Multiple Model
generator (T-DTS) reduces the initial problem’s complexity at several levels, especially at
processing and modeling ones. De facto, dividing the initial problem into several sub-
problems with reduced sizes, on the one hand, simplifies both the learning complexity and
duration (learning of relations between inputs and outputs), on the other hand reduces the
processing procedure’s or unit’s complexity. Finally, it decreases globally implementation

and parameters optimization constraints.

Table 4-1. Processing time for both DU construction and NNM learning and
generalization in the case of a Competitive-like NN based splitting (AVStd=0.12
leading to 107 sub-databases).
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Splitting (107 nodes) |NNM | Learning |Testing
Type Database | Database

LVQ 261.51s 6.33s

LN 477 s 4.84s
159.88 s

RBF 37.67s 5.84s

MLP 11091 s 8.46 s

Results obtained in this benchmark show efficiency of such multiple model structure to

enhance processing capability by reducing complexity on both processing and data levels.

In the next section the T-DTS driven by complexity estimation technique will be

presented, as well as its advantages over the static decomposition parameter.

4.4 Pattern recognition

In order to use T-DTS in pattern recognition problem [RYBN 03B], a data extraction
scheme can be used. A feature extraction method, called View-Based approach, is used for
feature extracting and coding. Encoded data are fed to T-DTS. That entirely composes an
original pattern recognition system methed. T-DTS, embedding problem complexity
estimation, decomposes a complex problem into several less complex ones, and builds a
set of models for resulting sub-problems. The method has been applied with success to

recognize separated printed letters of various shapes.

View-Based Approach

View-Based approach [SAEE 02], [SAEE 03] is based on fact, that for correct
character or image recognition one usually need only information about its silhouette or

contour.

This method consists in examining four “views” of a single character. On that ground
characteristic vector is allocated, which describes that character. The view is a set of pixels
belonging to the contour of a character and having extreme values of one of its coordinates.
One can distinguish four views — top, down, left and right (Fig. 4.12). For example, top

view of a letter is a set of points having maximal y coordinate for a given x coordinate.
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AV AY

AY AV AV AY

Figure 4-12 Concept of views. (a) Example letters, (b) letters’

contour, (¢) top view, (d) down view, (e) left view, (f) right view

Next, characteristic points are marked out on the surface of each view, which describes
shape of that view. The method of choosing these points and number of them may vary. In

experiments seven uniformly distributed points were selected for every view (Fig. 4.13).

Figure 4-13 Choosing characteristic points for four views

The next step is calculation of y coordinates for points on top (yt1, ..., y17) and down
(Yo, ..., Yp7) Views, and x coordinates for points on left (X_1, ..., XL7) and right (Xgr1, ..., Xr7)

views (Figure 4-14). These values are normalized, so they are in range <0, 1>.
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X2
Y11 Y7

XL1
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Yo3 Ypa Yps

ot Lo

Y1 Yp2 Yps Yo7

Figure 4-14 Receiving coordinates of characteristic points

Then from these 28 obtained values the characteristic vector is created:

<YT1, -y Y17, YD1 -+ YD7y XL1y oy XL75 XR, -o0y XR7™,
which describes given letter, and is a base for further analysis and classification.

To validate the approach, a database of letters were used. It consisted of 26 capital
letters of Latin alphabet written in 66 different styles (fonts). That gives a total of 1716
cases from 26 classes. The data is stored as images without noise. The data varies
significantly within-class by shape, slope, size (thus image resolution), some fonts are bold
and others have sheriff lines. That increases the difficulty of classification task. A sample

of the database is shown in the figure 4-15.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPRRSTUVWXYZ

ABCDEFGHIJRKRLMNOFPQRSTUVYWXYZ

ABCDERFGHIJKLMNOPQRSTUN W XY Z
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 4-15 Database sample

The images have been encoded using View-Based approach. The views of each letter
have been sampled and normalized. After that process, letter image is represented as vector

of 28 features. This is the data format fetched to T-DTS.

T-DTS has been learnt on randomly picked 50% of the total data, called Learning Set.
For decomposition decision, the modified Fisher discriminant ratio was used. As
decomposition algorithm, the Competitive Network composed of two neurons was used,
which means splitting a set in two sub-databases each time, what leads to binary tree
structure. One of T-DTS decomposition trees obtained during the experiments is depicted

in the figure 4-16.
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After decomposition, a set of models were created, using Probabilistic Neural
Networks [WASS 93] as classifiers. For each Processing Leaf, a Probabilistic Neural
Network is built, which allowed us to achieve approximately 90% of correct classification
total and 80% of correct classification on the unseen data.

Figure 4-16 T-DTS decomposition tree obtained during experiments

The misclassifications have arisen probably from class ambiguity — similarity of
samples from different classes. This error is unavoidable on the data processing level and
is also referred as Bayes error (see chapter 2.1 for more information). On the feature
extraction level it is sometimes possible to avoid that effect by unambiguous feature
encoding. Another argument for that assumption is occurrence of misclassifications
between distant (by intuition) classes. This is probably caused by great variability of the
letters in general. It implies that Bayes error is nonzero [HO 00], [PIER 98], [SING 03].
Considering this, a way to increase the performance of system is to decrease class

ambiguity by using preprocessing techniques like thinning and slope correction.

The T-DTS with View-based data extraction is a hybrid pattern recognition technique.
The performance of the hybrid intelligent system has been validated on the varied non-
homogenous database of patterns, what resulted in successfully recognized 80% of

separated printed capital letters of various shapes.
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Further work in the area will be concentrated on preprocessing of the images.
Especially thinning and slope correction [COVI 96] should be useful in decreasing within-
class variability, which should result in better classification performance. Concerning
classification performance, there are two directions: one is enhancement of View-Based

feature extraction algorithm, second T-DTS capabilities improvement.

4.5 Classification with complexity estimation

In the example that follows T-DTS is studied as an auto-adapting system, i.e. system
which structure adapts to difficulty of data [RYBN 03A]. The goal here is to adjust the
decomposition according to the complication of task. This is done by using classification

complexity estimation methods.

Experimental T-DTS Evaluation through an Academic Classification Benchmark

The goal is to examine the adapting of the system to data of various difficulties. Thus a
sequence of simple datasets of intuitively increasing complexity has been created. They are
presented in the figure 4-17. The sequence contains both linearly separable datasets and
non-linear separable datasets (spirals of different shape). For linearly separable datasets the
complexity increases with fragmentation of clusters. For non-linearly separable data the
complexity increases as the clusters are twisted more and more around the center. The idea
here was to make the data obviously different in complexity and observe the behavior of
the T-DTS (driven by complexity estimator). The behavior could be verified by comparing

with intuitive complexities sequence.

1 2 3
bR+ = + +
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Figure 4-17 Sequence of datasets of increasing complexity

T-DTS were used in two cases to validate the assumptions about the increasing
difficulty of the benchmark problems. In first case, the decomposition tree is composed of
quasi-static structure - T-DTS generates here approximately the same tree structure and
number of processing leaves. AVStd measure was used here as decomposition criterion to
achieve similar degree of decomposition. In the second case, a classification complexity

estimator was used in order to accommodate the decomposition structure to case difficulty.

On the figure 4-18 there are results for static decomposition structure. classification

rates drop significantly for more complicated datasets (going to right). Processing times are
approximately the same for each dataset. This is due to fact that the decomposition tree

structures are practically identical and they are too simple for more difficult datasets.
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Figure 4-18 Statistics of computational effort for T-DTS without adaptation

When T-DTS adapts to classification complexity, Fisher discriminant ratio were used
as decomposition threshold. Fisher decomposition ratio measures the separability of
different class clusters. The results are depicted on figure 4-19.
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Figure 4-19 Statistics of computational effort for T-DTS adapting to problem
difficulty

One can notice in figure 4-19, that classification rates for learning phase are alike, and
for generalization rates there is only small dropping tendency. Number of prototypes
(related to processing time) significantly increases for more complex datasets. This fact is

in contrast with the experiments with static structure presented on figure 4-18. Thus T-DTS
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structure with complexity estimation adapts to difficulty of dataset, creating tree structure

of size proportional to data complication.

4.6 Computer implementation of T-DTS

T-DTS is currently implemented in Matlab 6.1 language, using GUIDE user interface.

Figure 4.20 gives overall view of main application window.
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Figure 4-20 T-DTS implementation

One can see groups of controls related to input parameters, decomposition criterion,

classification complexity, experiment run and output presentation.

4.6.1 Structure of functions call of main frame

Figure 4-21 presents dynamic structure of most important T-DTS functions.
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Figure 4-21 Static functions structure

The functions will be consequently described.

4.6.1.1 Graphical user Interface (GUI) function (aaa)

This function creates a window (presented in figure 4-20), which presents graphically
most used parameters and allows fast modifications and experiment conduction with
presentation of results. The code here was implemented with support of GUIDE (Graphica
User Interface Development Environment) incorporated in Matlab. Button callback
functions in the file call functions related to T-DTS experiment execution as well as

presentations of data and results.

4.6.1.2 Invocation

The function is a wrapper for any T-DTS experiment, loads the data, chooses the

learning set (if necessary), calls T-DTS structure building and learning, finally obtains the

results for learning and generalization set.
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4.6.1.3 ChooseLearningSet

This function is responsible for random dividing the dataset fed to system into learning
set and generalization set. It could be based on the learning database percentage ratio
parameter called Percentage.

4.6.1.4 DTS
The function invokes all task connected with. It calls Main which creates and performs
learning of T-DTS structure.
4.6.1.5 ExecuteLearningSet
That function uses T-DTS processing structure created by DTS function to process
learning data.
4.6.1.6 ExecuteTestingSet
That function uses T-DTS processing structure created by DTS function to process
generalization data.
4.6.1.7 Main

It creates and performs learning of T-DTS structure. That includes preprocessing
(preprocess count), recurrent dividing of the sub-databases by DU (divide), final dividing
of the learning set according to dividing prototypes structure created by divide, choosing of
the NNM (DataminingForNNM) and creation of NNModels for each prototype (sub-

database) of the learning set.
4.6.1.8 PreprocessCount
This function preprocesses the incoming data, what can include normalization and
reduction of input’s dimensionality by Principal Component Analysis (PCA).

4.6.1.9 Divide

The function performs dividing of given dataset into sub-databases. It is called
recurrently. It works by finding prototypes by using Decomposition Nodes, which perform

unsupervised learning and dividing the set into sub-databases.
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4.6.1.10 CutIntoSubsets

The function finally divides the learning set according to dividing prototypes structure

created by divide.

4.6.1.11 DataMiningForNNM

The function chooses the structure and parameters of NNModel to process the specific

data sub-database.

4.6.1.12 NNM

The function performs learning of NN model for the sub-database data.
4.6.1.13 FindPrototype

This function uses Decomposition Node with unsupervised competitive neural network

structures to find prototypes for given sub-database of data.

4.6.1.14 FlatCutIntoSubsets

This function uses prototypes to divide given set of data into sub-databases.
4.6.2 User interface

As marked in the figure there are five groups of controls. There will be subsequently

explicated.

4.6.2.1 T-DTS input parameters

These concern T-DTS algorithm parameters as well as database preprocessing.

MNN choosing combo box allows selection of DU decomposition algorithm. One can
choose either Competitive Network (CN) or Kohonen Self Organizing Map (SOM). Some
detailed parameters (like structure of the Map or number of neurons for competitive

network are available only on programming level.

Using NNM choosing combo box one can specify the type of NN processing Model at
leaf level of the decomposition tree. The possible choices are: Learning Vector
Quantization (LVQ), Linear Neuron (LN), Radial Basis Function (RBF), Multi-Layer
Perceptron with Levenberg-Marquadt learning (MLP_LM), Probabilistic Neural Network
(PNN), Generalized Regression Neural Network (GRNN).

By using data combo box, one can choose one of databases to process or choose empty

one and load it manually from Matlab command line (using symbol “*’).
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‘Normalize’ combo box allows choosing if and what type of normalization the system
will apply to database. Available types are: ‘norm’ — Normalization to achieve Gaussian
distribution in each data dimension separately; ‘ones’ — normalization to compartment <-

1,1>; and finally ‘none’ when no data normalization is required.

By checking the box marked as “Princ. Comp. A’ one can order Principal Component
Analysis on the data before feeding it to further processing. The process is expected to

eliminate redundancy in data and reduce the number of dimensions.

Slider and edit box marked ‘Percent. to learn’ allows to choose the amount of database
available to learning algorithm.

Finally “Print params’ button displays all learning parameters in the Matlab command

window.

4.6.2.2 Decomposition criterion controls

The controls in the box allow choosing and setting value for the decomposition
criterion. ‘AVStd’ parameter is a decomposition parameter described in chapter 3.2.3.
‘Fisher ratio’ is a threshold based on Fisher discriminant ratio (classification complexity
estimator described widely in chapter 2.4.4.2). Purity parameter is a threshold based on
purity classification complexity estimator described in 2.4.3.2.

4.6.2.3 Output presentation methods

These controls are designed to present the results obtained by T-DTS.

‘Plot sub-databases’ shows first two dimensions of data and its decomposition by
color marking the data sub-databases. The decomposition is marked separately for the
learning and generalization data. The button ‘v.2” on the right draws the same without

color using different symbols.

Button ‘Print NNM properties’ outputs in Matlab command window structure and

parameters of NNModels created during learning.

‘Plot tree’ shows first two dimensions of data, draws the data and shows the process of
decomposition tree creation in time. The button ‘v.2” on the right draws the same with

alternate colors.

‘Plot A and C’ is used only in signal processing task and shows the original desired
signal in comparison with signal outputted by the system.
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‘Print result’ and “All” allows outputting consequently last and all experiment results
obtained by T-DTS.

‘Post regression’ button shows regression analysis of output signal and desired signal
dependence, to verify the performance.

4.6.2.4 Classification Complexity computation for a set of databases
This buttons allow computation of classification complexity for a set of databases.
‘Complexities —-means’ shows computed complexities for a set of databases.

‘Count complexities dbc’ performs the set of T-DTS experiments on structure
containing a set of databases in order to compare the results of multiple databases for the

same T-DTS configuration (contained in cell array variable dbc).

4.6.2.5 Launching buttons

Launching buttons allow initialization (‘Init’), saving the T-DTS configuration data
(‘Save’) and starting of experiment (‘Go’). To perform repeated experiments one can check
the box marked as ‘Multiple Times’. Unless the mentioned box is checked system will

make only a single experiment.

4.6.3 T-DTS Controlling Parameters structure

T-DTS parameters are stored in PARAMS structure available at command line level
and stored in file paramsfileat. Most important parameters are available visually from GUI
level as controls (as described in 3.5.2.1). Here follow all the parameters with explanation:

PARAMS =

Compm: [1x1 struct]
Method: *AVStd’
Purity: 0.2000

Fisher: 10

AVStd: 0.2000
Preprocess: [1x1 struct]
Normalization: ‘ones’
PrinComp: [1x1 struct]
Percentage: 0.3000
nPar: [1x1 struct]
NNM: ‘LVQ’

MNN: ‘CN’
Dataname: ‘spirals’
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GoAll: 0

Clustering: ‘independent’
IntOut: 1

ConsPro: 0

AVStd: 0.4000
Percentage: 0.5000
Showdisplay: 0
MaxClusters: 1000
DistanceFunction: ‘dist’
Display: [1x1 struct]
PlotControlPar: 1
DecU: ‘normal’

Compm - holds decomposition complexity method currently selected and thresholds

for all complexity methods available.

Preprocess - contains preprocessing related parameters: selected normalization
method, Principal Component Analysis related parameters, default percentage of database

taken for learning, normalization shift and magnifier are stored in nPar structure.
NNM - type of NN Method selected to process (model) all leaf level sub-databases.

MNN - specifies type of Decomposition Unit selected to perform decomposition of

dataset

Dataname — contains name of frequently used at file which will be load to do
experiment. If that field contains “*’ no file will be load and the data will be taken from

command line workspace instead.

GoAll - the boolean value will specify if the experiments will be performed by all NN
Models available to compare the efficiency of modeling.

Clustering — defines clustering strategy — independent means that final clustering is
done with all prototypes taken together independently of tree structure after dividing, while

‘treelike’ means that final clustering is done simultaneously with dividing.

IntOut — parameter specifying the output format of processing task, for regression NN

Models it’s sometimes necessary to convert floating point numbers to integer ones.

ConsPro — the parameter specifies if the prototypes are to be taken from previous
experiments. That allows to speed up processing by skipping the decomposition phase and
doing only modeling phase.

AVStd, Percentage — ancient and obsolete parameters, moved to branches of the

structure.
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Showdisplay — the parameter allows skipping some displaying of computation in case

one doesn’t want to watch them, it speeds the processing.

MaxClusters — specifies maximum number of clusters allowed to system, it’s a safety

valve if clustering algorithm went out of control.

DistanceFunction — specifies distance function used during clustering phase by DUs,
possible values are: “‘dist’ — Euclidean distance, “’streetdist” — Manhattan (street) distance.

Another distance functions can be added by editing the code in CutintoSub-databases.

Display — parameters related with display, PlotControlPar — parameter used in
PlotControl function to decide if the sub-databases point representation should be colored

or should differ with shape.

DecU - parameter allowing restructuring the decomposition tree, possible values:

‘Normal’, or ‘restructure’.

4.7 Conclusions

This chapter has presented T-DTS in different classes of applications: system
identification, classification and Pattern Recognition. Generally speaking, solutions based
on modular structure are universal, as it is easy to replace modules and thus modify part of
system. This is also the case for T-DTS, where not only processing modules can be
replaced this way, as well as data decomposition (clustering) modules and knowledge
acquisition modules (complexity estimators and other techniques that are used to optimize
the structure and parameters). This proves universality of T-DTS approach up to some

point.

Next chapter is a overall conclusion of all work presented in the thesis.
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Main idea of T-DTS is to take advantage from distributed processing and task
simplification. Another goal is to decrease the amount of user intervention in specifying
processing parameters, by using statistical techniques of Classification Estimation. When
dealing with classification, identification or regression task T-DTS decomposes the
problem using Decomposition Units and thus creates decomposition tree. The
decomposition tree is used to decompose data into sub-databases. Neural Network Models
are then used to process resulting data sub-databases. The processing phase can be done

using distributed parallel processing.

The efficiency of T-DTS design was shown in academic classification problem of
Two-Spirals classification. Next classification complexity method was incorporated into T-
DTS to aid the decomposition, what allows the system to be user-independent and adapt to
classification task difficulty automatically. System identification task was studied with two
examples. The first was academic system identification problem, the second real complex
industrial problem. In both cases T-DTS decomposed the data to reduce processing
complexity and build a set of models to identify the partial signals of data sub-databases. In
both cases T-DTS was proven to build faithful models. Finally T-DTS was linked together
with feature extraction technique (View-Based Approach) to build a pattern classification
system. That combination allowed achieving 80% recognition rate of non-homogenous and

rather difficult letters set.

T-DTS were tested in classification, Pattern Recognition and system identification
area. Solutions based on modular structure are generally universal, as it is easy to replace
modules and thus modify some part of system. T-DTS processing modules can be replaced
this way, as well as data decomposition modules and knowledge acquisition modules. This

proves universality of T-DTS approach to some point.

One may criticize the T-DTS approach as unsuitable for the tasks that are solved well
with classical methods (of any kind). There is however always a possibility of
incorporating such classical method as a processing tool in T-DTS and allow task
decomposition that in such case may prove itself useful by decreasing the processing time
with parallel processing. It is also frequent and almost natural that a solution individually
designed for a specific problem will outperform solution that is universal and can serve
many purposes (not just this particular problem). The power of universal solution lies

though in widespread area of applications, so one doesn’t need to design a new tool that is



individually suited for the problem but modify and use a universal tool that is already

created and ready to go.

T-DTS is implemented in Matlab 6.1 language with addition use of GUIDE
environment to create user interface. Matlab environment gives easy access to library of
useful functions. GUIDE environment although rather simple comparing to other GUI

environments is sufficient to build a system of academic use.

The user-independent and automated processing of data is a very distant goal. By
linking together statistical methods and universal data processors as Artificial Neural
Networks one can expect to make that objective a little closer. T-DTS was intended to be a
small step in that direction. The further development of the system could be in two main
directions. The first is development of task processing tools library in order to process
efficiently many tasks of different nature. The second is connected to identify nature of

processing task in order to choose most appropriate tool from tools library.
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Annexes

Annex A - History of ANN

The field of NN has a history of about 60 years. However ANNs have found solid
application only in past 20 years. This field is still developing rapidly. Due to their relative
short age and rapid development the terminology of ANN area is not entirely clear like
other fields i.e. optimization and control systems, where the terminology, design

procedures and mathematical basics are known and applied for many years.

First approach in modern era was a paper of McCulloch and Pitts in 1943, which
describes a logical calculus of neural networks that unifies neurophysiology and
mathematical logic. They described a network composed of all-or-none neurons and have

proved that such structure can, in principle, compute any computable function.

In 1949 Hebb published his book “The organization of behavior”, where physiological
learning rule of synaptic modification was presented. Hebb states that the brain
connectivity is continually changing, as organism learns different function tasks, and
neural assemblies are created by such changes. Hebb introduces a postulate of learning,
which declared that the effectiveness of variable synapse between two neurons is increased
by the repeated activation (charges or data flow) across that synapse. The paper of
Rochester, Holland, Haibt and Duda from 1956 [ROCH 56] describes a computer

simulation which tests with success Hebb’s postulate of learning.

In 1950 Taylor initiated work on the associative memory. This was followed by the
introduction of learning matrix by Steinbuch in 1961; this matrix consists of a planar
network of switches interposed between arrays or “sensory” receptors and “motor”
effectors. In 1972 Anderson, Kohonen and Nakano independently introduced the idea of a

correlation matrix memory based on the outer product learning rule.

In 1954 Gabor proposed an idea of nonlinear adaptive filters. He has built such a
machine, where learning were accomplished by feeding samples from stochastic process

into machine, together with the target function, that the machine was expected to produce.

Very important approach to the pattern recognition area was the work of Rosenblatt on
the supervised learning method called perceptron. In 1960 Widrow and Hoff introduced
least mean square (LMS) algorithm and used it to formulate Adaline (adaptive linear

element). It was expanded in 1962 by Widrow and his students, who introduced Madaline
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(multiple-adaline), which is one of the earliest trainable layered neural networks with

multiple trainable elements.

In the 70°tees, von der Malsburg as first demonstrated the idea of self-organizing
maps Using competitive networks. In 1976 von der Malsburg and Willshaw published a
paper on the formulation of self-organizing maps, motivated by topologically ordered maps
in the brain. The work was continued with success by Kohonen in 1982, who introduce one

or two-dimensional lattice structure.

Grossberg building on his previous work on the self-organizing networks established a
new principle of self-organization known as adaptive resonance theory (ART). The theory
involves a bottom-up recognition layer and a top-down generative layer. If the input
pattern and learned feedback pattern match, a dynamical state called “adaptive resonance”
(amplification and prolongation of neural activity) takes place. This formulates the

principle of forward/backward projections.

In 1975, Little and Shaw described a probabilistic model of a neuron and used the

model to create a theory of short-term memory.

In 1982, Hopfield basing on the idea of an energy function has formulated a new way
of understanding the computation performed by recurrent networks with symmetric
synaptic connections. He created a connection between such recurrent networks called

Hopfield networks and an Ising model used in statistical physics.

In 1983, Kirkpatrick, Gelatt and Vecchi described a new procedure called simulated
annealing, useful for solving combinatorial optimization problems. Simulated annealing is
rooted in statistical mechanics. It is based on a relatively simple technique used first in
computer simulation by Metropolis et al. (1953). The idea was used later in the work of
Ackley, Hinton and Seynowski (1985) in the development of a stochastic machine called
Boltzmann machine, which was the first successful realization of multilayer neural
network. The Boltzmann machine was later used for subsequent development of sigmoid

belief networks by Neal.

In 1986 Rumelhart, Hinton and Williams reported a development of a back-
propagation algorithm. In fact, the Backpropagation algorithm was discovered
independently in two other places about the same time (Parker, 1985; LeCun, 1985). After
the discovery of the back-propagation algorithm in the mid-1980s, it turned out that the
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algorithm was described earlier by Werbos in his PhD thesis at Harvard University in
August 1974,

In 1988 Broomhead and Lowe described a design procedure of layered feedforward
networks using Radial Basis Functions (RBF). The idea of RBF is based on method of
potential functions, originally proposed by Bashkirov, Braverman and Muchnik in 1964

and developed by Aizerman, Braverman, and Rozonoer [AIZE 64].

In 1989 a book of Mead entitled “Analog VLSI and Neural Systems™ provided a mix of
concepts from neurobiology and VLSI technology. Most significant ideas contained there

are silicon retina and silicon cochlea.

In 1990 Vapnik and coworkers introduced a powerful class of supervised learning
networks called Support Vector Machines (SVM). SVM can be used to solve pattern
recognition, regression and density estimation problems. This method is based on the
results in theory of learning with finite samples sizes. SVM in natural way incorporated an
idea of Vapnik-Chervonenkis (VC) dimension in their design. The VC dimension provides

a measure for the capacity of neural network to learn from a set of examples.
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Annex B - System identification

Both original system and model are given input values x;, the responses are compared

to determine error e;, which is used to train the NN model.
d= f(x) - d are outputs of real system f{-) to inputs x

y=M(x) -y are outputs of model M(-) to inputs x

Unknown d
system '

A

v
<
o

o1
@

Figure B-6-1 System identification

Inverse system

Original system is provided with input data x;, its output is given to inverse model

which produces values y; expected to be close to original input x;.

d=f (x) where d are outputs of real system f{-) to inputs x
y =M (d), where y are outputs of model M) to original system outputs d

The error ¢; is determined by comparing y; and x;, and used to tune the inverse model.

The inverse model may be described as inverse function of f(-):

x=1f7(d)
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Unknown | d; | Inverse
system model

X v

Figure B-6-2 Inverse system modeling

Control

Control of plant (important process, usually in real time). The objective of the
controller (NN) is to supply appropriate inputs to the plant to make its outputs y track the
reference signal d. In order to train the controller (adjust free NN parameters) it is provided
with error signal e from comparison between reference signal 4 and plant output y. The

controller has to invert the plant’s input-output behavior.

d e .| Controller | u . Plant y

A
A
v

Figure B-6-3 Feedback control system
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Annex C - Applications of ANN

Applications below are listed in Defense Advanced Research Projects Agency [DARP]
(DARPA) Neural Network Study.

Aerospace

High performance aircraft autopilot, flight path simulation, aircraft control systems,
autopilot enhancements, aircraft component simulation, aircraft component fault
detection.[SIMO 01], [SANJ 98], [DURA 00].

Automotive

Automobile automatic guidance system, warranty activity analysis [JOU 99].

Banking
Check and other document reading, credit application evaluation [RUDO 95].
Defense

Weapon steering, target tracking, object discrimination, facial recognition, new kinds
of sensors, sonar, radar and image signal processing including data compression, feature

extraction and noise suppression, signal/image identification [BARA 91].

Electronics

Code sequence prediction, integrated circuit chip layout, process control, chip failure
analysis, machine vision, voice synthesis, nonlinear modeling [FANN 99].

Entertainment
Animation, special effects, market forecasting [GRAN 98].
Financial

Real estate appraisal, loan advisor, mortgage screening, corporate bond rating, credit
line use analysis, portfolio trading program, corporate financial analysis, currency price
prediction [TRIP 92].

Insurance
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Policy application evaluation, product optimization [AGAR 01].

Manufacturing

Manufacturing process control, product design and analysis, process and machine
diagnosis, real-time particle identification, visual quality inspection systems, beer testing,
welding quality analysis, paper quality prediction, computer chip quality analysis, analysis
of grinding operations, chemical product design analysis, machine maintenance analysis,
project bidding, planning and management, dynamic modeling of chemical process system
[ALIF 01].

Medical:

Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, optimization of
transplant times, hospital expense reduction, hospital quality improvement, and emergency
room test advisement [LO 98], [DUJA 03].

Oil and Gas
Exploration [VUKE 96], [YILM 02].

Robotics

Trajectory control, forklift robot, manipulator controllers, vision systems [LIN 99].

Speech

Speech recognition, speech compression, vowel classification, text to speech synthesis
[LI03].

Securities

Market analysis, automatic bond rating , stock trading advisory systems [BOTH 02].

Telecommunications

Image and data compression, automated information services, real-time translation of

spoken language, customer payment processing systems [ANSA 94].

Transportation

Truck brake diagnosis systems, vehicle scheduling, routing systems [SMIT 95].
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Annex D - Artificial Neural Networks’
structures

In this Annex some of the most popular neural network architectures are presented.

D.1 Single-layer perceptron

Perceptron is one of the simplest, oldest and most known ANN structure. [HDB1996]
Rosenblatt created many variations of the perceptron [ROSE 61]. One of the simplest was
a single layer network which weights and biases could be trained to produce a correct

target vector when presented with the corresponding input vector.

Perceptron neuron uses a threshold transfer function:

b Threshold
function

X2[} () ——>

Output

Xm

Figure D-1 Perceptron neuron

0 ifv<O

y=¢[|2wjxj+bJ=¢(wX+b) ¢(V){1 ifv=0

Perceptron output is either 0 or 1, as it contains threshold transfer function @(:) (see
section 1.4). Thus, its activity can be seen as transformation from k-dimensional surface of
inputs into output values {0;1}. Perceptron boundary is the so-called hyperplane.
Perceptron hyperplane can be seen here as a plane in k-dimensional space, which classifies
all the points in space as zeros or ones. Simple example of hyperplane in two-dimensional

space is depicted in the figure 1-21.
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P, L

W Wptb =0

a=1

Wpt+b=10
a=0

p

Wpth <10
a=1

and bh=+I

Figure D-2 Perceptron hyperplane

Position and orientation of classifying surface depends on the perceptron input weights
and bias. It is changed by training technique called the perceptron learning rule:

W' =W +ex’
b'=b+e
e=t—y

where W is the perceptron weights matrix, x is a single input vector, b is the perceptron
bias value and e is the error of classification for specified input vector (difference between

desired target value t and real output value y).

Single perceptron neuron use is limited to so-called linearly separable problems. It
means that it should be possible to separates the input values originating from different
classes by hyperplane. In the other case, perceptron will not be able to classify them
correctly. Another limitation of perceptron use is that it can produce only two values: zero
and one. These limitations can be overcome by using layer of perceptron neurons. For
example two perceptrons can take values {(0;0), (0;1),(1;0), (1;1)}, which in fact is
equivalent to four classes. However single layer of perceptron neurons is still able to solve
only linearly separable problems. To overcome this limitation a multiple layers of

perceptron neurons are needed.

D.2 Linear networks
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Linear networks are similar to perceptron, but instead of hard-limit transfer function
they use linear transfer function. That allows their outputs to take any value, while
Perceptron output is limited to values {0, 1}. However used as classifiers they can model
only linearly separable problems (like perceptrons). They can be however used for

regression i.e. to produce continuous output from compartment <-co; +o00>.

Example of linear network hyperplane in two-dimensional space is given in the figure
1-22.

u-i'.”

Figure D-3 Linear network example

Line corresponds to network output equal to zero, upper right gray area represents
values greater than zero and lower left white area represent values lower than zero. If

presented in three-dimensional space then linear network values form a surface.

Very popular algorithm used to train linear network is called The Least Mean Square
Error (LMS). It is known well in optimalization area. Learning rule is provided with a set

of k examples of desired network behavior:

ot Pt o APty )

Here p; is an input to network, t; is corresponding target output. The error is calculated
as the difference between real output and target output. The goal is to minimize average
squared sum of errors (called also L2 metric):

k

mse = De(i)* = D" (t() - a(i)’

i=1
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The LMS algorithm adjusts the weights and biases of the linear network so as to

minimize this mean square error function.

The mean square error is a quadratic function, thus it will have either one global
minimum, weak minimum or no minimum, depending on the characteristics of the input

vectors.

D.3 Multi-Layer Perceptron

Multi-Layer Perceptron is one of the most popular structures for general applications
like pattern recognition. MLPs are multilayer feedforward networks, which consist of input

layer (sensors), one or more hidden layers and an output layer.

Synaptic weights

Sensor
Sensors ]

» Synaptic weight

O Neuron

Input layer Hidden layer Output layer

Figure D-4 Example of MLP network

MLP has three distinctive characteristics:

1. Neurons in the network have nonlinear transition functions. The important
property of the function is that the nonlinearity is smooth (the function is
differentiable everywhere). Commonly used function is sigmoid nonlinearity

defined by the logistic function:

1
(D(V)_ 1+ expi—vj )
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where v; is the induced local field (weighted sum of all synaptic outputs plus
the bias) of neuron j. The nonlinearity is important because otherwise the
functionality of the network could be reduced to that of a single-layer
perceptron. The use of logistic transfer function is biologically motivated,

because it attempts to account for the refractory phase of real neurons.

2. The network contains one or more hidden layers. These hidden layers enable
the network to extract progressively more meaningful properties of input

patterns.
3. High degree of connectivity between the neurons.

Error back-propagation is a standard algorithm for the training of multilayer
perceptrons. This algorithm is based on the error correction learning rule. It may be seen as
a generalization of least-mean-square (LMS) algorithm for the special case of single
linear neuron.

Back-propagation learning consists of two phases. In the first phase (forward pass),
an activity pattern is applied to the network and the network produces response. In the
backward pass the synaptic weights are adjusted according to the error-correction rule.
This is based on the error signal which is a difference between actual response of network,

and desired response. The error signal is propagated backward through the network.

Backpropagation algorithm with sequential updating of weights composes of following

steps:
1. Initialization — pick the synaptic weights and thresholds

2. Sequential presentation of training examples — n-th presentation to the network
with an epoch of training examples. For each example in the set perform steps 3
and 4.

3. Forward computation — the weights remain unaltered while an example is

propagated through the network and error signal e(n) is computed:

e(n) = d(n)-o(n)

where d(n) is the desired output and o(n) is the real output of network for current
example.

4. Backward computation
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Adjust the synaptic weights of the network according to the generalized delta rule
w;; (n+1)=w,(n)+Aw, (n) where wj(n) represent weight connecting neuron i to
neuron j at time step n; w;i(n+1) represent the same weight in time step n+1 (after back-
propagation learning) and 4w;i(n) represent weight correction.

Weight correction equals Aw;; =73, (n)y;(n), where n is the learning parameter,
dj(n) is local gradient and yi(n) is the input signal of neuron j.

Local gradients of the network §;(n) are computed depending on the location of
neurons:

e for the output layer neurons

5, (n)=e;(n)p, (vj (n)) where g;(n) is the error signal for the output neuron j, ¢’

is the derivative of neuron transfer function and vj(n) is the induced field of neuron j.

e for the hidden neurons

5O (n) = g, (v, ()35, (nw, (n), where vi(n) is the induced field of neuron j at
k

time step n,
Finally the adjustment of the weight connecting neuron i to neuron j equals:

W (n+1) =w () +75% (n)y (n)

Il
where WE:) (n) is the synaptic weight of the neuron j in layer | that is fed from neuron
i in layer I-1; y" ™ (n) is the output signal of neuron i in the previous layer I-1 at iteration

n; 61 (n) is the local gradient j in layer | and n is the learning rate parameter.
Additional technique to ameliorate the performance is adding the momentum:

w® (n+1) =w® (n) + a|w® (=1 |+ 76 () y 2 (n)

i ji

where o is the momentum constant

D.4 Radial-Basis Function Networks

Structure of Radial-Basis Function (RBF) network is unusual because it has only one
hidden layer and its hidden neurons are completely different from that of its output units.
Theory in that field is linked closely with radial basic functions theory, which is one of the

main fields of study in numerical analysis [SING 92]. Their outputs layer with linear
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weights is on the other hand closely linked with literature on linear adaptive filters [HAYK
99].

RBF networks [POWE 88] have form of a function F:

F(x)= iwi(/’(ﬂx =x)

where o¢(-) is a set of N nonlinear functions known as radial-basis functions., and || . ||
denotes a distance which is usually Euclidean. The known points x; are the centers of the
radial-basis functions (points in the input space). Weighting matrix w determines the
influence of radial-basis functions on the network output. Radial basis function is a

function of distance mentioned above. It can take many forms, for example:

[x=x

p(x)=e"

where x denotes input pattern and x; denotes center of the radial basis function.

Sensor
Synaptic weight
RBF Neuron

Neuron

Input layer Hidden layer Output layer
of RBF

Figure D-5 Example of RBF network structure

The number of radial basis functions (in network called RBF hidden neurons ) is
usually smaller than the number of available training examples (generalized RBF network).

In the regularization RBF network, it is however equal to number of learning examples.
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Interesting property of RBF is that it constructs local approximations of nonlinear input-

output mappings; it is in opposite to MLP which constructs global approximations.

Learning strategies for RBF networks:

1. fixed centers selected at random — radial-basis function are fixed and their centers
are chosen randomly. Then the only parameters that would need to be learned are
the linear weights matrix of the output layer. The drawback is that the method may
need a large training set to achieve satisfactory performance

2. self-organized selection of centers — the methods compounds of two steps, first
estimating appropriate location for the RBF centers, and then estimating the linear
weights for the output layer by supervised learning. For the first step, one need a
clustering algorithm, example of which can be k-means algorithm, [DUDA 73]
which is a special case of self-organizing map — neural network technique
described in section 1.6.5. Simple method to estimate the output weights in the

second phase is to use Least Mean Squares algorithm

3. supervised selection of centers — all free parameters of the network and the centers
of RBFs undergo a supervised learning process. Such a process can be an error
correction learning using a gradient-descent procedure, which is a generalization of
the LMS algorithm

4. strict interpolation with regularization [YEE 88] — the method uses elements of
the regularization theory and the kernel regression estimation

The input-output mapping function of a Gaussian RBF network is similar to that

realized by mixture of experts (section 1.6.6).

D.5 Competitive networks and Self Organizing Maps

Output neurons during competitive learning compete among themselves to be
activated (fired). Only one neuron or one neuron per group is active. A neuron which wins
the competition is called a winning neuron of winner-takes-all neuron. One of the
methods of inducing the competition between neurons is to establish negative feedback
path between them [ROSE 56].

In a self-organizing map, the neurons are placed at the nodes of a lattice (usually one-

or two-dimensional). The winning neurons become selectively tuned to various input
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patterns during the competitive learning and finally they form a topographic map of the
input patterns in which the spatial locations of the neurons in the lattice indicate intrinsic

statistical features contained in the input patterns.

First model of self-organizing map was proposed by Willshaw and von der Malsburg.
It consisted of two two-dimensional lattices of neurons, one representing presynaptic
(input) layer and second postsynaptic (output) layer. The two lattices are interconnected by

synapses of Hebbian type.

The second model of self-organizing map was introduced by Kohonen [KOHO 82].
The model provides a topological mapping that optimally places a fixed number of vectors
into a higher dimensional place, therefore makes data compression easier. It consists of one
lattice of neurons, which are fully connected to the source nodes in input layer. The model
may be able to dimensional reduction on the input (compression). The Kohonen model
belongs to the class of vector encoding algorithms.

D.6 Support Vector Machines

Support Vector Machine (SVM) is a linear machine. The technique can be used to

pattern classification and nonlinear regression.

SVM works as an approximate implementation of the method of structural risk
minimalization. It depends on the fact that error rate on test data is bounded by the sum of
the training-error rate and a term that depends on the Vapnik-Chervonenkis (VC)

dimension.

The base notion for the construction of SVM is the inner-product kernel between
“support vector” x; and the vector x drawn from the input space. The support vectors
consist of small sub-database of the training data extracted by the algorithm. Depending on
how the inner-product is generated, one can construct different learning machines, in

particular:
e Polynomial learning machines
e Radial-basis function networks

e Two-layer perceptrons (i.e. with a single hidden layer)
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For each of these feedforward networks, we may use support vector learning to
implement the learning process using a given set of training data, automatically
determining the required number of hidden units. The support vector machines learning
algorithm has wide applicability and can be used with many network structures.

Annex E - Neuron transfer functions

E.1 Signum function

Figure D-6 Signum transfer function

1, v>0
(p(v 0, v=0
-1, v<0

It is sometimes desirable to have output values from range [-1, 1]. The signum function

is an odd function (antisymmetric).

E.2 Threshold (Heaviside) function

i

Figure D-7 Threshold transfer function
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1 ifv>0
¢(V>{

0 ifv<O

Threshold function is also referred in literature as linear threshold gate. Neuron with
threshold transfer function is known also as McCulloch-Pitts model [ROJA 96]. Behavior
of this model is described as all-or-none because it produces either 0 or 1. Slight

modification of this function is the signum transfer function.

E.3 Linear combiner function

Figure D-8 Linear combiner transfer function

pv)=v
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