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Abstract

If we want to break someone else’s PIN (Personal Iden-
tification Number) of, say, an ATM (Automated Teller
Machine), how many trials would be necessary when we
want to be efficient? This is a sort of what we call a-
needle-in-a-hay-stack problem. In 1987, in their won-
derful paper, Hinton & Nowlan proposed a Genetic Al-
gorithm with a needle being a unique configuration of
20-bit binary string while all other configurations being
a haystack. What they proposed was to exploit a life-
time learning of individuals in their Genetic Algorithm,
calling it the Baldwin effect in a computer. Since then
there has been a fair amount of exploration of this effect,
claiming, ”This is a-needle-in-a-hay-stack problem, and
we’ve found a more efficient algorithm than a random
search.” Some of them, however, were found to be the
results of an effect of like-to-hear-what-we-would-like-to-
hear. In this talk, we will try a bird’s eye view on a
few examples we have had so far, and how they were
explored, including the approach by means of quantum
computation which claims, ”The steps to find a needle
are O(

√
N) while those of exhaustive search by a tra-

ditional computer are O(N) where N is the number of
search points.”

I. Introduction

Usually in an ATM (Automated Teller Machine) or in
a private web page, we need to show our PIN (Personal
Identification Number), and for the security reason we
are allowed to try inputs just a couple of times, typ-
ically three times. So it might interest us how many
times would be necessary if we are allowed to repeat a
trial-and-error procedure until we reach the legitimate
number? Though typically PIN is a 4-digit decimal, we
now assume n-bit binary PIN. Let me show two really
simple strategies, that is, (i) random search and (ii) ex-
haustive one-by-one search. In Fig. 1, results of both
strategies as for the number of trials until we find a
hidden and unique PIN, averaged after 100 runs, as a
function of n. In both cases we see the number of tri-
als explodes exponentially as number of bits increases.
The motivation of this paper is to argue if we have more

efficient strategies or not.
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Fig. 1. The number of trials needed to find out a hidden and unique
PIN, averaged after 100 runs, as a function of n. Top: A result by a
random search. Bottom: An exhaustive one-by-one search.

II. Baldwin Effect

It was Hinton & Nowlan [1] who firstly proposed com-
putational model of the Baldwin Effect. It was in 1987.
The scenario was exactly the same as above mentioned
PIN breaking. What they proposed was a lifetime learn-
ing of each of the individuals in an algorithm which
based on a population search. That is, each individ-
ual has adaptive genes in addition to the original 0’s
and 1’s. Let’s denote it here as 9’s. For example, the
individual is like:

(01100900099110011901).



Then each individual is allowed to assign 0 or 1 at the
location where 9’s are, which is referred to as life-time
learning of individuals when we assume those strings
which includes 9’s are genotype and strings in which
all of the 9’s are replaced either 0 or 1 are phenotype,
and replacement will not affect genotype. Individuals
are allowed to try this learning, say, 1000 times in their
lifetime. If, by chance, phenotype matches to the needle,
then the number of learnings before the success is the
fitness of the individual. This might be called the Bald-
win effect. It has attracted, and is still attracting, many
computer scientists. In 2005, Mills & Watson [2] made
a more deeply analytical approach to the issue. They
analyzed in exactly the same universe as the one Hinton
& Nowlan had explored almost two decades ago, while
many others applied the model to a more sophisticated
problems. Later, in 2006, Mills & Watson extended the
study to a more complex but still a simple universe of
two needles whose length is different with each other
on a completely flat plateau [3]. What is the Baldwin
effect more specifically? Mills & Watson clearly sum-
marized, “The Baldwin effect indicates that individually
learned behaviors acquired during an organism’s lifetime
can influence the evolutionary path taken by a popula-
tion, without any direct Lamarckian transfer of traits
from phenotype to genotype. ... Our knowledge of mod-
ern genetics suggests that an organism’s lifetime adap-
tations cannot influence the course of evolution because
learned characteristics do not change ones own genes.
... The hypothesis appears very similar to Lamarck’s
disproved beliefs that an acquired trait is directly inher-
ited by offspring.”

A. Discussion in this Section

Hinton & Nowlan showed that the number of genes
whose value is 9 reduced over time of evolution. From an
engineering point of view, however, this is not interest-
ing any more. Why? Because it implies that we already
knew the secret PIN if at least one of those individuals
reached the needle in the first generation, though Mills
& Watson [2] pointed out, “It is implicit in Hinton &
Nowlan’s model that the organisms (phenotype) do not
have to recognize their own success.”

The top graph in Fig. 2 with filled circles shows the ef-
fect of lifetime learning in the first generation. We can
see enormous reduction of the number of individuals un-
til the needle is firstly found. But, alas, if we count the
total number of points which are visited by any of those
individuals during their lifetime learning, then we realize
the result is almost the same as the random search. The
time needed to reach the needle is indeed almost the
same in all those three cases; that is, random search,

exhaustive search, and search by lifetime learning. In
other words, when individuals are allowed a local search
around where they locate, the number of individuals nec-
essary to finally reach to the needle is much smaller than
a simple random search, but total points explored by in-
dividuals are the same more or less.
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Fig. 2. Top: The total number of individuals until one of them reaches
to the needle (filled circle). Bottom: The total number of points vis-
ited by any individuals during its lifetime learning until one of them
reaches to the needle (filled circle). The same set of data of number of
individuals who made random search shown in Fig. 1 is also in both
figures for comparison purpose (partly filled circle). Note the scale of
y-axis of the top figure was totally different from others. all data are
average after 100 runs.

Anyway what we have to notice from the top graph of
Figure 2 is that the complexity is still O(N) despite
claims of efficiency of the Baldwin effect if any.

III. Neutral Mutation on Intron

A. Reduced Even-n-Parity Problem

Even-n-parity problem is a classic benchmark problems
in evolutionary computation research. Given any n-bit
binary input, it returns 1 if the number of 1 of the input
is even, otherwise it returns 0. Assume now we are con-
structing a population of candidate solutions of even-n-
parity logic circuit only by using XOR and EQ Boolean
functions, which is called a reduced even-n-parity prob-
lem. We can evaluate each of those candidate solutions



by giving it all possible combinations of n-bit binary
string from one to the next. When we check each result
of whether the output is correct or not, we will notice
that there are only three cases: (i) all of the results for
those 2n test cases are correct; (ii) a half of the results
are correct, and (iii) all are incorrect.

The number of all possible candidates when we are al-
lowed to use either of XOR and EQ gates from 1 up to
N will be

N∑

i=1

2ini+1.

The number of solutions are analytically given by Collins
[4]. For n = 12, for instance, Collins wrote the number of
solutions is 2.568×10134 while the number of all possible
candidates is 1.315×10142 when we use up to 100 gates of
either XOR or EQ. That is, the ratio of solutions in the
search space is 0.00042%. So we might say the solutions
are like needles in a haystack.

Then we have a very interesting discussion described in
the following two subsections.

B. Finding Needles in Haystacks is Not Hard with
Neutrality?

In 2002, Yu & Miller [5] applied Cartesian Genetic Pro-
gramming (CGP) [6] to the even-n-parity problem.

Algorithm 1 (Candidate Creation in CGP)

(1) Create 100 gates of XOR or EQ at random.
(2) Select randomly one output gate out of those 100

gates created.
(3) From one gate to the next, set the two input con-

nections to either of the output line previously set
gate or one of the n input lines at random.

Let me show an example, paraphrasing the one from
Yu & Miller’s paper [5], assume now we create 6 gates
instead of 100 just for the sake of simplicity. The gate
is numbered a, b, c, d, e, f, and the gate f is the output
unit. Then a genotype will be

((EQ, 1, 2)a(EQ, 3, a)b(XOR, a, a)c

(XOR, b, 3)d(EQ, 4, c)e(EQ, d, 4)f=out).

The phenotype of this example genotype is

1 EQ 2 EQ 3 XOR 4 EQ 5.

Note that the 3rd gene c and the 5th gene e do not
contribute to construct the phenotype, and hence these
are called introns. As you might notice that this CGP

representation inevitably includes introns. Mutation of
the intron will have no effect on the phenotype and this
is why the mutation is called neutral.

By running an evolutionary algorithm with one parent
and 4 offspring, the authors showed this neutral mu-
tation on the intron enhances the ability to search for
the solutions. To be more specific, with the maximum
number of gates being 100 and the maximum iteration
being 10,000, carefully tuned 48 CGP runs out of 100
for n = 12 found a solution (48%), while a random
search, any randomly generated 4,000,000 candidates for
n = 12, were not solutions (0%).

C. Finding Needles in Haystacks is Harder with
Neutrality?

Collins doubted the result of the paper by Yu & Miller
in the above subsection. In his paper, he argued that
10,000 iterations with 4 offspring are a sample of at most
40,000 points in the search space [7]. The CGP Yu &
Miller reported for n = 12 resulted in all EQ gates, and
the solution density in the case of 12 parity with one
type of gate is 0.003756%. Hence an expected success
rate should be

1 − (1 − 0.00003756)40000 = 0.778

and as such, Yu & Miller’s average success rate of 48%
mentioned above might be said not to be a good one. He
proposed a random sampling of candidates as follows.

Algorithm 2 (Randomly sampling non-CGP rep-
resentations)

(1) Create 100 random gates either from XOR or EQ.
(2) Set the output to the 100-th gate.
(3) For each gate:

(i) Set the type of the gate to either XOR or EQ
at random.

(ii) Set one of the input connection of the gate to
the previous gate.

(iii) Set the other input connection to a randomly
selected input line.

(4) Repeat (3) up to N.

Then Collins wrote, “We recorded 0.0204% success from
a sample of 10 million trials.” Notice that this result was
without an evolution where Yu & Miller’s didn’t find any
solutions in 40 million trials.

D. Discussion in this Section

Collins’ logic seems to be clear. However, what about
the condition of “the number of gates up to 100?” Al-
though he also admitted and wrote, “This sampling



method is also not ’fair’ – it over samples short func-
tions as well,” the situation would be worse than that.
Implication of Yu & Miller’s paper is that the solutions
will be no more possible to be found for n larger than
12. And the list in the Collins’ paper regarding the den-
sity of the solutions in the search space was limited to
n < 16. However, just a brief consideration shows it’s
really easy to find one of the simplest solutions even for
n = 16 as shown in the Fig. 3 and 4. Or even for much
bigger n. Those are simply the first and second trials
on the paper by me as a human, not by an computer
algorithm. Theoretically, Yu & Mille’s method of creat-
ing initial population could produce both of these two
simple solutions, because intron could make some gates
inactive, but not so likely or rather few. Collins’ way,
on the other hand, will never create both of these two.
Though it is frequently said that an evolutionary algo-
rithm can create sophisticated solutions that a human
could not, The above is of opposite case.
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Fig. 3. An example of solutions of reduced even-16-parity found by a
human not by a computer algorithm.
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Fig. 4. Yet another example of solutions of reduced even-16-parity.

IV. Search by Quantum Random Walk

Back in 1965 Fyenman considered computers could
not simulate some quantum mechanical phenomena [8],
which led to his later proposal of a possibility to use
quantum mechanics [9][10]. Since then the topic has at-
tracted physicists’ and computer scientists’ interest and
curiosity.

In 1997, Grover [11] reported an algorithm exploiting
concepts in quantum mechanics to search for a needle

in a haystack more efficiently than a traditional compu-
tation. As previously mentioned, we don’t know essen-
tially more efficient algorithm to search for a needle in a
haystack than the one whose complexity is O(N) where
N is the number of points in the whole search space.
For example, we can see the O(N) complexity in Fig. 5
where we plot the data already shown in Fig. 1 as a
function of number of points of the search space instead
of the number of bits.
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Fig. 5. Plots of the points already shown in the top of Fig. 1, but this
time against the total number of points in the corresponding search
space not against the number of bits.

Fig. 6. A fictitious plot of the Grover’s Quantum algorithm to search
for a needle in a haystack.

Grover’s proposed algorithm was proofed to be able to
search for the needle with a complexity of O(

√
N) as

shown in the fictitious graph in Fig. 6. However, practi-
cal quantum computer hardware has never existed yet.
Up to now, all we have had are just a few toy imple-
mentation of quantum computers.1 Nevertheless, argu-
ments regarding the possibility of quantum algorithms

1 At the moment I wrote this paper, I found an article in New York
Times which read “D-Wave, a start-up company in Burnaby, British
Columbia, demonstrated ’the world’s first commercial quantum com-
puter’ in February.” But many Physicists and Computer Scientists
are still fishy about that. The headline was “A Giant Leap Forward
in Computing? Maybe Not. If a ’practical quantum computer’ had
been built and demonstrated, it would be a wonderful thing.” — New
York Times on 8th March 2007 by Jason Pontin.



becomes more and more active these days. Concerning
the topic of this paper – search for a needle – see, for
example, Kempe’s [15] wonderful introductory overview
of quantum random walks. The author wrote, ”We will
give a thorough introduction to the necessary terminol-
ogy without overburdening the reader with unnecessary
mathematics.”

A. Notations – A little intimidating though

While the state space of a general quantum system is
modeled by wave functions in an infinite Hilbert space,
the finite quantum system we need for quantum com-
puting is sufficient to be modeled on a Hilbert space of
finite dimensional complex vector with an inner product
that are spanned by abstract wave functions [13].

Classical computer systems represent a single bit of in-
formation deterministically: the value is either a logic
0 or a logic 1. Quantum computer systems represent a
single bit of information as what they call a qubit, which
is a unit vector in a complex Hilbert space [12].

Here we use the bra/ket notation coined from the word
bracket, which was introduced by Dirac [16] The ket sym-
bol is denoted by |x〉 and the corresponding bra is de-
noted by 〈x|. The ket describes a quantum state and the
corresponding bra is its complex conjugate [12].

In computer science domains, the ket and bra is a
column and row vector respectively. For example,
the orthonormal basis {|0〉, |1〉} can be expressed like
{(1, 0)T , (0, 1)T} by using this ket. Any complex linear
combination of two kets is also a ket. The inner product
of two vectors is denoted by 〈x|y〉. Note that since |0〉
and |1〉 are orthonormal, 〈0|1〉 = 0. On the other hand,
|x〉〈y| denotes the outer product of the vectors [12].

Then n bit binary string in the traditional computation
can be denoted |bn−1bn−2 · · · b0〉 where each bj is either
0 or 1. Furthermore, we abbreviate this by using cor-
responding decimal number. For example |12〉 means
|1100〉 [14].

B. Quantum Random Walk

Our needle search in a haystack is after all searching
the Boolean hypercube. The first algorithm of this type
was proposed by Shenvi et al. [17]. Shenvi starts his
argument

The discrete time random walk can be de-
scribed by the repeated application of a uni-
tary evolution operator U . This operator acts
on a Hilbert space HC ⊗ HS where HC is the

Hilbert space associated with a quantum coin
and HS is the Hilbert space associated with
the nodes of the graph (⊗ is tensor products).
The operator U can be written as

U = S · C
where S is a permutation matrix which per-
forms a controlled shift based on the state of
the quantum coin, and C is a unitary matrix
which “flips” the quantum coin [18].

Ambainis [19] clearly summarizes the algorithm.

Let V be the set of vertices and E be the set
of edges. We use basis states |v, 3〉 for ∀v ∈ V
and e ∈ E such that the edge e is incident to
the vertex v. One step of quantum walk now
consists of the following:

Algorithm 3

(1) For each v, perform a coin flip transformation Cv

on the states |v, e〉
(2) Perform shift S defined as follows. If edge e has two

vertices in its both ends, v and v′, then S|v, e〉 =
|v′, e〉 and S|v′, e〉 = |v, e〉.

Ambainis [19] continues:

As a coin flip Cv Grover’s diffusion Dn is a good
option, where Dn is n × n matrix in which all
elements except for the diagonal ones are 2/m,
and the diagonal elements are all (−1 + 2/m).

In the Boolean hypercube, we have N = 2n

vertices vx indexed by n-bit strings. Two ver-
tices vx and vy are connected by an edge if the
corresponding strings x and y differ in exactly
one place. The maximum distance between
two vertices is n = log N. Thus, Grover’s algo-
rithm could search this graph in O(

√
N log N)

steps. Shenvi et al. [17] showed how to search
it by quantum walk in O(

√
N) steps. Consider

now Hilbert space spanned by |x〉|i〉 where
x ∈ {0, 1}n corresponds to a vertex of hyper-
cube and i ∈ {1, 2, · · · , n} corresponds to an
edge.

Ambainis [19] summarizes the algorithm clearly as fol-
lows.

Algorithm 4

(1) Generate the starting state

1√
2nn

∑

x,i

|x〉|i〉.



(2) Perform O(
√

N) steps with each step consisting of

(i) Apply Dn to |i〉 register if the vertex x is not
the target. Otherwise Apply −I (identity ma-
trix).

(ii) Apply shift S defined by

S : |x〉|i〉 → |xi〉|i〉.

If there is no target items, then the algorithm stays
in the starting state. If there is a single target vertex
vx, then, running this algorithm for O(

√
N) steps

and measuring the state gives |x, i〉 for the target x
and some i with a high probability.

Let me stop now since we are running out of space and
time. Hoping to have a hot and useful discussion on this
topic in the session at Elk.
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