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We came accross

an extremely difficult

PEAK

to be searched for

in a

FITNESS LANDSCAPE

explored by an

EVOLUTIONARY COMPUTATION



(ACS & CISM – 2004 at Elk, Poland) 3

✷ A reason for the title — A tiny-flat-island in a huge-lake

(a)

(b)
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To realize an

ASSOCIATIVE MEMORY

we use

SPIKING NEURONS

whose learning is by

EVOLUTIONARY COMPUTATIONS.
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✷ Contents

1. What is Associative Memory?

· Traditional Model by Hopfield.

vs.

· A Model using Spiking Neurons.

2. Can we evolve Spiking Neurons?

· We study it by observing Fitness Landscape.
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(cont’d)

3. Results of our Experiments.

· A downhill walk from Hebb’s peak!

· How difficult to find other peaks!

4. A proposition of Test-function.

5. Summary & Concluding remarks.
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✷Associative Memory:

• stores patterns

– in a distributed way (among neurons),

• recalls patterns

– from noisy and/or partial input.

⇓ i.e.

• gives us

– perfect recollection from imperfect information
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✷The Associative Memory can be realized with:

• Fully-connected Neural Network Model (Hopfield type)

• Artificial Immune System Model

• Spiking Neurons

(To be more biologically plausible)

• etc.
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associative memory = dynamical system

initial state equilibrium state
converge

u+du u

initial

state
stable

statetrajectory ?
......
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......

......

......

......

chaotic trajectory:

spin-glass attractor

fixed-point attractor

(noisy initial state)
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✷ A Schematic Diagram of the Hopfield Model
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✷ State Transition of the Hopfield Model

si(t + 1) = sgn(
N∑

j
wijsj(t))
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✷ Hebbian Weights

wij =
1

N

p∑

µ=1
ξν
i ξν

j , (i �= j), wij = 0.

(To store p patterns: xµ = (ξµ
1 , ξµ

2 , · · · ξµ
N) µ = 1, 2, · · · , p)
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✷ Hopfield Model has a Crucial Drawback.

• N neurons store only 2N patterns at most (Gardner).

p < 2N.
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✷ From the Hopfield Model to Spiking Neuron Model

Influence from other neurons

via

ELECTRIC CURRENTS

⇓

changes

MEMBRANE VOLTAGE

of the neuron.
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(cont’d)

⇓

If it exceeds a threshold

⇓

the neuron emits

a SPIKE.
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✷ Pyramidal Cells & Interneurons
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PYRAMIDAL CELL

‖
(positive current)

⇓

PYRAMIDAL CELL

⇑
(negative current)

‖

INTERNEURON
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✷ Response of a Single Neuron to an External Stimulus:

• Spike rate vs stimuli (Naka-Rushton function)

S(P ) =




MP n/(σn + P n) if P ≥ 0

0 if P < 0
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(cont’d)

• Spike rate under time-variant stimulus:

dr(t)

dt
=

1

τ
(−r(t) + S(P ))
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✷ Response of Multiple Neurons

• Stimulus to a Pyramidal Cell

Pi in the previous Eq.

S(Pi) = MP n
i /(σn + P n

i )

is now expressed as

Pi = (
N∑

j=1
wij · Rj − g · G)2+
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(cont’d)

• Spiking Ratio of a Pyramidal Cell

And

dr

dt
=

1

τ
(−r + MP n/(σn + P n))

becomes

τR
dRi

dt
= −Ri +

100(
N∑

j=1
wijRj − 0.1G)2

+

100 + (
N∑

j=1
wijRj − 0.1G)2

+
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(cont’d)

• Spiking Ratio of Interneuron

τG
dG

dt
= −G − 0.07

N∑

j=1
Ri
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✷ How to encode patterns?

For the pattern

(ξ1, ξ2, · · · , ξN)

we encode as

ξi =




1 if Ri ≥ M/2
0 if Ri < M/2

⇒Rate Coding
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✷ GA Implementation:

1. Represent a series of wij as a population of strings (chromosome).

w11 w12 w13 w21 wN1 wNN... ......... ...

2. Evaluate fitness by “How good is each individual?”

3. Generate an initial population at random.
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(cont’d)

4. Evolve them with

– Selection

– Crossover

+

– Mutation

5. Better Solutions from generation to generation.
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✷ A Conceptual Illustration of Fitness Landscape

w 1

w 2

How good is the performance?
(fitness)
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✷ One specific solution were already known — Hebbian peak.

“When fire then wire” principle

⇓

wij = sgn(Ri − M/2) · sgn(Rj − M/2)
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• A Downhill Walk by Flipping zero to one:
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✷ Search for an island

(a)

(b)

A tiny island in a huge lake

A needle in a haystack



(ACS & CISM – 2004 at Elk, Poland) 31

✷ Hinton & Nowlan’s Search for A-needle-in-haystack

• A-needle ⇒ Only one configuration of 20 bits of binary string.

• Haystack ⇒ 220 − 1 search points.

· say, (11111111110000000000) is assigned fitness one,

while others are fitness zero.
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✷ Black box to detect a needle

0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0

yes/no

a needle detector
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(cont’d)

• lifetime learning of each individual (Baldwin Effect).

· about 25% are “1”, 25% are “0”, and the rest of the 50% are “?” .

· They are evaluated with all the “?” position being assigned “1” or

“0” at random ⇒ learning

· Each individual repeats the learning up to 1000 times

· If it reaches the point of fitness one at the n-th trial,

then the degree to which learning succeeded is calculated as

1 + 19 · (1000 − n)/1000.
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✷ Search for a needle
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Test Function — A Tiny Flat Island in a Huge Lake:

Assuming a n-dimensional hypercube all of whose coordinate xi are

−1 ≤ xi ≤ 1 (i = 1, · · · , n),

find an algorithm to locate a point in the region A

A : {(x1, x2, · · · , xn) | 0 ≤ xi ≤ a (i = 1, · · · , n)},
where all the points in A are assigned fitness = 1 and elsewhere 0.

x1

x2
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✷ How can AIS search for a needle, if any?

Function-optimization, pattern-classification, anomaly-detection, or ...?

f(x)
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✷ Conclusion

• Can Artificial Immune System search for a needle?

• Otherwise, what method would be?

— Call for Challanges!


