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O What is Fuzzy Rule Extraction?

To extract knowledge (rules) from data given.

4

Assume all the data are n-dimensional.

4

Then rules are like
IF (21 is A}) and --- and (=, is A¥) THEN (y; is v41) and - -+ and (y,, iS V)

where y; is a likliness of each of m classes.
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A Zero-order Takagi-Sugeno’s Fuzzy Model

4

Membership functions
pir () = exp{—(z; — wik)Q/afk}.
Defuzzification
0 a 0 a 0
Yy = kz pp(x7) - V/cj/kz i (x7)
=1 =1

where

pr(x”) = f[l uir(27)
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O A Fuzzy Neural Network Approach

— G. Castellano and A. Fanelli (2000)
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Our Interest here
4
a NETWORK INTRUSION DETECTION SYSTEM
in which
we need a set of TEST-DATA
to TRAIN and TEST the system with.

4

a consideration on such a test-data.



(ANNIP’2005 — at Barcelona, Spain)

So many artificial data-samples have been proposed so far.

4

Let’s categorize them
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O Fictitious 2-D pictures of test-sample — Type I

Do data cover

the whole universe?

2.
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E.g.,
Fisher’s IRIS Flower
KDD-cup 1999/2003
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O A visualization of IRIS data by Sammon Mapping
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O The data from KDD challange cup 98

4,920,210 data are given

4

each is made up of 42 attributes of which

4

4-crisp + 17-binary + 6-integer + 15-real

Still infinitely large area of not-defiened possible transactions remain!
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GUCCI vs. GUCCI-made-in-Hong-Kong
(Yet another from Istanbul, etc.)
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O Fictitious 2-D pictures of test-sample — Type 11

Do data cover Is a trainning with both

the whole universe? normal & abnormal meaningful?

Z

7
V/ 7
Fisher’s IRIS Flower Ayara et al.

KDD-cup 1999/2003
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O Ayara’s Random Anomaly in 8-bit Binary Universe

000
000
000
oeo
[elele)
000
000
000
ocoe
000
000
® 00
000
000
[elele)
000
000
® 00
000
[eleNe)
000
000
[elele)
® 00
000
® 00
000
[elele)
000
000
000
000
[eleNe)
oeo
000
000
® 00

®0000
00000
00000
00000
[ eNeNeNo}
000®0
0®000
00000
00000
[ eNeNeNo}
00000
[oNeNeNex:)
00000
0O0®0o0
[ eNeNeNo}
®0000
ooco®o
00000
00000
[ eNeNeNo}
00000
00000
[ eNeNeNe}
00000
0®@®00
0®000
00000
[ eNeNeNo}
00000
00000
00000
00000
[eeNeNeNe}
00000
0®000
00000
00000

00000
00000
00000
00000
ocoo®@o
00000
00000
00000
00000
[eeNeNeNo}
00000
00000
00000
00000
[ eNeNeNe}
00000
[oNeNeNex:)
00000
00000
[ eNeNeNo}
00®00
®®®00
oO®000
00000
00000
00000
00000
[ eNeNeNo}
00000
0®000
00000
00000
000®o0
00000
00000
00000
00000

00000
oOocoO®®e
00000
00000
[ eNeNeNe}
00000
00000
®0000
00000
[ eNeNeNo}
00000
00000
000®0
00000
oO®@®00
00000
00000
00000
00000
[ eNeNeNo}
00000
00®00
[ eNeNeNo}
®0000
00000
00000
[oNeNeNex:)
[ eNeNeNe}
00000
0®@000
00000
[oNeNeNex:)
000®O0
00000
00000
00000
00000

[e)e)
[o)e)
oe
[e)e}
o®
[e)e)
[o)e)
[e)e)
[o)e)
[ele)
[e)e}
[o)e)
[e)e}
[o)e)
[ele)
[e)e)
@0
[e)e}
[e)e}
[ele)
[e)e}
[o)e)
[ele)
[e)e}
[o)e)
[e)e}
[o)e)
[ele)
[o)e)
[o)e)
[e)e}
[o)e)
[ele)
[e)e}
(o))
[e)e)
[o)e)

152 and 160 abnormal patterns out of 28 = 256 search points.

4

Asserted that successfully trained.
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O Fictitious 2-D pictures of test-sample — Type 11

Do data cover Is a trainning with both

the whole universe? normal & abnormal meaningful?

Z

7
V/ 7
Fisher’s IRIS Flower Ayara et al.

KDD-cup 1999/2003
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O What if abnormal sample are only a few?
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Still can we train the system with normal and abnormal sample?
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O Fictitious 2-D pictures of test-sample — Type III

Do data cover Is a trainning with both What if the size of known abnormal

the whole universe? normal & abnormal meaningful? sample is extremely tiny?

.
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Fisher’s IRIS Flower Ayara et al. None so far
KDD-cup 1999/2003
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O Three of our claims.
1. Data should cover the whole universe.

= We could miss crucial abnormal in no-defined area.

2. Abnormal Sample should be assumed extremely tiny.

= This is of usual case.

3. Can we train the sytem only by NORMAL data?

16
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A sommelier who is trained only by real champagne
can tell the difference when given a bootleg or other sparkling wine?

How about Caviar?

Forgery coins recognition?

17
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Our Goal is
to search for only a few ABNORMAL (no-self) pattern
hidden in
an enormous amount of NORMAL (self) patterns
by

training using only NORMAL patterns

18
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O A test-sample — A tiny-flat-island-in-a-huge-lake

e Lake = n-D Hypercube where z; € [-1,1] (i=1,...,n)

e [sland = z; € [—a,d] (a <1).

— We can control the complexity by changing the size.

19
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O From a fitness landscape point of view

20
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O A Needle in a Haystack

A schematic skecth on fictitious 2D-space

The original Hinton & Nowlan’s Needle:

e A-needle = Only one configuration of 20 bits of binary string.

* We don’t know where the needle locates, but God knows.

e Haystack = 220 — 1 search points

21
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O How can we train the detector?

T yes/no

a needle detector

T

Can we train it with most likely haystack points?

22
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O How difficult?

e Random Search

220 — 1,048, 576

e Lifetime Learning — Baldwin Effect (Hinton & Nowlan 1993)

23
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O Random Search

Number of Successful Individuals
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Placebo = Criteria of Comparison

30
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O We have attacked this problem with lately reported approaches

e Artificial Immune System
e Evolutionary Computation
e Fuzzy Rule

e Data-mining Technique

e ctc

each of which claims very SUCCESSFUL.

25
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O When a species of IRIS flower is normal then are others abnormal?

E.g., Kim & Bentley (2001) claimed
assuming one family of IRIS is abnormal while other two normal

4

TP (Successful Detection Rate) reached 100%
FP (False Alarm Rate) was only 1%.
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O A snapshot of our ongoing works

An immune approach — Constant-sized hyper-shpere Detectors

A set of
Normal Data

Candidate
Detector

Detect
any one of

them?

yes

Reject

no

Valid Detector

27
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O A result in 2-D space
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O What if top area shrinks to zero?

29
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O Alas! As dimension grows...

Number of True/False Positive
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O Yet another snapshot

A Fuzzy Rule approach — Can a fuzzy rule find an island?

L ML ™M NMH H
1W

OO 1/6 2/6 3/6 4/6 5/6 1

4

How many rules we need?

(MMMMMM --- M)

4

IF {27 is Middle}, - -, and {z9 is Middle} THEN no-self.
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O Island in the 6-D lake

Fairly large island (x; € [0.25,0.75])

vs.  Small island (z; € [0.45,0.55])
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O Training with Non-self
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O Training with Self

34
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O To detct island

RRule

hY%S

N>
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A result of an evolution

36
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While usually we have huge NORMAL samples,
we don’t know many ABNORMAL samples
(when we know them it’s too late)

4

Can training be performed only by using NORMAL samples?

4

a-needle or tiny-island
as test-data to design a network intrusion detector.
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O Conclusion

Results have not been wonderful at all AS THEY CLAIMED.
Y
Worse than Placebo experiment?
Or, experiments have sometimes reversed our expectations.

We now are negative more or less, but still want to be neutral.



