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Combining Incompatible Spatial Data

Digital spatial data are everywhere!

Data are often on different units and at different scales:

points, ZIP-code polygons, census tracts and blocks,

counties, hydrogeologic regions, and user-defined.

Geographic information systems allow us to combine all this

information rather easily:

overlay

buffering

geoprocessing: union and intersection

zonal averages

proportional allocation



'

&

$

%

Common Examples

1. Health outcomes recorded by zip-codes or counties;

Sociodemographic data from Census tracts;

Exposure estimates within a region of suspected source.

2. Cancer registries have geocoded data on cases;

Control group obtained by population (Census blocks).

3. Election outcomes recorded by voting districts;

Voter preferences linked to sociodemographic data (Census).

4. Boundaries change over time.

5. Species counts: spatial units are user-defined;

Link to natural resource surveys, land use classification.
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A Common Goal

Use all data to make valid inference for a particular set of units.

Often involves upscaling (aggregation), downscaling

(disaggregation), or side-scaling (overlapping units).

Usually requires spatial prediction of data associated with one

set of units based on data associated with another set of units.
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Georgia Health Care District 9

Georgia vital statistics reports include the number of low birth

weight (LBW) babies per county

Most hypotheses about the factors contributing to LBW involve

more local variables including sociodemographic factors

measured for census tracts
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LBW Counts in GHCD9
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Industrial emissions facilities measure PM10 concentrations
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Goal: Predict LBW counts at the Census tract level using LBW

counts at the county level such that:

1. Predictions are nonnegative;

2. The total for tract predictions within a county is equal to the

original county total;

3. Covariates can be used to improve predictions;

4. Standard errors of the predictions can be computed;

5. Spatial support is explicitly utilized;

6. No distributional assumptions;

7. Computations can be done within a GIS;

8. Approach generalizes to other problems (e.g., estimation of

intensity surface that is smooth across boundaries).
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A Geostatistical Framework

Let {Z(s) : s ∈ D ⊂ ℜ2}, be a random field with point support.

E(Z(s)) = µs; cov(Z(u), Z(v)) = C(u,v)

We observe a realization of the aggregated process,

Z(B1), Z(B2), . . . , Z(Bn), where

Z(Bi) =

∫

Bi

Z(s)ds

Bi are areal regions within D

GOAL: Predict data Z(A1), . . . , Z(Ak).
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Use best linear unbiased prediction:

Ẑ(A) =
n

∑

i=1

wi(A)Z(Bi)

weight wi(A) measures the influence of datum Z(Bi) on the

prediction of Z(A).

Unbiasedness requires

n
∑

i=1

wi(A)|Bi| = |A|.

Similarly, for any covariate x,

n
∑

i=1

wi(A)xBi
= xAi

.
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The optimal weights satisfy:
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−1

σc,
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.
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The elements in ΣBB are

C(Bi, Bj) = cov(Z(Bi), Z(Bj)) =

∫

Bj

∫

Bi

C(u,v)dudv

The elements in σABi
are

C(A, Bi) = cov(Z(A), Z(Bi)) =

∫

A

∫

Bi

C(u,v)dudv

Each covariate can be related to point support via

xB =

∫

B
x(s)ds

XB = (|B|,xB1
, . . .xBj

)′

|B|′ = (|B1|, |B2|, . . . , |Bn|)

XA = (|A|, xA)′.
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The prediction mean-squared error, PMSE, is a measure of

uncertainty associated with the prediction:

CA(0) −w′

cσc,

CA(0) = C(A, A) = cov(Z(A), Z(A)) =

∫

A

∫

A
C(u,v)dudv

• This is a variation on the universal block kriging predictor

• Consistency in aggregation is built in

• The approach is general; can be used for upscaling,

downscaling, side-scaling and intensity estimation where Ai’s

are point locations s.
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Estimation of C(u,v)

Assumed a parametric model C(u,v; θ) to ensure positive

definiteness.

Estimated θ using generalized estimating equations (McShane

et al. 1997).

Algorithm is much like iteratively re-weighted generalized least

squares, adjusted for support.



'

&

$

%

Implementation with GHCD9 Data

Covariates:

• x1 : area, based on both county and tract support;

• x2 : tract populations;

• x3 : to account for dispersion and meteorological properties,

an atmospheric transport model was used to obtain

ground-level PM10 concentrations on a fine, regular grid;

based on point support.

Compared results to Tobler’s pycnophylactic interpolation and

proportional allocation.
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Predicted Tract LBW Counts from Geostatistical Method

Predicted Counts
0.00 − 1.32
1.33 − 3.13
3.14 − 5.89
5.90 − 10.71
10.72 − 39.13
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Estimated Tract LBW Counts Using Proportional Allocation

Predicted Counts
0.00 − 1.32
1.33 − 3.13
3.14 − 5.89
5.90 − 10.71
10.72 − 54.96
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Root Mean-Squared Prediction Errors for Geostatistical Method

RPMSE
0.01 − 0.17
0.18 − 0.54
0.55 − 1.02
1.03 − 1.65
1.66 − 7.60
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Relative Risk Based on Predicted Intensity

Risk
0 − 0.1
0.1 − 0.2
0.2 − 0.3
0.3 − 0.4
0.4 − 0.5
0.5 − 0.6
0.6 − 0.7
0.7 − 0.8
0.8 − 0.9
0.9 − 1
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Geostatistical Approach: Summary and Conclusions

• General Framework:

Upscaling: point ↑ area; or A ↑ B;

Downscaling: area ↓ point or B ↓ A;

Sidescaling: C → D (e.g., ZIP codes to Census tracts).

• Allows data and predictions to be autocorrelated;

• Allows assessment of prediction uncertainty;

• Covariates can be used to enhance predictions;

• Makes more use of spatial information by explicitly

incorporating spatial support in the analysis;
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• Gives results similar to traditional methods when covariates

are not included;

• Proportional allocation is a special case;

• Flowerdew and Green (1994)’s iterative, mass-balance

adjusted, linear regression is a special case;

• No distributional assumptions;

• Feasible in GIS with current technology
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Outstanding Issues and Future Research

• Smart calculation of complex integrals;

• Positivity. Was not as problematic as expected. An extra

constraint may increase uncertainty and computational

complexity;

• Estimation of point-point covariance function. Much is

unknown;

• Uncertainty about modeled covariates. Can use geostatistical

simulation;

• Automation and choice of defaults for “black box” GIS;

• This is just a beginning. Other ideas from

geostatistics may be applicable.
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