
A Note on the Kolmogorov Data Complexity and

Nonuniform Logical De�nitions�

Jerzy Tyszkiewicz

Mathematische Grundlagen der Informatik,

RWTH Aachen, D-52074 Aachen, Germany.

jurek@informatik.rwth-aachen.de

Finite model theory; Descriptive complexity; Kolmogorov complexity; Combinatorial problems.

1 Introduction

Descriptive complexity is the theory emerging from investigating how di�cult is to describe

a given problem in a given logical formalism, in contrary to the classical complexity theory

question, how di�cult it is to decide this problem in a given computational model. Although

these approaches seem quite di�erent, they are sometimes even equivalent: the famous and

seminal for descriptive complexity result of Fagin [4] states, that a problem, i.e., a class of �nite

structures, is computable in NP i� it can be de�ned by a sentence of existential second order

logic �1
1:

In the descriptive complexity the resources used to de�ne problems, and thus to measure their

di�culty, are e.g. kind of higher-order-order constructs used in the description. If we insist

on using only �rst-order logic, this can be e.g. the number of variables/quanti�ers. However,

as �rst-order logic is known to be of severely limited power in the �nite, one has often to

use nonuniform approach, similar to this used in circuit complexity, and allow problems to be

described by sequences f'ngn2N of sentences, where 'n is intended to de�ne the problem among

structures of cardinality n: In this way a mere �rst-order-inexpressibility result can possibly be

converted into a precise statement, how far it is from being de�nable. The well-known result

of Cai, F�urer and Immerman asserts e.g. that the isomorphism of graphs requires cn variables

for some c > 0 (they can be requanti�ed as often as necessary), even if all counting quanti�ers

are allowed. A bit less cryptic is the result of Dawar [2], using essentially the same technique,

that any �rst-order de�nition of 3-colourability of n-element graphs requires
p
n variables to be

used.

Another example: if we are going to de�ne some PSPACE-complete problem nonuniformly in

�rst-order logic, we have to use a sequence f'ngn2N complicated enough to have the prob-

lem: given A; determine 'jAj and verify whether A j= 'jAj PSPACE-complete|recall that for

constant sentence sequences it is even in LOGSPACE.

In this paper we consider another resource: the quantity of information, included in the problem,

which is made formal using Kolmogorov complexity. Thus the nonuniform de�nition must

include the same amount of information, and this manifests in the length of sentences forming

the de�nition.

�Research supported by the German Science Foundation DFG.

1



Applying this method, we reprove the nonexpressibility results of Hella, Luosto and V�a�an�anen

[5] and Hella, Kolaitis and Luosto [6] about hierarchies of generalized (so called Lindstr�om)

quanti�ers, replacing their counting arguments by Kolmogorov complexity. This yields not only

a cleaner and more intuitive proof, but, as a by-product, a sharp estimate of the length of

sentences de�ning more complicated Lindstr�om quanti�ers in the terms of simpler ones.

The method we use seems interesting on its own, and can possibly be used in other contexts as

well, so we present in more detail than necessary just to prove our theorem.

2 Kolmogorov Data Complexity

2.1 The overall picture

Any given logic L; if restricted to its sentences, can be represented in the �nite structures in a

form of an in�nite binary matrix, whose rows correspond to all sentences of L and columns to

all �nite structures. A 1 in row n and column m means that Am j= 'n; and 0 that Am 6j= 'n:

A0 A1 A2 : : :

'0 0 1 0 : : :

'1 1 0 1 : : :

'2 0 1 1 : : :

...
...

...
...

. . .

Figure 1: Logic represented as a binary matrix

Many notions have been considered to characterize the expressive power of logics in this context.

The absolute expressive power is the set of all rows of the matrix: if for two logics L and L0

these sets are equal, then L and L0 are of equal expressive power, in the sense that for every

sentence ' 2 L there is a sentence '0 2 L0 such that '$ '
0 is true in all �nite models, and vice

versa: for every '0 2 L0 there is ' 2 L such that '$ '
0 in all �nite models.

Other notions are often a priori weaker than the absolute one. Typically they rely on speci�c

properties possessed by the sets of rows and/or columns of the matrix, the properties indicating

somehow the strength or weakness of the expressive power.

Let us give three examples, the �rst of which is classical:

1. Computational complexity of rows. The indication of weakness of one logic would be that

every row is in some low complexity class, say LOGSPACE. An indication of strength of another

logic could be that there is a PSPACE-complete row. We can immediately deduce that the two

logics are of di�erent expressive power1. Using this kind of approach, we are working in the

area of so called descriptive complexity. 2. Kolmogorov complexity of columns. Although it is

not as easy to see like in the previous case, a properly chosen kind of Kolmogorov complexity

of columns of the matrix gives rise to an expressiveness measure, as the author has shown in

[8]. 3. Kolmogorov complexity of rows. This is the method used in this paper.

After Vardi [9] notions referring to rows of the matrix are said to be of data type, and those

referring to columns to be of expression type. It is therefore e.g. legitimate to call the notion

in Item 2. above Kolmogorov expression complexity and the last on ethe Kolmogorov data

complexity, KD in short.

1Note that this kind of argument can lead to separations depending upon open problems in complexity theory.

2



In this paper, considering the Kolmogorov complexity of rows, we aim not only at nonexpress-

ibility results per se, but at lower bounds concerning non-uniform de�nitions. And this tool

allows us deducting lower bounds concerning length of formulas in the de�nition.

2.2 Logic and Kolmogorov complexity

Proviso. N is the set of nonnegative integers, identi�ed with the set f0; 1g� of �nite binary

strings, ordered �rst by length, and then lexicographically. Thus 0 is the empty word. We will

use jxj to denote the length of the word x:

We often use asymptotic notation in its standard meaning, such as O \big oh", o \small oh",

etc. log n throughout the paper stands for the greatest natural m such that 2m � n: We write

exp(n) for 2n:

Finally, for notational's convenience we assume n = f0; : : : ; n� 1g:

Logic and structures. In this paper we will deal with �nite structures. We �x an in�nite

signature !; consisting of in�nitely many relation symbols of each �nite arity. A �nite structure

A over this signature is a structure whose universe A is an initial segment of natural numbers,

and in which only �nitely many relations are nonempty. The cardinality of A is denoted,

somehow nonconsequently, by jAj: Fin(!) is the set of all isomorphism types of such structures.

If � is a subsignature of !; Fin(�) � Fin(!) is the set of all isomorphism types of structures

such that R = ; for R =2 �: For simplicity we will assume that members of Fin(!) are structures

themselves, rather than formally equivalence classes of the isomorphism relation. Functions are

in our model represented as restricted relations, and constants as 0-ary functions.

We assume Fin(!) to be ordered in a recursive way by �; the particular choice of the ordering
relation being immaterial for the moment.

We assume the �rst-order logic to be known. The only convention we must adopt is the length

of formulae: they are written using the standard syntax, with the �xed alphabet consisting of

(; ); 9; 8;:;_;^;$; x; 0; 1: Variables are constructed using x; 0 and 1; the latter two serving as

binary digits to create subscript numbers to variables. The length j'j of ' is then just the

number of symbols appearing in it.

Sometimes, when writing down a formula, we use other names of variables as well, treating

them as notational abbreviations, to make the result more readable.

We write '[A] 2 f0; 1g for the truth value of a sentence ' 2 L in A 2 Fin(!): Sometimes we

don't write '[A] = 1; but traditionally A j= ' instead.

Kolmogorov complexity. We recall brie
y the main de�nitions and notions of Kolmogorov

complexity, assuming notation from the Li and Vit�anyi's book [7]. This book contains a detailed

introduction of this notion.

Let �(�; �) be a universal partial recursive function � : f0; 1g��f0; 1g�! f0; 1g�: TheKolmogorov

complexity of a string x 2 f0; 1g� relative to a string y 2 f0; 1g� is

C(xjy) = minfjzj : �(z; y) = xg:

C(xjy) says how many bits we must add to y in order to describe x uniquely, where the method

of understanding descriptions is given by �: It can be shown, that this value does not change

by more than an additive constant, if another universal function in place of � is used.

Proposition 1 For every y 2 f0; 1g� and arbitrary n 2 N there is a string x 2 f0; 1gn such

that C(xjy) � n:

3



The above proposition is often rephrased as \there are incompressible strings", i.e., strings which

cannot be described in any way shorter then the string itself. Such incompressible objects are

often used as \di�cult" inputs in lower bound proofs of various kinds. Many examples can be

found in the already mentioned book by Li and Vit�anyi [7]. We will see another application of

this idea in this paper.

We need a small additional technicality about Kolmogorov complexity: It is possible to de�ne

a pairing function h ; i for binary strings such that jhx; yij= jxj+ jyj+ O(logmin(jxj; jyj):

2.3 The de�nition of KD

If A � Fin(!) is �nite, then the binary string h'[A]iA2A we denote '[A]; by analogy to '[A]

used for a single structure. The set A itself is represented as a binary string, resulting from the

characteristic function of A in Fin(!) by cutting all 0's after the last 1 in this sequence.

For each row in the matrix, say corresponding to ' 2 L; we consider the function

KD' : Pfin(Fin(!))! N

de�ned as follows:

KD'(A) = C('[A] j A):

The function measures how much information we need in order to evaluate the sentence ' in

models in A; when A is given. Certainly if our logic has a �xed recursive semantics, or, in other

words, if the relation j= between models and structures is recursive, then this quantity remains

uniformly bounded for all A; and the bound depends on ' only. But if there is no recursive

semantics, it can be used to measure the complexity of logics.

2.4 The invariance of KD

We have to show that the de�nitions we have given are robust in a reasonable sense. I.e., the

values of KD do not depend on the choices we have made: actually only the choice of the

ordering � of Fin(!) matters for it. And it appears the values do not change by more than an

additive constant, when the ordering of Fin(!) changes. On the other hand, the Kolmogorov

complexity of strings can itself change by an additive constant, depending on the choice of the

universal partial-recursive function, so the additional indeterminacy introduced by our choices

doesn't spoil more than has been already spoiled by the indeterminacy of the Kolmogorov

complexity itself.

Theorem 2 If �1 and �2 are two di�erent recursive orderings of Fin(!); and KD1 and KD2

two associated Kolmogorov data complexity functions, then jKD1�KD2j � c for some constant c:

Proof. Since both �1 and �2 are recursive, the (unique) bijection � mapping n onto the

�2-number of the �1-nth structure in Fin(!) is recursive, and its inverse ��1 is recursive, too.

Now given ' 2 L and A 2 Pfin(Fin(!)); we can translate the strings '[A] according to �1 and

�2 into one another by repeated applications of either � or ��1 to the indices of structures in A
and then sorting the string according to the obtained values. Application of such a translation

does not increase the length of shortest programs by more than an additive constant.

Note the reason we need to have this theorem: it is not the case, that \complicated" ordering

of A can require longer program to reconstruct '[A]; than a \simpler" ordering, since A to-

gether with ordering is always given to the reconstruction program. It is the other way round:

4



\complicated" ordering of A could accidentally contain some information about '[A]; and we

have had to make sure, that this amount of accidental information is small and doesn't really

a�ect the results.

The next theorem follows directly from the de�nitions, but it can be seen as the basis of what we

do in this paper, therefore we give the proof. It establishes that KD is an invariant of expressive

power of logics.

Theorem 3 Suppose A is a nonempty �nite subset of Fin(!): Let ';  be two sentences such

that A j= '$  : Then KD'(A) = KD (A):

Proof. If KD'(A) 6= KD (A); i.e., C('[A] j A) 6= C( [A] j A); then in particular '[A] 6=  [A];
which means A 6j= '$  :

Although this theorem isn't particularly deep, it says that our method makes sense. Another

nice property of this fact, that some weaker forms of equivalence of formulas, like \equivalence in

great majority of models" lead to other versions of it, with the requirement KD'(A) = KD (A)
weakened to \the di�erence between KD'(A) and KD (A) is not too large".

Theorem 4 Suppose An is a sequence of nonempty �nite subsets of Fin(!): Let 'n;  n be two

sequences of formulas such that

lim
n!1

jfA 2 An j A j= 'n $  ngj
jAnj = 1: (1)

Then

jKD'n(An)�KD n(An)j = o(jAnj):

Proof. First note the full symmetry of the problem concerning ''s and  's. So if we prove just

one of the two inequalities hidden in the absolute value inequality, we are done.

Let an = jAnj: The string 'n[An] can be described by  n[An] plus the information where the

strings di�er. Let the number of places where they di�er be fn: Then this information can be

represented as a binary string of length an with fn many ones, marking places of di�erence. To

provide this information, it is enough to give the lexicographic number of it among all strings of

this length with at most that many ones|note that we cannot assume fn to be given. Equation

(1) means that fn=an ! 0 when n ! 1: In the following calculation we skip subscripts in an
and fn; treating n as �xed.

There are
�
a

i

�
binary strings of length a with precisely i � f 1's. The number of bits we will

need is then

log(
X
i�f

�
a

i

�
) � log(f

�
a

f

�
);

Indeed, for i � f < a=2; and this is the case almost always, the value of
�
a

i

�
grows monotonically

with the growth of i: For the same reason we may assume that f !1: Now

�
a

f

�
=

a!

f !(a� f)!

= (1 + o(1))
a
a
e
�a
p
2�a

f
f
e
�f
p
2�f (a� f)(a�f)ef�a

p
2�(a� f) [by Striling's formula]

5



= (1 + o(1))
a
a

f
f
p
2�f (a� f)(a�f)

=
1p
2�f

� a
f

f
f
� a

a�f

(a� f)a�f

=
1p
2�f

� ���a � (1� �)(��1)a: [we substitute f := �a]

Now the upper bound of log f
�
a

f

�
we need is

log f

�
a

f

�
� log(f=

p
2�f ) + (��a) log � + (�� 1)a log(1� �)

=
1

2
log f + a(�� log �+ (�� 1) log(1� �)) + O(1)

= O(log a) + o(a);

because lim
�!0+ � log �+ (1� �) log(1� �) = 0:

Now the string 'n[An]; given n; can be described by  n[An] plus a string of o(a) additional

bits, plus O(log a) bit separator, which �nishes the proof.

3 Application: Hierarchies of Lindstr�om Quanti�ers

3.1 Lindstr�om Quanti�ers

For a textbook introduction of Lindstr�om quanti�ers, see e.g. the book by Ebbinghaus and

Flum [3].

Let � be a �nite subsignature of ! with r1 unary symbols, r2 binary symbols, : : : , rs s-ary

symbols, and no symbols of higher arities. A Lindstr�om quanti�er Q of type (r1; r2; : : : ; rs)

is a subset Q � Fin(�): Now we order the types of quanti�ers: let for � = (r1; r2; : : : ; rs)

th symbol cp
�
denote the polynomial

P
s

i=1 ri � xi: Now the type �0 precedes the type � i�

(cp
�0
(n)� cp

�
(n))!n!1 1:

Rather than de�ning the introduction of the quanti�er Q quite formally, we do it on an example

of type (1; 2), which is then easily extendable to the general case. We won't distinguish Q from

its syntactic counterpart.

To �x the attention, we choose the set Q to consist of structures which are (by necessity) directed

graphs with an unary relation, and such that the vertices in the unary relation form a maximal

clique in the graph. The way it is used in logics is as follows: Given a logic L; we de�ne L(Q);

the extension of L by the Lindstr�om quanti�er Q: The syntax of L is extended by adding to the

formula formation rules of L the following formation rule: if '(x; y; �u) and  (z; �u) are formulas

of L(Q); then the expression Qx; y; z( (z; �u); '(x; y; �u)) is a formula of L(Q): x; y; z are the

variables bound by the quanti�er, and they are necessarily all distinct.  (z; �u); '(x; y; �u) are

the formulas the quanti�er is applied to.

The semantics is as follows:

Suppose A 2 Fin and �
d 2 A

k
: Then A; �u : �

d j= Qx; y; z( (z; �u); '(x; y; �u)) i� the structure

hA; fc 2 A :  (c; �d)g; f(a; b) 2 A
2 : '(b; �d)gi is in Q; i.e., if, assuming the values �

d of �u as

parameters, the subset of A de�ned by  is a maximal clique in the directed graph de�ned by

':

It remains to �x the rule concerning length of formulas from FO(Q): we adopt the rule, that for

each Q we introduce a new letter to our alphabet which has been used for describing �rst order

6



formulae, but they don't count when measuring the length of formulae. What counts, however,

are all the parentheses, variables, formulas, etc., which appear right after Q; as well as the other

new symbol we use: , .

We need an information about the cardinalities of sets Finn(�) = fA 2 Fin(�) : jAj = ng: The
following well known theorem of Fagin [4] gives an asymptotic estimate of this value:

Theorem 5 For any sequence f�ngn2N of non-unary signatures with �xed maximal arity holds

jFinn(�)j = (1 + o(1))cp
�n
(n)=n!:

The value jFinn(�)j we denote by ns�(n):

Lemma 6 For every nonunary type � there is a Lindstr�om quanti�er Q of type � and a sentence

' 2 FO(Q) with

KD'(Finn(�)) � ns�(n)=n!� O(1):

Proof. First we de�ne classes Qn � Finn(�): Then we will set Q =
S
n2NQn:

Let us �x a binary string wn of length jFinn(�)j such that C(wn j n) � jwnj: This means that

wn cannot be reconstructed from any string shorter than jwnj; even if n is known. Now let

A 2 Qn i� A is i-th in the ordering of Finn(�) and the i-th bit of wn is 1.

Consider the sentence ' � Q�x(R1; : : : ; Rn) obtained by applying the quanti�er to the signature

relations from �:

Given n; the string wn can be easily reconstructed from '[Finn(�)] as follows: for each i =

0; : : : ; n� 1 we have Ai j= ' i� the i-th bit of wn is 1, where Ai is the i-th structure in Finn(�):

This immediately implies the thesis.

And now the �rst hierarchy result, extending that of Hella, Luosto and V�a�an�anen [5]:

Theorem 7 For any nonunary type � there exists a Lindstr�om quanti�er Q of this type such

that if f'ngn2N is a sequence of formulas of FO extended by all Lindstr�om quanti�ers of types

lower than the type of Q; and for each n the formula 'n de�nes Q in all �nite structures A of

cardinality n; then lim infn!1
j'nj

n logn >
1
5 :

Proof. Let � = (r1; r2; : : : ; rs): According to the last lemma there is a quanti�er Q of type �

and a sentence ' of FO(Q) with

KD'(Finn(�) = ns�(n)=n!�O(1) = (1 + o(1))cp
�
(n)=n!: (2)

Suppose to the contrary that there is a sequence f'ngn2N of sentences of FO(Q) such that

Finn(�) j= 'n $ '; where Q is the collection of all quanti�ers of type lower than r; and such

that j'nj � 1
4:5n logn for almost all n:

Note that any occurrence of a quanti�er binding m formulas must have length at least 1
2
m logm:

Indeed, by syntactical necessity all variables bound by this quanti�er are di�erent, there are

at least m of them, so they are indexed by at least m pairwise distinct binary sequences. The

estimate follows now by an elementary calculation.

By the estimate we have just made, no quanti�er occurring in 'n can bind more than, say,
1
2
n formulas, therefore its type must be as follows for some 1 � i � s: (� 1

2
n; : : : ;� 1

2
n;�

ri � 1; ri+1; : : : ; rs):

Fix a large n: We get

7



KD'n(Finn(�)) � 4n logn+ O(ns+2) +

4n logn
sX
i=1

(1 + o(1)) exp
�X
j>i

rjn
j + (ri � 1)ni +

1

2
n

X
j<i

n
j

�
=n!

� O(ns+2) + 5n logn
sX
i=1

exp
�X
j>i

rjn
j + (ri � 1

2
)ni +

1

2

X
j<i�1

n
j+1
�
=n!

� 4n logn+ 5n logn
s�1X
i=1

exp
�X
j>i

rjn
j + (ri � 1

3
)ni
�
=n!:

Indeed, it is possible to reconstruct 'n[Finn(�)]; given n; from 'n itself plus descriptions of all

at most j'nj quanti�ers appearing in it. More precisely, from each quanti�er we need only the

information about structures of size n which belong to it. To make this description a binary

word, each such class can be described by a string of bits of length ns� (n); where � is the type

of the quanti�er, telling which structures are in it, and which aren't. Additionally we need bits

necessary to separate all these strings, and their number is logarithmic in the length of strings

to be separated times the number of them. Applying the estimates of of ns� (n) from Theorem

5 we get the �rst inequality. (The mysterious constant 4 comes from the fact, that Kolmogorov

complexity is about binary strings, whereas our formulas are written using 12 symbols|the

conversion is done by describing each of them by four bits.) The remaining two inequalities

follow then by simple calculation.

Now, using (2), we immediately see that

KD'n(Finn(�)) = o(KD'(Finn(�))): (3)

Thus KD'(Finn(�)) 6= KD'n(Finn(�)) if n is su�ciently large, and we get a contradiction by

Theorem 3.

We can apply the same idea to prove lower bounds concerning almost sure de�nability. We

achieve this by application of Theorem 4. This allows us to improve the second hierarchy

theorem for Lindstr�om quanti�ers, due to Hella, Kolaitis and Luosto [6]. We say, that the

sequence f'ngn2N is almost surely equivalent to ' i�

lim
n!1

jA 2 Finn(�) : A j= '$ 'ngj
jFinn(�)j = 1;

where � is the signature made of all symbols appearing in ':

Theorem 8 For any nonunary type � there exists a Lindstr�om quanti�er Q of this type and

a sentence ' 2 FO(Q) such that if f'ngn2N is a sequence of formulas of FO extended by all

Lindstr�om quanti�ers of types lower than �; and f'ngn2N is almost surely equivalent to '; then

lim infn!1
j'nj

n logn
>

1
5
:

Proof. Combine Equation (3) with Theorem 4.

And now we show, that the bounds we have obtained are fairly tight. The example type (0; 0; 3)

can be replaced by any nonunary one, without changing the argument.

Proposition 9 Every Lindstr�om quanti�er Q of type (0; 0; 3) can be de�ned in n element struc-

tures by a �rst order formula of length O(n logn) using only Lindstr�om quanti�ers of types (k; l)

for k; l 2 N:

8



Proof. The idea is to represent a ternary relation R � A
3 as n slices f(a; b) 2 A2 : (a; b; c) 2

Rg; c 2 A: We implement this method de�ning the equivalent of Qx; y; z('(x; y; z; �u)); where

Q is a class of structures with one ternary relation, in n element structures as follows:

9z1 : : :9znQ0v1; : : : ; vn; x1; y1; : : : ; xn; yn
 

z1 = v1; : : : ; zn = vn;

'(x1; y1; z1; �u); : : : ; '(xn; yn; zn; �u)

!
;

where Q0 consists of structures hn; figi=0;:::;n�1; f(a; b) 2 n
2 : (a; b; i) 2 Rgi=0;:::;n�1i over all

hn;Ri 2 Q: Note the rôle of unary relations in structures in Q
0: they guarantee that all z's

are di�erent (written in �rst-order fashion it would require about n2=2 inequalities), and allow

identifying the slices with elements they correspond to|the order of slices is identical as the

order of singleton unary relations identifying elements.

A simple analysis reveals that the length of the constructed sentence is O(j'j � n logn):

Acknowledgment. I would like to thank Kerkko Luosto for very interesting discussions we

had on the topic and helpful comments ofn the earlier versions of this note.

References

[1] J. Cai, M. F�urer and N. Immerman, An optimal lower bound on the number of variables

for graph identi�cation, Combinatorica 12(1992), pp. 389{410.

[2] A. Dawar, A restricted second-order logic for �nite structures, Logic and Computational

Complexity (ed. D. Leivant), Lecture Notes in Computer Science Vol. 960, Springer-Verlag

(1995), pp. 393{413

[3] H.-D. Ebbinghaus and J. Flum, Finite model theory, Perspectives in Mathematical Logic,

Springer Verlag, 1995.

[4] R. Fagin, Probabilities on �nite models, Journal of Symbolic Logic 41(1976), pp. 50{58.

[5] L. Hella, K. Luosto and J. V�a�an�anen, The hierarchy theorem for generalized quanti�ers, to

appear in Journal of Symbolic Logic.

[6] L. Hella, Ph. Kolaitis and K. Luosto, Almost sure equivalence of logics, manuscript.

[7] M. Li and P.M.B. Vit�anyi, An introduction to Kolmogorov complexity and its applications,

Springer Verlag, New York, 1993.

[8] J. Tyszkiewicz, The Kolmogorov expression complexity of logics, submitted to Information

and Computation.

[9] M.Y. Vardi, Complexity of relational query languages, in: Proc. 14th Symposium on Theory

of Computation 1982, pp. 137{146.

9


