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� What is Fuzzy Rule Extraction?

To extract knowledge (rules) from data given.

⇓

Assume all the data are n-dimensional.

⇓

Then rules are like

IF (x1 is Ak
1) and · · · and (xn is Ak

n) THEN (y1 is νk1) and · · · and (ym is νkm)

where yi is a likliness of each of m classes.
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A Zero-order Takagi-Sugeno’s Fuzzy Model

⇓

Membership functions

μik(xi) = exp{−(xi − wik)
2/σ2

ik}.

Defuzzification

y0
j =

H∑

k=1
μk(x

0) · νkj/
H∑

k=1
μk(x

0)

where

μk(x
0) =

n∏

i=1
μik(x

0
i )
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� A Fuzzy Neural Network Approach

— G. Castellano and A. Fanelli (2000)
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Our Interest here

⇓

a NETWORK INTRUSION DETECTION SYSTEM

in which

we need a set of TEST-DATA

to TRAIN and TEST the system with.

⇓

a consideration on such a test-data.
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So many artificial data-samples have been proposed so far.

⇓

Let’s categorize them
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� Fictitious 2-D pictures of test-sample — Type I

Do data cover

the whole universe?

E.g.,
Fisher’s IRIS Flower
KDD-cup 1999/2003

· · ·
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� A visualization of IRIS data by Sammon Mapping
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� The data from KDD challange cup 98

4,920,210 data are given

⇓

each is made up of 42 attributes of which

⇓

4-crisp + 17-binary + 6-integer + 15-real

Still infinitely large area of not-defiened possible transactions remain!
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GUCCI vs. GUCCI-made-in-Hong-Kong
(Yet another from Istanbul, etc.)
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� Fictitious 2-D pictures of test-sample — Type II

Do data cover

the whole universe?

Is a trainning with both 

normal & abnormal meaningful?

Fisher’s IRIS Flower Ayara et al.

KDD-cup 1999/2003 · · ·
· · ·
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� Ayara’s Random Anomaly in 8-bit Binary Universe

152 and 160 abnormal patterns out of 28 = 256 search points.

⇓

Asserted that successfully trained.
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� Fictitious 2-D pictures of test-sample — Type II

Do data cover

the whole universe?

Is a trainning with both 

normal & abnormal meaningful?

Fisher’s IRIS Flower Ayara et al.

KDD-cup 1999/2003 · · ·
· · ·
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� What if abnormal sample are only a few?

Still can we train the system with normal and abnormal sample?
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� Fictitious 2-D pictures of test-sample — Type III

Do data cover

the whole universe?

Is a trainning with both 

normal & abnormal meaningful?

What if the size of known abnormal

sample is extremely tiny? 

Fisher’s IRIS Flower Ayara et al. None so far

KDD-cup 1999/2003 · · ·
· · ·
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� Three of our claims.

1. Data should cover the whole universe.

⇒ We could miss crucial abnormal in no-defined area.

2. Abnormal Sample should be assumed extremely tiny.

⇒ This is of usual case.

3. Can we train the sytem only by NORMAL data?
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A sommelier who is trained only by real champagne
can tell the difference when given a bootleg or other sparkling wine?

How about Caviar?

Forgery coins recognition?
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Our Goal is

to search for only a few ABNORMAL (no-self) pattern

hidden in

an enormous amount of NORMAL (self) patterns

by

training using only NORMAL patterns
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� A test-sample – A tiny-flat-island-in-a-huge-lake

• Lake ⇒ n-D Hypercube where xi ∈ [−1, 1] (i = 1,…, n)

• Island ⇒ xi ∈ [−a, a] (a < 1).

— We can control the complexity by changing the size.
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� From a fitness landscape point of view
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� A Needle in a Haystack

A schematic skecth on fictitious 2D-space

The original Hinton & Nowlan’s Needle:

• A-needle ⇒ Only one configuration of 20 bits of binary string.

� We don’t know where the needle locates, but God knows.

• Haystack ⇒ 220 − 1 search points
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� How can we train the detector?

0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0

yes/no

a needle detector

Can we train it with most likely haystack points?
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� How difficult?

• Random Search

220 = 1, 048, 576

• Lifetime Learning – Baldwin Effect (Hinton & Nowlan 1993)
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� Random Search

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30

Nu
mb

er 
of 

Su
cc

es
sfu

l In
div

idu
als

Dimension

⇓

Placebo ⇒ Criteria of Comparison



(ANNIP’2005 – at Barcelona, Spain) 25

� We have attacked this problem with lately reported approaches

• Artificial Immune System

• Evolutionary Computation

• Fuzzy Rule

• Data-mining Technique

• etc

each of which claims very SUCCESSFUL.
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� When a species of IRIS flower is normal then are others abnormal?

E.g., Kim & Bentley (2001) claimed

assuming one family of IRIS is abnormal while other two normal

⇓

TP (Successful Detection Rate) reached 100%
FP (False Alarm Rate) was only 1%.
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� A snapshot of our ongoing works

An immune approach — Constant-sized hyper-shpere Detectors
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� A result in 2-D space
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� What if top area shrinks to zero?
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� Alas! As dimension grows...
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� Yet another snapshot

A Fuzzy Rule approach — Can a fuzzy rule find an island?
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How many rules we need?

(MMMMMM · · ·M)

⇓

IF {x1 is Middle}, · · ·, and {x20 is Middle} THEN no-self.
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� Island in the 6-D lake

Fairly large island (xi ∈ [0.25, 0.75]) vs. Small island (xi ∈ [0.45, 0.55])

⇓
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� Training with Non-self
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� Training with Self
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� To detct island
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A result of an evolution
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While usually we have huge NORMAL samples,
we don’t know many ABNORMAL samples

(when we know them it’s too late)

⇓

Can training be performed only by using NORMAL samples?

⇓

a-needle or tiny-island
as test-data to design a network intrusion detector.
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� Conclusion

Results have not been wonderful at all AS THEY CLAIMED.

⇓

Worse than Placebo experiment?

Or, experiments have sometimes reversed our expectations.

We now are negative more or less, but still want to be neutral.


