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Abstract: We came across a very simple but very difficult problem when we simulated an 
associative memory model with spiking neurons and explored a fitness 
landscape � a weight configuration space of high dimensionality where  
weight solutions look like peaks. We have already known the location of one 
peak in the landscape called Hebbian peak � a weight configuration in which 
two neurons are wired when they both fire. We guess many other peaks exist 
though we have not found yet so far. In searching for such solutions, we 
observed that the fitness landscape was almost everywhere completely flatland 
of altitude zero where only the Hebbian peak whose sidewall was extremely 
steep, was visible. In such circumstances how could we search for other peaks 
without any gradient information? This paper is a call for challenges to the 
problem. 
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1. INTRODUCTION 

Assume a black-box which has N inputs and one output, and the output tells us 
the degree to how good is the input configuration. When we search for a solution to 
a problem which is expressed by N parameters, we can regard the black box as the 
problem; the set of N inputs as a candidate solution; and the output as how fit does 
the candidate solution to the problem, that is, fitness value. Usually, the fitness value 
gives us gradient information, namely, it gradually approaches to the highest value, 
whichever it might be local or global maximum value. In general, we search for the 
solution using this gradient information. However, if we think of a situation where 
only exactly one configuration is good and all the others are bad. When, specifically, 
the inputs are N binary numbers and just one configuration out of those 2N-1 is 
fitness one while all the others are of fitness zero, which we call a search for a 
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needle in a haystack. How could we locate the solution without any gradient 
information?  

With the goal being a realization of associative memory by a neural network 
with spiking neurons, we explore the weight space of a neural network in which 
some weight configurations are assumed to give the network a function of 
associative memory. Hyper-planes defined on those spaces are sometimes called 
fitness landscapes when we fictitiously plot a measure of goodness, or equivalently, 
a fitness value on all the possible points of configuration assuming altitude of the 
hyper-plane constructs a landscape, and hence the location of peaks implies the 
solution of our problem. In our experiment of associative memory, when we were 
exploring the fitness landscape to try to find those peaks exhaustively, we noticed 
that the landscape was a very unusual one. That is, the landscape is everywhere a 
flat-land of fitness zero except for one peak and the shape of the peak is more like a 
mesa than a peak. The top is not a pin-point due to a synaptic plasticity of the neural 
network and the sidewall is very steep. Therefore, evolutionary computations which 
usually recombine points on the hyper-plane as candidate solutions selecting those 
points which perform better than others, would not work in this fitness landscape of 
almost everywhere flat-land of fitness zero. This reminds us a classical but a seminal 
experiment by Hinton & Nowlan [1] which was proposed to find a peak like a 
needle in a haystack. 

In short, assuming that we have many peaks in a huge landscape of almost 
everywhere completely flatland in which only a few of  the peaks are already known, 
our goal is to find a computational method that has a capability to search for those 
unknown peaks by employing an information of already known peaks. 

In the following three sections, we describe Associative Memory, Fitness 
Landscape, and Hinton & Nowlan's experiment more in detail. Then we propose a 
test-function and some results of exploring it. 

2. ASSOCIATIVE MEMORY 

Associative memory is a memory system in which we can store information and 
recall it later from its partial and/or imperfect stimuli. Information is stored as a 
number of stable states with a domain of attraction around each of the stable states. 
If the system starts with any stimulus within the domain it will converge to the 
attractor following a trajectory, hopefully a short one. This models human memory 
in the sense that, e.g., we can recognize our friend's face even without meeting for a 
long time, or we can recall a song immediately after listening to a very beginning 
part of the song. Hopfield [2] proposed a fully connected neural network model of 
associative memory in which a set of patterns is stored distributedly among neurons 
as attractors. Since then the model had been fairly well studied for more than a 
decade, and we now know it is not so practical, partly due to its small storage 
capacity, and we study another model using spiking neurons instead of the 
McCulloch-Pitts [3] neurons like in the Hopfield model, with the goal being to 
overcome those problems and, more importantly, to look for more biologically 
plausible models of human memory. 
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Some regions in our brain such as neocortex or hippocampus are said to be made 
up of two categories of neurons, that is, pyramidal cells and interneurons. Typically, 
the pyramidal cells communicate with each other via excitatory synapses (positive 
influences), while interneurons send signals to pyramidal cells via inhibitory 
synapses (negative influences). As Wilson [3] wrote in his book, Marr [5] was one 
of the first to propose this hippocampal model involving both recurrent excitations 
via Hebbian [6] synapses and inhibition. In his book, Wilson [4] wrote that a single 
neuron which emits spike train when it receives an external stimulus P(t) could be 
modeled by 

 
where  Wilson [4] proposed to employ, among many alternatives, Naka-Rushton [7] 
function: 

 
M and û are called saturation and semi-saturation constant, respectively, and n is an 
integer parameter for its graph to fit a phenomenon. Here we assume N pyramidal 
cells and implicit number of interneurons. We simulate these pyramidal cells by 
spiking neurons which interact with each other using electric current via plastic 
synapses. Pyramidal cells are also interacted by interneurons by global inhibition. 
To be more specific, stimuli to one pyramidal cell are given from all the other 
pyramidal cells via synaptic strength, as well as interneuron cells whose number is 
reduced to only one here for the sake of simplicity. The synaptic strength from 
pyramidal cell j to i is denoted as wij and all the inhibitory synapses from interneuron 
are assumed to have a value g. Then stimulus to the i-th pyramidal cell Pi is 
described as 

 
where (Â�+ means that we use the value if and only if inside the parentheses is 
positive, and zero otherwise. Following Wilson [4], we experimented with 1 = 10, M 
= 100, and n = 2 in Eq. (1). 

Thus, our equation of spiking ratio of the i-th pyramidal cell Ri with the spiking 
ratio of the interneuron G is given as 

 

 
where, 2R is set to 10. Note that wii (i = 1, …, N) should be set to all zero. 

In order to encode N-bit binary patterns using N spiking neurons, we use firing-
rate of a neuron within certain time window which expresses binary number 
according to whether the rate exceeds a threshold or not. 
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In what he calls CA3 network in his book, Wilson [4] employed 256 pyramidal 
cells so that these cells represent a pattern constructed by 16�16 array of pixels. 
The network also incorporates one interneuron cell to provide pyramidal cells a 
feedback inhibition. The task of the network is to recognize four given patterns from 
its noisy input. Each of the four patterns is represented by 32 active cells plus other 
224 quiet cells. Network has learned to recognize these four patterns by modifying 
the synapses according to the following what might be called Hebb's [6] rule which 
is now often paraphrased as neurons that fire together wire together (Mark Bear, 
1996) 1. 

 
where k is set to 0.016, M is a saturation level in Eq. (1), and sgn(x) is equal to 1 if 
x>0 and 0 otherwise. The equation is called Hebb's rule in the sense that wij will be 
modified if and only if both the neuron i and j should be activated. Also note that 
Eq.(3) is applied only if the previous value of wij is 0, otherwise, wij will remain 
intact. 

A noisy input of a pattern is constructed by randomly picking up about one-third 
of the active cells of the selected pattern with adding them other 20 quiet cells, also 
chosen at random, after turning them active. Then one of these four patterns is given 
to the network, that is, network starts the dynamics with the pattern as the initial 
configuration of its neurons' state. Network updates the state according to Eq. (4). 
The dynamics is observed during a total of 100 ms (assuming step of dt of dr/dt to 
be 1 ms), with the noisy input being continued to be fed for the first 20 ms. 

3. FITNESS LANDSCAPE 

The concept of the fitness landscape was first introduced by Wright [8] to study 
biological evolutionary processes. Since then, this concept has been used not only in 
evolutionary biology but also in chemistry, physics, computer science and so on. 

In chemistry, for example, a molecule can be represented as a string of N letters 
with each letter being chosen from an alphabet of size k (see Macken et al. [10]). 
Twenty amino acids (k = 20) for proteins or four nucleotides (k = 4) for nucleic acids 
can be considered as examples of the alphabet. The kN possible combinations of the 
letters construct a configuration space of the string. Then, for example, the free 
energy of RNA folding into secondary structures (see Fontana [11]), or the ability of 
peptides to bind to a particular substrate to catalyze a specific reaction (see Maynard 
Smith [12]) is assigned as a fitness value to each configuration. 

 
 
 

1 When and who was likely to originate this nowadays very familiar paraphrase of Hebb's 
rule? I found a possible answer in the lecture notes in their web page at the Department of 
Psychology of the Center for Studies in Behavioral Neurobiology (CSBN), Canada, edited 
by Peter Shizgal for the course of Fundamentals of Behavioral Neurobiology. 
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In physics, the Hamiltonian energy of Ising spins defines a fitness landscape on 
the configuration space of N spins, where each spin takes the value either 1 or �1 
(k=2). Bray and Moore [9] argued about the number and distribution of meta-stable 
states (local optima) of the Hamiltonian energies. 

To explore these fitness landscapes, we need a rule by which a point in the space 
moves to one of its neighbors. Then, consecutive movements of a point to the 
neighbors form a walk on the landscape. Macken et al. [10] used random point 
mutation that changes a single letter in the string to specify neighbors of the string. 
Then, by sampling points along an “evolutionary walk” in which point moves to the 
firstly found fitter neighbor, they studied the statistical properties of the landscape 
defined by the chemical affinity of antibody for  antigen in immune response. 
Weinberger [11] used two different walks: “gradient walk”  in which the walker 
steps to the  best of its neighbors and “random adaptive walk” in which the next step 
is chosen at random from the set of better neighbors, to investigate the Kauffman's 
NK landscape [13] which is a model formulated in more general form. 

We extend the concept of the discrete fitness landscape to a continuous one. 
Namely, a capability of a fully-connected neural network to store a set of bipolar 
patterns (each bit is either 1 or �1) as associative memory assigns fitness on the real-
valued synaptic weight configuration space (k = ��� $ ZDONHU PRYHV WR LWV

neighboring point determined by Gaussian random mutation. 

4. NEEDLE IN HAYSTACK 

The problem Hinton & Nowlan [1]  proposed is to search for only one 
configuration of 20 bits of one and zero, that is, the search space is made up of 220 
points all of which except for one point are assigned fitness zero. Only exactly one 
point, for example, (11111111110000000000) is assigned fitness one. That is why 
this is called search for a needle in a haystack. See Fig. 1 bellow. 

 

 
 

Fig. 1. A fictitious sketch of fitness landscape of a needle in a haystack. The haystack here is 
drawn as a two-dimensional flat plane of fitness zero. 

 
It seems impossible to solve this if we use a simple genetic algorithm, since usually 
it recombines two genotypes whose phenotypes are a little better than others, and in 
our circumstance almost all genotypes perform equally badly. Any hill-climbing 
would not seem to work. Hinton & Nowlan [1], however, exploited lifetime learning 
of each individual. That is, chromosome is made up of genes of which about 25% 
are “1”,  25% are “0”, and the rest of the  50% are “?”. Within one generation all the 
“?” positions are assigned one or zero at random and fitness is evaluated, which is 
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called lifetime learning of each individual. Each individual repeats the learning 1000 
times in its lifetime. If it reaches the point of fitness one at the n-th trial, then the 
degree to which learning succeeded is calculated as: 

 

 
Hinton & Nowlan's model is a sort of gedanken-experiment to study how the 
lifetime learning affects an evolution, that is, the Baldwin effect. The location of the 
unique solution (whose fitness is one, while all others' are zero) is assumed to be 
known before a run, though it is not of the case in real world problems.  
 
This is still an open issue.  In a research of real immune system in our body, we 
sometimes find a description such as “Having selected a reactive system, a suitable 
hapten structure, and an immunization technique, the question is therefore how to 
find the catalytic antibodies among the many hapten-binding antibodies. As for 
finding a needle in a haystack, efficiency, sensitivity and selectivity are of 
decisive…” 2 Or,  in the field of Information Retrieval (IR), I found an expression of 
“IR can be likened to looking for a needle in a haystack.” 3 This reminds me of a 
huge database in the computer named Big-boy owned by the Mother Company 
which was originally an oil company but quickly took control over CIA due to this 
most complete database ever, though this is just what I once read in the novel 
“Shibumi” written under the Trevanian pen name but actually Rodney Whitaker 
(Crown Publishers, NY, 1979). In reality, however, a needle in haystack cannot be 
found so easily, and as far as I know, the problem Hinton & Nowlan once posed us 
in 1987 is still an open issue. 

5. TINY FLAT LAND IN HUGE LAKE 

Hinton & Nowlan's experiment is valid under an assumption, as they wrote, 
phenotype can recognize when it has achieved the perfect fitness during its lifetime 
learning. This usually does not hold when it is applied to solve our real world 
problems. If the phenotype recognizes that it reaches the solution, all we need is to 
check its genotype to know the parameter configuration which give the phenotype to 
achieve its goal and no need for the computation to proceed. Without the 
assumption, we could not explore this specific fitness landscape searching for the 
goal. Hence, here, we call for challenges to this type of problems and we proposed 
a test function for the purpose. This is essentially identical to the Hinton & 
Nowlan's fitness landscape, but more flexible to control its complexity. 

 
 
 

2 This is in Jean-Louis Reymond (2002) “Detection Strategies for Catalytic 
Antibodies.” Journal of Immunological Methods Vol. 269, pp. 125-131.  

3 I found it in the course note on Advanced Information Systems in the web page of the 
Computing Science Department at the University of Glasgow, UK.  
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Test-function 1. (Tiny Flat Island in Huge Lake) 
Assuming a n-dimensional hypercube all of whose coordinate xi (i=1, …,n) lies in 
[-1,1], find an algorithm to locate a point in the region A whose coordinates all lie 
in [0, a] (a � 1). 

 
The target of the search is a hypercube in the n-dimensional Euclidean space, and 
the size of the hypercube and complexity of the search are controlled by changing a 
and n, respectively. When we see the search from the fitness landscape point of view, 
this is like a search for a tiny flatland of altitude one in a huge flatland of altitude 
zero. When n=20 and a=1 it is equivalent to Hinton & Nowlan’s needle in haystack, 
and if necessary, we can make the needle tinier by decreasing the value of a. 

Or, if we have, for example, multi-agent system or artificial immune system in 
mind to make them this kind of search, we might modify this test-function as  
 
Test-function 2. (One Hypercube to Others) 
Giving the agents an information of, say, a hyper-cube whose coordinates all lie in 
[�0.1, 0.1] and then asking them to search for two regions each of whose 
coordinates all lie in [�0.9, �1] and [0.9, 1]  respectively.   

6. EXPERRIMENT 

Needle in Haystack. We were forced to modify the Hinton & Nowlan's experiment 
because when individuals are created at random, they usually did not achieve fitness 
one even during 1000 times of lifetime learning. Hence, we create individuals one 
by one at random and each time we make it learn 1000 times, and if it reaches the 
fitness one we put it in the population of the first generation, and this is repeated 
until those individuals fill the population. In other words, a run starts with a 
population of individuals who are within 1000 steps from the needle. One example 
of run shows we have to try 118,499 times randomly to obtain such a population of 
100 individuals.  

The result mentioned above is only within the first generation. If we proceed the 
evolution under the condition that individual knows whether it reaches the fitness 
one while we observer cannot know what is going on to genes whose allele is “?”, 
we expect the number of “?” genes decreases as the evolution proceeds, and 
eventually we obtain the target chromosome which is made up genes ”1” and “0” 
alone. See Fig. 2 bellow. 

 
Tiny Flat Island in Huge Lake. Thus, we now know that although the Hinton & 
Nowlan's experiment is elegant method to see lifetime learning enhances the genetic 
search, that is, the Baldwin effect works in our evolutionary computations, while in 
reality we have not found so far an algorithm to solve this type of a needle hidden in 
a haystack. Then we proposed a test-function in the previous section, and here we 
show results of applying both a simple random search, which is not even a random 
hill-climbing, and the lifetime learning, the one proposed by Hinton & Nowlan but 
only within one generation, to the test function. 
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Simple random search. We set a = 1 and study if a randomly created chromosome 
with length n will be in the domain A or not, that is to say, a random search looking 
for points in A. As n becomes large, search becomes difficult and eventually when n 
= 20 we cannot find any such point within a reasonable time, say, in 24 hours. No 
wander Hinton & Nowlan adopted the chromosome of length 20! Fig. 3 shows the 
result of how many chromosomes were on A out of 10,000 randomly created ones. 

 
Lifetime learning. Here, we also create a chromosome at random one by one, but 
we study if each of them reaches the domain A after 1000 times of learning. In Fig. 4 
we plot how many chromosomes we have to create until we find the individual who 
reaches the goal within 1000 times of learning. We see the results are a little better 
than the above mentioned random search. 

7. SUMMARY 

We came across a very difficult problem while we made experiments with our 
associative memory system using a neural network with spiking neurons. We have 
already known one weight configuration which give the network a function of 
associative memory — Hebbian weights. We conjecture we have other such weight 
configurations. Then we explored a fitness landscape defined on weight space in 
which the Hebbian weights locates, and we observed that the Hebbian peak in the 
fitness landscape is like a tiny flat island in a huge lake. The lake is too huge to get a 
bird's eye view of the whole lake and we have never been able to see other islands. 
Hence we have proposed in this paper a test-function which is a simplified version 
of our problem and we can easily control the difficulty of the problem with the 
structure being essentially the same. This reminds us of the Hinton & Nowlan's 
classical experiment of searching for a needle in a haystack in which individual's 
lifetime learning was employed to learn if the Baldwin effect works in our 
computational evolution. We have found that the lifetime learning also somehow 
works in the proposed test-function if we compare it to a simple random search. 
However, we still doubt more or less if we can apply the Baldwin effect as it is to a 
real world problem. So, this paper is a call for challenge proposals of the methods to 
solve our test function. 

In short, not so short though, in a huge landscape of almost everywhere 
completely flat-land,  assuming we have many peaks only a few of which we know, 
our goal is to find a computational method that searches for the unknown peaks, by 
employing an information of those already known peaks. 

They say quite innocently that Artificial Immune System is an appropriate one 
for such a search. But how? Well, the idea of an anomaly detection by a scheme of 
cronal selection, for example, is currently under our investigation.  
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Fig. 2. An evolution of search for a needle in a haystack proposed by Hinton & Nowlan [1]. 

 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3 Number of individuals who happen to be in a point in the target region A out of 
randomly created 10,000 individuals. 

 
 
 
 

 

 

 

 

 

Fig. 4 Average Number of random individuals needed to find a one who succeeded in 
reaching the target via 1000 times of lifetime learning. 
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