A Note on the Kolmogorov Data Complexity and
Nonuniform Logical Definitions*

Jerzy Tyszkiewicz

Mathematische Grundlagen der Informatik,
RWTH Aachen, D-52074 Aachen, Germany.

jurek@informatik.rwth-aachen.de

Finite model theory; Descriptive complexity; Kolmogorov complexity; Combinatorial problems.

1 Introduction

Descriptive complexity is the theory emerging from investigating how difficult is to describe
a given problem in a given logical formalism, in contrary to the classical complexity theory
question, how difficult it is to decide this problem in a given computational model. Although
these approaches seem quite different, they are sometimes even equivalent: the famous and
seminal for descriptive complexity result of Fagin [4] states, that a problem, i.e., a class of finite
structures, is computable in NP iff it can be defined by a sentence of existential second order
logic ¥1.

In the descriptive complexity the resources used to define problems, and thus to measure their
difficulty, are e.g. kind of higher-order-order constructs used in the description. If we insist
on using only first-order logic, this can be e.g. the number of variables/quantifiers. However,
as first-order logic is known to be of severely limited power in the finite, one has often to
use nonuniform approach, similar to this used in circuit complexity, and allow problems to be
described by sequences {¢, },eN of sentences, where ¢, is intended to define the problem among
structures of cardinality n. In this way a mere first-order-inexpressibility result can possibly be
converted into a precise statement, how far it is from being definable. The well-known result
of Cai, Fiirer and Immerman asserts e.g. that the isomorphism of graphs requires ¢n variables
for some ¢ > 0 (they can be requantified as often as necessary), even if all counting quantifiers
are allowed. A bit less cryptic is the result of Dawar [2], using essentially the same technique,
that any first-order definition of 3-colourability of n-element graphs requires v/n variables to be
used.

Another example: if we are going to define some PSPACE-complete problem nonuniformly in
first-order logic, we have to use a sequence {g,},en complicated enough to have the prob-
lem: given U, determine @jg and verify whether 2 |= pjq) PSPACE-complete—recall that for
constant sentence sequences it is even in LOGSPACE.

In this paper we consider another resource: the quantity of information, included in the problem,
which is made formal using Kolmogorov complexity. Thus the nonuniform definition must
include the same amount of information, and this manifests in the length of sentences forming
the definition.

*Research supported by the German Science Foundation DFG.

Applying this method, we reprove the nonexpressibility results of Hella, Luosto and Vaidnanen
[5] and Hella, Kolaitis and Luosto [6] about hierarchies of generalized (so called Lindstrém)
quantifiers, replacing their counting arguments by Kolmogorov complexity. This yields not only
a cleaner and more intuitive proof, but, as a by-product, a sharp estimate of the length of
sentences defining more complicated Lindstrém quantifiers in the terms of simpler ones.

The method we use seems interesting on its own, and can possibly be used in other contexts as
well, so we present in more detail than necessary just to prove our theorem.

2 Kolmogorov Data Complexity

2.1 The overall picture

Any given logic L, if restricted to its sentences, can be represented in the finite structures in a
form of an infinite binary matrix, whose rows correspond to all sentences of L and columns to
all finite structures. A 1 in row n and column m means that 2, = ¢,, and 0 that 2, [~ ©,.

Ao Ay Ao
vl 0 1 0
o1 0 1
P2 0 1 1

Figure 1: Logic represented as a binary matrix

Many notions have been considered to characterize the expressive power of logics in this context.
The absolute expressive power is the set of all rows of the matrix: if for two logics L and L’
these sets are equal, then I and L' are of equal expressive power, in the sense that for every
sentence ¢ € L there is a sentence ¢’ € L’ such that ¢ < ¢ is true in all finite models, and vice
versa: for every ¢’ € L’ there is ¢ € L such that ¢ < ¢’ in all finite models.

Other notions are often a priori weaker than the absolute one. Typically they rely on specific
properties possessed by the sets of rows and/or columns of the matrix, the properties indicating
somehow the strength or weakness of the expressive power.

Let us give three examples, the first of which is classical:

1. Computational complexity of rows. The indication of weakness of one logic would be that
every row is in some low complexity class, say LOGSPACE. An indication of strength of another
logic could be that there is a PSPACE-complete row. We can immediately deduce that the two
logics are of different expressive power!. Using this kind of approach, we are working in the
area of so called descriptive complexity. 2. Kolmogorov complexity of columns. Although it is
not as easy to see like in the previous case, a properly chosen kind of Kolmogorov complexity
of columns of the matrix gives rise to an expressiveness measure, as the author has shown in
[8]. 3. Kolmogorov complexity of rows. This is the method used in this paper.

After Vardi [9] notions referring to rows of the matrix are said to be of data type, and those
referring to columns to be of expression type. It is therefore e.g. legitimate to call the notion
in Ttem 2. above Kolmogorov expression complexity and the last on ethe Kolmogorov data
complezity, KD in short.

!Note that this kind of argument can lead to separations depending upon open problems in complexity theory.

In this paper, considering the Kolmogorov complexity of rows, we aim not only at nonexpress-
ibility results per se, but at lower bounds concerning non-uniform definitions. And this tool
allows us deducting lower bounds concerning length of formulas in the definition.

2.2 Logic and Kolmogorov complexity

Proviso. N is the set of nonnegative integers, identified with the set {0, 1}* of finite binary
strings, ordered first by length, and then lexicographically. Thus 0 is the empty word. We will
use |z| to denote the length of the word z.

We often use asymptotic notation in its standard meaning, such as O “big oh”, o “small oh”,
etc. logn throughout the paper stands for the greatest natural m such that 2™ < n. We write
exp(n) for 2m.

Finally, for notational’s convenience we assume n = {0,...,n— 1}.

Logic and structures. In this paper we will deal with finite structures. We fix an infinite
signature w, consisting of infinitely many relation symbols of each finite arity. A finite structure
2 over this signature is a structure whose universe A is an initial segment of natural numbers,
and in which only finitely many relations are nonempty. The cardinality of A is denoted,
somehow nonconsequently, by |2|. Fin(w) is the set of all isomorphism types of such structures.
If o is a subsignature of w, Fin(c) C Fin(w) is the set of all isomorphism types of structures
such that R = () for R ¢ 0. For simplicity we will assume that members of Fin(w) are structures
themselves, rather than formally equivalence classes of the isomorphism relation. Functions are
in our model represented as restricted relations, and constants as 0-ary functions.

We assume Fin(w) to be ordered in a recursive way by =<, the particular choice of the ordering
relation being immaterial for the moment.

We assume the first-order logic to be known. The only convention we must adopt is the length
of formulae: they are written using the standard syntax, with the fixed alphabet consisting of
(,),3,V,7,V, A, <, 2,0,1. Variables are constructed using z,¢ and 1, the latter two serving as
binary digits to create subscript numbers to variables. The length |¢| of ¢ is then just the
number of symbols appearing in it.

Sometimes, when writing down a formula, we use other names of variables as well, treating
them as notational abbreviations, to make the result more readable.

We write @[] € {0,1} for the truth value of a sentence ¢ € L in 2 € Fin(w). Sometimes we
don’t write p[] = 1, but traditionally 2 = ¢ instead.

Kolmogorov complexity. We recall briefly the main definitions and notions of Kolmogorov
complexity, assuming notation from the Li and Vitanyi’s book [7]. This book contains a detailed
introduction of this notion.

Let ¢(-, -) be a universal partial recursive function ¢ : {0,1}*x{0,1}* — {0,1}*. The Kolmogorov
complezity of a string x € {0,1}* relative to a string y € {0,1}* is

C(aly) = min{l2] : ¢(z,y) = a}.

C(z]y) says how many bits we must add to y in order to describe 2 uniquely, where the method
of understanding descriptions is given by ¢. It can be shown, that this value does not change
by more than an additive constant, if another universal function in place of ¢ is used.

Proposition 1 For every y € {0,1}* and arbitrary n € N there is a string x € {0,1}" such
that C(z|y) > n.

The above proposition is often rephrased as “there are incompressible strings”, i.e., strings which
cannot be described in any way shorter then the string itself. Such incompressible objects are
often used as “difficult” inputs in lower bound proofs of various kinds. Many examples can be
found in the already mentioned book by Li and Vitanyi [7]. We will see another application of
this idea in this paper.

We need a small additional technicality about Kolmogorov complexity: It is possible to define
a pairing function (_,_) for binary strings such that [(z,y)| = |=| + |y| + O(log min(|z/, |y]).

2.8 The definition of KD

If A C Fin(w) is finite, then the binary string (@[2])aca we denote p[A], by analogy to ¢[2]
used for a single structure. The set A itself is represented as a binary string, resulting from the
characteristic function of A in Fin(w) by cutting all 0’s after the last 1 in this sequence.

For each row in the matrix, say corresponding to ¢ € L, we consider the function

KD@ : me(Fln(w)) — N
defined as follows:
KDy (A) = C(p[A] | A).

The function measures how much information we need in order to evaluate the sentence ¢ in
models in A, when A is given. Certainly if our logic has a fixed recursive semantics, or, in other
words, if the relation |= between models and structures is recursive, then this quantity remains
uniformly bounded for all A, and the bound depends on ¢ only. But if there is no recursive
semantics, it can be used to measure the complexity of logics.

2.4 The invariance of KD

We have to show that the definitions we have given are robust in a reasonable sense. lL.e., the
values of KD do not depend on the choices we have made: actually only the choice of the
ordering < of Fin(w) matters for it. And it appears the values do not change by more than an
additive constant, when the ordering of Fin(w) changes. On the other hand, the Kolmogorov
complexity of strings can itself change by an additive constant, depending on the choice of the
universal partial-recursive function, so the additional indeterminacy introduced by our choices
doesn’t spoil more than has been already spoiled by the indeterminacy of the Kolmogorov
complexity itself.

Theorem 2 If <1 and =<y are two different recursive orderings of Fin(w), and KDy and KD,
two associated Kolmogorov data complexity functions, then |KDy—KDs| < ¢ for some constant c.

Proof. Since both <; and =<; are recursive, the (unique) bijection o mapping n onto the
<y-number of the <;-nth structure in Fin(w) is recursive, and its inverse a~1 is recursive, too.
Now given ¢ € L and A € Py;,(Fin(w)), we can translate the strings ¢[A] according to <y and
<, into one another by repeated applications of either a or a™! to the indices of structures in A
and then sorting the string according to the obtained values. Application of such a translation
does not increase the length of shortest programs by more than an additive constant. [|
Note the reason we need to have this theorem: it is not the case, that “complicated” ordering
of A can require longer program to reconstruct ¢[A], than a “simpler” ordering, since A to-
gether with ordering is always given to the reconstruction program. It is the other way round:

“complicated” ordering of A could accidentally contain some information about ¢[A], and we
have had to make sure, that this amount of accidental information is small and doesn’t really
affect the results.

The next theorem follows directly from the definitions, but it can be seen as the basis of what we
do in this paper, therefore we give the proof. It establishes that KD is an invariant of expressive
power of logics.

Theorem 3 Suppose A is a nonempty finite subset of Fin(w). Let ¢, be two sentences such
that A |= ¢ < 1. Then KD, (A) = KDy (A).

Proof. If KD, (A) # KDy (A),i.e., C(plA] | A) # C(¥[A]| A), then in particular p[A] # ¥[A],
which means A [£ ¢ < .]
Although this theorem isn’t particularly deep, it says that our method makes sense. Another
nice property of this fact, that some weaker forms of equivalence of formulas, like “equivalence in
great majority of models” lead to other versions of it, with the requirement KD, (.A) = KD, (.A)
weakened to “the difference between KD, (A) and KDy (A) is not too large”.

Theorem 4 Suppose A, is a sequence of nonempty finite subsets of Fin(w). Let ¢,,, 1, be two
sequences of formulas such that

i HA € A, | |Q,[4|:| P = Pndl L (1)

n—oo

Then
KDy, (An) — KDy, (As)| = o |An).

Proof. First note the full symmetry of the problem concerning ¢’s and +’s. So if we prove just
one of the two inequalities hidden in the absolute value inequality, we are done.

Let a, = |A,|. The string ¢,[A,] can be described by ©,[.A,] plus the information where the
strings differ. Let the number of places where they differ be f,,. Then this information can be
represented as a binary string of length a,, with f, many ones, marking places of difference. To
provide this information, it is enough to give the lexicographic number of it among all strings of
this length with at most that many ones—mnote that we cannot assume f, to be given. Equation
(1) means that f,/a, — 0 when n — oo. In the following calculation we skip subscripts in a,
and f,, treating n as fixed.

There are (?) binary strings of length @ with precisely ¢ < f 1’s. The number of bits we will
need is then

log(Y (j)) < log(f (;))

i<f

Indeed, for i < f < a/2, and this is the case almost always, the value of (j) grows monotonically
with the growth of ¢. For the same reason we may assume that f — oco. Now

(5) = me=m
= (o)))

fle=I\2nf(a— f)la=Nef=a\ 27 (a — f)

[by Striling’s formula]

aa

VBT (a— [
1 al a®=/
VIRT [(a= fyT
= ! cem (1=)Y [we substitute f := ca]

Verf

Now the upper bound of log f ((}) we need is

o ()

= (14 o(1)

IN

log(f/\/27f)+ (—€a)loge+ (e — 1)alog(l — ¢)
1
= §logf + a(—eloge+ (e — 1)log(l —¢)) + O(1)
— O(loga) + o(a),
because lim,_ g+ €loge + (1 — ¢)log(l —¢) = 0.
Now the string ¢,[A,], given n, can be described by ,[.A,] plus a string of o(a) additional
bits, plus O(loga) bit separator, which finishes the proof. [

3 Application: Hierarchies of Lindstrom Quantifiers

3.1 Lindstrom Quantifiers

For a textbook introduction of Lindstrém quantifiers, see e.g. the book by Ebbinghaus and

Flum [3].

Let o be a finite subsignature of w with ry unary symbols, ro binary symbols, ..., rs s-ary
symbols, and no symbols of higher arities. A Lindstrém quantifier Q of type (r1,72,...,75)
is a subset ¢ C Fin(o). Now we order the types of quantifiers: let for ¢ = (r1,72,...,75)

th symbol cp, denote the polynomial 3%, r; - 2'. Now the type o’ precedes the type o iff
(cPyr(n) = €py(n)) —n—oo 0.

Rather than defining the introduction of the quantifier ¢} quite formally, we do it on an example
of type (1,2), which is then easily extendable to the general case. We won’t distinguish @ from
its syntactic counterpart.

To fix the attention, we choose the set @) to consist of structures which are (by necessity) directed
graphs with an unary relation, and such that the vertices in the unary relation form a maximal
clique in the graph. The way it is used in logics is as follows: Given a logic L, we define L(Q)),
the extension of L by the Lindstrém quantifier (). The syntax of L is extended by adding to the
formula formation rules of L the following formation rule: if ¢(a,y,u) and (2, u) are formulas
of L(Q), then the expression Qz,y, z(¢(z,u), p(z,y,u)) is a formula of L(Q). z,y,z are the
variables bound by the quantifier, and they are necessarily all distinct. (z,u), p(2,y,u) are
the formulas the quantifier is applied to.

The semantics is as follows:

Suppose A € Fin and d € A*. Then A, u : d = Qu,y, 2(4(2,), p(x,y,u)) iff the structure
(A {c € A: (e, d)},{(a,b) € A? : ©(b,d)}) is in Q, i.e., if, assuming the values d of u as
parameters, the subset of A defined by 4 is a maximal clique in the directed graph defined by
.

It remains to fix the rule concerning length of formulas from FO(Q): we adopt the rule, that for
each () we introduce a new letter to our alphabet which has been used for describing first order

formulae, but they don’t count when measuring the length of formulae. What counts, however,
are all the parentheses, variables, formulas, etc., which appear right after (), as well as the other
new symbol we use: ,.

We need an information about the cardinalities of sets Fin,(c) = {2 € Fin(c) : || = n}. The
following well known theorem of Fagin [4] gives an asymptotic estimate of this value:

Theorem 5 For any sequence {0, },cN of non-unary signatures with fized mazimal arity holds
|Fin, (o) = (1 + o(1))cp,, (n)/n!.]

The value |Fin,(o)| we denote by ns,(n).

Lemma 6 For every nonunary type o there is a Lindstrom quantifier () of type o and a sentence

¢ € FO(Q) with
KD, (Fin,(c)) > ns,(n)/n! — O(1).

Proof. First we define classes @, C Fin,(c). Then we will set @ = J,cN @n-

Let us fix a binary string w,, of length |Fin,(¢)| such that C'(w, | n) > |w,|. This means that
w, cannot be reconstructed from any string shorter than |w,|, even if n is known. Now let
A € Q,, iff Ais i-th in the ordering of Fin, (o) and the i-th bit of w, is 1.

Consider the sentence ¢ = Q%(Rq,..., R,) obtained by applying the quantifier to the signature
relations from o.

Given n, the string w, can be easily reconstructed from ¢[Fin,(0)] as follows: for each i =
0,...,n—1 we have 2; |= ¢ iff the i-th bit of w,, is 1, where &, is the i-th structure in Fin, (o).
This immediately implies the thesis. [|
And now the first hierarchy result, extending that of Hella, Luosto and Vaananen [5]:

Theorem 7 For any nonunary type o there exists a Lindstrom quantifier () of this type such
that if {@n},eN 15 a sequence of formulas of FO extended by all Lindstrom quantifiers of types

lower than the type of @, and f0|r Tach n the formula ¢, defines () in all finite structures AU of
©n

cardinality n, then liminf,_ . rlogn > %
Proof. Let o = (r1,73,...,75). According to the last lemma there is a quantifier @ of type o
and a sentence ¢ of FO(Q) with

KD, (Fin, (o) = ns,(n)/n! — O(1) = (1 + o(1))cp,(n)/n!. (2)

Suppose to the contrary that there is a sequence {¢,},cN of sentences of FO(Q) such that
Fin, (o) E ¢, < ¢, where Q is the collection of all quantifiers of type lower than r, and such
that [¢,] < {=nlogn for almost all n.

Note that any occurrence of a quantifier binding m formulas must have length at least %m log m.
Indeed, by syntactical necessity all variables bound by this quantifier are different, there are
at least m of them, so they are indexed by at least m pairwise distinct binary sequences. The
estimate follows now by an elementary calculation.

By the estimate we have just made, no quantifier occurring in ¢, can bind more than, say,
%n formulas, therefore its type must be as follows for some 1 < ¢ < st (< %n, o< %n, <
Ti— 1, i1,y Ts).

Fix a large n. We get

KD, (Fin,(c)) < 4nlogn+ O(n*t?) +
B . . 1 .
4n10gn2(1 + 0(1))exp(z rin’ + (r; — n' + 571271])/71'
i=1 J>i Jj<i
s , 1. 1 :
s+2 . . ? +1
< O(n)—|—5nlognZeXp(Z7‘]n]+(7‘Z—§)n -|-§ Z n’)/n'
=1 i>t Jj<i—1
s—1
: 1. .
< 4l 5nl !+ (ri— Z)n') [nl.
< 4nlogn + 5n ogn;exp(;mn + (r 3)n)/n

Indeed, it is possible to reconstruct ¢,[Fin, ()], given n, from ¢, itself plus descriptions of all
at most |@,| quantifiers appearing in it. More precisely, from each quantifier we need only the
information about structures of size n which belong to it. To make this description a binary
word, each such class can be described by a string of bits of length ns-(n), where 7 is the type
of the quantifier, telling which structures are in it, and which aren’t. Additionally we need bits
necessary to separate all these strings, and their number is logarithmic in the length of strings
to be separated times the number of them. Applying the estimates of of ns;(n) from Theorem
5 we get the first inequality. (The mysterious constant 4 comes from the fact, that Kolmogorov
complexity is about binary strings, whereas our formulas are written using 12 symbols—the
conversion is done by describing each of them by four bits.) The remaining two inequalities
follow then by simple calculation.

Now, using (2), we immediately see that

KD o, (Fitia(0)) = o KD, (Fina()). 3)
Thus KD, (Fin,(c)) # KD, (Fin,(0)) if n is sufficiently large, and we get a contradiction by
Theorem 3. u

We can apply the same idea to prove lower bounds concerning almost sure definability. We
achieve this by application of Theorem 4. This allows us to improve the second hierarchy
theorem for Lindstrém quantifiers, due to Hella, Kolaitis and Luosto [6]. We say, that the
sequence {¢,},eN is almost surely equivalent to ¢ iff

i |20 € Fin, (o) : A E ¢ < ¢} _
A, [Fin (0]

L,

where o is the signature made of all symbols appearing in .

Theorem 8 For any nonunary type o there exists a Lindstrém quantifier () of this type and
a sentence ¢ € FO(Q) such that if {¢,},eN s a sequence of formulas of FO extended by all
Lindstrém quantifiers of types lower than o, and {¢,,},eN s almost surely equivalent to ¢, then
lim inf,,_ % > %

Proof. Combine Equation (3) with Theorem 4.]
And now we show, that the bounds we have obtained are fairly tight. The example type (0,0, 3)

can be replaced by any nonunary one, without changing the argument.

Proposition 9 FEvery Lindstrém quantifier) of type (0,0,3) can be defined in n element struc-
tures by a first order formula of length O(nlogn) using only Lindstrém quantifiers of types (k,1)
for k,l € N.

Proof. The idea is to represent a ternary relation R C A as n slices {(a,b) € A% : (a,b,c) €
R}, ¢ € A. We implement this method defining the equivalent of Qu,y, z(¢(x,y, z,u)), where
() is a class of structures with one ternary relation, in n element structures as follows:

21 = V1y.. .y 2 = Un,)
)

Jz1...32,Q'n Uy & x
see ey Uns 1, Y15 - -5 Ty Yn — —
S‘Q(xlvylvzlvu)v e '79‘9($n7yn72n7u)

where Q' consists of structures (n,{i};=o,. n-1,{(a,b) € n? : (a,b,i) € R}i=o,. n-1) over all
(n,R) €). Note the role of unary relations in structures in @’: they guarantee that all z’s
are different (written in first-order fashion it would require about n%/2 inequalities), and allow
identifying the slices with elements they correspond to—the order of slices is identical as the
order of singleton unary relations identifying elements.

A simple analysis reveals that the length of the constructed sentence is O(|¢| - nlogn). [

Acknowledgment. [would like to thank Kerkko Luosto for very interesting discussions we
had on the topic and helpful comments ofn the earlier versions of this note.

References

[1] J. Cai, M. Fiirer and N. Immerman, An optimal lower bound on the number of variables
for graph identification, Combinatorica 12(1992), pp. 389-410.

[2] A. Dawar, A restricted second-order logic for finite structures, Logic and Computational
Complexity (ed. D. Leivant), Lecture Notes in Computer Science Vol. 960, Springer-Verlag
(1995), pp. 393-413

[3] H.-D. Ebbinghaus and J. Flum, Finite model theory, Perspectives in Mathematical Logic,
Springer Verlag, 1995.

[4] R. Fagin, Probabilities on finite models, Journal of Symbolic Logic 41(1976), pp. 50-58.

[5] L. Hella, K. Luosto and J. Vdananen, The hierarchy theorem for generalized quantifiers, to
appear in Journal of Symbolic Logic.

[6] L. Hella, Ph. Kolaitis and K. Luosto, Almost sure equivalence of logics, manuscript.

[7] M. Li and P.M.B. Vitanyi, An introduction to Kolmogorov complexity and its applications,
Springer Verlag, New York, 1993.

[8] J. Tyszkiewicz, The Kolmogorov expression complexity of logics, submitted to Information
and Computation.

[9] M.Y. Vardi, Complexity of relational query languages, in: Proc. 14th Symposium on Theory
of Computation 1982, pp. 137-146.

