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Abstract

This article is written for the purpose of
breaking the ice in the round table discus-
sion of this conference — The International
Conference on Neural Network and Artificial
Intelligence. Thus the topic of this article is,
“What is intelligence?” when we talk about
artificial intelligence in general, and artificial
neural network in particular. In the history
of the field of artificial intelligence, we have
had many arguments claiming that artificial
intelligence was not yet intelligent enough, or
would not be possible to be intelligent even
in the future. We take a brief look at such ar-
guments in the history, and then try a spec-
ulation concerning if a machine intelligence
is as flexible as human intelligence or not.
Two experiments of path-finding with spik-
ing neurons from this point of view are shown
following a further consideration on a role of
consciousness for a machine to be intelligent.

1 Introduction

In the ’Star Trek’ prequel, Spock’s father tells
him, “You will always be a child of two
” urging him not to keep such a tight
And Spandery Old
Spock, known as Spock Prime, tells his younger
self: “Put aside logic. Do what feels right.” —
by Maureen Dowd, from her article in the New

York Times on 10th May 2009.

worlds,
vise on his emotions.

Once my friend, who worked with a world famous
electric company as an engineer, told me, ”It’s ama-
teurish,” when I admired a food in a Chinese restau-
rant telling him, ”It’s really wonderful that they
cook every time in a slightly different way whenever
I order the same one, and every time it’s delicious.”
He told me, ”Real professional should cook exactly

the same way every time.”

McClelland, one of the authors of the seminal book
"Parallel Distributed Processing’ (Rumelhart and
McClelland, 1986),' who had started the book by
asking, “Why are people smarter than machines?”
asked more than two decades later, “Is it still true
that people are smarter than machines? And if so:
Why?” in his recent paper entitled ’Is a machine
realization of truly human-like intelligence achiev-
able?’” (McClelland 2009).

Quite pessimistic. However, as far as its applica-
tion to industry is concerned, the state of the art
of machine intelligence reaches an impressive level
nowadays. But what is human-like intelligence?

Assume, for example, we are in a foreign country
where we are not so conversant in its native lan-
guage, and assume we ask, "Pardon?” to show we
have failed to understand what they were telling us.
Then intelligent people might try to change the ex-
pression with using easier words so that we under-
stand this time, while others, perhaps not so intelli-
gent, would repeat the same expression, probably a
little louder.

Or, what if your canary stops singing? There are
legendary three different strategies for this in Japan:
(i) Wait until she sings again; (ii) Do something so
that she sings again; and (iii) Kill her if she doesn’t
sing any more. A good suggestion to be intelligent,
however, might be “Be always flexible. Don’t stick
to one strategy even if you encounter a similar event
as you met before.”

The title of this conference includes “Artificial In-
telligence and Neural Network,” expecting an estab-
lishment of artificial intelligence by means of neural

1The book introduced the connectionist model of cogni-
tion using neural networks. Also known as 'PDP’ from its
abbreviation.



network. In fact, we have had lots of successful re-
ports proudly declaring like, “We have designed an
intelligent machine.” Then question arises. What is
intelligence?

Some of what they call an intelligent machine may
indeed perform the given task much more efficiently,
effectively, or precisely than human. However, we
human are not usually very efficient, effective nor
precise, but rather spontaneous, flexible, unpre-
dictable, or even erroneous sometime.

What we expect when we address a human-like intel-
ligence is, somewhat of a different behavior than the
one as we behaved before, not exactly the same one,
even when we come across a same situation again.

Assume a neural network that has a fixed configura-
tion of synaptic strengths. It will repeat exactly the
same action whenever it comes across the same situ-
ation as the one in which the neural network learned
the action. However may it be a very sophisticated
one, could we call it an intelligent behavior? This is
the main topic of this article.

Before we proceed into this topic, let’s take a brief
look at what happened in the history of artificial
intelligence community.

2 What is intelligence?

As when Dreyfus asks "How can a determi-
nate process give rise to experienced indeter-
minacy?” (Phenomenology) one could equally
well ask: ”How can small neural activity give
rise to experienced largeness or blueness or
anger?” and so reject neurology as well as Ar-
tificial Intelligence. - from MIT Artificial In-
telligence Memo. No. 154. by Seymour Pa-
pert.

Is Artificial Intelligence intelligent?

In fact, the topic is not a new at all. As long ago
as the 1960’s, in an early days when the research
area of artificial intelligence just started to attract
people’s interests, Hubert Dreyfus (1964) posed a
harsh criticism in his paper ’Alchemy and Artificial
Intelligence.’

What then was the reaction of artificial intelligence
community? Seymore Papert, one of the founders
of the field of artificial intelligence, rebuffed Drey-
fus’ claim in his article "The Artificial Intelligence

of Hubert L. Dreyfus: A budget of Fallacies.” (Pa-
pert 1968).2

Papert started the dispute by writing, “In December
1965 a paper by Hubert Dreyfus revived the old game
of generating curious arguments for and against Ar-
tificial Intelligence.” Papert continued to write his
motivation as, “What does affect me is that so many
people praise his papers because they like his conclu-
sions, and show no concern for the quality of his
arguments.”

The other founders of the field of artificial intelli-
gence, such as Herbert Simon and Alan Newell, also
strongly rebuffed. McCorduck (2004) described well
about this rivalry between the two parties in her
book ‘Mind as machine: a history of cognitive sci-
ence.” Edward Feigenbaum said in the interview by
McCorduck, “What does he offer us? Phenomenol-
ogy! That ball of fluff. That cotton candy!” Or oth-
ers ignored like Marvin Minsky who said, “They mis-
understand, and should be ignored.” > See (Crevier
1993, p. 143).

When Dreyfus expanded ’Alchemy and Artificial In-
telligence’ and published as a book titled 'What
Computers Can’t Do?’ (Dreyfus 1972), no one from
the artificial intelligence community responded any
more. Nevertheless, Dreyfus kept his criticism. The
3rd edition of the book was published by changing
the title to "What Computers still Can’t Do: a cri-
tique of artificial reason’ (Dreyfus 1992).

McCorduck (2004) quoted Papert as saying (p. 230),
“.. all social sciences are, for Dreyfus, as wrong-
headed as AI. This is not an attitude widely held in
universities.” And then McCorduck posed a ques-
tion, “If Dreyfus is so wrong-headed, why haven’t the
artificial intelligence people made more effort to con-
tradict him?”

Though it would be hard to know what comput-
ers can and what computers can’t do, or to judge
which side had well predicted the future at that
time, Brooks (1991) who was then with Artificial
Intelligence Lab at Massachusetts Institute of Tech-
nology as Dreyfus did too, wrote, “Artificial intelli-
gence started as a field whose goal was to replicate

2Also available at http://dspace.mit.edu/bitstream/
handle/1721.1/6084/AIM-154.pdf?sequence=2, with a stump
’Draft — Not for distribution.’ on it.

3Who are they? One is Dreyfus and others seem to be
also critiques from philosophy such as Searle whom we will
mention later.

4Also available at http://www.rand.org/pubs/papers/
2006/P3244.pdf.



human level intelligence in a machine. FEarly hopes
diminished as the magnitude and difficulty of that
goal was appreciated. ... No one talks about replicat-
ing the full gamut of human intelligence any more.”

We also have another claim by John Searle (1980)
that even if a system passes the Turing test, still
the system cannot be described as thinking, by his
famous thought-experiment called Chinese Room.’
We will skip this philosophical topic since we now
are running out of space.

Can computer play chess?

Yet another hot topic in the history of developing
artificial intelligence is, chess playing computer.

Again a crappy event of acrimonious slander to
Dreyfus by Papert. Dreyfus wrote, “In fact, in its
few recorded games, the Newell, Shaw, Simon pro-
gram played poor but legal chess, and in its last of-
ficial bout (October 1960) was beaten in 35 moves
by a ten-yea-old novice.” (Dreyfus 1960).% Later,
without his intention, the expression was appeared
in "The New Yorker’ January 11, 1966 edition as an
article in "The Talk of the Town.” It was to cause a
sensation as to what’s going on in computer world,
and the article was concluded with the phrase, “We
don’t care what the machine is going to do.” ©

Then, one day Papert arranged a chess match be-
tween Dreyfus and a computer chess program.” Mec-
Corduck (2004, p. 231) quoted Papert as saying, “I
organized the famous chess match. That was beau-
tiful.” McCorduck (2004) went on to write, “The
results of the game were printed in the bulletin of
the Special Interest Group in Artificial Intelligence,
the Association for Computing Machinery,

A ten-year-old can beat the machine’ —
Dreyfus: But the machine can beat Drey-
fus.”

Aside from this tiny event in the history, much more
sensational news was, the first real chess match in
the history between a human world champion and a
computer, which was held in 1996. That is, the then
world champion Garry Kasparov vs. IBM’s Deep
Blue. In a six-game match Deep Blue won one game,

5 Also see the 3rd edition of his book *What computers still
can’t do’ (Dreyfus 1992, p. 83).

6Nothing to do with the topic of chess, but also a sarcastic
description regarding machine translation at that time can be
read in this same article. That is, “Machine translated Time
flies like an arrow,’ in Russian into "Time flies enjoy eating
arrows,’ in English,” which we doubt if it was a true story.

"Program called MacHack designed by Richard Green-
blatt.

tied two and lost three. The next year, Deep Blue
defeated Kasparov also in a six-game match. Kas-
parov had won the 1st game, lost the 2nd, tied 3rd,
4th and 5th, then lost the 6th.

Nowadays, however, everyone knows the Deep Blue
did not employ an intuitive skill of a human grand-
master but instead, relied on a brute force to evalu-
ate billions of future positions. Is it intelligent em-
ploying a brute computing power to search for all the
possibilities to select the optimal one? Most people
do not think in that way these days.

Is intelligence for a perfect performance?

Dreyfus (1965) wrote “.. a little intelligence is not
intelligence at all but stupidity. Any program that
does just one thing well is at best more like an idiot
savant than like an intelligent man.”

As already suggested, we object this assertion by
Dreyfus, more or less. Brooks (1991) wrote, “It
is clear that their domain of expertise is somewhat
more limited, and that their designers were careful to
pick a well circumscribed domain in which to work.
Likewise it is unfair to claim that an elephant has no
intelligence worth studying just because it does mot
play chess.”

In this article, however, our aim is not “revealing the
secrets of the holy grail of artificial intelligence,” as
Brooks (1990) put it, or we don’t expect artificial
intelligence to be as efficient or perfect as human,
but focus on its flexibility, spontaneity, or unpre-
dictability. Frosini (2009) wrote “.. contradiction
can be seen as a virtue rather than as a defect. Fur-
thermore, the constant presence of inconsistencies in
our thoughts leads us to the following natural ques-
tion: is contradiction accidental or is it the neces-
sary companion of intelligence?”

Is neural network intelligent?

What will be necessary in order for us to be able
to expect a different action of the agents every time
whenever the agents come across an identical situa-
tion? Any neural network with a set of fixed synap-
tic weight values would never behave in that way.
So, why don’t we try to make an agent learn during
its action? In other words, let’s make it by modify-
ing those synaptic weights while the agent acts.

Floreano et al. (2000) reported their interesting ex-
periment in which their mobile robot, who is con-
trolled its movement by a neural network, navigates



properly in the given environment by modifying the
synaptic weights of its own neural network during
navigation. The modification was based on a set of
four Hebbian and Hebbian-like rules with each of
the rules being specified by a number of parameters.
Each of the connection weights determines which
rule with which parameters to modify itself during
its navigation. Starting with a random configura-
tion of the weights, a population search eventually
converges an optimal configuration. Later, Stanley
(2003) united these four rules into one equation with
two parameters. Recently, Durr (2008) proposed a
more general equation of learning, to which we will
go back later a little more in detail.

The experiments above were made using McCulloch
& Pitts neurons with a sigmoid function, that is,
states of neurons are represented by continuous val-
ues.

Later Floreano (2006) performed a similar experi-
ment using spiking neurons. The implementation
was somehow cleverly tricky as follows. He ex-
ploited a fully connected neurons of spike response
model® with additional sensory neurons. The net-
work consists of excitatory and inhibitory neurons
with outgoing synaptic weight all being either 1
or —1 depending on its pre-synaptic neuron, i.e.,
excitatory or inhibitory, which is genetically pre-
specified. Then a genetic algorithm determines just
which connections to be pruned. Though it worked
amazingly well, it was not an implementation of
modifying weight during action.

Now we want to modify weights of spiking neural
network during a run. One possible option for that
is, as Di Paolo (2002) suggested, an application of
above mentioned more general learning rule pro-
posed by Durr (2002) to a spiking neuron network
using the equation:

’lbij = UU(A% + Agjzi + A%ij + Aszizj),

where 7;; is learning ratio and z; is firing rate of neu-
ron 7. We can search for the optimal parameter set
of n, A°, A1, A%, and A3 for each of the connections
by an evolutionary algorithm.

In the next section, we use a neural network
with spiking neurons with spike-timing-dependent-
plasticity, or STDP — a counterpart of Hebbian
learning for the McCulloch & Pitts neurons.

8which is the simplest model of spiking neuron according
to Izhikevich (2004).

3 A path-finding problem

Path-finding or path-integration is not a simple toy
problem. Since the theoretical suggestion of the role
of Hippocampus as a spatial map of a free moving
rat (O’Keefe 1976), or empirical discovery of a role
of place cell firing for a sensory control (O’Keefe
and Conway 1978), lots of meaningful researches to
reveal brain mechanisms concerning the function of
hippocampus have been made. See (McNaughton et
al. 2008) and (Poucet 2004) and references therein.

We consider possibilities of applying two neural net-
work models to a seemingly the simplest problem
ever, to see whether the resultant behaviors of the
agent are intelligent or not. The problem is the
shortest path-finding in a virtual world where we
have no obstacles such as wall, corridor, or danger-
ous river, as Stolle et al. (2002) once made the agents
explore in it, for a different purpose though.

Ironically, such an empty environment is not as easy
to be explored as imagined. In fact, in many appli-
cations of path-finding, obstacles sometimes are not
obstacle but implicit guides to the goal.

Anyway, our benchmark is to find a shortest path in
the Cartesian coordinate from (0,0) to (m,n) with-
out no obstacle in between. Assuming now a grid-
world to make calculation simple, the number of
paths with minimum Manhattan distance from (0,0)
to (m,n) is

m+n

Z mCz X nCm+n—i-

=0

So, we have a infinitely large number of such routes
of the identical minimum Manhattan distance for a
large enough m and n. The question could be, “Can
the agent be flexible to follow a different shortest
path whenever it tries anew?”

Here, for a change, let me try a little different sce-
nario. As it might be easily pointed out that we have
only unique shortest path, say, from (0, 0) to (m,0).
And we change the question to, “Nevertheless the
agent takes its route spontaneously?” It implies if
the agent follows its feeling rather than pursuing the
optimal efficiency.

In the following two subsections we speculate two
models of spiking neurons which are already pub-
lished in the literature to solve the other more com-
plicated problem.



3.1 Recurrent neural network with
evolved spike timing dependent
plasticity

To control a robot, Di Paolo (2002) used a recur-
rent neural network composed of conductance-based
integrate-and-fire model of spiking neurons. See,
e.g., (Gerstner et al. 2002). Let’s summarize the
method. Membrane voltage of each neurons wv(t)
evolves with time as:

Tm0 = Vyest =V + Jex (t)(Eeac - U) + Gin (t)(Em - ’U),
where 7, is the membrane time constant, V. is
the rest potential, E., and F;, are reversal poten-
tials, and g., and g;, are conductance, with suffix
‘ez’ and ’in’ being meant excitatory and inhibitory,
respectively.

When no income spike exists conductance decay ex-
ponentially as:

Temgex = —Yex; Tingin = —Yin-
If a spike arrives to neuron j from an excitatory pre-
synaptic neuron 4, then g, of neuron j is increased

by the current value of the synaptic weight w;; ().
That is,

Jex = Jeax T Wij (t)

If the incoming spike is from inhibitory pre-synaptic
neuron, then

Gin = Gin + wi; (t).

The Poisson spike trains coming from the two sen-
sors are fed into specific two neurons in the recurrent
neural network. Florian (2004) who also exploited
this model explained the reason as follows.

“Fach sensor of activation s drives two input spik-
ing neurons, one being fed with activation s and the
other with activation 1—s. Thus, both the activation
of the sensor and its reciprocal was fed to the net-
work, ... The reason of this duplication of the sen-
sory signal in the spiking neural network is twofold.
First, this allows the network to be active even in the
absence of sensory input. For example, if the agent
18 in a position where nothing activates its sensors
(there is mno object in its visual range, no tactile con-
tact etc.), there must be however some activity in
the neural network, in order for the effectors to be
activated and the agent to orientate to stimuli. Sec-
ond, this mechanism implies that the total input of
the network is approximately constant in time (the
number of spikes that are fed to the network by the
imnput).”

Spike timing dependent plasticity

To simply put, spike timing dependent plasticity
is an algorithm to potentiate (strengthen) synapses
when post-synaptic spike immediately follows pre-
synaptic spike, and to depress (weaken) the synapse
if the order of these two spikes is opposite. To be
more specific,

=

where At is a time from pre-synaptic firing to post-
synaptic firing.

if At>0
if At<O0

At exp(—At/7T)
— A~ exp(=At/T7)

To perform this implicitly, Di Paolo changed synap-
tic weights by means of two recording function
per synapse P~ (t) and P*(t) following (Song et
al. 2000). He clearly describes:

“Fvery time a spike arrives at the synapse the cor-
responding PT(t) is incremented by AY, and every
time the post-synaptic neuron fires the corresponding
P~ (t) is decremented by A~. Otherwise, these func-
tions decay exponentially with time constant T~ and
71 respectively. P~ is used to decrease the synap-
tic strength every time the pre-synaptic neuron fires:
Wij — Wij — Wiazs P (). Analogously, P is used
to decrease the synaptic strength every time the pre-
synaptic neuron fires: w;; — w;j — wmaxP"’(t).”

Then with those four parameters for each of
synapses being a chromosome, the optimal values
of these parameters from one synapse to the next in
the whole network are searched for by a genetic algo-
rithm. Fitness is simply the Euclidean distance be-
tween the point the agent reaches after pre-specified
time and the point of destination, in our problem in
this paper.

3.2 Feedforward neural network with
reward-modulated spike timing
dependent plasticity

Next of our speculation is following the model by
Florian (2005) — a neural network made up of
stochastic leaky-integrate-and-fire neurons. Mem-
brane potential v;(¢) of neuron ¢ at time ¢ evolves
in discrete time §t according to:

vi(t) = v; (t—6t) exp(—ét/n)JrZ wij (t—6t) f;(t—5t),

where 7; is a time constant of neuron ¢, w;; is synap-
tic weight value from neuron j to neuron i, and



fj(t) = 1 if neuron j fires at time ¢ otherwise 0.

The neuron i fires stochastically with probability
0t/ 7o exp(By (v; — 0;)) if the value is less than 1, oth-
erwise 1.

If the neuron fires, then the membrane potential is
reset to a rest-potential Vs:.

We experiment here, among others, with a feed-
forward architecture with two sensor neurons, input
layer with 4 neurons, hidden layer with 8 neurons,
output layer with 2 neurons. All neurons from one
layer to the next layer are fully connected. At the
beginning of a run, the synaptic weights were ini-
tialized with random values from —1 to 1 except for
those from the sensor neurons which take a value
from 0 to 1 at random.

Since we have no obstacle, the activation of the sen-
sor neurons takes a random value between 0 and 1.
The sensor neurons fire Poisson spike trains, propor-
tional to the activation, with a firing rate r = 200
Hz. The probability of emitting one spike during dt,
is rdt.

The motor activations a;(t) (i = 1,2) of the output
neurons evolve according to the following equation
with time constant 7. = 2 sec.

ai(t) = a;(t — dt) exp(—dt/Te)

+(1 —exp(=1/vere)) fi(t).

The factor of f;(t) is to normalize the activation to
1 when the neuron fires regularly with frequency v,
= 25 Hz. One output neuron’s activity determines
the distance d, the amount the agent moves at time
t, and the other output neuron’s activity determines
the direction 6 toward which the agent should move,
that is, # = 2ma;(t) from the direction of the a-
axis. Then agent moves with its increment being
éx = dcosf and éy = dsinf. Note that the world is
no more discrete grid-world.

Florian’s learning formula of the synaptic weight val-
ues is a sort of reinforcement learning. See, e.g.,
(Baxter et al. 1999). Weights are modified as:

wi; (t 4 0t) = wi; (t) + yr(t 4 6t)Gi;(t),

where 7(t) is reward at time step ¢ and v is discount
rate by which eventual reward is estimated as

r(t) + 7 (t + 6t) + 2t + 20t) + 730 (t +365t) + -+
Dynamics of (;; is given by:

Cij(t) = Pi—;(t)fi(t) + Pi; (t)fj(t)a

and Pfj[ are:
P (t) = P (t — 0t) exp(—0t/74) + Ay f5(0)

P> (t) = P> (t — 6t)exp(—dt/7—) + A_fi(t)

1] 1]

where 7+ and A4 are constant parameters.

In our problem of finding a shortest path, reward
r(t) could be an inverse of distance to the goal from
the position of agent at time ¢. The closer to the
goal, the larger the reward.

3.3 Simple heuristics

Are we happy with the above two experiments?

We can make an agent explore by a walk with
a heuristic with an occasional random derail con-
trolled by a random number. As shown in Figure 1,
a walk starting at (0,0) with the goal being (N, 0)
might be able to look like a spontaneous path more
or less, and we can see a different spontaneity from
run to run. Clearly, however, it is not a result of an
intelligent action.

20
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-10 |
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Figure 1: An example of a path starting from (0,0)
to the goal (300,0) by a random walk incorporated
with a heuristic strategy. Heuristic says, “Go strait
to the goal,”in this particular case out of the general
case of (0,0) to (m,n), but agent is still allowed to

derail from time to time by a random number.

This might be an example of “a very simple algo-
rithm can sometimes obtain the same results as the
holistic, intuitive human mind,” as Papert (1965)
put it.

Thus far, ’an always different reaction in a similar
situation’is a necessary condition at the best but not
sufficient for the neural network to be intelligent.



4 Consciousness

Science has always tried to eliminate the sub-
jective from its description of the world. But
what if subjectivity itself is its subject? — from
“A Universe of consciousness: How Matter be-
comes tmagination” — by Gerald M. Edelman
and Giulio Tononi.

Now we see that spontaneity, flexibility, or unpre-
dictability are not sufficient to be a human-like in-
telligence. What we should take into account next is,
these properties should be made at least consciously.

What is conscious then?

In their paper ’Science of the conscious Mind,” As-
coli et. al (2008) wrote: “We need to design math-
ematically sound metrics reflecting definite aspects
and elements of our subjective experiences, and a
corresponding system of quantitative measures. Im-
portant phenomenological experience may be tied to
individuals (consciousness of beauty, responsibility
etc.), rather than to concrete objects whose features
could be explained by the pattern-recognition proper-
ties of neural networks.”

The authors continues: “The idea of semantic space,
defined as the set of all possible meanings that words
can express, may be formalized with the notion of
cognitive mapping. Cognitive maps index represen-
tations by their context, such as spatial location, and
are employed by mammals for path-finding and nav-
igation,” citing (Samsonovich et. al 2005) as an ex-
ample of such path-finding navigation of rodent us-
ing spatial location by hippocampus.

Izhikevich (2006) also defined consciousness as at-
tention to memory.

Now we try our navigation problem using memory
function in the brain.

4.1 Navigation by hippocampus

Following Muller et al. (1996), we speculate here a
navigation using a cognitive map created in a re-
current connections of CA3 pyramidal cells as place
cells with functions of long-term potentiation mod-
eled by spiking neurons.

This model is based on the finding by O’Keefe and
Dostrovsky (1971) that firings of hippocampal neu-
rons in freely moving rats is location specific, that
is, they fire rapidly only when the rat is in a specific

location. Hence, such neurons are now called place
cells, and these neurons are pyramidal cells of the
CA3 and CAL1 regions of the hippocampus.

Here assumption is, mapping information, or equiv-
alently, distance relation of the points in the en-
vironment, is represented as the strength of long-
term potentiation modifiable Hebbian synapses. In
other words, the mapping information is stored in
the strength of the connection, specifically here, in
the strengths of CA3 to CA3 synapses of their re-
current connection. So, a short interval between pre-
and post-synaptic spikes is expected to cause an in-
creased synaptic strength.

Since each cell is a place cell, any path in the graph
corresponds to a path in 2-D space.

Then the question is, “The optimal paths in neural
space are optimal too in geometrical 2-D space of
surroundings?”

What Muller (1996) proposed is, strength of a
synapse is determined according to a decreasing
function of the distance between two points the two
neuron represent. As such, the longer the distance in
2-D space, the weaker the strength between the cor-
responding two neurons. That is, synaptic strength
should decrease with distance between two points.

Now let me summarize Muller’s experiment. First,
a recurrent network should be constructed to repre-
sent a cognitive map as follows. (i) Create n place
cells; (ii) Connect each cell to p other cells such
that at least one route exists from any cell to any
other cell; (iii) Each cell is randomly assigned a lo-
cation in 2-D space represented by pixels; (iv) All
the synapses are given a strength according to the
distance between the corresponding two locations in
2-D space using a decreasing function of distance.

Then a path in the 2-D space is found as follows: (i)
Specify the start and goal points in the 2-D space;
(ii) Starting at the neuron corresponding to the start
point in the 2-D space, select a series of synaptic
connections which eventually lead to the neuron cor-
responding to the goal point in the 2-D space such
that the sum of strengths of these synapses is maxi-
mized; (iii) Then the route in the recurrent network
is translated into a path in the 2-D space by listing
the points corresponding to the neurons in the route
obtained in the recurrent network.



4.2 Is navigation by hippocampus in-

telligent?

Back in 1997, in their graduate-level seminar
home page at the University of Illinois at Urbana-
Champaign,? Joe Sullivan exemplified animals’ in-
telligent navigation in their familiar surroundings.
Let’s name a few: Merriam’s kangaroo rat can learn
the distribution of food patches around its nest in
three evenings of foraging; Marmoset monkeys re-
liably relocate food sites and do not revisit a place
where food was already eaten on that foraging trip;
and Black-capped chickadees hide insects and seeds
i numerous, widely spread caches in trees over its
home range.

It might not sound like an intelligent behavior, but
as already quoted Brooks (1990), an elephant could
be intelligent even if it cannot play chess.

5 Belief, desire and intention

The belief-desire-intention (BDI) model is a well
studied computational model to construct multi
agent system, originally developed by Bratman
(1967). Or we might even add ’emotion’ to the three
properties, as Pereira et al. (2005) proposed a model
of emotional BDI agents. Though since this topic is
beyond the scope of this article and we will not go
into further detail, belief, desire, and/or intention
could be other condition for machine intelligence to
approach closer to human-like intelligence.

6 Concluding remarks

Thus, the only question which can reasonably
be discussed at present is not whether robots
can fall in love, or whether if they did we would
say they were conscious but rather to what ex-
tent a digital computer can be programmed to
exhibit the sort of simple intelligent behavior.”
— from “Alchemy and Artificial Intelligence”
by Hubert L. Dreyfus.

A real human-like intelligent behavior of an artificial
neural network does not seem to be strongly required
in industry world. What about, however, a robot
pet? We find lots of commercial-based products of
those robot pets these days. For instance, a toy
robot dog AIBO produced by SONY.

9The page ’Topics in Neuroethology’ is still available at
http://nelson.beckman.illinois.edu/courses/neuroethol /
models/spatial_learning/spatial_learning.html

It splendidly learns the environment of the owner.
It acts differently in a different situation according
to how it learned these situations. However, it acts
exactly in the same way if it comes across the same
situation it has already learned. Although AIBO
can play a role of a wonderful pet, this identical-
action-in-identical-situation would lose the owner’s
interest, sooner or later.

On the other hand, McClelland (2009), as we al-
ready cited in the Introduction, concluded his pa-
per by writing, “It may well be, then, that over the
next decade, the butterfly will finally emerge from
the chrysalis, and truly parallel computing will take
flight.” So let’s be optimistic.

Now, to conclude this article, let me propose also a
very simple looking but a little more sophisticated
benchmark of path-finding problem, as a challenge.

160
140 |
120

100 |
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Figure 2: An example of a loop created by an agent
who had started at the base located at (0,0) with a
limited amount of fuels of 300 units which is sup-
posed to be consumed one unit to move from one
grid to the next. This example is not by an intelli-
gent machine technique but a random walk with a
heuristic. Can you guess what sort of heuristic is it?

We might call it *Mars Land-rover Problem.” The
problem is as follows: A robot starts at home at
(0,0) with a limited amount of fuels to move the
field. The mission is to explore along a maximum
loop that never crosses, and should return home be-
fore the robot exhausts all the fuels it filled at the
start. See Figure 2. Can we design a robot such
that it navigates flexibly enough to take a different
route from run to run, using a memory which stored
during previous runs, with some conscious intention,
hopefully with belief and some sort of desire?
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