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ABSTRACT

Since Webster devel oped the principle of traffic signal control optimization theory in late
1950, the field of traffic signal timing control has advanced dramatically for the past a
few decades. These include coordinated actuated control and adaptive control on the
basis of advances in the detection and communication technologies. However, the
existing traffic signal timing optimization program still focuses on the basic four
parameters (i.e., cycle, green split, offset, and phase sequence). In addition, these
optimization programs do not consider stochastic variability in drivers’ behavior and
vehicular inter-arrival times, vehicle mix, and so forth. Even though afew research
efforts focused on the use of stochastic simulation models, little research was done in the
optimization of traffic signal controller settings (e.g., minimum green time, vehicle
extension time, minimum vs. maximum recalls) and detector settings (e.g., location and
pulse vs. presence modes).

This paper presents a stochastic traffic signal optimization method that consists of
stochastic ssmulation model and an external optimizer. Three widely-used optimization
methods (i.e., genetic algorithm, simulated annealing and OptQuest engine) were
considered and tested their performance using test networks. The performance of the
proposed stochastic optimization method was compared with existing optimization
programsincluding TRANSTY -7F, and the SY NCHRO under microscopic simulation
environment. The results indicate that the proposed method outperformed existing
programs in the optimization of the basic four parameters, and aso showed that
additional controller and detector settings can further improve the operations of
coordinated actuated signal control systems.
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INTRODUCTION

Thetraffic signal is one of the most common facilities being operated by traffic engineers
to control traffic in an orderly manner. Traffic signal control settings optimization (a.k.a.,
traffic signal timing optimization) has been recognized as one of the most cost-effective
methods for improving accessibility and mobility at signalized arterials and networks.
Thus, traffic engineers always wanted to achieve better operation of traffic signal control,
while researchers focused on the development of efficient methods for traffic signal
control settings optimization.

In order to optimize signal control settings, a variety of macroscopic optimization
software, including SYNCHRO (1), TRANSY T-7F (2), and PASSER™ V-03 (3), has
been developed and widely used across the United States. The macroscopic models are
computationally fast and simple in input requirements. However, these models are
limited in reflecting various drivers behaviors, interaction between running vehicles and
variability in demands (4). Assuch, arecent version of TRANSY T-7F (T7F) introduced
agenetic algorithm (GA) coupled with a microscopic traffic simulation program
CORSIM to overcome those demerits of the macroscopic optimization models. In
addition, existing optimization programs are limited to only four traffic signal timing
parameters (i.e., cycle length, green splits, phasing sequences and offsets). Actually,
additional traffic signal control settings such as detector length, minimum green and
vehicle extension can play important roles in the efficiency of actuated signal control
systems. Foy et al. (5) introduced a GA in the determination of signal timing for atwo-
phase system in 1992. Hadi and Wallace (6) investigated the use of a GA in combination
with the T7F optimization routine to select signal timing (cycle length, green splits and
offsets) and signal phasing. They concluded that a GA has the potential of optimizing
signal timing and phasing. Park et al. (4) developed a stochastic signal optimization
method using GA interfaced with the microscopic simulation program CORSIM to
optimize cycle length, green splits, and offsets simultaneously for a pre-timed traffic
signa system. Park and Schneeberger (7) expanded the method to a coordinated actuated
traffic signal control system to optimize offsets, and compared the results with those of
SYNCHRO and T7F as well as the existing timing plan. In their research, a GA with the
microscopic simulation program VISSIM was used.

Given the successful applications of microscopic simulation model-based stochastic
optimizations, this research investigates various optimization methods and expands
stochastic optimization into additional traffic signal control settings. Thus, the objectives
of this paper are to (i) develop a stochastic optimization method that can consider not
only basic four traffic signal control parameters (i.e., cycle, split, offset and phase
sequence) but also controller and detector settings, and (ii) evaluate the proposed
approach by comparing with existing programs under a microscopic simulation
environment.

The remainder of this paper is as follows: the methodology section provides the selection

of microscopic simulation model, descriptions of stochastic optimization methods, traffic
signal control optimization variables and objective function. Test networks used in the
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optimization and evaluation are presented, followed by results. Finally conclusions and
recommendations are provided.

METHODOLOGY

This section covers the selection of adequate microscopic simulation model aswell as
suitabl e optimization methods, and then discusses the optimization variables and
objective functions used in this study.

Microscopic Simulation M odel Selection

Microscopic simulation models widely used in the United States are CORSIM, VISSIM,
PARAMICS and SIMTRAFFIC. Among these, this study selected CORSIM because of
itslong history of development and support from FHWA,, its capability of modeling
common U.S. traffic signal controllers (e.g., NEMA or Type 170 controllers), and its fast
simulation run time compared to other models. Park and Y un (8) compared various
microscopic traffic simulation models, including PARAMICS, VISSIM, CORSIM and
SIMTRAFFIC in terms of computation time and the capability of modeling a coordinated
actuated signal control system. CORSIM was the fastest in simulation run time and is
equipped with built-in traffic signal control logic for the coordinated actuated signal
control system. VISSIM and PARAMICS can mimic the traffic signal control system
using an external program such as VAP and API respectively. Actualy, the VISSIM
program provides the VAP program and example codes, and several users of
PARAMICS have developed the API for actuated signal control systemsin the United
States (8). However, users are required to develop their own program codes in order to
realize advanced features of actuated signal controllers such as volume-density mode.
SIMTRAFFIC was computationally the most expensive among these models. Even
though CORSIM was selected, it is noted that it can only emulate basic traffic signal
controller features. However, since the purpose of this study is to demonstrate whether
optimization of additiona traffic controller and/or detector settings can improve the
operations of a coordinated actuated traffic signal control system, it should be reasonable
to implement CORSIM for this study.

Stochastic Optimization M ethods

It is noted that traditional optimization methods (i.e., Newton or conjugate gradient
methods) which require a closed-form function to find directions for the next movement,
are not applicable for microscopic simulation-based stochastic optimization because
microscopic simulation models do not provide such afunction. Thus, heuristic
optimization methods have to be adopted. Three commonly-used optimization methods:
aGA, smulated annealing (SA) and a commercia optimization program OptQuest
engine were chosen. Brief descriptions of these methods are presented in this section.
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Genetic Algorithm

The genetic algorithm (GA) was developed by John Holland in the early 1970s at the
University of Michigan (9). GA makes up afamily of computational models inspired by
evolution (10). The GA encodes a potential solution for a specific problem into simple
chromosome-like data structures and applies recombination operators to the structures so
asto preserve critical information. It has been used to solve problems with objective
functions that are difficult to work out with mathematical approaches (9,11,12). GA
mani pul ates a population of potential solutions and implements a“survival of the fittest”
concept to search for better solutions (global solutions). This provides an implicit aswell
asexplicit paralelism (13). Explicit parallelism allows for the exploitation of severa
promising areas of the solution space at the same time through generations. The implicit
parallelism is due to the schema theory developed by Holland (9). GA has been shown to
solve linear and nonlinear problems by exploring al regions of search space and
exponentially exploiting promising areas through selection, crossover and mutation
operations (14).

Smulated Annealing

Simulated annealing (SA) was first introduced by Metropolis et al. (15). SA isbased on
the analogy between a stochastic search for a minimum in a system and the physical
annealing process in which ametal gradually coolsinto a minimum crystalline structure
with minimum energy (16). The application of SA for deterministic optimization
problems was introduced by Kirkpatrick et al. (17). Asan analogy of the annealing
process for athermodynamic system, SA firstly determines an initial energy level (E) at
an initial high temperature (T). By perturbing the initial set of optimization variables for
the system at a constant temperature, SA keeps computing the change in energy (dE).
When the energy decreases the new configuration becomes the next search point. Even
though the energy increases, SA determines the acceptance of the new configuration with
aprobability given by the Boltzmann factor [exp -(dE/T)], which becomes smaller as
temperature decreases according to the annealing schedule. The perturbation is repeated
until SA achieves good sampling statistics for the current temperature, and then SA
reduces the temperature (cooling). Based on the above process, SA is able to avoid
getting stuck in local minimato find the best objective function value by accepting a new
search point that increases the objective value as well as a search point that decreasesit.
Generdly, the escape from local minimain SA is dependent on the annealing schedule,
the choice of initial temperature, and the number of perturbations at each temperature,
and the amount of temperature reduction (18).

OptQuest Engine

OptQuest engine is commercial optimization software developed by Fred Glover in
OptTek Systems Inc. (19). The OptQuest engine integrated Tabu search, scatter search,
integer programming, and neural networks into a single search algorithm for
deterministic or stochastic optimization problems. Especially, neural network plays a
role to guide the search for best solutions. In addition, it remembers good solutions and
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recombines them into new solutions in order to avoid getting trapped in local minima
cased by anoisy model (20). The OptQuest engineisin the format of a Windows
dynamic linked library (DLL) for the use with Visual Basic, C, COM, C++, .NET, and
Java applications so that the user-written application is necessary to evaluate each
solution generated by OptQuest engine (20). OptQuest®, a software version of OptQuest
engine, has been embedded in several commercial programs or simulation software such
as CrystalBall (19), and Arena (21), as an optimization module.

Optimization Variables

Thetraffic signal control settings (i.e., optimization variables) for a coordinated actuated
signal control system are divided into three groups based on the characteristics of those
variables as shown in Table 1 (1,22,23). It isnoted that Group 3 variables relating to
volume-density mode of operation can be selectively applied to those approaches with
speed limits of 35 mph or higher (24).

Table 1. Optimization Variables by Groups
Group Characteristics Variables Included

- Always required by controllers

- Four major signal control settings affecting the - Cydle Ien_gth
. . . - Green splits
Group 1 operational capacity of signal systems - Offsats
- Common optimization variable in SYNCHRO and Phas
- Phasing sequences

T7F

- Minimum green

- Recdll

- Vehicle extensions
- Detector placements
- Delayed call

- Extended call

- Minimum initial

- Maximum initia

- Volume-density mode of operation related settings | - Time/ actuation

- Affect the operational efficiency of signal systems | - Time before reduce
- Timeto reduce

- Minimum gap

- Always required by controllers
Group 2 | - Controller and detector related settings
- Affect the operationa efficiency of signa systems

Group 3

During stochastic optimization, the traffic signal control settings (i.e., optimization
variables) have to meet various constraints such as minimum green time requirement,
barriers, equality requirement between cycle length and the sum of green times, etc.

Thus, it is practical to adopt a decoding scheme such that optimization variables reside
within afeasible region during optimization. This study adopted a fraction-based
decoding scheme, which was introduced by Park et al. (25) for Group 1 variables. The
decoding scheme allows all Group 1 variablesto be feasible during the optimization. Itis
noted that the force off points and permissive periods, needed for coordinated actuated
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signal control, are calculated from the optimal green splits and phase sequence obtained
during the stochastic optimization. The same decoding schemeis applied to al three
stochastic optimization methods.

For the optimization variables in Groups 2 and 3, there were neither critical dependencies
nor strict constraints. Thus, minimum and maximum values were assigned to each
optimization variable such that each variable resided within the feasible region during the
optimization.

Objective Functions

The CORSIM simulation program provides various system-wide performance measures
such as queue time, delay, throughput, stop time, etc (23). Since the objective function
should adequately capture the performance of traffic signal control settings, the selection
of abjective functioniscritical. In this study, stochastic optimization methods use either
total queue time (vehicle-minutes) or average of control delay (seconds per vehicle) as an
objective function (or evaluation function) depending on the characteristics of
optimization variable groups as shown in Table 2.

Table 2. Objective Functions and Characteristics

Objective Function O{)/t;rrril;zlatgn Characteristics
- Queue times experienced by not only
discharged vehicles from link but vehicles
Queue Time currently on the link

Group 1 - Prevents improperly short green splits and
resulting congestion

- Cumulative value

- Stochastic variability isrelatively big

vehicle-minutes

- Control delay experienced by only
discharged vehicles from link

- Stochastic variability is relatively small
such that it is adequate to evaluate
improvements of operation in signal system
by optimizing Group 2 and Group 3
variables

- Average value

Control Delay, Group 2

seconds per vehicle Group 3

In CORSIM, the control delay of each vehicleis calculated once the vehicle completesits
trip through the link, whereas queue time from the CORSIM simulation is calculated
from both vehicles discharged from the link and vehicles remaining on the link (23).
During the optimization of Group 1 variables, inadequate values of the optimization
variables could be evaluated during the optimization process, and possibly result in
extreme congestion. When this happens, the control delay would not reflect the impacts

6
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of the congestion because queued vehicles still remaining on the link are not used in the
delay calculation. Thus, the queue timeis used as an objective function for Group 1
variables optimization, even though control delay isintuitive and easily understood. Itis
noted that control delay measures from the optimal timing plans are reasonably
evaluated. On the contrary, the average of control delay is selected as an objective
function for Group 2 and Group 3 variables. Group 2 and Group 3 variables are
optimized separately under optimal Group 1 variables, and the change in the capacity of
the intersection by optimizing these variablesisrelatively small compared to optimizing
Group 1 variables.

Given that microscopic simulation models at times show quite significant variability in
their performance measures, it is crucial to control (or reduce) such variability during the
optimization. If such variability is not properly controlled, the optimization could be
oscillating alot and may not be converging. Thus, five random-seeded CORSIM runs
were conducted and the median value was obtained as an objective function value during
the optimization.

TEST NETWORK

A total of six test networks were designed to represent various operationa conditions of
coordinated actuated signal systems. These networks are divided according to traffic
demands and network layouts (linear network vs. grid network) as shown in Table 3.
Especidly, the “heavy left-turn traffic” and “heavy traffic” are prepared to reflect the
congestion caused by the left-turn bay spill-over. It is noted that the detector layouts
including size and placement were chosen based on the guidelines of the Traffic Control

Systems Handbook (22).
Table 3. Test Network Identification
Network Layout
Traffic Demand _ .
Network A: Linear Network Network B: Grid Network
(4 Intersections) (8 Intersections)
Light Traffic VINA VINB
Heavy Left-turn Traffic V2NA V2NB
Heavy Traffic V3NA V3NB
7
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Figures 1 and 2 show the layouts of networks and detectors deployed in the test networks

“foo7 *B014
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(a) Network A (Linear Network)
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. o o et P fan -+
Bo1bdg e - 30 B020

(b) Network B (Grid Network)

Figure 1. Network Layout
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Figure 2. Examples of Intersection Geometry and Detector Layout
Notes (1) Eastbound and Westbound major approach, (2) al detectors in presence mode, and (3)
detectors in the major (coordinated) approaches are installed for data collection.

These networks were built in SYNCHRO (Version 6 — Build 612), T7F (Version 10.2)
and CORSIM (TSIS Version 5.1) (1,2,23). Significant efforts were given to develop
comparable networks across these three programs. In addition, it was found that the use
of hypothetically long approach linksin CORSIM networks could prevent asimulation
result where vehicles were regjected to enter the network due to along queue reaching to
the vehicle entry points.

COMPARISON OF TRAFFIC SIGNAL CONTROL SETTINGS
I mplementation of Stochastic Optimization Methods

In order to implement the proposed stochastic opti mization methods, an interface
between the optimization engine and the microscopic simulation program, CORSIM was
developed. Theinterface which iswritten in C++ program and MATLAB m-file works
asfollows: firstly, the optimization engine generates a population of solutions or single
solution according to its solution generation method. Secondly, the interface program
produces an input file for the CORSIM simulation based on the solution from the
optimization engine, and then conducts five CORSIM simulation runs. Finally, the
interface extracts an objective function value from the CORSIM output files and then
transfersit to the optimization engine. This process continues until the termination
condition ismet. The stochastic optimization methods stop at the maximum iteration
number of 2,500 to make fair comparisons. For the GA-based optimization, a population
size of 100 and a maximum generation of 25 were used (26).

Once optimal control settings were found, 100 multiple CORSIM simulation runs were
made to consider stochastic variability. The mean and standard deviation (STD) of queue
time and control delay are presented for comparison purposes. Network B isinitially
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used for Group 1 variables optimization to verify the performance of the three stochastic
optimization methods, while Network A is used for Groups 2 and 3 variables
optimizations to examine the effect of selected signal control settings (refer to Table 3and
Figure 1).

Group 1 Variables Optimization

In order to establish baseline performance of the stochastic optimization methods, both
T7F and SYNCHRO, arguably the most widely-used signal timing optimization
programsin the U.S., wereimplemented. The T7F program provides three basic
optimization options and its combinations. Therefore, this research tested the
performances of various optimization options available in T7F asfollows:

(2) Hill-Climbing method with macroscopic simulation,

(2) GA with macroscopic simulation,

(3) GA with microscopic simulation model CORSIM (a.k.a., CORSIM-direct
optimization), and

(4) GA with macroscopic simulation + CORSIM-direct optimization.

It is noted that the third option does not optimize phase sequences, while the second
option provides phase sequence optimization. In order to find the best timing plan, the
fourth option combined the second and third options. In other words, it first employed
optimal phase sequences optimized by the second option, and then optimized remaining
signal timings using the third option.

Asshown in Table 4, the CORSIM-direct optimization produced the best performance.
Similar results were found from V2NB and V3NB networks.

10
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Table 4. Summary of T7F Optimization Resultsin V1INB Network

Queue Time | Control Delay
Type of Simulation (STD), (STD),
and Optimization vehicle- seconds per Remarks
minutes vehicle
1. Hill- 1,621.73 16.41
M acroscopic Climbing (86.28) (0.79)
Simulation ) A 1,893.93 1936 | - Population: 99
' (93.93) (0.85) - Generation: 25
Microscopic 1,033.55 1135 |~ Nophasing sequence
Simulation | > ©A (30.44) (0.20) |~ Population: 99
' ' - Generation: 25
Macroscopic " A usng Macromconic
+ 1,294.33 13.88 A USING P
. . 4. GA simulation
Microscopic (98.07) (0.87) o
. . - Population: 99
Simulations .
- Generation: 25

Note: T test shows that the third optimization result is significantly better than that of the fourth
optimization at asignificant level of 0.05

Figure 3 shows the best solutions obtained by the three proposed stochastic optimization
methods for Network B. Apparently the GA converges to the lowest queue time, while
the SA and the OptQuest engine converged to similar solutions. The fundamental
difference between the GA-based method and CORSIM-direct optimization should be
noticed. T7F conducts the optimization of the signal timing plan in a coordinated
actuated signal control by manipulating only force-off points and the minimum splits
work as constraints in the optimization (2). However, the GA-based method cal cul ates
green splits first based on the minimum splits as well as phasing sequences generated by
GA, and then determines resulting force-off points and permissive periods.

11

TRB 2006 Annual Meeting CD-ROM Paper revised from original submittal.



2000

1800

1600

1400

1200

QOcooD 435 © ~<DT60 S SC-DU—

1000

800

Number of Evaluation

Figure 3. Convergence of Three Optimization Methods in VINB Network

Tables 5, 6 and 7 summarize the optimization results of the five methods including T7F
and SYNCHRO using the grid network (Network B) under three different traffic
demands. It isnoticed that queue times shown in Figure 3 may appear different from
thosein Tables5 and 6. The valuesin Figure 3 were achieved from the results of three
optimization methods using five random-seeded simulation runs while the figuresin
Tables 5 and 6 were calculated from 100 random-seeded simulation runs using signal

timing from the optimization methods.

Table 5. CORSIM Evaluation Results Using V1INB Network (Light Traffic Condition)

e oo | QIO | coniosy 1)
SYNCHRO 1,236.90 (36.29) 12.79 (0.35)
(CORSIM-direct Optimization) 1,033.55(3044) 1135 (0.29)
Sochegic GA 991.49 (37.55) 10.80 (0.39)
Optimization SA 1,193.43 (51.84) 12.75 (0.53)
Method OptQuest 1,263.78 (65.99) 13,64 (0.68)

Note: T test shows that the result of GA-based optimization method is significantly better than
that of T7F (CORSIM-direct optimization) at asignificant level of 0.05

In the light traffic network (V1NB), the GA-based stochastic optimization method
achieved the best solution among the five methods for Group 1 variables (see Table 5).
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In the congested networks (V2NB and VV3NB), the GA-based stochastic optimization
method consistently performed better than other methods. Even though the CORSIM-
direct optimization method integrates the CORSIM simulator and the GA as in the GA-
based stochastic optimization method, one limitation of the CORSIM-direct optimization
method was its incapability to optimize phase sequences. Apparently, the feature of
phase sequence optimization can significantly improve the performance of the congested
network as shown in Table 7.

Table 6. CORSIM Evauation Results Using V2NB Network (Heavy Left-Turn Traffic)

SYNCHRO 5,710.68 (421.17) 44.19 (2.83)
(CORSIM-di thFOpti mi zation) 3,577.16 (265.26) 29.47(2.09)
Stochastic GA 3,448.84 (300.03) 28.42 (2.29)
Optimization SA 4,430.43 (383.11) 35.57 (2.77)
Method OptQuest 3,641.27 (241.13) 29.93 (1.88)

Note: T test shows that the result of GA-based optimization method is significantly better than
that of T7F (CORSIM-direct optimization) at asignificant level of 0.05

Table 7. CORSIM Evaluation Results Using V3NB Network (Heavy Traffic)

e oo | QD) | Camtoas o
SYNCHRO 11,680.96 (604.78) 69.83 (4.03)
(CORSIM-direes Optimization) 10,821.32 (650.20) 64.67 (4.07)
Sochaic GA 7,455.82 (329.27) 45,66 (2.13)
Optimization SA 8,619.05 (631.88) 56.61 (5.50)
Method OptQuest 0,358.43 (694.75) 56.60 (3.90)

Note: T test showsthat the result of GA-based optimization method is significantly better than
that of the SA method at a significant level of 0.05
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Group 2 and Group 3 Variables Optimization

Group 2 and Group 3 variables can affect the efficiency of coordinated actuated signal
systems by reducing unnecessary green times of actuated phases, and transmitting saved
green times to the coordinated phases (22). However, given that the amount of green
times assigned to non-coordinated phases are relatively low, the optimization of these
variables would have relatively small benefits compared to Group 1 variables.

Before implementing optimizations for Group 2 and Group 3 variables at a new linear
network (see Figure 1(a)) with three different volume levels, this study optimized Group
1 variables using the SY NCHRO and GA-based stochastic optimization method. The
results of Group 1 variables optimizations by these two methods would validate the
performance of the stochastic optimization over traditional macroscopic-based
optimization. In addition, this exercise can verify whether optimizing Group 2 and/or
Group 3 variables can further improve the efficiency of traffic signal control.

As shown in Table 8, the GA-based optimization method produced statistically better
timing plans than SYNCHRO (see the first and fourth rows). For Group 2 and Group 3
variables, the GA-based stochastic method was chosen because it showed the best
performance during Group 1 variables optimizations. In addition to two do-nothing cases
(i.e., cases where only Group 1 variables were optimized and Group 2 and Group 3
variables were set on the basis of engineering knowledge and afew recommended
guidelines) (22,23,24), four more evaluation scenarios (see Table 8) were devel oped and
optimizations were conducted for these four scenarios.

Table 8. CORSIM Evaluation Results Using VINA, V2NA and V3NA Networks

Control Delay of C\c;r21t|{l(')ol\ [()SeITag)of Control Delay of
V1INA (STD), ' V3NA (STD),
. seconds per
Type of Optimization seconds per vehicle seconds per
vehicle [Heavy Left-Turn vehicle
[Light Traffic] Traffic] [Heavy Traffic]
Group 1 bgnISJNCH RO | 1550(0.38) 40,05 (2.79) 7351 (4.73)
Group 1 by SYNCHRO
and Group 2 by GA 12.19 (0.33) 36.55 (2.51) 67.81 (4.46)
Group 1 by SYNCHRO
and Group 3 by GA 12.71 (0.39) 41.20 (3.43) 67.24 (3.70)
Group 1 by GA only 11.51 (0.34) 28.91 (2.33) 54.45 (3.65)
Group 1 by GA and
Group 2 by GA 11.32 (0.44) 27.54 (2.45) 49.12 (2.29)
Group 1 by GA and
Group 3 by GA 11.79 (0.40) 29.90 (2.20) 53.77 (2.86)

14
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Figure 4. Convergences of Group 2 and 3 Variables Optimizationsin V3NA Network
(Heavy Traffic Condition)

Figure 4 shows the convergence of each optimization scenario applied to the V3NA
network (i.e., heavy traffic condition). It isclear that Group 2 variables optimizations
converge to lower control delays than Group 3 variables optimizations (see the top two
curves where Group 1 variables were optimized by SYNCHRO; and the bottom two
curves where Group 1 variables were optimized by the GA-based method). The findings
were similar to the other two volume levels. These results indicate that Group 2 variables
are more important than those of Group 3 in the operations of coordinated actuated signal
systems.

As shown in the second column in Table 8, the improvements by optimizing Group 2 and
Group 3 variablesfor light traffic conditions are not significant. However, the effects of
optimizing Group 2 and Group 3 variables in heavy traffic conditions (i.e., congested
networks) become substantial as shown in the third and fourth columnsin Table 8.
Especidly, “Group 1 by GA and Group 2 by GA” showed significant improvement over
“Group 1 by GA only.” Based on this experiment it can be concluded that thereis great
potential to further improve the efficiency of the coordinated actuated signal systems by
optimizing Group 2 variables in congested networks. However, no significant
improvements were made by optimizing Group 3 variables.

15
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CONCLUSIONSAND RECOMMENDATIONS

This study proposed a stochastic optimization approach by combining a stochastic
optimization engine and microscopic simulation model CORSIM. The proposed
approach optimizes controller and detector settings in addition to four basic parameters
(i.e, cycle, green split, offset and phase sequence).

Based on the stochastic optimization and simulation results using two networks with
three different volume levels, the following conclusions were made:

1) Optimization capability of the five optimization methods regarding Group 1 variables:

»  Stochastic optimization methods outperformed traditional optimization methods.

* Optimization of phasing sequence can significantly improve the performance of
coordinated actuated signal systems.

* Among the stochastic optimization methods, the GA-based optimization method
produced the best results for the networks used and volume level s considered.

* Onedownside of the stochastic optimization methods was the lengthy
computation time requirement due to the use of the microscopic simulation
model.

2) Effects of the optimization of Group 2 and Group 3 variables:
» Significant benefits were found for Group 2 variables optimization, especialy in
congested networks.
» Theoperationa improvements made by optimizing Group 2 variables were
relatively small.
» Group 3 variables did not improve the performance of the signal system when
compared to the do nothing case.

The following recommendations were made for future research:

» Sincethis study used postulated networks, the CORSIM model could not be
calibrated and validated. However, it is assumed that CORSIM represents “true
real world field conditions.” Thisis critical because a microscopic simulation
model (whether CORSIM or others) should reflect well true field conditions such
that the optimized traffic signal timing plan can work in thefield. Thus, it is
recommended that traffic simulation model needs (to be used in the stochastic
optimization) be well calibrated and validated.

» Thetraffic signa control logics embedded in the microscopic simulation
programs are most outdated when they were compared to actual modern traffic
controllers. Thus, the use of stochastic optimization or any other approaches
should be considered under the hardware-in-the-loop simulation (HILS) and/or
software-in-the-loop simulation (SILS) (27,28). Thiswould ensure adequate
evauations of the advanced features or new control logics of traffic controllers
during the optimization.
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