Can learning robot solve 2-D jeep problem?

AXkira Imada

Brest State Technical University
Moskowskaja 267, Brest 224017 Republic of Belarus
akira@bstu.by

Summary. Although the topic of the “robot navigation through learning” has quite
a long history, we still have many problems which are very hard to be solved, if not
at all. In this paper, we propose, as a challenge, two such benchmarks in a world
of N x N two-dimensional grid which is simulated inside the computer. The first
task is to look for one unique location in the grid which was specifically specified in
advance, and the robot has no a priori information of the location. A series of trials
by random walk requires O(NQ) steps for this task. Then question is, “Whether a
learning reduces the number of steps to reach the location, or not?” The other task
is a two-dimensional extension of a so-called jeep-problem. We modified the original
one-dimensional version of the problem for a robot navigation. A robot navigates a
jeep which can carry a limited amount of fuel, starting from its base where robot
can return later to refill the fuel. The jeep has a container to put some of its fuels
somewhere to use in future. The goal is to explore the desert as long as possible by
repeating the procedure — (i) start the base; (ii) navigate the desert; (iii) put fuels
somewhere; and (iv) return to the base. Or, here, to reach the exit of the desert far
apart from the base. The task is extremely difficult and most robots less likely to
survive in the desert.

Keywords: learning navigation robot, jeep problem, a needle in a haystack.

1 Introduction

Sometimes, we observe a random behavior of a computer system works better
than a learned or intelligently designed system. Can we say “no,” when we
talk about this issue concerning a robot navigation? This is the topic of this
paper. We propose, for the purpose, two benchmarks for a navigation robot
which is supposed to elaborate its behavior by learning through a number of
trials.

Both benchmarks can be accomplished more or less by random behavior.
Question, however, is if a learning scheme can make the performance more

2 Akira Imada

efficiently than those by random behavior via a series of experiences of multiple
trials later.

In this paper, tasks are not in a real physical world but simulation inside
computers. A navigation robot explores a fictitious world of N x N grid.

The first task is a kind of two-dimensional version of a-needle-in-a-haystack
problem. The task is to look for a uniquely pre-determined location of the
grid. The robot has no information of where the needle is. The navigation
is, at the first trial, by random walk, in which the robot can eventually find
the location unless N is very large. An average of steps required is O(N?).
Question is whether the robot can minimize the path length by a learning
algorithm later?

The other task is more demanding. We extended a kind of mathematical puzzle
called a jeep-problem in which a jeep explores one-dimensional desert under a
constraint. A robot here navigates a two-dimensional grid again. While in the
first task we do not assume energy consumption of the robot, the jeep needs
fuels to move from one location to the next.

We now take a look at the problems more in detail.

2 Two Challenging Benchmarks

2.1 Can learning robot search it more efficiently than before?

We assume here N x N grid as our world. Location in the lattice is given by
an integer coordinate (i, j) where ¢,j = 1, 2, ---, N. The entrance of the world
is (1,1) and the exit is (N, N), for example. Starting at the entrance, most
robot can navigate itself eventually to find the exit even by just a random
walk, unless the grid is very large. The expectation of number of steps of a
robot to reach the exit is O(N?). The result of our experiment of seeking the
average number of steps in 100 runs are plotted in Fig. 1 as a function of N2.
This might be called a two-dimensional version of a-needle-in-a-hay-stack
problem. !

The question then will be, “A learning can enhance the efficiency?” That is to
say, “If a robot try it multiple times under a learning scheme, then the number
of steps of the robot to reach the exit becomes shorter than the previous trials,
or hopefully minimized?”

! The problem in general from a computational context was firstly described in
1987 by Hinton & Nowlan [1] as a needle being a unique configuration of 20-bit
binary string while all other configurations being a haystack.

Can learning robot solve 2-D jeep problem? 3

300000

250000
200000
150000
100000 M

50000 .

Number of steps to reach the goal

.
0 20000 40000 60000 80000
Number of grids (NxN)

0

Fig. 1. Average number of steps during 100 runs until a robot who explores the
N x N grid starting from (0,0) by a random walk eventually reaches (N, N) as a
function of number of cells in the grid N2.

Let us now summarize the problem asking readers to allow a little redundancy.

Challenge 1 (2-D Needle in a Haystack Problem)

Assuming N x N toroidal lattice each of whose cells is expressed by (i,7)
where 4,5 = —N,---, 0, 1, 2, ---, N, and the lattice has only one exit at
(N, N). Starting from the base at (0,0) a robot navigate the gred from one cell
to another. Then, can the robot learn how to take a path shorter than before
through a learning of multiple trials later?

2.2 Can learning robot survive in a desert with a jeep?

Next, let us imagine that we are in a base located at the center of a desert.
Again our world is a two-dimensional grid. This time, for some reasons which
later become clear, size is 77 x 77, the coordinate of the bottom-left corner
is (—38,—-38), and the top-right corner is (38,38) which is the only exit of
the desert. The base is located at the origin (0,0). The grid is toroidal, that
is, if the coordinate becomes (N + 1) and —(N + 1) then it is replaced with
—(N +1) and (N + 1), respectively.

A robot leave the base with a jeep. The jeep moves the desert of grid from one
cell to the next, each time by consuming one unit of fuel. The jeep has a tank
for fuel whose capacity is 30 units. The jeep also has a container with which
the robot can store some amount of fuel in the tank to put at any location
in the desert for the next time usage. Since the exit is 77 Manhattan-distance
apart from the base, the tank full of 30 units are not enough to reach to the
exit. The robot is allowed to go back to the base twice to refill the tank.

This is an extension of so-called a jeep problem where a jeep should maximize
its penetration to one-dimensional desert under a condition. See, for example,
the WWW page of Wolfram MathWorld

(http://mathworld.wolfram.com/JeepProblem.html).

4 Akira Imada

It reads:

“Mazimize the distance a Jeep can penetrate into the (one-dimensional)
desert using a given quantity of fuel. The Jeep is allowed to go forward,
unload some fuel, and then return to its base using the fuel remain-
ing in its tank. At its base, it may refuel and set out again. When it
reaches fuel it has previously stored, it may then use it to partially fill
its tank. This problem is also called the exploration problem (Ball and
Coxeter 1987).”

As far as we know, this has never extended to a two-dimensional world. As
you might find it already, the solution in our context is as follows. You now
notice the reason why those parameters here are highly artificially devised. It
is to fit the problem.

We now paraphrase the known solution of the original version.

1) Start with 30 units of fuel.

2) Go forward 10 distances, put 10 units, and then go back with the remaining
10 units of fuels.

3) Go forward 10 with 30 units refilled, spending 10 units, and get 10 units
there.

4) Go forward 6 further, spending 6 units and put there 8 units.

5) Go back to the base spending remaining 16 units

6) With 30 units again, go forward 16 , spending 16 units, and get 8.

7) Go forward further until spending all the remaining fuel, and eventually
reach the point which is 38 apart from the base.

This is how the jeep can penetrate to the desert with the maximum distance
when allowed to go back to the base twice. Hence, in our context:

Challenge 2 (Jeep’s survival in a desert) Assume N x N toroidal lattice
each of whose cells is expressed by (i,j) wherei,j = —388, =37---, 0, 1, 2, - - -,
37, 88. We call it a desert. The desert has only one exit at (38,38). Starting
from (0,0) a robot navigates a jeep from one cell to the next. In order for the
jeep to move one cell, it needs to spend one unit of fuel, and the jeep has the
tank whose capacity is 30 units. The jeep also has a container with which the
robot put some amount of fuel to any location of the desert for the next time
usage. Allowing to go back to the base twice, can the robot learn how to reach
the exit through a multiple times of failure experiences?

3 Possible Approaches
Though, at this moment of writing this article, none of our experiments below

or other attempts has not given us a satisfactory result, we show the followings
just as strategies to start with, if any.

Can learning robot solve 2-D jeep problem? 5
3.1 Messy Genetic Algorithm

One of the simplest approaches might be by using a genetic algorithm (GA)
representing the path of the robot by what they call a chromosome. The
problem, however, would be a length of the chromosome. Usually GA evolves
a population of fixed length of chromosomes. The path of the robot, however,
is different from navigation to navigation. Then one idea is to use a so-called
messy genetic algorithm (mGA) in which flexible length of chromosomes can
be exploited [2].

In mGA each gene is tagged with an additional number which expresses the
location of the gene in its chromosome when created at random in the first
generation. With the selection operation being similar with the standard GA,
crossover is done with two operations called a splice and cut. The cut splits a
string at a position chosen at random. Each of selected two parents are spliced
into two parts. The first part of the first parent and the last part of the second
parents, or vice versa, are concatenated and thus construct one offspring. So
this reproduction works without taking care of parents’ and offspring’s length.

We now take a brief look at how we can apply mGA to a robot navigation.
Assuming we have four different gene values, 1, 2, 3, 4 which means move right,
left, up and down, respectively. As an example, assume now two parents are

((12)(22)(31)(42)(52)(63)(73)(83)(94)) (1)

and
((13)(23)(34)(44)(52)(63)(73)(84)(93). (2)

Then an extreme example from those possible offspring would be
((12)(22)(31)(42)(52)(63)(73)(83)(34)(44)(52)(63)(73)(84)(93)) (3)
and

((13)(23)(94)). (4)
See Fig. 2 below.

Fitness might be hamming distance of the closest point the path ever ap-
proached to (N, N).2 Thus, starting with a population of those chromosomes
this mGA creates chromosomes whose length ranges from 2 to 98 in the 2nd
generation.

One thing to be added is how we interpreted the strings. First of all, we neglect
the order of the genes in the chromosome. Then if we find the identical tag

2 Though some readers might think this would be to evolve the length of chromo-
somes from short ones to long ones, it is rather opposit actually.

6 Akira Imada

<la|e

EIEIE
BEEEERD
<

Fig. 2. Three fictitious paths represented in the text by the strings (1) (Left), (2)
(Center), and (3)-(4) (Right).

more than once, we select one gene by a first-come-first-serve strategy. When
we have no tag of the specific number we simply take no notice of the gene.
Thus, for example,

((12)(43)(62)(83)(34)(82)(13)(63)) (5)
is interpreted as
((12)(43)(62)(83)(34)) = ((12)(34)(43)(62)(82)). (6)

In other words, evolution could yield tremendously long strings but in actual
interpretation is that any strings is shorter than the length of those in the
first generation.

Also see two examples of the path which are represented by such mGA chro-
mosomes in Fig. 3.

3.2 Learning Navigation with Memory

It is natural to employ a memory for an effective navigation of robot, which
allows the robot to learn from previous experiences. Hence we have had lots
of such reports. See, for example, Remazeilles & Chaumette (2007) [3]. Most
closely related, among others, is the work by Srinivasan (2006) the title reads
“.. Memory-Based Learning Schemes for Robot Navigation in Discrete Grid-
Worlds ...” The author wrote, “We attempt to find a solution to the problem of
robot navigation using different memory-based learning schemes, and compare
these schemes in terms of learning speed and efficiency.”

Our grid world, however, has no walls, no obstacles, or no corridors to be
followed. It is really simple world. What makes a navigation difficult is no
information about the destination. Under this simple situation our concern
is to minimize Manhattan distance of the path. Hence robots must have a
memory to store previous paths experienced.

Can learning robot solve 2-D jeep problem? 7

40 ® 1 40
o00 destination
(1 1]

. fih

20 destination

start
10 \ 0 o
j
i' faoal, “1
0 e B
0 10 20 30 40 0 10 20 30 40

Fig. 3. Two examples of the path represented by a messy-GA chromosome starting
from (10,10) with the destination being at (30,30) in 40 x 40 grid-world. The one
succeeded to reach the destination (Left) and the one failed (Right).

3.3 Quantum Robot approach

Since Grover’s [5] assertion in 1997 that quantum mechanics helps in searching
for a needle in a haystack with O(VN) steps while classical computer requires
O(N) steps,? a fair amount of approaches exploiting a quantum random search
has been proposed. See, for example, Shenvi (2003) et al. [6]. As for searching
a space by a mobile robot, Beninof (2002) proposed a quantum robot [7]. Tt
might be interesting to see what Beninof wrote:

"For this initial memory state all 2N searches are carried out coher-
ently. Since the path lengths range from 0 to 2V, the quantum robot
can search all sites of R and return to the origin in O(N log N) steps.
Since this is less than the number of steps, O(N?log N), required by a
classical robot, the question arises if Grover’s algorithm can be used to
process the final memory state to determine the location of S. If this is
possible, the overall search and processing should require O(N log N)
steps which s less than that required by a classical robot.”

At the same time, however, we must notice that search for a point in d-
dimensional hypercube by a quantum random walk is O(y/n) for d > 3 and
O(v/nlog’n) for d = 2 [8]. It would be more effective only in a dimension
higher than 3.

4 Discussion

For the first benchmark, we have no walls or no obstacles. Hence, no dilemma
of “local information vs. knowledge of global geometry” such described in

3 As N is the number of points in search space in his equation, it is O(N?) in our
context.

8 Akira Imada

Salichs et al. [10]. If the robot starts navigation from (0,0) with goal be-
ing (N, N), for example, the task is just find a path which is made up of N
movements to right and N movement to upwards. Nevertheless, it is hard for
a robot to learn this after a couple of trials by random walk, if not at all.

As Knaden et al. wrote “Desert ants use path integration as their predominant
system of long-distance navigation”, one of what we have in mind is to apply
a nature’s wisdom to this problem. The authors went on to write according to
their observation of real ants in desert in Tunisia, “Ants had reset their home
vector to zero state, and had therefore been able to reload their learned feeder
vector, and consequently departed from the nest in the feeder direction.”

A search by quantum random walk has already been mathematically proofed
to be more efficient than the one with our currently available computers. So
far, however, attention has been just on general search on hypercube. We
think the second benchmark is a good one also as a test for the quantum
computation, besides as a generall issue on a robot navigation, because we
could design a wave-function quite easily which include an information on
both geometry and the place where reserved fuels are. This is our motivation
of this study too.

References

1. Hinton, G. E.,and S. J. Nowlan (1987) “How Learning Can Guide Evolution?”
Complex Systems, Vol. 1, pp. 495-502.

2. Goldberg, D. E., B. Korb, and K. Deb (1989) “Messy genetic algorithms: mo-
tivation, analysis, and first results.” Complex Systems, Vol. 3, pp. 493-530.

3. Remauzeilles, A., and F. Chaumette (2007) “Image-based robot navigation from
an image memory.” Robotics and Autonomous Systems archive, Vol. 55(4), pp.
345-356.

4. Srinivasan, B. (2006) “Analysis of Memory-Based Learning Schemes for Robot
Navigation in Discrete Grid-Worlds with Partial Observability.” Available at
author’s WWW page but the author says this is just “Other paper.”
(http://www.stanford.edu/ bharsrin/docs/papers/)

5. Grover, L. (1997) “Quantum mechanics helps in searching for a needle in a
haystack.” Physical Review Letter, Vol. 79, pp. 325-328.

6. Shenvi, N., J. Kempe, and B. Whaley (2003) “A Quantum Random Walk Search
Algorithm.” Physical Review A, Vol. 67, pp. 052307-052318.

7. Benioff, P. (2002) ” Space searches with a quantum robot” Contemporary Math-
ematics, Vol. 305, pp. 1-12.

8. Aaronson, S.,and A. Ambainis (2003) “Quantum search of spatial regions.”
Proceedings of IEEE Symposium on Foundations of Computer Science, pp.
200-209.

9. Knaden, M., and R. Wehner (2006) “Ant navigation: resetting the path inte-
grator.” Journal of Experimental Biology Vol. 209, pp. 26-31.

10. M.A. Salichs, M .A., and L. Moreno (2000) “Navigation of Mobile Robots: Open
Questions.” Robotica, Vol. 18, pp. 227-234.

