How a Peak on a Completely-Flatland-Elsewhere

can be Sear ched for?
A Fitness Landscape of Associative Memory by Spiking Neurons.

AKIRA IMADA
Brest Sate Technical University
Moskowskaja 267, Brest, 224017 Republic of Belarus, e-mail: akira@bstu.by

Abstract: We came across a very simple but very difficult problem when we simulated an
associative memory model with spiking neurons and explored a fitness
landscape — a weight configuration space of high dimensionality where
weight solutions look like peaks. We have aready known the location of one
peak in the landscape called Hebbian peak — a weight configuration in which
two neurons are wired when they both fire. We guess many other peaks exist
though we have not found yet so far. In searching for such solutions, we
observed that the fitness landscape was almost everywhere completely flatland
of atitude zero where only the Hebbian peak whose sidewall was extremely
steep, was visible. In such circumstances how could we search for other peaks
without any gradient information? This paper is a call for chalenges to the
problem.
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1. INTRODUCTION

Assume a black-box which has N inputs and one output, and the output tells us
the degree to how good is the input configuration. When we search for a solution to
a problem which is expressed by N parameters, we can regard the black box as the
problem; the set of N inputs as a candidate solution; and the output as how fit does
the candidate solution to the problem, that is, fitness value. Usually, the fitness value
gives us gradient information, namely, it gradually approaches to the highest value,
whichever it might be local or global maximum value. In general, we search for the
solution using this gradient information. However, if we think of a situation where
only exactly one configuration is good and all the others are bad. When, specificaly,
the inputs are N binary numbers and just one configuration out of those 2V-1 is
fitness one while al the others are of fitness zero, which we call a search for a
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needle in a haystack. How could we locate the solution without any gradient
information?

With the goa being a redlization of associative memory by a neural network
with spiking neurons, we explore the weight space of a neural network in which
some weight configurations are assumed to give the network a function of
associative memory. Hyper-planes defined on those spaces are sometimes called
fitness landscapes when we fictitiously plot a measure of goodness, or equivaently,
a fitness value on al the possible points of configuration assuming altitude of the
hyper-plane constructs a landscape, and hence the location of peaks implies the
solution of our problem. In our experiment of associative memory, when we were
exploring the fitness landscape to try to find those peaks exhaustively, we noticed
that the landscape was a very unusual one. That is, the landscape is everywhere a
flat-land of fitness zero except for one peak and the shape of the peak is more like a
mesa than a peak. The top is not a pin-point due to a synaptic plasticity of the neural
network and the sidewall is very steep. Therefore, evolutionary computations which
usually recombine points on the hyper-plane as candidate solutions selecting those
points which perform better than others, would not work in this fitness landscape of
almost everywhere flat-land of fitness zero. This reminds us a classical but a seminal
experiment by Hinton & Nowlan [1] which was proposed to find a peak like a
needle in a haystack.

In short, assuming that we have many peaks in a huge landscape of amost
everywhere completely flatland in which only afew of the peaks are already known,
our goal is to find a computational method that has a capability to search for those
unknown peaks by employing an information of already known peaks.

In the following three sections, we describe Associative Memory, Fitness
Landscape, and Hinton & Nowlan's experiment more in detail. Then we propose a
test-function and some results of exploring it.

2. ASSOCIATIVE MEMORY

Associative memory is a memory system in which we can store information and
recall it later from its partial and/or imperfect stimuli. Information is stored as a
number of stable states with a domain of attraction around each of the stable states.
If the system starts with any stimulus within the domain it will converge to the
attractor following a trgjectory, hopefully a short one. This models human memory
in the sense that, e.g., we can recognize our friend's face even without meeting for a
long time, or we can recall a song immediately after listening to a very beginning
part of the song. Hopfield [2] proposed a fully connected neural network model of
associative memory in which a set of patternsis stored distributedly among neurons
as attractors. Since then the model had been fairly well studied for more than a
decade, and we now know it is not so practical, partly due to its small storage
capacity, and we study another model using spiking neurons instead of the
McCulloch-Pitts [3] neurons like in the Hopfield model, with the goal being to
overcome those problems and, more importantly, to look for more biologically
plausible models of human memory.
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Some regions in our brain such as neocortex or hippocampus are said to be made
up of two categories of neurons, that is, pyramidal cells and interneurons. Typically,
the pyramidal cells communicate with each other via excitatory synapses (positive
influences), while interneurons send signals to pyramidal cells via inhibitory
synapses (negative influences). As Wilson [3] wrote in his book, Marr [5] was one
of the first to propose this hippocampal model involving both recurrent excitations
via Hebbian [6] synapses and inhibition. In his book, Wilson [4] wrote that a single
neuron which emits spike train when it receives an external stimulus P(t) could be
modeled by
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where Wilson [4] proposed to employ, among many alternatives, Naka-Rushton [7]
function:
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M and ¢ are called saturation and semi-saturation constant, respectively, and nisan
integer parameter for its graph to fit a phenomenon. Here we assume N pyramidal
cells and implicit number of interneurons. We simulate these pyramidal cells by
spiking neurons which interact with each other using electric current via plastic
synapses. Pyramidal cells are also interacted by interneurons by global inhibition.
To be more specific, stimuli to one pyramida cell are given from al the other
pyramidal cells via synaptic strength, as well as interneuron cells whose number is
reduced to only one here for the sake of simplicity. The synaptic strength from
pyramidal cell j toi is denoted asw; and al the inhibitory synapses from interneuron
are assumed to have a value g. Then stimulus to the i-th pyramidal cell P; is

described as
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where ()3 means that we use the value if and only if inside the parentheses is
positive, and zero otherwise. Following Wilson [4], we experimented with ¢ = 10, M
=100, andn=2in Eq. (1).

Thus, our equation of spiking ratio of the i-th pyramidal cell R; with the spiking
ratio of the interneuron G is given as
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where, 7x is set to 10. Note that wij (i = 1, ..., N) should be set to all zero.

In order to encode N-bit binary patterns using N spiking neurons, we use firing-
rate of a neuron within certain time window which expresses binary number
according to whether the rate exceeds a threshold or not.
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In what he calls CA3 network in his book, Wilson [4] employed 256 pyramidal
cells so that these cells represent a pattern constructed by 16X 16 array of pixels.
The network also incorporates one interneuron cell to provide pyramidal cells a
feedback inhibition. The task of the network is to recognize four given patterns from
its noisy input. Each of the four patterns is represented by 32 active cells plus other
224 quiet cells. Network has learned to recognize these four patterns by modifying
the synapses according to the following what might be called Hebb's [6] rule which
is now often paraphrased as neurons that fire together wire together (Mark Bear,
1996) *.

wij =k esgn(R; — 050 )« sgni 1y — 0500, (3)

where k is set to 0.016, M is a saturation level in Eq. (1), and sgn(x) is equal to 1 if
x>0 and O otherwise. The equation is called Hebb's rule in the sense that w;; will be
modified if and only if both the neuron i and j should be activated. Also note that
Eq.(3) is applied only if the previous value of w; is O, otherwise, w; will remain
intact.

A noisy input of a pattern is constructed by randomly picking up about one-third
of the active cells of the selected pattern with adding them other 20 quiet cells, also
chosen at random, after turning them active. Then one of these four patternsis given
to the network, that is, network starts the dynamics with the pattern as the initial
configuration of its neurons state. Network updates the state according to Eq. (4).
The dynamics is observed during a total of 100 ms (assuming step of dt of dr/dt to
be 1 ms), with the noisy input being continued to be fed for the first 20 ms.

3. FITNESSLANDSCAPE

The concept of the fitness landscape was first introduced by Wright [8] to study
biological evolutionary processes. Since then, this concept has been used not only in
evolutionary biology but also in chemistry, physics, computer science and so on.

In chemistry, for example, a molecule can be represented as a string of N letters
with each letter being chosen from an alphabet of size k (see Macken et a. [10]).
Twenty amino acids (k = 20) for proteins or four nucleotides (k = 4) for nucleic acids
can be considered as examples of the alphabet. The k" possible combinations of the
letters construct a configuration space of the string. Then, for example, the free
energy of RNA folding into secondary structures (see Fontana [11]), or the ability of
peptides to bind to a particular substrate to catalyze a specific reaction (see Maynard
Smith [12]) is assigned as a fitness val ue to each configuration.

1 When and who was likely to originate this nowadays very familiar paraphrase of Hebb's
rule? | found a possible answer in the lecture notes in their web page at the Department of
Psychology of the Center for Studiesin Behaviora Neurobiology (CSBN), Canada, edited
by Peter Shizgal for the course of Fundamentals of Behavioral Neurobiology.
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In physics, the Hamiltonian energy of Ising spins defines a fitness landscape on
the configuration space of N spins, where each spin takes the value either 1 or -1
(k=2). Bray and Moore [9] argued about the number and distribution of meta-stable
states (local optima) of the Hamiltonian energies.

To explore these fitness landscapes, we need a rule by which a point in the space
moves to one of its neighbors. Then, consecutive movements of a point to the
neighbors form a walk on the landscape. Macken et al. [10] used random point
mutation that changes a single letter in the string to specify neighbors of the string.
Then, by sampling points along an “evolutionary walk” in which point moves to the
firstly found fitter neighbor, they studied the statistical properties of the landscape
defined by the chemical affinity of antibody for antigen in immune response.
Weinberger [11] used two different walks: “gradient walk” in which the walker
steps to the best of its neighbors and “random adaptive walk” in which the next step
is chosen at random from the set of better neighbors, to investigate the Kauffman's
NK landscape [13] which isamodel formulated in more general form.

We extend the concept of the discrete fitness landscape to a continuous one.
Namely, a capability of a fully-connected neural network to store a set of bipolar
patterns (each bit is either 1 or —1) as associative memory assigns fitness on the real -
valued synaptic weight configuration space (k = «). A walker moves to its
nei ghboring point determined by Gaussian random mutation.

4. NEEDLE IN HAYSTACK

The problem Hinton & Nowlan [1] proposed is to search for only one
configuration of 20 bits of one and zero, that is, the search space is made up of 2%°
points al of which except for one point are assigned fitness zero. Only exactly one
point, for example, (11111111110000000000) is assigned fithess one. That is why
thisis called search for aneedle in a haystack. See Fig. 1 bellow.

Fig. 1. A fictitious sketch of fitness landscape of a needlein ahaystack. The haystack hereis
drawn as atwo-dimensional flat plane of fitness zero.

It seems impossible to solve this if we use a simple genetic algorithm, since usually
it recombines two genotypes whose phenotypes are a little better than others, and in
our circumstance almost al genotypes perform equally badly. Any hill-climbing
would not seem to work. Hinton & Nowlan [1], however, exploited lifetime learning
of each individual. That is, chromosome is made up of genes of which about 25%
are“1”, 25% are“0", and the rest of the 50% are “?’. Within one generation al the
“? positions are assigned one or zero at random and fitness is evaluated, which is
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caled lifetime learning of each individual. Each individual repeats the learning 1000
times in its lifetime. If it reaches the point of fitness one at the n-th trial, then the
degree to which learning succeeded is calculated as:

1+ 19+ (1000 — n)/1000.

Hinton & Nowlan's model is a sort of gedanken-experiment to study how the
lifetime learning affects an evolution, that is, the Baldwin effect. The location of the
unigue solution (whose fitness is one, while all others are zero) is assumed to be
known before a run, though it is not of the case in real world problems.

This is still an open issue. In aresearch of real immune system in our body, we
sometimes find a description such as “ Having selected a reactive system, a suitable
hapten structure, and an immunization technique, the question is therefore how to
find the catalytic antibodies among the many hapten-binding antibodies. As for
finding a needle in a haystack, efficiency, sensitivity and selectivity are of
decisive...” 20r, inthefield of Information Retrieval (IR), | found an expression of
“IR can be likened to looking for a needle in a haystack.” * This reminds me of a
huge database in the computer named Big-boy owned by the Mother Company
which was originally an oil company but quickly took control over CIA due to this
most complete database ever, though this is just what | once read in the novel
“Shibumi” written under the Trevanian pen name but actually Rodney Whitaker
(Crown Publishers, NY, 1979). In reality, however, a needle in haystack cannot be
found so easily, and as far as | know, the problem Hinton & Nowlan once posed us
in 1987 is till an open issue.

5. TINY FLAT LAND IN HUGE LAKE

Hinton & Nowlan's experiment is valid under an assumption, as they wrote,
phenotype can recognize when it has achieved the perfect fithess during its lifetime
learning. This usually does not hold when it is applied to solve our rea world
problems. If the phenotype recognizes that it reaches the solution, all we need isto
check its genotype to know the parameter configuration which give the phenotype to
achieve its goa and no need for the computation to proceed. Without the
assumption, we could not explore this specific fitness landscape searching for the
goal. Hence, here, we call for challenges to this type of problems and we proposed
a test function for the purpose. This is essentialy identical to the Hinton &
Nowlan's fitness landscape, but more flexible to control  its complexity.

2 Thisisin Jean-Louis Reymond (2002) “Detection Strategies for Catalytic
Antibodies.” Journal of Immunological Methods Vol. 269, pp. 125-131.
3| found it in the course note on Advanced Information Systems in the web page of the
Computing Science Department at the University of Glasgow, UK.
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Test-function 1. (Tiny Flat Island in Huge Lake)

Assuming a n-dimensional hypercube all of whose coordinate x; (i=1, ...,n) liesin
[-1,1], find an algorithm to locate a point in the region A whose coordinates all lie
in[0,a (a<1).

The target of the search is a hypercube in the n-dimensional Euclidean space, and
the size of the hypercube and complexity of the search are controlled by changing a
and n, respectively. When we see the search from the fitness landscape point of view,
thisis like a search for a tiny flatland of altitude one in a huge flatland of altitude
zero. When n=20 and a=1 it is equivalent to Hinton & Nowlan’s needle in haystack,
and if necessary, we can make the needle tinier by decreasing the value of a.

Or, if we have, for example, multi-agent system or artificial immune system in
mind to make them this kind of search, we might modify this test-function as

Test-function 2. (One Hypercube to Others)

Giving the agents an information of, say, a hyper-cube whose coordinates all lie in
[-0.1, 0.1] and then asking them to search for two regions each of whose
coordinatesall liein[-0.9, 1] and [0.9, 1] respectively.

6. EXPERRIMENT

Needle in Haystack. We were forced to modify the Hinton & Nowlan's experiment
because when individuals are created at random, they usually did not achieve fitness
one even during 1000 times of lifetime learning. Hence, we create individuals one
by one at random and each time we make it learn 1000 times, and if it reaches the
fitness one we put it in the population of the first generation, and this is repeated
until those individuals fill the population. In other words, a run starts with a
population of individuals who are within 1000 steps from the needle. One example
of run shows we have to try 118,499 times randomly to obtain such a population of
100 individuals.

The result mentioned above is only within the first generation. If we proceed the
evolution under the condition that individual knows whether it reaches the fitness
one while we observer cannot know what is going on to genes whose dleleis “?’,
we expect the number of “?" genes decreases as the evolution proceeds, and
eventually we obtain the target chromosome which is made up genes "1 and “0”
alone. See Fig. 2 bellow.

Tiny Flat Isand in Huge Lake. Thus, we now know that although the Hinton &
Nowlan's experiment is elegant method to see lifetime learning enhances the genetic
search, that is, the Baldwin effect works in our evolutionary computations, while in
reality we have not found so far an algorithm to solve this type of a needle hidden in
a haystack. Then we proposed a test-function in the previous section, and here we
show results of applying both a simple random search, which is not even a random
hill-climbing, and the lifetime learning, the one proposed by Hinton & Nowlan but
only within one generation, to the test function.



Simple random search. We set a = 1 and study if arandomly created chromosome
with length n will be in the domain A or not, that is to say, a random search looking
for pointsin A. As n becomes large, search becomes difficult and eventually when n
= 20 we cannot find any such point within a reasonable time, say, in 24 hours. No
wander Hinton & Nowlan adopted the chromosome of length 20! Fig. 3 shows the
result of how many chromosomes were on A out of 10,000 randomly created ones.

Lifetime learning. Here, we also create a chromosome at random one by one, but
we study if each of them reaches the domain A after 1000 times of learning. In Fig. 4
we plot how many chromosomes we have to create until we find the individual who
reaches the goal within 1000 times of learning. We see the results are a little better
than the above mentioned random search.

7. SUMMARY

We came across a very difficult problem while we made experiments with our
associative memory system using a neural network with spiking neurons. We have
already known one weight configuration which give the network a function of
associative memory — Hebbian weights. We conjecture we have other such weight
configurations. Then we explored a fitness landscape defined on weight space in
which the Hebbian weights locates, and we observed that the Hebbian peak in the
fitness landscape is like atiny flat island in a huge lake. The lake is too huge to get a
bird's eye view of the whole |ake and we have never been able to see other isands.
Hence we have proposed in this paper a test-function which is a simplified version
of our problem and we can easily control the difficulty of the problem with the
structure being essentially the same. This reminds us of the Hinton & Nowlan's
classical experiment of searching for a needle in a haystack in which individual's
lifetime learning was employed to learn if the Baldwin effect works in our
computational evolution. We have found that the lifetime learning also somehow
works in the proposed test-function if we compare it to a ssmple random search.
However, we still doubt more or less if we can apply the Baldwin effect asitisto a
real world problem. So, this paper is acall for challenge proposals of the methods to
solve our test function.

In short, not so short though, in a huge landscape of amost everywhere
completely flat-land, assuming we have many peaks only a few of which we know,
our goal is to find a computational method that searches for the unknown peaks, by
employing an information of those already known peaks.

They say quite innocently that Artificial Immune System is an appropriate one
for such a search. But how? Well, the idea of an anomaly detection by a scheme of
cronal selection, for example, is currently under our investigation.
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