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Abstract. We have had lots of reports that asserted a negative selection
algorithm successfully distinguished non-self cells from self cells, espe-
cially so in a context of “network intrusion detection by artificial immune
system” in which self cells are assumed to represent normal transactions
while a non-self cell represents an anomaly. They further assert a nega-
tive selection gives us an advantage that we use only a set of self cells
as training samples. This would be really an advantage since we usually
don’t know what do anomaly patterns look like until they complete an
intrusion. We, however, suspect its applicability more or less. This paper
gives it a consideration to one of the latest such approaches.

1 Introduction

A sultan has granted a commoner a chance to marry one of his 100 daughters

by presenting the daughters one at a time letting him know her dowry that

had been defined previously. The commoner must immediately decide whether

to accept or reject her and he is not allowed to return to an already rejected

daughter. The sultan will allow the marriage only if the commoner picks the

daughter with the highest dowry. — “Sultan’s Dowry Problem” 1

In real world, we have many problems in which it is easy to access to any one of
the many candidate solutions which could be the true solution but most likely
not, and we don’t know it in advance.

The ultimate extreme is called a-needle-in-a-haystack problem. The needl origi-
nally proposed by Hinton & Nowlan [3] was exactly the one configuration of 20
binary bits. In other words, the search space is made up of 220 points and only
one point is the target. No information such as how close is a currently serching
point to the needle.
1 According to the author(s) of the web-page of Cunningham & Cunningham, Inc.

(http://c2.com) the problem was probably first stated in Martin Gardner’s Mathe-
matical Recreations column in the February 1960 issue of The Scientific American.
To explore the problem more in detail, see, e.g., http://mathworld.wolfram.com



Yet another problem, a-tiny-flat-island-in-a-huge-lake — this is a problem we
came across when we had explored a fitness landscape defined on all the possi-
ble synaptic weight values of a fully-connected spiking neurons to give them a
function of associative memory [1]. Our proposal is formalized as follows.

Testfunction 1 (A tiny flat island in s huge lake) 2 Find an algorithm to
locate a point in the region A all of whose coordinates are in [−a, a] (a ≤ 1) in an
universe of the n-dimensional hypercube all of whose coordinate xi lie in [−1, 1]
(i = 1, !D, n).

Many researchers in artificial immune system community have suggested us that
the problem might be easy if we use the concept of negative selection. The
negative selection, in short, is an evolutionary selection mechanism by which
immune system trains itself only using self cells as training samples, so that it
can recognize non-self cells afterwards.

So, our idea is as follows. We try to test a set of samples one by one, as many as
possible, whether each of those samples is the real solution or not. If we find the
needle/island during this search procedure by happen, then our goal is attained.
We are more than lucky. During the procedure, whichever the solution might be
found or not as a result, we train the system, in parallel, using those samples.
Then we, at least, can expect the trained system will recognize the needle/island
later.

In this paper, we approach the problem from this view point. That is, we take
it just a pattern classification problem, in general, under the constraint that we
have two classes one of which has an extremely few patterns while the other
has almost infinite number of patterns. Or, we might as well take it a task of
discrimination of a few of non-self cells as anomaly patterns from enormous
amount of self cells which represent normal patterns.

One of the latest approaches, among others, from this point of view is by Zhou Ji
and D. Dasgupata. They wrote

The idea of negative selection was from T cell development process in
the thymus. If a T cell recognizes self cells, it is eliminated before deploy-
ment for immune functionality. In an analogous manner, the negative
selection algorithm generates the detector set by eliminating any detec-
tor candidates that match self samples. It is thus used as an anomaly
detection mechanism with the advantage that only the negative (normal)
training data are needed.

Then they proposed two algorithms: one is to generate detectors of constant sized
spheres and the other is to generate variable sized spheres. They concluded that
2 It is not necessarily to be said for the top of the island to be “flat”, but the originally

this was a test-bed for evolutionary computations, and the fitness of the island region
is one and zero in a lake region, that is why.



detectors which detect anomaly patterns are successfully created just by training
with normal patterns.

When we think of a network intrusion detection, we usually don’t know what do
anomaly patterns look like in advance. Hence this feature of training with only
normal patterns is really advantageous. Our concern then is what if the number
of non-self cells is extremely smaller than self cells, which is of usual cases when
we think of a network intrusion detection. In order to explore this issue, we
apply their algorithms to a-tiny-island-in-a-huge-lake mentioned above. We can
control the difficulty of the task by changing the value of a, and we set it to a
very small value. The ultimate case in which the pattern all of whose coordinates
shrink to zero, is the problem called a-needle-in-a-haystack.

2 Algorithm

Lots of algorithms to distinguish non-self patterns from self patterns have been
proposed. The goal of some of these algorithms is to create detectors which cover
non-self space as much as possible. Here, among others, we concentrate on the al-
gorithm called “Augmented Negative Selection Algorithm with Variable-Coverage
Detectors” proposed by Zhou Ji and D. Dasgupata (2004) and it’s simpler ver-
sion in which detector size is constant instead of variable, also proposed by the
same authors in the same article [2]. The followings are these two algorithms
we paraphrased the original ones with the semantics being intact. Firstly, the
simpler version is:

Algorithm 1 (Constant-sized Detector Generation) After setting (i) Nt,
the number of training samples; (ii) rd, the radius of detector; and (iii) Nd, the
total number of detectors:

1. Create Ns samples of self cells at random.
2. Create a hyper-sphere which has the radius rd and whose center locates at

random in [−1, 1]. This is a candidate detector to detect non-self cells.
3. If this-hyper sphere does not contain any sample self cells, then put it as a

detector in D, the detector’s repertoire. Otherwise delete the hyper-sphere.
4. Repeat 2-3 until we find Nd detectors.

This algorithm, in our humble opinion, does not contain the concept of negative
selection or whatever in immune system metaphor neither. The second one is:

Algorithm 2 (Constant-sized Detector Generation) After setting (i) Nt,
the number of training samples; (ii) rs, the radius of self cells; (iii) c0, expected
coverage, i.e., the degree to how much those created detectors cover non-self cells;
(iv) cmax, the upper bound of self coverage; and (v) Nd, the maximum number of
detectors:

1. Empty D, the detector’s repertoire.



2. Try to find a point x = (x1, · · · , xn) ∈ [−1, 1]n which is not contained by any
of the valid detectors so far created, unless the number of those trials exceeds
1/(1− c0). If no such x is found, then terminate the run. 3

3. If r, the distance between x and its closest self sell in the training sample, is
less than the radius rs, then add the sphere whose center is x and radius is
r to D as a new valid detector.

4. If such x cannot be found within the time 1/(1 − cmax) then terminate the
run. 4 Otherwise repeat 2 and 3, until we find a predefined number of detec-
tors.

We do not think this algorithm strongly reflects an immune system either, despite
the title of the original paper indicates it. However at least title holds true in
the sense that detectors are chosen by matching them to the self strings and if
a detector matches then it is discarded, otherwise, it is kept.

3 Experiment, Results, and Discussion

We assume here the whole universe is n-dimensional hyper-cube [0, 1]n; any point
all of whose coordinates lie in [(0.5− a), (0.5 + a)] where 0 < a < 0.5 are a non-
self cell, whilst other points in the universe are self cells 5 ; and all the self cells
are hyper-sphere whose radius is rs.

3.1 A 2-dimensional version of an-island-in-a-lake

First of all, in order to observe the behavior of the algorithms our experiment
is performed on a 2-dimensional space, that is, we set n = 2. We employ a set
of 500 randomly selected points in the self region as the training samples, and
1000 points randomly chosen from entire space is the test data. The reason of
these settings is to enable us to compare our results with their’s in the original
proposition [2].

Normal points and created detectors when we set rs = 0.1 which is the value
recommended by the original proposition [2] are shown in Fig. 1. So far so good.
However, our goal is to recognize non-self patterns from extremely tiny region.
Hence the next experiment is a dependency on the value of a. Fig. 2 shows the
number of required trials to find the pre-defined number of detectors, which is
500 here, and the number of successes when those 500 detectors tried to detect
the 500 non-self samples. Both are plotted as a function of value of a using the
Algorithm 1 with rs = 0.1 to create the detectors. As we can see in the Figure,
3 This is because when we have sampled m points and only one point was not covered,

the expected coverage is 1 − 1/m. Hence the necessary number of tries to ensure
expected coverage c0 is m = 1/(1 − c0).

4 See also the footnote above.
5 We modify our Testfunction 1 for the sake of simplicity of coding in this way, which

keeps the problem equivalent to the original one.
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Fig. 1. The points employed in the 2-D experiments. A set of five hundred self-sells
(Left), and a set of five hundreds detectors created by the Algorithm 1 (Right), with
a = 0.25 and rs = 0.1.
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Fig. 2. The number of iteration required to find 500 detectors (Left), and the number
of successes when 500 detectors tried to detect 500 non-self samples, that is, out of
25000 events (Right). Both are as a function of value of a when we experimented with
the Algorithm 1 with rs = 0.1.

the difficulty of the task becomes hard exponentially, and therefore we know this
algorithm would not work if the region to be searched for is extremely tiny.

Also the trade-off between detection-rate and false-alarm with respect to rs

will be shown. That is, correctly detected rate and false alarm rate will be
plotted against rs ranging from 0.01 to 0.20 (not shown in this submission paper,
though.)



3.2 A 20-dimensional version of an island in a lake

Here experiments are performed on a higher dimensional version of our testbed
a-tiny-flat-island-in-a-huge-lake.

In a preliminary experiment, we found it much more difficult than in the case
n = 2. What we found, for example, is even if we increase the number of training
sample of self patterns from 1000 to 10000, the distribution of the sample is very
sparse under the condition of n = 20. If the algorithm worked well, the detector
would be supposed to locate in the non-self region, such as Fig. 1 (Right), while
the result is not in that way as shown in Fig. 3 (Left). The coordinates of whole
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Fig. 3. The distribution of all the coordinates of the detectors for an experiment with
n = 20 (Left), and the distribution when n = 2 for the purpose of comparison (Right).

detectors are almost uniformly distributed.

Next, we will explore different parameter values with the goal being to learn
the limit of the size of non-self domain in which the algorithm can successfully
detect the non-self cells. Then we will experiment by lowering the value c0 which
is 99.99% and 99% in the original version.

Further, we give it a consideration of how will the Algorithm 2 (Variable Sized
Detector) improve the situation.

4 Conclusion

We have obtained the similar results with the experiments by Zhou Ji and
D. Dasgupata [2] on the condition that the island is not so small, that is, the
value a is sufficiently large.



Usually, however, in the real world problem, anomaly patterns are extremely
fewer than the normal ones. As such, our concern is on this extreme case. Unfor-
tunately, we have not so far observed any satisfactory results under this situation.
In fact, Zhou Ji and D. Dasgupata [2] denotes

As an exception, the algorithm may also terminate when it fails to sam-
ple any non-self point after many repetitions. That implies that the self
region covers almost the entire space. It may happen when the self sam-
ples are randomly distributed over the space, or the chosen self-radius is
too big.

And as they went on to write concerning another experiment in the same pa-
per [2] “One of the three types of IRIS data is considered as normal data, while
the other two are considered abnormal,” the number of normal and abnormal is
a kind of comparable in usual such experiments.

We are exploring a number of other different approaches to the same target, that
is, a-tiny-flat-island-in-a-huge-lake or its binary version a-needle-in-a-haystack.
What we have tried so far are experiments by means of (1) a negative selection of
binary detector using r-contiguous matching; (2) evolution of a set of fuzzy rules
(3) a data-mining techniques and so on..., to detect a needle or a tiny-island.

This series of works is not for suggesting a counter example but a challenge. The
objective is to detect anomaly phenomena which take place only occasionally and
hence we don’t know what does it look like, while we have enormous amount of
daily normal phenomena. As far as we know this is still an open issue and we
try to find some approaches, or at least to evoke interests in this problem in our
community. The challenge is awaiting us.
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