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Abstract

Estimation of Distribution Algorithms (EDA) have been proposed as an extension of
genetic algorithms. In this paper we explain the relationship of EDA to algorithms
developed in statistics, artificial intelligence, and statistical physics. The major design
issues are discussed within a general interdisciplinary framework. It is shown that
maximum entropy approximations play a crucial role. All proposed algorithms try to
minimize the Kullback-Leibler divergence K'LD between the unknown distribution
p(x) and a class g(x) of approximations. However, the Kullback-Leibler divergence
is not symmetric. Approximations which suppose that the function to be optimized
is additively decomposed (ADF) minimize K LD(q||p), the methods which learn the
approximate model from data minimize K LD(p||q). This minimization is identical to
maximizing the log-likelihood. In the paper three classes of algorithms are discussed.
FDA uses the ADF to compute an approximate factorization of the unknown distribu-
tion. The factors are marginal distributions, whose values are computed from samples.
The second class is represented by the Bethe-Kikuchi approach which has recently been
rediscovered in statistical physics. Here the values of the marginals are computed from
a difficult constrained minimization problem. The third class learns the factorization
from the data. We analyze our learning algorithm LFDA in detail. It is shown that
learning is faced with two problems: first, to detect the important dependencies be-
tween the variables, and second, to create an acyclic Bayesian network of bounded
clique size.

Keywords
Estimation of distributions, Boltzmann distribution, factorization of distributions,
maximum entropy principle, minimum relative entropy, minimum log-likelihood ra-
tio, Bayesian information criterion, Bethe approximation.

1 Introduction

The Estimation of Distribution (EDA) family of population based search algorithms was
introduced by Miihlenbein and Paaf} (1996) as an extension of genetic algorithms.! The
following observations lead to this proposal. First, genetic algorithm have difficulties to
optimize deceptive and non-separable functions, and second, the search distributions
implicitly generated by recombination and crossover can be extended to include the
correlation of the variables in samples of high fitness values.

IMiihlenbein and Paaf (1996) have named them conditional distribution algorithms.
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EDA uses probability distributions derived from the function to be optimized to
generate search points instead of crossover and mutation as done by genetic algo-
rithms. The other parts of the algorithms are identical. In both cases a population
of points is used and points with good fitness are selected either to estimate a search
distribution or to be used for crossover and mutation.

In (Miihlenbein and Paaf3, 1996) the distribution was estimated by computationally
intensive Monte Carlo methods. The distribution was restricted to tree-like structures.
It has been shown by Miihlenbein et al. (1999) that simpler and more effective methods
exist which use a general factorization of the distribution.

The family of EDA algorithms can be understood and further developed without
the background of genetic algorithms. The problem of estimating empirical distribu-
tions has been investigated independently in several scientific disciplines. In this pa-
per we will show how results in statistics, belief networks and statistical physics can
be used to understand and further develop EDA. In fact, an interdisciplinary research
effort is well under way which cross-fertilizes the different disciplines.

Unfortunately each discipline uses a different language, has a slightly different ap-
plication, and has developed different algorithms. In EDA we have to sample from a
distribution, in belief networks one computes a single marginal distribution p(y|z) for
new evidence z, and statistical physicists want to compute the free energy of a Boltz-
mann distribution. Thus the algorithms developed for belief networks concentrate on
computing a single marginal distribution, whereas for EDA we want to generate sam-
ples in areas of high fitness values. All disciplines face the problem to develop fast al-
gorithms to compute marginal distributions. The foundation of the theory is the same
for all disciplines. It is based on graphical models and their decomposition. We hope
that the readers are interested in accompanying us on our journey through the differ-
ent disciplines. We will leave out a discussion of the approaches in probabilistic logic
to simplify the presentation.

Today two major branches of EDA can be distinguished. In the first branch the
factorization of the distribution is computed from the structure of the function to be
optimized, in the second one the structure is computed from the correlations of the
data. The second branch has been derived from the theory of belief networks (Jordan,
1999). For large real life applications often a hybrid between these two approaches is
most successful (Miihlenbein and Mahnig, 2002a).

The paper is intended as a short introduction to the theory of EDA. It is not in-
tended as a survey of ongoing research. Here an excellent overview is already available
(Larrafiaga and Lozano, 2002). For simplicity we will only consider discrete variables.

The outline of the paper is as follows. In section 2 the basic steps to derive the
Factorized Distribution Algorithm FDA are recapitulated. A factorization theorem will
be discussed which uses the structure of the function to be optimized to factor the
distribution. In section 2.2 the junction tree algorithm is described which computes an
exact factorization by decomposing graphical models. Unfortunately many important
problems do not allow an exact factorization useful for numerical computations. In
section 3 the estimation problem is generalized. Here the concept of maximum entropy
distributions is explained.

In section 4 the methods developed in statistical physics are described. In this
approach the marginals are not computed from data, but from the known expression
of the function. In section 5 the learning of models from samples of high fitness val-
ues is described. Then we compare the different approaches presented using a simple
example. In section 7 our learning algorithm LFDA is analyzed and its behavior and
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performance compared to FDA is investigated.

2 Factorization of the Search Distribution

EDA has been derived from a search distribution point of view. Here we will simply
recapitulate the major steps published in (Miihlenbein et al., 1999; Miihlenbein and
Mahnig, 2000; Miihlenbein and Mahnig, 2002a). We will use the following notation.
Capital letters denote variables, lower cases instances of variables. If the distinction
between variables and instances is not necessary, we will use lower case letters. Vectors
are denoted by x, a single variable by x;.

Let a function f : X — IR>( be given. We consider the optimization problem

Xopt = argmax f(x) (1)

A good candidate for optimization using a search distribution is the Boltzmann distri-
bution.

Definition 1. For 3 > 0 define the Boltzmann distribution? of a function f(x) as

SIG) B0
pp(x) := =T 2,0 )

where Z;(B3) is the partition function. To simplify the notation 3 and/or f might be omitted.

The Boltzmann distribution concentrates on increasing 3 around the global optima
of the function. Obviously, the distribution converges for 3 — oo to a distribution
where only the optima have a probability greater than 0 (Miihlenbein and Mahnig,
2002b). Therefore, if it were possible to sample efficiently from this distribution for
arbitrary 8, optimization would be an easy task. But the computation of the partition
function needs an exponential effort for a problem of n variables. We have therefore
proposed an algorithm which incrementally computes the Boltzmann distribution from
empirical data using Boltzmann selection.

Definition 2. Given a distribution p and a selection parameter A, Boltzmann selection
calculates the distribution for selecting points according to

s p(x)etPI ()
p(x) = W 3)

The following theorem is easy to prove.

Theorem 3. If pg(x) is a Boltzmann distribution, then p®(x) is a Boltzmann distribution with
inverse temperature 3(t + 1) = B(t) + AB(1).

Algorithm 1 describes BEDA, the Boltzmann Estimated Distribution Algorithm.

BEDA is a conceptional algorithm, because the calculation of the distribution re-
quires a sum over exponentially many terms. In the next section we transform BEDA
into a practical numerical algorithm.

2.1 Factorization of the Distribution

In this section an efficient numerical algorithm is derived if the fitness function is addi-
tively decomposed.

E(x)
2The Boltzmann distribution is usually defined as e~ 7 /Z. The term E(z) is called the energy and
T = 1/0 the temperature. We use the inverse temperature 3 instead of the temperature.
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Algorithm 1 BEDA — Boltzmann Estimated Distribution Algorithm

1 t < 1. Generate N points according to the uniform distribution
p(x,0) with 5(0) = 0.

do{

3 With a given AS(t) > 0, let

N

p(x, t)eAPD(x)

ps (X, t) - p(y, t)eAﬁ(t)f(Y) ’
4 Generate N new points accorcfing to the distribution p(x,t+1) =
p*(x,1).
5 t=t+1
6 } until (stopping criterion reached)

Definition 4. Let s1,..., sy, be index sets, s; C {1,...,n}. Let f; be functions depending
only on the variables x; with j € s;. Then

m

fx)=> filxs,) 4)
i=1
is an additive decomposition of the fitness function (ADEF).

Definition 5. Let an ADF be given. Then the graph Gapg® is defined as follows: The vertices
represent the variables of the ADF . Two vertices are connected by an arc iff the corresponding
variables are contained in a common sub-function.

Given an ADF we want to estimate the Boltzmann distribution (2) using a product
of marginals. We need the following sets:

Definition 6. Given sy, ..., sy, we define fori =1,...,m the sets d;, b; and c;:
i
d; == U Sj, b; == s \ di_1, c = s8;Ndj_1 (5)
j=1

We demand d,,, = {1,...,n} and set dy = (. In the theory of decomposable graphs, d; are
called histories, b; residuals and c; separators (Lauritzen, 1996).

The next definition is stated a bit informally.

Definition 7. A set of marginal distributions §(xp,,X.,) is called consistent if the marginal
distributions fulfill the laws of probability, e.g.

Z q~(Xb,;7Xci) =1 (6)
Z Q(Xbi ) Xci) = (j(xci) (7)

Proposition 8. Let a consistent set of marginal distributions §(x,,X.,) be given. If b; # 0

then -
0300 =] dsl,

3Xiang et al. (1997) call it a decomposable Markov graph.

Xe; ) (8)
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defines a valid distribution (3 qg(x) = 1). Note that by definition x., = 0 and g(0) = 1.
Furthermore

qﬁ(xbi XCi)ZQﬁ(Xbi Xe), i=1,...m 9)
whereas in general

Qﬁ(xbiaxci)#Qﬁ(xbiaxci)a it=1,...m (10)

The proof follows from the definition of marginal probabilities. The proof of equa-

tion (9) is somewhat technical, but straightforward. The inequality (10) is very impor-

tant, but hardly known. We need an additional constraint in order that the marginal

distributions become equal. This has been proven by Miihlenbein et al. (1999).
Theorem 9 (Factorization Theorem). Let f(x) = Y .-, fi(xs,) be an additive decomposi-
tion. If
Vi=1,...,m; b;#0 (11)
Vi >23j < suchthatc; C s; (12)

then

H:il pﬁ(xbi ) XC«;)
Hinil pﬁ(xci)

Thus the true distribution can be obtained from some of its marginal distributions. There
always exists a factorization fulfilling the assumptions of the factorization theorem. We
just mention

as() =[] pstx,

Xe;) = = pp(x) (13)

p(x) = p(x1)p(z2|o)p(x3|ry, 22) - p(Tnlz1, .., Tno1) (14)

But this factorization uses marginal distributions of size O(n), thus the computation
is exponential in n. Therefore we are looking for factorizations where the size of the
marginals is bounded, independent of n.

Definition 10. The constraint defined by equation (12) is called the running intersection
property (RIP). The factorization is polynomially bounded (PBF) if the size of the sets
{b;, ¢} is bounded by a constant independent of n.

The connection of the factorization theorem to research done in non-sequential
dynamic programming is not well known. If a factorization with RIP is possible, we
can compute the maximum directly. In fact, the following maximization theorem has
been proven earlier than the factorization theorem by Bertelé and Brioschi (1972).

Theorem 11 (Maximization Theorem). Let the assumptions of the factorization theorem be
fulfilled. If the factorization is polynomially bounded, then max pg(x) and argmax pg(x) can
be computed recursively in polynomial time.

A proof of the theorem using graphical models can be found in Jordan (1999). The basic
idea is that maximization can be done in the same manner as marginalization. We have

max fi(a,b) f2(b,c) = max fi(a,b) max f2(b,¢)

For later use we just remark that any FDA factorization can be transformed into an
acyclic Bayesian network (acBN) (see equation (14)).

4s(x) = [J as(ailm) (15)
=1
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where ; are called the parents of ;.
We next describe a well-known algorithm to obtain a factorization with marginals
of small size and fulfilling the RIP given an arbitrary graph.

2.2 Computing a Factorization by Junction Trees

The algorithm is defined for any graphical model G, an example is Gapg. In order to
find the separators ¢; the method computes cliques and generates a junction tree J. A
junction tree is an undirected tree the nodes of which are clusters of variables. The
clusters satisfy the junction property: For any two clusters a and b and any cluster h on
the unique path between a and b in the junction tree

anbCh (16)

The edges between the clusters are labeled with the intersection of the adjacent clusters;
we call these labels separating sets or separatots.

Remark: The junction property is equivalent to the running intersection property (12).
A junction tree is constructed from the graphical model by the following steps:

Triangulating the graph G: A graph is triangulated if it contains no chord-less circle
with more than three vertices. An algorithm for adding the necessary edges is
described by Huang and Darwiche (1996).

Finding the cliques: A clique C in a graph is a maximal totally connected subgraph.
That means that in C every node is connected to every other node in C, and there
is no clique C’ which contains C.

Generating the clusters: For each clique generate a cluster containing its variables.
This cluster will become a node of the junction tree J.

Building the junction tree: Find pairs of clusters with maximal intersection and con-
nect them. Label the edge with the separating set. Repeat this until the tree is
complete.

This results in a tree which fulfills the junction property. There is plenty of literature
available about this method, e.g., Lauritzen (1996); Huang and Darwiche (1996); Jensen
and Jensen (1994).

A simple example to demonstrate this method is a circular graph G. It can be
triangulated by connecting one node with all other nodes. The resulting junction tree
is shown for 8 nodes in figure 1. The distribution can be factored into the cliques given
by the clusters of the junction tree.

e

p(x) = p(ar,x2, x8) [ [ p(wilai1, xs) (17)
=3

However, the junction tree contains non-local marginal distributions of order three.*
One can show that there exists no exact factorization of a 1-D circle using bi-variate
marginals only. For EDA this poses no problem, because all required marginals can be
computed from the selected sample. But for larger marginals more samples are needed
for a reliable estimate. If the graph contains many loops, the junction tree might be dif-
ficult to compute or might contain marginals with an exponential number of variables.
We will investigate this problem for a 2-D grid.

4Local marginals are defined in a 1-D neighborhood like p(z;—1, s, Z;+1)
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Figure 1: Graph model with triangulation and junction tree for a 1-D bi-variate circle.
The left figure shows the graph G; the dashed lines are inserted for the triangulation.
The cliques of the triangulated graph are the clusters of the junction tree J (right figure,
white boxes). The separators are the shaded boxes.

Figure 2: Graph model for a 2-D grid. The thick lines give a possible spanning tree.

2.3 The 2-D Grid

Let there be a 2-D grid of variables z; ;, i, = 1,...,n. Let the fitness function be com-
posed of the sub-functions of pairs of neighboring variables, z; j, x;+1; and x; j, % j11.
The goal is to compute a factorized distribution which is a good approximation to the
true distribution.

An exact factorization can be found with a junction tree. The difficulty of the com-
putation lies in the triangulation of the graphical model. One valid triangulation uses
the rows of the grid. Each variable is connected with all variables in the same row and
the neighboring rows. This adds O(n) edges to the graph. The cliques in the junction
tree consist of pairs of neighboring rows and have size 2n. Thus the exact factorization
is not polynomially bounded.

Therefore it is advisable to look for approximations. A very straightforward ap-
proximation is to leave out some of the marginals and build a spanning tree of the grid.
This could be the vertical edges in the first column and all the horizontal edges, forming
abig “E” (see thick lines in figure 2).

Given this subset of the edges and disregarding the rest, we can define the follow-
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H. Miihlenbein and R. Hons

x1 @ x3
T4 % Te

Figure 3: A 3 x 3 grid and its factorization using (19).

ing distribution:

n—1 n n—1
9(x) = p(e1,1,221) [[ p@isialzan) [T [T p@igealeiy) (18)
i=2 i=1 j=1

This is a valid probability distribution insofar as it sums up to 1 and the marginals
are consistent. But obviously the choice of some marginals, while abandoning the rest,
retains the stain of arbitrariness. Another possibility, which regards all the given mar-
ginals, consists of combining blocks of four variables (z; j, Zit1,j, %i,j+1, Zi+1,j+1). The
complete distribution can then be built up by:

n—1
q(x) = p(z1,1, 2,1, 21,2, T2,2) H P(Tit1,1, Tig1,2]T3,1, Ti2)
i=2
n—1 n—1n—1

[ @i, 22 0l 22) [ [T p@isrsloig zivag, i) (19)

j=2 i=2 j=2

However, the factorization (19) violates the running intersection property (12). It
reproduces the given marginals only in the first tetra-variate row and column, but not
in the areas where the running intersection property is violated. For simplicity we
assume a 3 x 3 grid. For abbreviation, we enumerate the variables with 1 through 9
(figure 3). We can calculate the marginal distribution ¢(z, x9) as follows:

q(zg, zg) = Z p(xolzs, 6, v3) Zp($8|$4,$5) ZP($6|$2,$5)2?($27$47$5)

T5,T8 T4 T2

~ Y plaoles, w6, ws) Y plws|wa, v5)p(aa, w5, 6) (20)
T5,T8 T4

~ Y plaols, xe, ws)p(ws, w6, 3) (21)
T5,T8

= p(zs, o)

The approximations (20) and (21) would be correct if

p(xe|xe, x5) = p(xe|T2, 24, 25)

p(xs|es, x5) = p(as|rs, x5, T6)
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However, these equations cannot be deduced from the graphical model. The first

approximation, for instance, is only true if z¢ and x4 are conditionally independent
given (z2,xs5). But this is not the case. There exists a path between z4 and xz¢ which
does not have x5 or x5 as a node.
The optimal decomposition of a grid has already been investigated for non-serial dy-
namic programming by Martelli and Montari (1972). We next describe our factorized
distribution algorithm FDA which tries to compute efficient approximate factoriza-
tions.

2.4 The Factorized Distribution Algorithm FDA

If the factorization violates the assumption of the factorization theorem, then non-serial
dynamic programming does not work. But an algorithm which estimates the marginals
from samples might still find the optimum. One only has to compute a good approxi-
mate factorization given the graph Gapr. We first describe our FDA.

Algorithm 2 FDA - Factorized Distribution Algorithm

1 Calculate b; and ¢; by the Sub-function Merger Algorithm.

2t < 1. Generate an initial population with N individuals from the
uniform distribution.
3 do{

4 Select M < N individuals using Boltzmann selection, see Def. 2
(Note that the algorithm works with any selection method).

5 Estimate the conditional probabilities p(xs,|%c,;,t) from the se-

lected points.

Generate new points according to p(x,t + 1) = [\~ p(xs, |Xe;, t)-
t<=t+1.

} until (stopping criterion reached)

X N

We next describe the sub-function merger algorithm which computes the FDA fac-
torization. Let us first discuss the assumption b; # () of the factorization theorem. This
assumption is violated already for the loop

s1={1,2},s2 ={2,3},s3 ={1,3}

All possible sequences end in b3 = () because the variables of the sub-function left
are already contained in the two previous sets. One possibility to solve this problem
is to choose only a subset of the s; and disregard the others; in our example, we can
use the factorization ¢(x) = p(z1,x2)p(zs|r2) using s; and s2. An exact factorization
is p(x) = p(x1,z2)p(xs|re, x1). This factorization will be generated if the two sub-
functions s, and s3 are merged. This observation leads to the idea of computing ap-
proximate factorizations by merging sub-functions®.

A good merging heuristic tries to minimize the number of mergers but simultane-
ously tries to use all dependencies in Gapr. Thus the heuristic generates graphs with
b; # () which violate the RIP only in a few regions.

Algorithm 3 describes our heuristic. The idea of the sub-function merger algorithm
is that each new variable is included in a set together with the previous variables on

5Bertelé and Brioschi (1972) have called it fusion.
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Algorithm 3 Sub-function Merger

1 S<{s1,...,8m}

2 3«1

3 whiled; # {1,...,n} do {

4 Chose an s; € S to be added

5 S < S\ {si}

6 Let the indices of the new variables in s; be b; = {k1,..., ki }
7 for \=1toldo{

8 ox <= {k € dj_1|(zk, k) € Gapr}

9o}

10 for A\ =1toldo{

11 if exists X # A with §) C dx and ky not marked superfluous
12 Oy <= o U {k)\}

13 Mark ky superfluous

14 }

15 for \=1toldo{

16 if not k) superfluous

17 55 <=0 U{k1,... .k}

18 jE=g+1

19 }
20 }

which it depends. However, if another variable depends on a superset of variables, the
two sets are merged. The algorithm calculates ¢, b; and d; analogous to (5).

This sub-function merger algorithm might still compute cliques that are too large.
Therefore a cut parameter k is needed which bounds the clique size. If the size of a
clique becomes larger than k our implementation will randomly leave out arcs from
Gapr.

Our presentation of the sub-function merger algorithm has been very short. The
interested reader is referred to Bertelé and Brioschi (1972) for an in depth discussion of
different fusion and folding heuristics. In the area of Bayesian networks, the problem
has been investigated by Almond (1995).

If the conditions of the factorization theorem are fulfilled, the convergence proof
of BEDA is valid for FDA, too. Since FDA uses finite samples of points to estimate the
conditional probabilities, convergence to the optimum will depend on the size of the
sample. For small sample sizes the convergence rate is higher if a number of steps with
low selection is used instead of just one step using strong selection. Thus this method
is numerically more efficient than using a very large sample size and strong selection.

Table 1 gives some numerical results. For n = 30 the probability to generate the
maximum increases from about 10~7 to 10!, and from 1016 to 10~2 for n = 60. Note
that in the first generations the maximum of the estimated probability is not achieved
by the maximum of the function.

FDA has experimentally proven to be very successful on a number of functions
where standard genetic algorithms fail to find the global optimum. In (Miihlenbein
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Table 1: Runs of FDA with truncation selection (7 = 0.3) on a separable function
(deceptive-3). For each generation, the probabilities of the most probable configura-
tion and of the optimum are shown.

n =30, N =50 n =60, N =70

Gen | Max prob | Opt prob Gen | Max prob | Opt prob
1 56-107°% | 1.4-107° 1 1.2-1072 [ 1.6-1071°
2 40-107* | 35-10°°¢ 2 35-1071° | 95.10713
3 2.8-1073 | 7.7-107° 3 3.0-107% | 2.7-1071°
4 59-1072 | 4.7-107* 4 20-107% | 1.2-1077
5 9.7-1072 | 1.9-1072 5 9.3-107° | 4.1-107°
6 1.8-107t | 1.2-107¢ 6 1.2-107% | 9.5-107*
7 4.0-107% | 4.0-107! 7 1.1-1072 | 1.1-1072

and Mahnig, 1999) the scaling behavior for various test functions has been studied. For
recent surveys the reader is referred to (Miihlenbein and Mahnig, 2002a, 2003).

3 The Maximum Entropy Principle

FDA uses marginals for a factorization ¢(x) which estimates the unknown distribution.
This problem can be formulated more generally.

Problem
Given a set of consistent marginal distributions p(xs,) from an unknown distribution compute
a distribution which satisfies the marginals.

If only a small number of marginals is given the problem is under-specified. Conse-
quently, for incomplete specifications the missing information must be added by some
automatic completion procedure. This is achieved by the maximum entropy principle.
Let us recall

Definition 12. The entropy (Cover and Thomas, 1989) of a distribution is defined by

H(p)=—>_ p(x)In(p(x)) (22)

Maximum entropy principle (MaxEnt): Find the distribution q(x) with maximum entropy
which satisfies the given marginals.

The maximum entropy principle formulates the principle of indifference. If no constraints
are specified, the uniform random distribution is assumed. MaxEnt has a long history
in physics and probabilistic logic. The interested reader is referred to (Jaynes, 1957,
1978). MaxEnt is especially attractive because it offers a constructive way to obtain the
solution. The following important theorem holds:

Theorem 13. If the given marginals are consistent then there exists a unique distribution
q(x) of maximum entropy which satisfies the marginals. The distribution can be obtained by
Iterative Proportional Fitting (IPF).

IPF iteratively computes a distribution ¢, (x) from the given marginals py(xx), k =
1,..., K, where xy, is a sub-vector of x and 7 = 0,1, 2,... is the iteration index. Let n
be the dimension of x and dj, be the dimension of xj. ¢,—g is the uniform distribution.

Evolutionary Computation Volume 13, Number 1 11
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The update formula is

Pk (Xk)
dr (xk’ Y)

Vx QT-I-l(X) =dqr (X) E (23)

y€{0,1}" %k

withk = ((r — 1) mod K) + 1.

The proof that IPF converges to the maximum entropy solution was first tried by
Kullback (1968), but was faulty. The correct proof in a most general measure-theoretic
framework was given in (Csiszdr, 1975). Since the distribution g, which has to be stored
and updated in every time step, has exponential size, this implementation takes expo-
nential time and space.

We next connect the solution given by the factorization theorem with the MaxEnt
solution.

Theorem 14. Let consistent marginal distributions p(xs,) be given. Let the assumptions of
the factorization theorem be fulfilled. Then the factorization

pax) =T patxo,

Xci)
is the MaxEnt solution.

Proof. Use IPF to compute the MaxEnt solution. Apply the junction tree algorithm.
Using these cliques one can show that IPF converges in just one sweep. O

Remark: This theorem has important implications. It shows that all factorizations com-
puted by the junction tree algorithm generate the same distribution, namely the unique
MaxEnt solution. We have discussed a specific version of the MaxEnt principle, namely
a consistent set of marginals is given as constraints. The original MaxEnt has been in-
troduced with other classes of constraints, mainly with moments of given functions.
If the averages of the sub-functions are taken as the constraints then the MaxEnt solu-
tion is an exponential distribution, in our case the Boltzmann distribution of the ADF
(Jaynes, 1978; Cover and Thomas, 1989)!

For many problems IPF cannot be performed in polynomial time. But IPF can be
easily used locally to estimate higher order marginals from lower marginals computed
from data. Thus it might be advantageous to compute only marginals of low order
from the data, but use a factorization containing higher order marginals. The higher
order marginals can be computed by IPF. A confirmation of this result can be found in
(Ochoa et al., 2003). In this paper the structure is learned from the data. The structure
is restricted to singly connected poly-trees. The poly-tree is constructed by bi-variates
only. For sampling the junction tree is used. The higher order marginals are computed
from the bi-variates using IPF. This algorithm performs far better than computing the
higher order marginals directly from the data.

Optimization problems which have a polynomially bounded factorization fulfill-
ing RIP can be solved in polynomial time. But this is a sufficient condition, not a necessary
condition. Many problems do not admit a PBF fulfilling RIP, but an approximate factor-
ization might still lead to the optimum. Our results obtained so far can be formulated
in a conjecture.

Conjecture: In the class of ADF’s with non-polynomially bounded factorization there exist
instances which can only be solved in exponential time. But the number of instances which can
be solved polynomially seems to be very large.

12 Evolutionary Computation Volume 13, Number 1



Minimum Relative Entropy Principle

Example: Functions with non-polynomially bounded factorization

fx) = JJa
i=1

flx) = Hmi—i—in
i=1 i=1

Both problems do not admit a polynomially bounded exact factorization. But
whereas the first problem can only be solved in exponential time, the second problem
can be solved by a simple univariate approximation:

p(x) = Hp(xv:)

Summary: For all sets of consistent marginal distributions, there exists a unique MaxEnt dis-
tribution. If the graph corresponding to the marginal distributions admits a junction tree with
polynomially bounded clique sizes, then the MaxEnt solution can be computed in polynomial
time. If the graph does not admit a bounded junction tree, then the known algorithm (IPF) to
compute the MaxEnt solution is exponential in the number of vertices. Nevertheless, FDA with
an approximate factorizations might still converge to the optimum. An exact factorization is
sufficient for convergence, not necessary.

In the previous sections we have described how FDA computes an approximate
factorization. Before we describe LFDA, an algorithm which computes an approximate
factorization from an empirical distribution derived from a sample of function values
of high fitness, we discuss the methods pursued in statistical physics.

4 Computing Approximate Factorizations in Statistical Physics

We discuss the method using an important example, the 2-D Ising model. Each cell of
the grid, called spin s, is in one of two states, +1 or —1. The cell is influenced by the
four neighbors only. It is important to note (at least for a computer scientist) that Ising
did not specify any dynamics. Instead Ising assumed that the system behaves according
to a stationary distribution which is given by the Boltzmann distribution

pa(s) = ;eﬁ Sy Jisisi+3; Jisi
Zp
J;; are the coupling constants. (i, ;) denotes a neighboring pair. For all non-neighbors,
we can set er'j = 0. In particular, without loss of generality, we set J;; = 0, because this
adds only a constant, which cancels out with Z5.

Thus we again encounter the problem of approximating a Boltzmann distribution.
Using s; = 2z; — 1 we can change the variables to z; € {0,1}. We obtain

1
Pa(x) = e Tums e 4)
B
Jij = 4J; (25)
Ji=2J; — 22 (j” + jji) (26)

J
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and a different partition function Zg.

In statistical physics the maximum entropy principle is replaced by an extension
of it. Instead of minimizing the distance to the uniform random distribution (this is an-
other formulation of MaxEnt), the distance to the Boltzmann distribution is minimized.
As distance measure the Kullback-Leibler divergence is used.

Definition 15. The Kullback-Leibler divergence (K LD) between two distributions is defined
by
q(x)
KLD = x)In ——= 27
(allp) EQU e (27)

Note that KL D is not symmetric! Thus we have two choices.

Minimum relative entropy principle (MinRel) Given a set of consistent marginal distri-
butions, find a distribution q with these marginals which minimizes K LD(q||p) to the target
distribution p(x).

Remark: If p(x) is the uniform random distribution, then MinRel is identical to MaxEnt.
This justifies the above definition. But from a mathematical point of view, it is also
possible to minimize the complementary divergence K LD(p||q) instead. Cover and
Thomas (1989) (p. 18) call K LD(p||q) the expected logarithm of the likelihood ratio. It
is a measure of the inefficiency of assuming ¢ when the true distribution is p. It is
connected to the description length. If we knew p we could construct a code with
average description length H(p). If, instead, we used the code for distribution ¢, we
would need H(p) + K LD(pl||q) bits on the average to describe the random variable.
Thus the following principle is also justified:

Minimum expected log-likelihood ratio principle (MinLike) Given a set of consistent
marginal distributions, find a distribution q with these marginals which minimizes K LD(p||q)
to the target distribution p(x).

If p is the uniform random distribution, then MinLike minimizes }_ In ¢(x). This
is not the entropy of ¢(x). The MinLike principle will be later used for learning Bayesian
networks.

In physics MinRel is used. Let us now introduce some physical terms. This is not
necessary, but it will help the reader to understand the statistical physics papers better.

Definition 16. The average energy U and Gibbs free energy G are defined by

Ul = - qx)f(x) (28)
Glo) = Ulg) - Hlg) 29)

We can set § = 1. Then we obtain
KLD(q|lp) =U(q) — H(q) +InZ. (30)

KLD = 0 will be achieved for ¢q(x) = p(x). This gives the minimal value of G(q) =
—1InZ. This leads to the idea of minimizing G(g) for a class of distributions ¢. This
means we have to compute U(q) and H(q). The computation of U(q) is easy because
the following theorem holds.

Theorem 17. (Miihlenbein and Mahnig, 2002a) : Let I = {1,...n}. Let s C I be a multi-
index. Then every binary function can be written as

f(X) = Zasxs (31)

sCI
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Furthermore, the average of f with respect to a distribution q(x) is given by

Eq(f) = ZQ(X)JC(X) = Zasq:s (32)

x sCI

where q is the marginal distribution q, == q(X; = 1]i € s) . If an ADF is given we have

=3 S gl ) (33)

i=1 Xg,

The above theorem can easily be applied to the Ising problem, and more generally
to ADF’s defined on grids. Thus U(q) can efficiently be computed, but the computation
of H(g) is more difficult. We will discuss two approximations, the first one uses uni-
variate marginals and the second one bi-variate marginals.

4.1 The Mean-Field Approximation
Let us assume that a product distribution is given.

n

g(x) = [ [ a(w:) (34)

=1

Then we can compute its entropy

ZHq xT; Zlnq xj)

z =1

:_Z T lnq x1) Z Hq T; Zlnq xj)

T2,..Tp 1=2

- _ Z > q(xi) Ing(z;)

=1 x;
We can now try to find a local minimum by setting the derivative of K LD equal to
zero, using the uni-variates as variables. We abbreviate ¢; = ¢(z; = 1)

Theorem 18. The mean-field approximation minimizes the Kullback-Leibler divergence to the
Boltzmann distribution. The local minima of the divergence are given by the nonlinear equation

N 1
4% = —az (35)
1+ e%u
Proof. From (30) we obtain
OKLD Qi ou
= 1 =
9q; 1o qi * 9qi 0 (36)
The solution gives (35). O

In (36) the derivative of the average energy U(gq) enters. From theorem 17 we
obtain for § =1

Ulg) = == Jijaiq; — Z Jigi (37)
(i)
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Taking the derivative gives

. 1
& = 1 4 e~ ZjziJist+dii)a—Ji

(38)

This equation can be solved by iteration.

Remark: In the mean-field approximation the univariate marginals are considered as
variables. The marginals are computed from (38). G(g) is an upper bound of —In Z. In
contrast, the uni-variate approximation UMDA (Miihlenbein and Mahnig, 2001) com-
putes the marginals from the samples. It has to be investigated if the additional com-
putational effort needed for the mean-field approach pays off.

4.2 Bethe-Kikuchi Approximation and the FDA Factorization

An obvious extension of the mean-field approach is the use of higher order marginals.
This has been done by Bethe (1935) using bi-variate marginals and Kikuchi (1951) for
higher order marginals. The interested reader is referred to Yedidia et al. (2001) for the
original statistical physics approach. A state-of the art report has recently been written
by the same authors (Yedidia et al., 2004). For a 1-D loop the Bethe factorization is given
by

Qx) = H1 % (39)

b(xi, xi41) are consistent bi-variate marginals to be computed by minimizing the free
energy. But note that Q(x) contains a loop and is not normalized, i.e. it does not sum
to one. This makes the minimization of the free energy more than problematic®. The
same is true for the higher order Kikuchi factorization. For EDA we face a second
problem, because sampling from a factorization with loops is a difficult problem by
itself. Therefore we decided to use our FDA factorization instead. This factorization
does not contain cycles (note that x., = () and therefore g(x.,) = 1). For

_ . q(xwaci)
0= 117560 4o

we obtain

Z Z 4(xb,, Xe,) q(zé’x X)Cl) (41)

The proof is based on marginalization and left to the reader. But from equation (9) we
know that ¢(xp,,Xc;) # G(xp,, Xc,) if the RIP is violated. Therefore we approximate

Z Z X(v7 q()ffh ’ Xci) (42)
i=1 Xp, ,Xc; q(xci)
U(q) can be computed using (33). We obtain the approximation
Z Z xbmxc fl(xbmxc ) (43)
i=1 Xp; ,Xc

®Entropy and K LD are not defined.
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Having approximations of U(g) and H(g) we can minimize K LD as before. But
now we have a constrained minimization problem, because the marginals have to be
consistent. To our knowledge there exists no computer implementation of the full
Bethe-Kikuchi method. Yedidia et al. (2004) have proposed iterative algorithms using
the Lagrange multipliers approach. This is technically demanding, because all inter-
sections of ¢; with b; have to be considered for a consistency constraint. During the
iteration the marginals have to be made consistent. Yedidia et al. (2004) have shown
that their algorithm, called generalized belief propagation, converges to stationary
points of the approximated K LD, if it converges at all. For an efficient implementation
of the algorithm special intersection sets are constructed. We will test promising
algorithms for our FDA factorization in the near future.

Summary: In the Bethe-Kiguchi approach the marginals used for the factorization are not com-
puted from a sample, but are determined by computing a stationary point of the Kullback-Leibler
divergence to the Boltzmann distribution. The Bethe-Kiguchi factorization is not normalized,
therefore K LD is not defined in a strict sense. The FDA factorization circumvents this prob-
lem, but also for this approximation K LD can be computed only approximately. Therefore the
goodness of this heuristic cannot be assessed theoretically.

We next turn to an approach which uses only samples of good fitness values, the
structure of the function is unknown. This approach has first been investigated in arti-
ficial intelligence. It is called learning of the model (Jordan, 1999).

5 Learning a Bayesian Network from Data

This section will be very brief, compared to the difficulty of the subject. An excellent in-
depth discussion can be found in (Larrafiaga and Lozano, 2002). We will just motivate
some of the major design decisions. Let p(x) be the true distribution. The learning
algorithm uses acyclic Bayesian networks (acBN) as models.

n

g(x) = [ [ a(wilm) (44)

=1

I1; are called the parents of X, ¢(z;|m;) is a numerical approximation of the true con-
ditional marginal p(x;|m;). (We recall that any FDA factorization can be written in this
form.)

If the running intersection property is fulfilled, the Bayesian network is singly con-
nected. If the number of the parents |II;| is bounded by a constant independent from n,
we say the Bayesian network is polynomially bounded (PBB).

Both the MaxEnt and the MinRel principle assume that a fixed set of marginal dis-
tributions is given. But if the data is provided by a sample, we can choose which
marginal distributions should be used in order to obtain a Bayesian network which
reproduces the data accurately. This is called model selection.

Therefore we have to deal with the problem how to choose the appropriate model. This
problem can be solved in the following way. Let @ be the set of all possible distribu-
tions ¢ defined by the Bayesian networks considered. (Because of the efficiency the
number of parents is bound usually by a small number.) We next try to find a good
approximation in () by minimization of K LD(p||q) We obtain with the average of In g
over the true distribution p

Ey(Ing) = > p(x)Ing(x) = E,(Ing) = —H(p) — KLD(p||q) (45)
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Therefore the minimization of KLD(p||q) in @ is equivalent to maximization of
E,(In g). The next proposition shows that E,(In ¢) can be computed efficiently.

Proposition 19. For the distribution q(x) = [[}_, q(x;|m;) we have

E,(lng) = Z Z p(xi, ) Ing(a;|m;) (46)

=1 z;,m;

Proof.
S pe0lal) = 3 p00 > glim)
>N p(wi,m) Ing(ai|m)

=1 L4 ,T05

O

Equation (46) can be approximated using a finite sample. For simplicity, we in-
troduce the following notation. Let IV denote the size of the sample. Let N;;; denote
the number of instances with x; = k and m; = j, where the states of II; are numbered
1<5< oIl 1 et N;j = >1. Niji. We can now approximate

.~ Ny
= klm = ) = 4R 47
q(z; = k|m = j) N (47)
N
plz; =k,m=j)= ngnoo Tjk (48)
n 2Tl
RT z]k z]k
Ey(ng) = lim | Ey(Ing) = SN Z (49)
i=1 j=1 k=1
Thus we have arrived at the following principle
Finite sample MaxLike principle (FinMaxLike)
Maximize in the class of Bayesian networks @)
n 2/Mil
mazqeqEn(Ing) = Z Z Z ”k ”k (50)
i=1 j=1 k=1
FinMaxLike can also be derived from the maximum log-likelihood principle.
Proposition 20. Let [(g|D) be the log-likelihood of q given the data D. Then
l(q|D) = N - En(Ingq) (51)

Proof. Let D = {x1,...,xn}. Then the likelihood of D is given by

2

n

Q|D H H q\Tii |7le (52)
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Therefore we obtain

N n

l(glD) = InL(q|D)= ZZlnq i |m)

=1 i=1

n N
= YD Ing(aulm)

i=1[=1

n 2/l

2.2 ZNW =

i=1 j=1 k=1

Q

O

For given N maximizing En(In g) gives the same result as maximizing [(¢|D). But
this principle is not yet sufficient for practical computations. FinMaxLike does not
prefer exact models of small complexity (small number of variables) to exact models of
large complexity. This can be seen as follows. If we approximate g(z;, m;) ~ p(z;, ;)
for N — oo, then we obtain

_ - P nip(xi’m xi)Inp(x
Ep(lng) =) (Z plenm)n r S +Zp i) Inp( 7)> (53)

=1 Ti,T;

The first term is called the mutual information I(X;Y) (Cover and Thomas, 1989).
P\,
=St Hil, (54)

If X and Y are independent, we have I(X;Y) = 0. Using the mutual information we

obtain
n

Ey(lng) =Y (I(Xi;1L) + > p(x;) Inp(z;)) (55)

=1 T;

E,(In ¢) remains unchanged if an arc between two independent variables is inserted.
In order to solve this over-fitting problem, we need a criterion which maximizes the
log-likelihood and minimizes the complexity of the model. Such a criterion can be derived
using Bayesian principles or a concept called the minimum description length MDL. The
interested reader is referred to (Jordan, 1999). One of the most popular criterion has
been derived by Schwarz (1978). It has been called the Bayesian Information Criterion
BIC.

Definition 21. Let V' be the degrees of freedom of the marginal distributions of q. Then the
weighted BIC measure is defined by

BIC, =N -En(lng) —alnN -V

It has been shown that —BIC = —N - Ex(Ing) 4+ 0.5In(N) - V is asymptotically equiv-
alent to the minimum description length. Schwarz (1978) computed « = 0.5 as the best
weighting factor for N — oo.

The BIC criterion can be used to construct a Bayesian network. Basically there
are two approaches. The first one starts with an empty network and adds arcs between
dependent variables, the second one starts with the fully connected network and deletes
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arcs between independent variables. In most implementations the first approach is used
together with a simple greedy heuristic for adding a single arc at each step. The reader
is referred to (Larrafiaga and Lozano, 2002; Miihlenbein and Mahnig, 1999). The quality
of both approaches depends on a good estimate of the mutual information, the heuristic to
construct the network, and the weighting factor.

These topics will be briefly investigated next. A detailed report will be available
soon.

6 A Comparison of the Presented Approaches

In this section we compare the three different principles presented in this paper - Max-
Ent, MinRel, and MinLike. We restrict the discussion to problems where an additive
decomposed function (ADF) is given.

FDA uses a factorization defined by equation (13). If the factorization fulfills the
running intersection property it follows from the factorization theorem that the factor-
ization gives the true distribution. But in general, the factorization will not fulfill the
RIP. Our FDA factorization algorithm tries to create a graphical model Ggpa which
does not leave out arcs of Gapr. It can easily be transformed into an acyclic Bayesian
network. This class is used by LFDA. Therefore FDA and LFDA use the same class of
graphical models, but the computation of the graph is very different.

The approximations originally proposed by Bethe-Kikuchi contain G apr. But they
compute only the marginals, not the whole distribution. Let us discuss the methods
using a simple example.

Example: A 1-D circle

f(x) = Jiezixe + Jazwows + Jaaxszs + Jraziza + Z Jix;
ef (%)

Gapr is a loop. The following approximations can be used

L. q(z) = ¢(z1)¢(22|71)q(3]|72)G(T4|23)
- It defines an acBN with RIP, but it does not contain Gapr (the arc between x4 and
x1 is missing).

2. q(z) = q(21)q(z2|21)q(23|22) 4 (24|21, 23)
- It defines an acBN without RIP. It contains Gapr. This factorization is computed
by FDA using merging of sub-functions. The last factor is a tri-variate marginal.
For large samples LFDA computes also a graph, which contains G apr

3. q(z) = q(z1)q(z2|r1)q(z3|T1, 22)G (24|23, 71)
- It defines an acBN with RIP which contains Gapg. It uses two tri-variate mar-
ginals. This graph will be obtained by the junction tree algorithm. This factoriza-
tion is exact.

4. Original Bethe approach: Compute marginals (G(x;, z;41),? = 1, ...4) by minimiz-

ing G(q) = U(q) — H(q)
- The marginals define a graph with a loop. It needs an iterative method to sample
from the marginals.
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Table 2: Number of edges added by LFDA for a uniform random data set (average over
ten runs).

@ n N #edges || n N #edges n N #edges

1.00 || 25 | 200 0.3 50 | 400 0.4 100 | 800 0.8
0.75 || 25 | 200 1.5 50 | 400 3.4 100 | 800 6.5
0.50 {| 25 | 200 71 50 | 400 17.2 100 | 800 45.8

025 || 25 | 200 38.4 50 | 400 89.4 100 | 800 197.6
0.10 (| 25 | 200 113.1 50 | 400 254.7 100 | 800 536.5
0.50 || 25 | 10000 0.5 50 | 10000 43 100 | 10000 10.9

5. Given all bi-variate marginals of the unknown distribution p(x1, z2), ... p(z1, x4),
compute the unique MaxEnt distribution gvg(x)
- We have shown that gve(x) = p(x), but the computation of gvg(x) is exponential.

From a theoretical standpoint the junction tree factorization is the best. But for 2-D
grids this method leads to large clique sizes (O(size of the grid)). We have proposed
using the FDA factorization. For 2-D grids the sub-function merge algorithm computes
tri-variate marginals in the interior.

7 How to Test EDA Algorithms

In our opinion most researchers so far have concentrated on the benchmark method
to show the power of EDA algorithms. A popular benchmark or a difficult function
is chosen and the success of the optimization algorithm is shown. The success rate is
usually the percentage of runs computing the optimum. The internal behavior of the
algorithm (e.g. which Bayesian network it has constructed etc.) is not investigated.
Therefore a generalization of the results to other problems is difficult.

We propose to test EDA algorithms in carefully selected steps instead — starting
from theoretically understood problems to more complex ones. Learning the structure
of the Bayesian network from data is a difficult task. Many factors contribute to the
success or failure of the learning method. The Bayesian network community has in-
vestigated this problem intensively. We just mention (Xiang et al., 1997) as a starting
point. The test procedure is obvious. A Bayesian network is used to generate the data,
then a Bayesian network is learned from this data. We then measure how close the
learned Bayesian network is to the network generating the data. The results show that
in general large data sets are needed to learn a network which is close to the given one.
We first test LFDA on problems where all variables are independent, i.e Grpa contains
no arcs.

7.1 The Penalty Weight o

Schwarz (1978) has computed an optimal penalty factor a = 0.5 under very restrictive
assumptions. (One of the assumptions is N — 00.) Since we want to use fairly small
population sizes, we investigate the influence of o on the computed network in the
neighborhood of o = 0.5. In a first test we generate uniform random data. In this case
the exact network has no edges at all. Table 2 shows empirical results. How can we
define an optimal «? It is obvious that no edges will be generated for a large a. For
very small o many edges will be generated. Thus we are looking for a value of « at
the transition between these two regimes. Informally speaking, we look for ai with
#edges < 5 for a > ay, 4 < #edges < 10 for a = oy and #edges > 10 for a < ay,.
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The results of table 2 suggest that a value of oy = 0.75 fulfills the requirements for
small population sizes. The last row shows the results for a very large population. In
this case o = 0.5 might be indeed the best value.

We have also analyzed the weighting factor in optimization tasks. In many ap-
plications the success of LFDA can dramatically be increased by a suitable weighting
factor. But in general a = 0.5 with truncation selection with 7 = 0.2 and is a good
starting point.

7.2 The Connection between FDA and LFDA

At first it seems that an internal testing of the learned network of LFDA is impossible,
because the structure of the true network seems to be unknown. But the theory helps.
FDA can be seen as the infinite sample size limit of any plausible learning method,
e.g., LFDA. The relation between FDA and LFDA is difficult to formulate precisely.
The following conjecture is a first try.

Conjecture: Let the empirical distribution q(x) be generated by selected points of high fitness
from an ADF . Then for N — oo the mutual information is the largest between those vari-
ables which are contained in a common sub-function. This means that the graph obtained by
connecting the variables with highest mutual information contains G apr.

Thus for N — oo the learning algorithm LFDA has to solve the same problem
as FDA: Given the graph Gapr compute an acyclic Bayesian network. LFDA has an
advantage, because it can use the mutual information to leave out less important arcs.
For some practical problems with a sparsely connected G apr the graph Grpa contains
Gapr. Thus it does not leave out arcs. The same is true for 2-D grids and LFDA.

Observation: If the ADF is defined on a 2-D grid, then Grrpa for N — oo contains G apr.

The above observation depends on the specific learning algorithm. LFDA, for in-
stance, uses a greedy heuristic which adds a single arc at each step. This method has
limitations in constructing the correct network for some artificial distributions, as is
shown in (Xiang et al., 1997).

We will investigate our conjectures using three typical benchmark functions. The
first function is separable of order 5 and deceptive.

Foees(t) = > faes(@si—a,. - w5i)  (1=1,2,3)
=1

with

09 <> z,=0
0.8 <:>in:1
0.7 <> x;=2
06 <> x;,=3
00 < > z,=4
1.0 <:>in:5

(56)

fdes(x1, T2, 23, T4, 25) =

The second function is non-separable. It consists of m overlapping blocks of size 3
(n = 2m + 1). We have a different function for the last block.
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Table 3: The minimal population size to find the optimum with 95%.

Alg N | Fbes | Fisoreak Alg Fbecs | Fisopeak
FDA 25 400 250 LFDA *3500 900
FDA 50 600 700 || LFDA || *18000 *5000
FDA 100 800 500
FDA || 200 | 1200 13500

m—1
Fisopeak(x) 1= Z f(z2i-1,T2i, T2i41) + 9(T2am—1, Tam, T2m+1) (57)
i=1
m @ (x7y’ Z) = (07 O’ 0)
fla,y,2)={m—-1 < (x,y,2)=(1,1,1) (58)
0 otherwise

m = (z,y,2) = (1,1,1)

. (59)
0 otherwise

g(x,y,z) = {

Both functions admit an exact factorization. The third class of functions (F3gar) are
3-SAT problems with 20 and 50 variables.

Table 3 gives the population size for which the optimum is found with 95% in
20 runs. The selection threshold for truncation selection was set to 7 = 0.3, except *
(r =0.1),and { (7 = 0.7). For missing values, the required population size is too large.

We first compare the performance of FDA and LFDA. The population size needed
for finding the optimum is much larger for LFDA than for FDA. The results of LFDA
for the "easy’ separable function Fpecs is especially disappointing. The 3-SAT problem
with 20 variables problem was very easy to solve. Both FDA and LFDA need a pop-
ulation size of 250. But for n = 50 the 3-SAT problems turn out to be very difficult to
solve, both for FDA and LFDA. The reason is that the graphs Gapr of 3-SAT problems
are irregularly connected. For these graphs the computing of good factorizations with
bounded clique size is very difficult or even impossible.
The factorization of the separable function Fpecs is obvious. For Fisopeak FDA computes
the exact factorization

q(x) = p(x1, x2, x3)p(x4, T5|23) - - P(@r—1, Tn|Tn—2) (60)

In table 4 we investigate the structure learned by LFDA. Here we see the reason
why LFDA needs a huge population size to find the optimum of Fpecs. If the popula-
tion is small, the network computed by LFDA contains only a few arcs. A closer look
shows that this result is not a problem of the learning procedure, but of the computa-
tion of the mutual information. Only for IV = 30000 a reasonable number of the correct
dependencies are contained in the set of the variables with largest mutual information.
The reason can easily be given. If selection is done, then it seems that the sub-function
is almost linear.

The results for Fisopeak are very good. The learned network is almost identical to the
network Grpa computed by the FDA sub-function merger algorithm. The performance
for F3.gar with 20 variables is surprisingly good, despite that Girpa contains only 1/3 of
the arcs of Gapr. But the performance changes dramatically for F3 gar with 50 variables.
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Table 4: Characterization of the Bayesian network computed by LFDA in the first gen-
erations. In column arcs comp. the number in brackets denotes the total number of
arcs, the first number gives the number of arcs contained in Gapr. Mutual information
gives the number of arcs in Gapr which are contained in the set of arcs having largest
mutual information (number in brackets). * denotes that the LFDA run did not find the
optimum. Maximum number of parents ) = 8. F3gar with n = 50 was run with very
strong selection (7 = 0.03).

F n | arcs N || arcs comp. mutual information
Fpecs 50 | 100 *1000 || 3(28),5(38),4(34) 3(50),7(50),6(50)
*5000 || 2(12),2(20),3(23) 3(50),6(50),6(50)
*10000 || 0(2),4(14),6(20) 4(50),5(50),12(50)
*30000 || 28(68),63(95),79(105) 20(50),37(50),68(70)
Fisopeak 24 36 500 || 16(23),19(23),22(28) 21(28), 23(28),24(28)
5000 || 34(39),36(39) 36(40), 36(40)
48 72 *2000 || 44(47),54(59),. .. 13(18) 60(70),62(70),. . . 35(70)
5000 || 58(63),66(73),69(74) 69(80),73(80),75(80)
74 | 112 5000 || 77(85),90(97),98(105) 103(115),109(115),112(115)
F3sar 20 | 141 100 || 55(65),30(47) 90(120),90(120)
500 || 63(81),65(82),57(70) 90(120),94(120),95(120)
5000 || 101(108) 115(120)
a=0.25 | 50 | 491 | *30000 || 131(138),131(141),114(135) | 175(200),158(200),135(200)
a=0.10 30000 || 183(288),195(254),180(225) | 180(200),184(200),158(200)

The optimum is found only with very strong selection (7 = 0.03), a large population
size (N = 30000), and a small weight factor (@ = 0.1). A look into table 4 shows the
reason for the bad performance. LFDA computes a network which leaves out too many
arcs of Gapr, despite that the mutual information gives correct information about the
dependencies. Even for o« = 0.1 the learned network Grppa contains only about 180
edges from the 491 edges in Gapr. The same problem occurs with FDA.

In figure 4 we analyze the dynamic behavior of our greedy algorithm computing
the network. The search starts with complexity of almost 0 and a small log-likelihood.
The log-likelihood is increased until the increase is equal to the increase in complexity.

Summary: The learning algorithms face two problems, first to identify the dependent variables,
and second to compute an acBN which has a bound on the number of parents, but does not leave
out important dependencies. In order to get good optimization results, a large population size
has to be used.

In this paper we have only discussed a learning algorithm which starts with an
empty network. In the near future we will investigate learning algorithms which start
with the fully connected network and delete the arcs between independent variables. It
seems that the detection of independent variables is more reliable for small popula-
tion sizes than the test for dependence. Unfortunately the construction of the Bayesian
network is much more complicated. Just deleting arcs might lead to a very difficult
graphical model, which would not be a Bayesian network at all.

8 Conclusion and Outlook

The efficient estimation and sampling of distributions is a common problem in sev-
eral scientific disciplines. Unfortunately each discipline uses a different language to
formulate its algorithms. We have identified two principles suited for the approxima-
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Figure 4: Trajectories of three runs of the LFDA learning algorithm in the BIC space.
Maximum number of parents ¢ = 8, N = 600, « varies. The squares mark the end-
points of the runs. The tangents with gradient « are also shown.

tion — minimum relative entropy and minimum expected log-likelihood ratio. Both principles
are closely related. If p is the distribution to be estimated, then MinRel minimizes the
Kullback-Leibler divergence K LD(q||p) whereas MinLike minimizes K LD(p||q).

We have shown that the basic theory is the same for all algorithms. This theory
deals with the decomposition of graphical models and the computation of approximate
factorizations. If the unknown distribution allows an exact factorization, then both
methods lead to KL D = 0, thus they compute the exact distribution.

We have discussed two EDA algorithms in detail. FDA computes a factorization
from the graph representing the structure. If the corresponding graphical model does
not fulfill the assumptions of the factorization theorem the exact distribution is only ap-
proximated. Promising factorizations can be obtained by merging some sub-functions.

LFDA learns the structure from the data, however it faces serious problems. A
crucial point for its success seems to be the correct detection of the important depen-
dencies. Statistical physics uses the most complex approach; selected marginal distri-
butions are computed by minimizing the distance to the Boltzmann distribution. The
marginals generate a dependence graph with loops. Therefore they are not sufficient to
define a distribution, any factorization ¢(x) using these marginals has to be normalized
(-, g(x) = 1). But this summation is exponential. We have proposed an extension of
the original approach which circumvents the normalization by using the marginals of
a FDA factorization.

One important improvement of FDA and LFDA could not be discussed in this
paper: the use of a local hill-climber. This topic is discussed for large bi-partitioning
problems in Miihlenbein and Mahnig (2002a). We have now implemented a local hill-
climber proposed by Lin and Kernighan (1973), which can be used for many combina-
torial optimization problems. It increases the performance of FDA and LFDA on 3-SAT
problems substantially. In fact, problems up to size 250 pose no difficulties. The reason
is that local optima have a structure which can be learned more easily by LFDA.

The goal of this paper is to inspire researchers to implement some of the methods
presented and make a detailed comparison between the different methods. Especially
interesting would be an implementation of the full Kikuchi method, which has been im-
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plemented only for special ADF’s so far. Whereas the theory of EDA algorithms is very
convincing, we all have to work hard to design numerically efficient EDA algorithms.
Efficiency can only be achieved by having a close look at the different developments in
the neighboring disciplines mentioned.
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