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Abstract— Small-world networks provide a promising de-
piction of social, communication, and biological behavior as
found in practice. These networks are subset of random
graphs where edges are randomly re-wiring or added onto a
regular lattice. The small-world phenomena display high, lo-
calized clustering and short paths between vertices. These
properties are seen to exist in the real-world. The small-
world models apply randomness to design complex systems
with these properties. This paper takes a more determinis-
tic approach to small-world networks. The paper presents
a neuronal-axon network architecture that takes into con-
sideration the network complexity in the number of links
or edges out of each node, and the memory capacity of the
individual nodes within the network. The resulting network
architecture exhibits the small-world clustering with a log-
arithmic degree of separation between nodes without the
need for long-range communication edges.
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I. Introduction

A small-world network is the notion that almost any pair
of people in the world can be connected to one another by
a short chain of intermediate acquaintances, characterized
by a separation length of about six. Small-world models for
social networks should display a large clustering coefficient;
a high local clustering of disjoint regions that on average
are connected to any node by only a few steps. A short
summary of some background and models attempting to
explain small-world phenomena are presented in [2; 21; 24;
27].

This paper presents an overview of small-world models,
based on rules applied with small random probabilities.
This approach makes sense if Nature is truly stochastic [7].
As a modeling tool, a random approach provides a high-
level characterization of a complex behavior with minimal
details of physical or systemic rules. However, it can also
be argued that without specific details of resource limita-
tions, costs, the advance in the prevailing technologies or
the economics of scale; the insight afforded by random ap-
proaches may be obscured. This paper presents a different
perspective by examining the design of a neuronal network
simulator that is found to exhibits small-world features. In
the remainder of this paper, we present the notion of six
degrees of separation, current small-world models, the de-
sign of a neuronal-axon network simulator, its applicability
to a small-world neuronal network, and an argument this
small-world network based on experimental evidence.

A. Six Degrees of Separation

Milgram [20] provided one of the first studies in quantifying
the small-world property of networks. Since then, the no-
tion of “six degrees of separation” [11] was introduced. His
work explored the average number of steps that separated
two individual from each other through a social network
of friends-of-friends. The average separation is the num-
ber of steps that a message is passed between individuals,
chosen from a random source, to arrive at a particular des-
tination. The results of the experiments shows that the
average number of steps needed is surprisingly small.

The small-world, social network relies on two properties: 1)
on average a person’s friend-of-a-friend are far more likely
to be acquainted with one another than two people chosen
at random (clustering); and, 2) it is possible to connect
two people chosen at random via a chain of only a few
intermediate acquaintances (six degrees of separation).

A slightly different approach, is to construct short paths
based on local information. When network models are
able to do this efficiently, the network is called naviga-
ble. Local information is defined as messages passed only
between friends without knowing the exact path on subse-
quent passes. One strategy is to pass the message to the
friend that appears closest to the destination (as measured
in a social relational sense). Algorithmically, this approach
implies a variant of a greedy routing strategy to find short
paths in a network. This strategy forms the basis for a de-
centralized view that is used for navigation and searching
in small-world models.

Small-world networks have importance in modeling the
spread of diseases [19; 23], the design and analysis of the
internet infrastructure [1], and the neural-axon clustering
networks of the brain, to mention only a few application
areas.

B. Random Graphs

The theory of random graphs [3; 8] provides a framework
where short paths can exist in large networks. Such a graph
is denoted as G(N, p), where N is the number of nodes
(vertices) and p is a fixed probability of connecting an edge
between a pair of vertices. Assume that z number of edges
per node (on average). Then the number of edges between
nodes in the graph is 1

2Nz. Now select N nodes and draw
1
2Nz edges between randomly selected pairs. Each pair of



nodes are connect with an edge with probability p. An
graph with no edges has p = 0; whereas, a fully connected
graph has p = 1.

To understand the small-world effects of random graphs,
consider a node Ni with z neighbors. Assume that each
of Ni’s neighbors also has z neighbors, which implies that
Ni with z2 second neighbors. By extending this argument,
the number D degrees of separation needed to reach all N
nodes in the network is given by

zD = N → D =
logN

logz
(1)

It is possible that the second neighbors of Ni are also neigh-
bors of Ni. In that case, these nodes form a clustering of
the network. Unfortunately, the clustering of networks in a
random graph is diminished by the likelihood that p selects
pairs of nodes to connect in a uniformly random way.

The clustering coefficient C = average fraction of pairs of
neighbors of a node that are also neighbors of each other. A
fully connected network has a clustering coefficient C = 1.
The clustering coefficient for a random graph is C = z

N .
A measure for typical separation between vertices in a

graph is denoted by L(p) where p measures the range of
randomness for a graph, 0(ordered) < p < 1(disordered).

In Table 1, three different networks are analyzed by
Watts and Strogatz [28]. In the table, the corresponding z
values (not shown) are z = 2.67 for the power grid (western
USA); z = 14 for the C. elegans; and z = 61 for the movie
actors.

Network N Lactual Lrand Cactual Crand

C. elegans 282 2.65 2.25 0.28 0.05
Power Grid 4941 18.7 12.4 0.08 0.005
Film actor 225,226 3.65 2.99 0.79 0.00027

Table 1. Watts and Strogatz (1998)

II. Building Graphs with both Small-World and
Clustering Properties

Random graphs show small-world properties but restrict
the formation of clusters of vertices. Since clustering is
an important property of real-world situations, a graphical
network model has significance in the analysis and mod-
eling of both physical and social networks [17]. In this
section we will consider the models of Watts and Strogatz,
and Kleinberg.

A. Watts-Strogatz Model

The model of Watts and Strogatz [28] is based on the
assumption that people are more likely to have friends
nearby, but still have some friends that live at a far
distance. With these assumptions, the Watts-Strogatz’s
small-world model exhibits the high clustering found in so-
cial networks.

regular lattice
Z = 4

small-world lattice random lattice

p = 0 p = 1

increasing randomness

Fig. 1. Lattices: Ordered, Small-World, Random

The Watts-Strogatz graph is a one-dimensional, regular cir-
cular lattice (discrete, and with periodic boundary condi-
tions) that allows a small degree of randomness to produce
the small-world effect (see Figure 1). Initially each node
is assigned a position in the lattice and an edge is added
between each node and its nearest neighbors to form the
one-dimensional lattice. Next a fixed (but small) number of
edges are randomly rewired between nodes and may stretch
long distances within the lattice.

The parameter, p, denotes the fraction of edges that are
subject to random rewiring. The variation of p makes pos-
sible the transition from a very locally ordered/clustered
graph (p = 0) to one where all edges are randomly rewired
(p = 1). The rewired edges create shortcuts that cover
large distances in the underlying lattice. These shortcuts
make possible the access, within a small number of steps,
vertices that are far away in the graph.

The Watts-Strogatz model exhibits a rapid drop in the
shortest path length and network diameter with only a
small fraction of random rewiring. Albert and Barabási
[2] provide additional details and simulations.

B. Kleinberg Model

Kleinberg (2000) [16] generalizes the Watts-Strogatz model
and argues that models with shortcuts that are arbitrar-
ily far apart are poor representations for some real-world
situations. Kleinberg observations that people using local
information are able to find short paths between individ-
uals. He shows that the Watts-Strogatz model does not
allow an efficient greedy routing algorithm to find short
paths given only local information.

Kleinberg’s model is a k-dimensional lattice with local con-
nections to the nearest-neighbors. The probability for a
shortcut edge to be added between two nodes is propor-
tional to a distance measure d(x, y) between each pair of
nodes x and y that falls off as a power law proportional to
d(x, y)−p. Kleinberg shows that when p = k an efficient
greedy routing algorithm can be constructed to find short
paths with only the use of local information. The corre-
sponding probability for adding a shortcut edge from x to
y is given by



p(x↔ y) =
d(x, y)−k

Hk(n)
(2)

where Hk(n) is a normalization constant.

The Kleinberg model adds shortcuts between nodes;
whereas, the Watts-Strogatz model rewires existing edges
in the lattice. For p = 0, the Kleinberg model corresponds
roughly to the Watts-Strogatz model. As p increases, the
length of a shortcut edge becomes shorter with respect to
the distance between nodes in the lattice. k is the criti-
cal value for p that couples the dimensionality of the lat-
tice with the probability distribution needed to balance
the shortcut distances in this greedy routing algorithm.
An algorithm where shortcuts have been generated under
this distribution takes an average complexity of O(log2(n))
steps.

Newman and Watts [22] also considered the idea of adding
shortcut edges in place of rewiring existing edges.

III. A Large-Scale Biophysical Neuronal-Axon
Network

In this section, a parallel neuronal-axon network simulator
is described that is designed to maximize the memory uti-
lization of the controlling processor(s) while at the same
time minimizes the edges (communication connections) re-
quired to perform efficient global data transfers. The re-
sulting implementation is shown to have small-world and
clustering properties.

The Hodgkin-Huxley (H-H) equations [13] models the cur-
rents through the membrane of the squid giant axon. Mod-
eled as a long cylindrical tube, electrical signals propagate
along outer membrane of the axon. The axon membrane is
permeable to preferential chemical elements; namely potas-
sium (K+) and sodium (Na+). Transmembrane potential
difference (rest state) ≈ -70 mV. The H-H equations de-
scribe the sum of ion channels (K+ and Na+) and the
capacitance of the axon membrane.

The parallel neuronal network simulator simulates the
synaptic response to the Hodgkin-Huxley model of the
axon. Each (neuron) processors is given an equal portion
of the total neurons to process to ensure load balancing.
Neuron cells communicate through a stimulus (action po-
tential). When a neuron cell is stimulated above a given
threshold, it passes on that stimulus to cells that it is con-
nected. In a typical model simulator, the neuron cells are
connected to each other. To make communication possible
between neuron cells that are not in the same processor,
neuron processors require access to all other processors. In
the worst case, for P neuron processors there can be O(P 2)
communication links that communicate at the same time t.
Given the large number of neuronal cells (approx. 10,000)
that one neuron can stimulate, the neuronal connection

must either be prohibitively large (e.g., O(N2) or employ
a small-world degrees of separation. Suppose that the ag-
gregate of activation potential AN from all N contributing
neurons arriving at a single neuron at one instant in time
is given by

AN = Θ(
N∑

i=1

4i) (3)

where 4i is the individual action potential sent by the ith

neuron.

If

4i ∝
Amax

M
, (4)

it is then possible that when M < N ,

AN > Amax (5)

resulting in a neuron input saturation. One wonders then
whether a small-world network for a neuronal-axon net-
work has deeper physical implications.

The parallel simulator would also benefit from small-world
network properties. With this in mind, one rather simple
parallel network topology is the Master/Slave architecture
as illustrated in Figure 2. This communication topology is
simple to configure, it has minimal distance between the
Master node to each of its slave nodes, and can be built
from off-the-shelf components.

In the Master/Slave topology, the number of network con-
nections grow linearly in the number of processors (P).
From a pedestrian’s point of view, this topology is compact;
appears to utilize the processors efficiently; and requires
minimal communication hardware (i.e., channels). Thus
an elegant solution. However, the reality is that serious
tradeoff lurk in this design. First, most parallel processing
systems cannot perform I/O in parallel on a single process-
ing node, thus the Master node is hopelessly sequentialized
as P increases. Second, the memory capacity for the ac-
tivation potentials (tokens) that may number upwards of
10,000 will eventually surpass the available memory allo-
cations of the Master node that handles the distribution of
tokens to the appropriate nodes.

Slaves
 P0        P1       P2           P3              P4             P5              P6             P7

Master

Neuron
Processors

Token information

Fig. 2. Master/Slave Topology
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Fig. 3. Binary Tree Topology

A second architectural approach considered, requires the
use of additional processors; however, it also has the ad-
vantage of scaling linearly in the number of connections as
P increases. This topology is a tree. In the rest of this
discussion, it is assumed that the tree topology is a bal-
anced binary tree. Figure 3 illustrates the tree structured
neuronal simulator. The tree-structured simulator is or-
ganized into three distinct regions. At the leaf-nodes, Pi

are the neuron processors. The nodes in the interior of the
tree are routing nodes that sort activation tokens that they
receive and pass these tokens either up towards the root
node or down if the tokens are destined to any child node
within their sub-tree. One essential advantage of the strat-
egy is that not all activation tokens needs to reach the root
node as was the case for the Master/Slave topology. The
root node is now responsible for routing tokens either to
its right sub-tree or to its left sub-tree. Another advantage
derived from the tree-structure is the incremental sorting
of activation tokens that are asynchronous distributed to
the respective destination nodes. This strategy results in
processing larger number of neurons that could not be per-
formed using the Master/Slave network topology.

Eventually, the tree-structured simulator will face memory
problems as well. The solution to this problem takes advan-
tage of the tasks performed by the routers and the Master
node. Specifically, all tokens that arrive at the Master node
are destined for its right or left subtree but this fact is also
known by the corresponding child nodes that are one level
below the Master node. The solution illustrated in Figure
4 removes the Master node (i.e., bisect the binary tree)
and add shortcut edges (indicated by the dashed arrows)
to the two routing nodes labeled A and B. The solution

C

A B

Eliminate Master Root

Shortcuts

Fig. 4. Bisected-Binary Tree Topology

Fig. 5. ThirdLevelBisection

does increase the connection complexity but at the same
time increases the clustering coefficient for specific nodes
in a non-random) way.

The tree bisection with added shortcuts is not limited to
the root level alone. In fact we have performed experiments
where the bisection went to the extreme level of log2(P )−1
(see Figure 5 and still achieved additional speedup.

The approach taken to maintain efficient memory and rout-
ing for the neuronal-axon simulator has also introduced
long distance shortcuts. Recall that the Watts-Strogatz
model also suffers from the introduction of long distance
shortcuts. Kleinberg’s model avoided long distance short-
cuts by the use of a power law distribution. Although the
latter approach applies in both low- and high-dimensional
spaces, we avoid long distance shortcuts by introducing
a high-dimensional hierarchical organization that accom-
plishes the same goal (this is not to say that Kleinberg’s
approach could not be incorporated in to our approach as
well). Tanay et al., [25] give evidence of such a hierarchi-
cal organization in the yeast molecular network. Figure 6
illustrates how the added dimensionality can re-scale the
distance measure between points.

The bisected tree graph with shortcuts can be reconfig-
ured in a three-dimensional space by first applying a two-
dimensional rotation on one of the sub-trees (see Figure
7) followed by an overlay in the third dimension. Figure
8 illustrates the final network topology that is free of long
distance shortcuts.
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Fig. 6. 3-Dimensional Space



Fig. 7. Two-Dimensional Rotation

Fig. 8. Overlay in Third Dimension

IV. A Small-World for a Neuroanatomy model

A. Damasio [5] proposed a neuroanatomy model based on
experimental evidence to address the binding problem: the
integration of both the sensory and motor components in
both recognition (perception) and recall. The properties of
objects and events that are perceived through the various
sensory interactions rely on geographically separate sensory
regions of the brain.

He found no structural evidence to support the intuition
that temporal and spatial integration occur at a single
site. He maintains that the integration of multiple as-
pects of reality, external and internal, links together dis-
tributed repository of fragmented encoded sensory infor-
mation; stored in remote and geographically separate loca-
tions within sensory and motor regions, and reconstructed
by co-activation zones. His proposed a neuroanatomical
network that allows for both forward propagation and con-
vergence of parallel streams of sensory data with backward
propagation of signals back to the points of origin.

The representations of objects with spatial and temporal
associations are stored in separate neural regions called
convergence zones. The reactivation of recall requires the
firing of convergence zones with feedback streams propa-
gating from them. Convergence zones bind neural activity
patterns corresponding to topographically organized frag-
ments. The geographic location of convergence zones varies
among individuals but is not random.

Figure 9 is a facsimile of a diagram appearing in [6]. The
neural architecture depicts the integration of visual (V), so-
matosensory (SS), and the auditory (A) sensor regions of

cz1
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……

…
…

…
…
… czn
Nc

H

V

SS A

cz2

Fig. 9. neuroanatomical network

the cortex. The filled and unfilled dots represent separate
functional regions in each of the sensory areas. The arrows
pointing from the sensory regions to the convergence zones
(CZ1, CZ2, CZn) represent feed-forward paths. Feedback
paths from each CZ is represented by arrows pointing back
to the sensory regions. The hippocampal system is de-
picted by H. The outputs of H are returned to CZn and
to the non-cortical neural locations of the basal forebrain,
brain stem, and the neurotransmitter nuclei. The feed-
forward and feedback pathways terminate within the sen-
sory regions over the aggregate of neurons in a distributed
fashion, rather than on a specific neuron.

V. Conclusion

The small-world phenomenon has far reaching implications
in real-world situations. Maintaining the average distance
between vertices to be logarithmic and providing adequate
clustering among related nodes are properties that require
empirical insight. The small-world models reviewed in this
paper relies to some degree upon random graph techniques
but in a cleverly constrained fashion. These constraints
represent rules that allowed a small range of random flexi-
bility. In many ways, it is surprising how rich the various
models are in diversity.

Our primary concern with current small-world models is
that the abstraction does not readily address physical con-
straints or properties that are not necessary evident from
the randomness induced in the models. Of course when the
models fail, new and better insight usually prevails, so in
that sense, small-world models can be a valuable tool.

This paper described the design considerations in the im-
plementation of a neuronal-axon network simulator. The
two key features that guided the architectural organiza-
tion of the final design are the requirements that 1) the
growth in the number of edges (communication channels)
increases linearly as a function of the number of processors
P , and that 2) the architecture must be configured to uti-
lize memory capacity efficiently. It should be pointed out
that the emphasis on employing all processors as parallel
neuron-engines was never considered. The approach taken



in this work assumed that the best execution time is bound
by the slowest executing component of the parallel system.
The final network design is organized as a tree network
with connections that grow linearly with a characteristic
path length L = O(log2(P )). In addition, shortcut edges
are introduced to facilitate the high-level routing of activa-
tion tokens to remote processors in the tree. The network
is reminiscent of Kleinberg’s model where long distance
shortcuts are avoided. As in the Kleinberg’s model, con-
nections are added (not rewired). This also increases the
clustering coefficient for selected nodes in the network. A
binary tree is used as the base graph but this was for con-
venience. Quad-trees could also be used with the added
property of increasing the clustering coefficient. Unlike
Kleinberg’s approach, the present design resorted to the
application of three-dimensional extension to the original
two-dimensional tree network to avoid long distance short-
cuts.

Finally, it is argued that physiological evidence supports
the organization of neuronal systems as a network of clus-
tered trees.
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