

How a Peak on a Completely-flatland-elsewhere can be Searched for?

A Fitness Landscape of Associative Memory by Spiking Neurons

Akira Imada

Brest State Technical University
Belarus

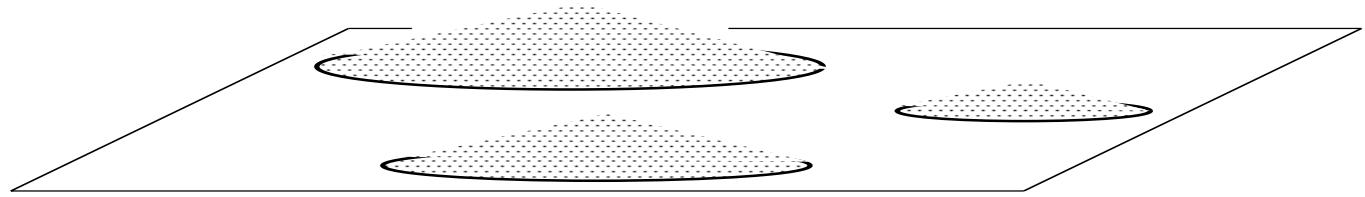
We came accross
an extremely difficult
PEAK
to be searched for

in a
FITNESS LANDSCAPE

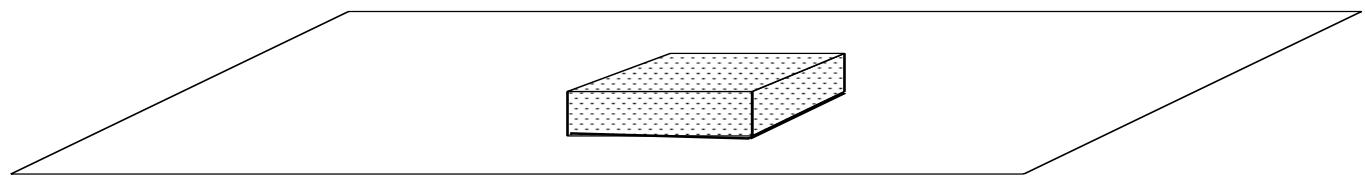
explored by an
EVOLUTIONARY COMPUTATION

□ A reason for the title — A tiny-flat-island in a huge-lake

(a)



(b)



To realize an
ASSOCIATIVE MEMORY
we use
SPIKING NEURONS
whose learning is by
EVOLUTIONARY COMPUTATIONS.

□ **Contents**

1. What is Associative Memory?

- Traditional Model by Hopfield.
vs.
· A Model using Spiking Neurons.

2. Can we evolve Spiking Neurons?

- We study it by observing Fitness Landscape.

(cont'd)

3. Results of our Experiments.

- A downhill walk from Hebb's peak!
- How difficult to find other peaks!

4. A proposition of Test-function.

5. Summary & Concluding remarks.

□ **Associative Memory:**

- stores patterns
 - in a distributed way (among neurons),
- recalls patterns
 - from noisy and/or partial input.

↓ i.e.

- gives us
 - perfect recollection from imperfect information

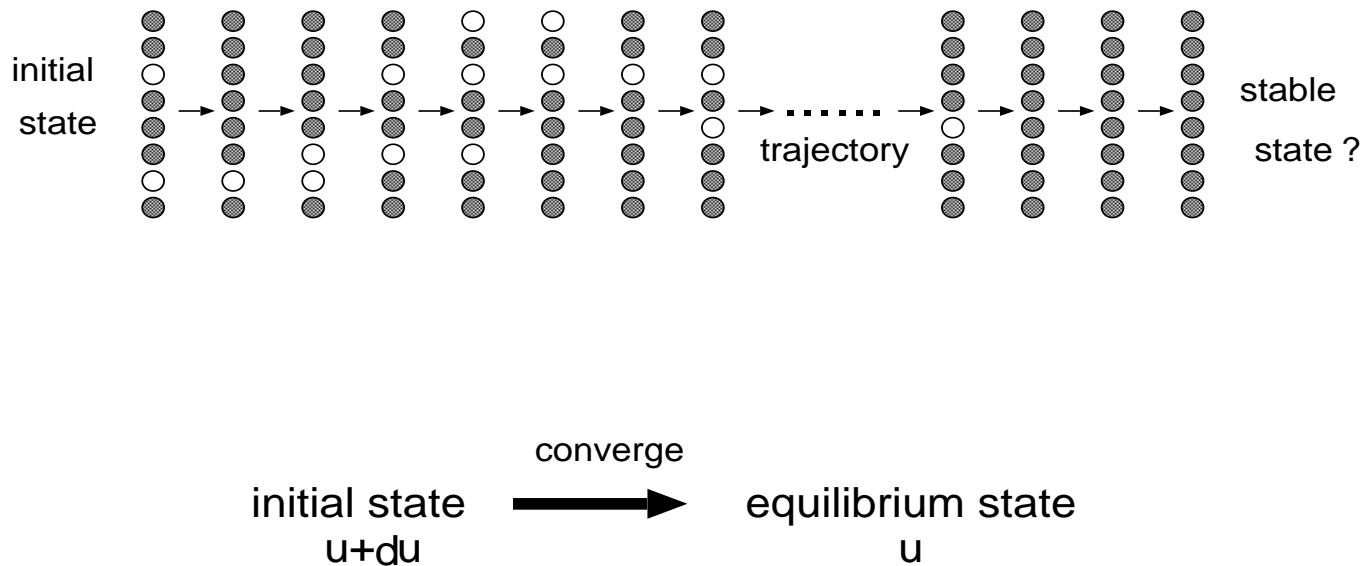
□ The Associative Memory can be realized with:

- Fully-connected Neural Network Model (Hopfield type)
- Artificial Immune System Model
- Spiking Neurons

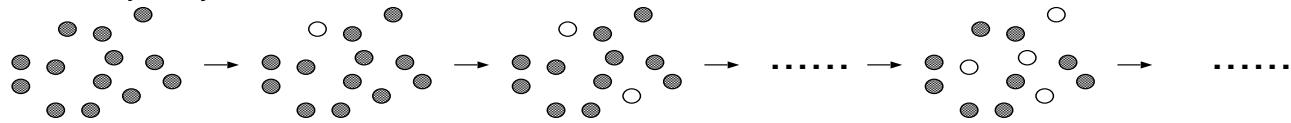
(To be more biologically plausible)

- etc.

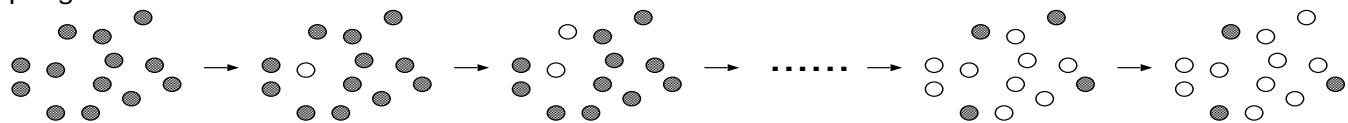
associative memory = dynamical system



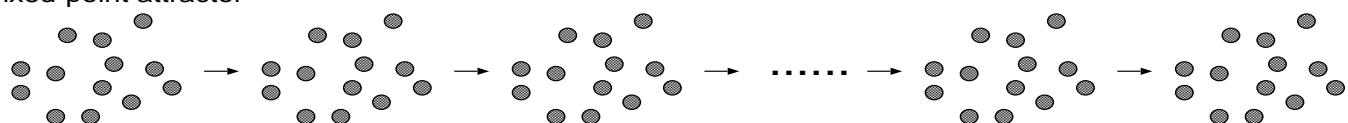
chaotic trajectory:



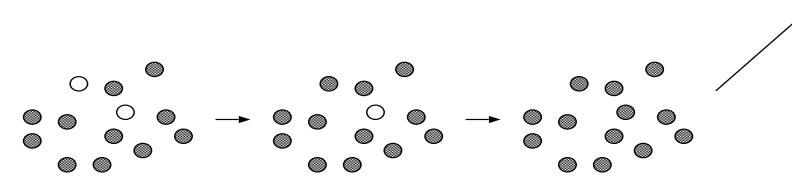
spin-glass attractor

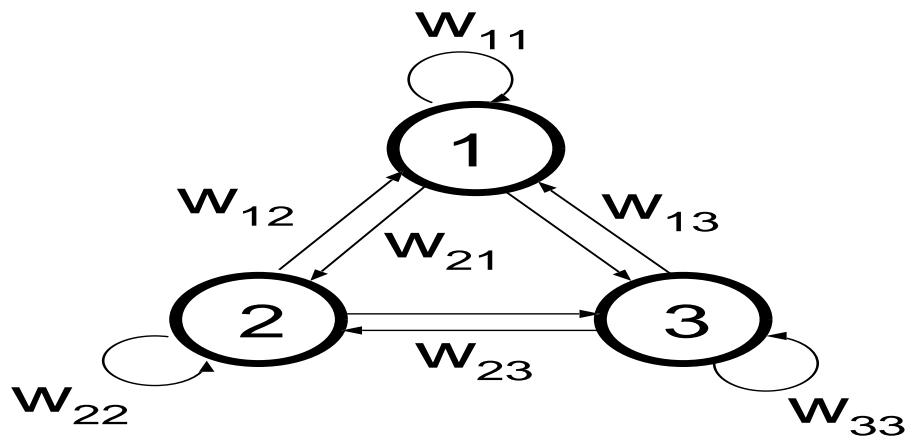


fixed-point attractor



(noisy initial state)



A Schematic Diagram of the Hopfield Model

□ State Transition of the Hopfield Model

$$s_i(t+1) = \operatorname{sgn}\left(\sum_j^N w_{ij} s_j(t)\right)$$

□ Hebbian Weights

$$w_{ij} = \frac{1}{N} \sum_{\mu=1}^p \xi_i^\mu \xi_j^\mu, \quad (i \neq j), \quad w_{ij} = 0.$$

(To store p patterns: $\mathbf{x}^\mu = (\xi_1^\mu, \xi_2^\mu, \dots, \xi_N^\mu) \quad \mu = 1, 2, \dots, p$)

□ **Hopfield Model has a Crucial Drawback.**

- N neurons store only $2N$ patterns at most (Gardner).

$$p < 2N.$$

□ From the Hopfield Model to Spiking Neuron Model

**Influence from other neurons
via
ELECTRIC CURRENTS**

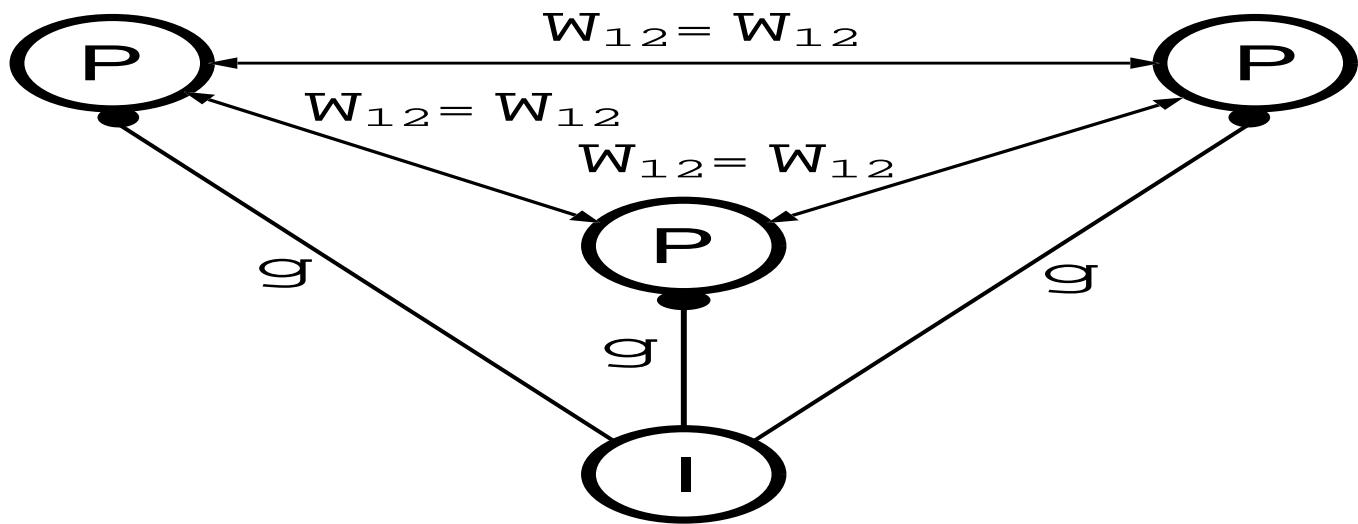
**changes
MEMBRANE VOLTAGE
of the neuron.**

(cont'd)

If it exceeds a threshold

**the neuron emits
a SPIKE.**

□ Pyramidal Cells & Interneurons



PYRAMIDAL CELL

||
(positive current)
⇓

PYRAMIDAL CELL

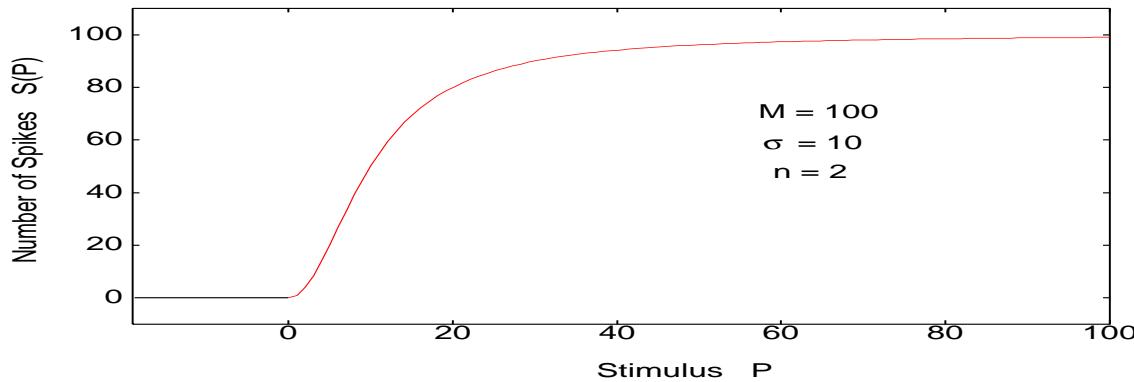
↑
(negative current)
||

INTERNEURON

□ Response of a Single Neuron to an External Stimulus:

- Spike rate vs stimuli (Naka-Rushton function)

$$S(P) = \begin{cases} MP^n / (\sigma^n + P^n) & \text{if } P \geq 0 \\ 0 & \text{if } P < 0 \end{cases}$$



(cont'd)

- **Spike rate under time-variant stimulus:**

$$\frac{dr(t)}{dt} = \frac{1}{\tau}(-r(t) + S(P))$$

□ Response of Multiple Neurons

• Stimulus to a Pyramidal Cell

P_i in the previous Eq.

$$S(P_i) = M P_i^n / (\sigma^n + P_i^n)$$

is now expressed as

$$P_i = \left(\sum_{j=1}^N w_{ij} \cdot R_j - g \cdot G \right)_+^2$$

(cont'd)

- **Spiking Ratio of a Pyramidal Cell**

And

$$\frac{dr}{dt} = \frac{1}{\tau}(-r + MP^n/(\sigma^n + P^n))$$

becomes

$$\tau_R \frac{dR_i}{dt} = -R_i + \frac{100 \left(\sum_{j=1}^N w_{ij} R_j - 0.1G \right)_+^2}{100 + \left(\sum_{j=1}^N w_{ij} R_j - 0.1G \right)_+^2}$$

(cont'd)

- **Spiking Ratio of Interneuron**

$$\tau_G \frac{dG}{dt} = -G - 0.07 \sum_{j=1}^N R_i$$

□ How to encode patterns?

For the pattern

$$(\xi_1, \xi_2, \dots, \xi_N)$$

we encode as

$$\xi_i = \begin{cases} 1 & \text{if } R_i \geq M/2 \\ 0 & \text{if } R_i < M/2 \end{cases}$$

⇒ Rate Coding

GA Implementation:

1. Represent a series of w_{ij} as a *population* of strings (*chromosome*).

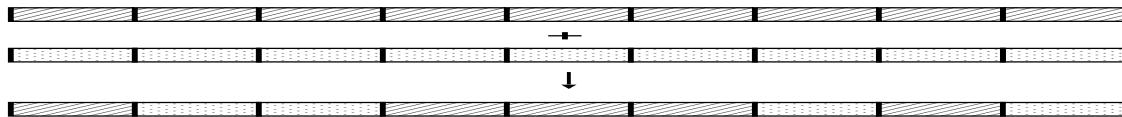
W₁₁	W₁₂	W₁₃	...	W₂₁	W_{N1}	...	W_{NN}
-----------------------	-----------------------	-----------------------	------------	-----------------------	--------------	-----------------------	------------	-----------------------

2. Evaluate *fitness* by “How good is each individual?”
3. Generate an initial *population* at random.

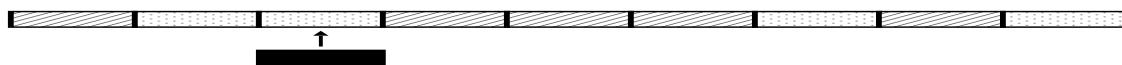
(cont'd)

4. Evolve them with

- *Selection*
- *Crossover*

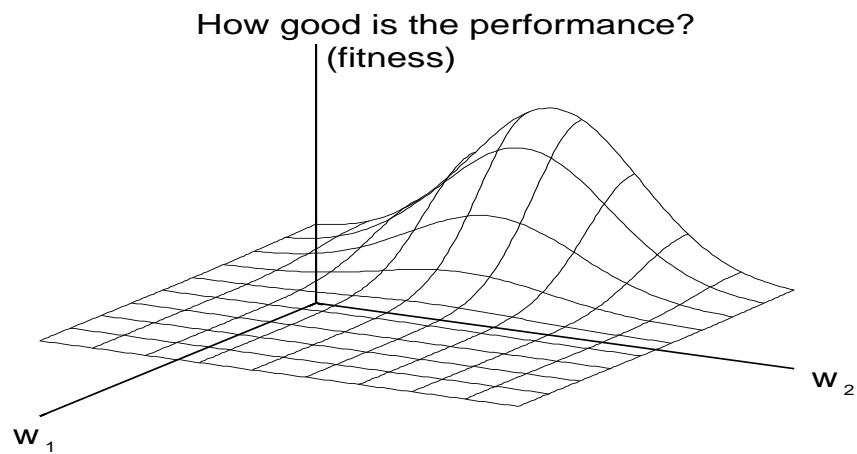


- *Mutation*



5. Better Solutions from *generation* to *generation*.

□ A Conceptual Illustration of Fitness Landscape

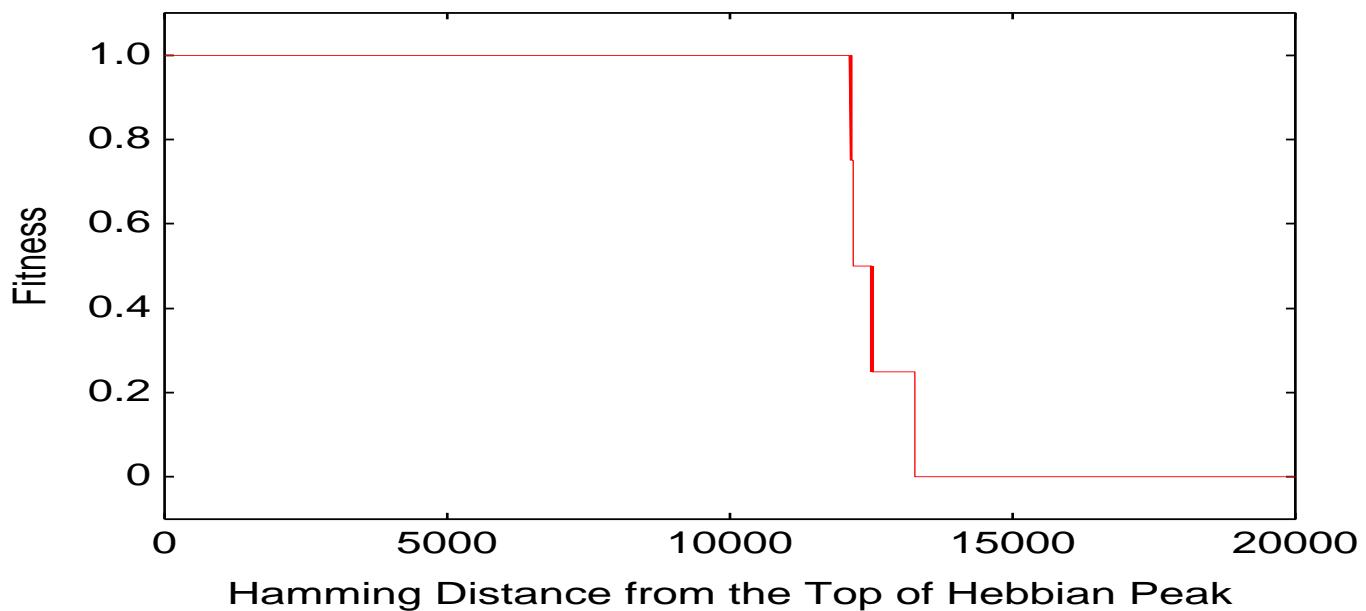


□ **One specific solution were already known — Hebbian peak.**

“When fire then wire” principle

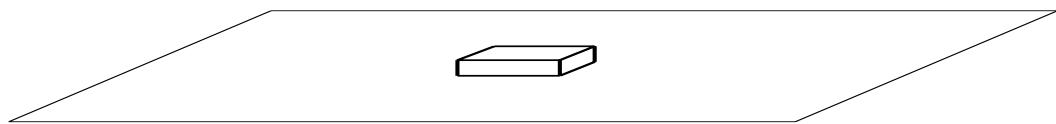
$$w_{ij} = \operatorname{sgn}(R_i - M/2) \cdot \operatorname{sgn}(R_j - M/2)$$

- A Downhill Walk by Flipping zero to one:

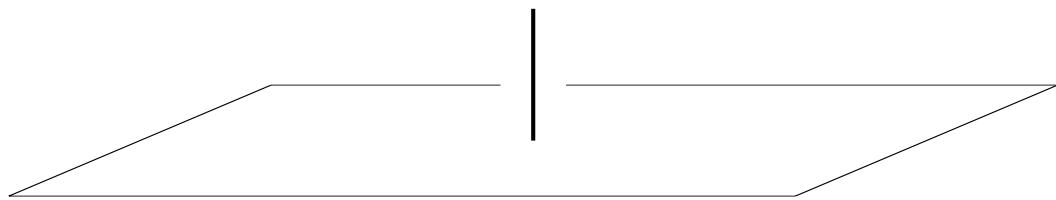


□ Search for an island

(a) A tiny island in a huge lake



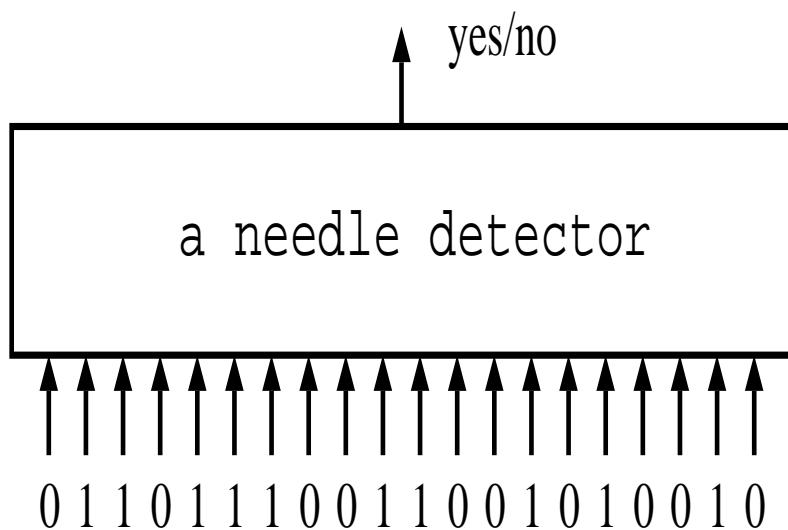
(b) A needle in a haystack



Hinton & Nowlan's Search for A-needle-in-haystack

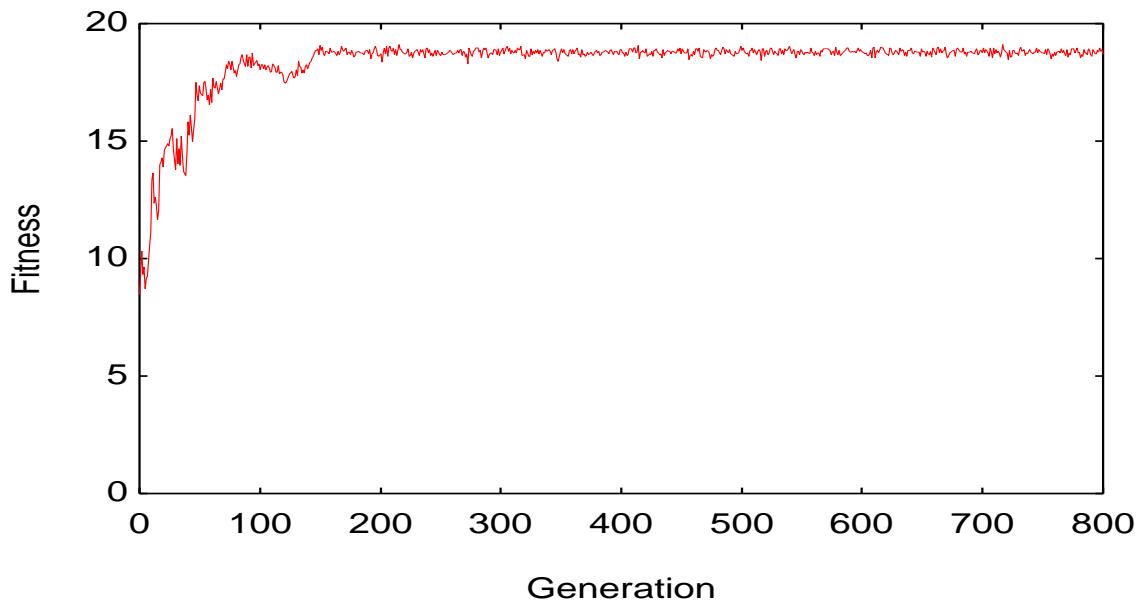
- A-needle \Rightarrow Only one configuration of 20 bits of binary string.
- Haystack $\Rightarrow 2^{20} - 1$ search points.
 - say, (11111111110000000000) is assigned fitness one, while others are fitness zero.

□ **Black box to detect a needle**



(cont'd)

- **lifetime learning of each individual (Baldwin Effect).**
 - about 25% are “1”, 25% are “0”, and the rest of the 50% are “?” .
 - They are evaluated with all the “?” position being assigned “1” or “0” at random \Rightarrow *learning*
 - Each individual repeats the learning up to 1000 times
 - If it reaches the point of fitness one at the n -th trial, then the *degree to which learning succeeded* is calculated as
$$1 + 19 \cdot (1000 - n)/1000.$$

Search for a needle

Test Function — A Tiny Flat Island in a Huge Lake:

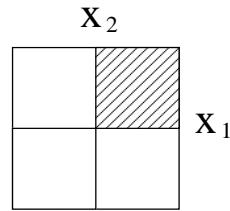
Assuming a n -dimensional hypercube all of whose coordinate x_i are

$$-1 \leq x_i \leq 1 \quad (i = 1, \dots, n),$$

find an algorithm to locate a point in the region A

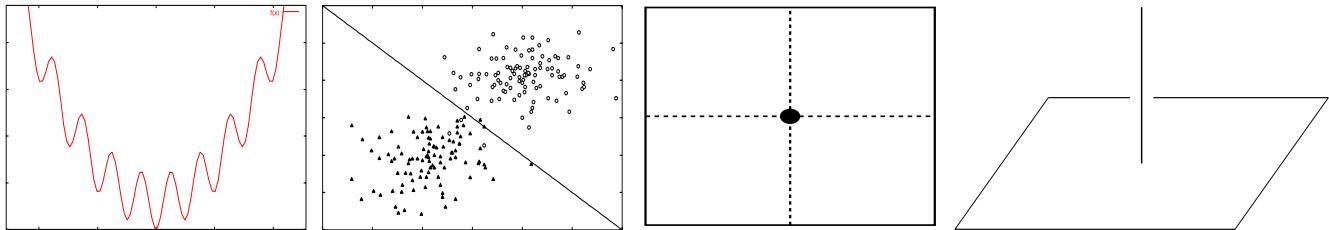
$$A : \{(x_1, x_2, \dots, x_n) \mid 0 \leq x_i \leq a \quad (i = 1, \dots, n)\},$$

where all the points in A are assigned fitness = 1 and elsewhere 0.



□ How can AIS search for a needle, if any?

Function-optimization, pattern-classification, anomaly-detection, or ...?



□ Conclusion

- Can *Artificial Immune System* search for a needle?
- Otherwise, what method would be?
 - Call for Challenges!