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tUsing evolutionary simulations we develop autonomous agents 
ontrolledby arti�
ial neural networks (ANNs). In simple life-like tasks of foraging andnavigation, high performan
e levels are attained by agents equipped withfully-re
urrent ANN 
ontrollers. In a set of experiments sharing the samebehavioural task but di�ering in the sensory input available to the agents,we �nd a 
ommon stru
ture of a 
ommand neuron swit
hing the dynami
sof the network between radi
ally di�erent behavioural modes. When sensoryposition information is available the 
ommand neuron re
e
ts a map of theenvironment, a
ting as a lo
ation-dependent 
ell sensitive to the lo
ationand orientation of the agent. When su
h information is unavailable the
ommand neuron's a
tivity is based on a spontaneously evolving short-termmemory me
hanism, whi
h underlies its apparent pla
e-sensitive a
tivity. Atwo-parameter sto
hasti
 model for this memory me
hanism is proposed. Weshow that the parameter values emerging via the evolutionary simulations arenear optimal; evolution takes advantage of seemingly harmful features of theenvironment to maximize the agent's foraging eÆ
ien
y. The a

essibilityof evolved ANNs for a detailed inspe
tion, together with the resemblan
eof some of the results to known �ndings from neurobiology pla
es evolvedANNs as an ex
ellent 
andidate model for the study of stru
ture and fun
tionrelationship in 
omplex nervous systems.1 Introdu
tionIn re
ent years a novel paradigm emerged in the study of ANNs. This paradigm usesgeneti
 algorithms [Mit
hell, 1996℄ and evolutionary 
omputation [Fogel, 1995℄ to develop0



ANNs. Work in this �eld 
an be divided to the development of isolated ANNs, evolvingto maximize a 
ertain target fun
tion on one hand [Kitano, 1990; Harrald and Kamstra,1997℄, and the development of embedded ANNs, serving as the 
ontrol me
hanism for anautonomous agent, on the other hand [Gallagher and Beer, 1999; Gomez and Miikkulainen,1997; Jakobi, 1998; S
heier, Pfeifer and Kunyioshi, 1998; Kodjaba
hian and Meyer, 1998℄.In the latter 
ase the agents perform 
ertain behavioural tasks, and their performan
e levelin these tasks serves as the basis for evolutionary sele
tion. This new paradigm of EvolvedANNs (EANNs) is 
learly very interesting from the appli
ative point of view, opening newhorizons to the development of roboti
 
ontrol me
hanisms. However, its relevan
e to ourunderstanding of biologi
al neural systems has not yet gained wide re
ognition.There are two fundamental questions 
on
erning EANNs we address in thispaper: 1. Can we identify and analyze neurons and network stru
tures emergingin EANNs whi
h play an important information pro
essing role in 
ontrollingautonomous agents? And if so, then 2. Do stru
tures resembling �ndingsfrom biology indeed o

ur in EANNs? Using evolutionary simulations we developedautonomous agents 
ontrolled by ANNs, and 
ondu
ted a thorough analysis of the evolvedneuro-
ontrollers. Previous works on evolved ANNs (e.g. [Cangelosi, Parisi and Nol�,1994; Beer, 1997℄) analyzed the emerging neural stru
tures and showed interesting stru
tureto fun
tion relationship. These works typi
ally used very small networks (3-5 neurons)or networks with pre-determined feed-forward stru
ture. We extend this line of work bystudying networks with tens of neurons and over 100 synapses and un
onstrained re
urrentar
hite
ture. Our results strongly suggest that EANNs are relatively tra
table models toanalyze, manifesting biologi
al-like 
hara
teristi
s.The EANN-
ontrolled autonomous agents we develop use un
onstrained network 
on-ne
tivity patterns to perform simple life-like behavioural tasks. Under these 
onditions,we show that networks maintaining steady a
tivation levels 
an evolve, and moreover {serve to 
ontrol agents that perform at a remarkably high level 
ompared with algorith-mi
 ben
hmarks. Non-trivial network stru
tures evolve in these agents. We analyze thesestru
tures and demonstrate the existen
e of neurons whose fun
tional repertoire strongly1



resembles that of \
ommand neurons" known from biologi
al networks [Combes, Meyrandand Simmers, 1999; Teyke, Weiss and Kupfermann, 1990; Nagahama, Weiss and Kupfer-mann, 1994℄. The 
ommand neuron's a
tivity is driven either by positional information orby a short-term memory me
hanism, depending on the spe
i�
 sensory information availableto the agent.The emergen
e of lo
ation-dependent 
ells in EANNs has previously been demonstratedby [Floreano and Mondada, 1996℄ who studied homing navigation of a real robot. Theyfound a neuron in the 
ontrolling EANN that exhibits lo
ation- and orientation-dependenta
tivity. [Jakobi, 1998℄ has des
ribed a simple memory-based behaviour in a small, bilater-ally symmetri
al EANN with 10 neurons and about 20 synapses. In this paper we revisitboth of these issues, showing how they emerge 
on
omitantly in agents with various sensory
apabilities performing a task requiring simple navigation and foraging skills. We 
ondu
ta thorough analysis of the evolved networks and the 
omputations they perform. We studythe emergen
e of lo
ation-dependent 
ells also under 
onditions in whi
h the agents aredeprived of any positional 
ues, and �nd that the apparent pla
e-dependent a
tivity is a
-tually the result of an emerging memory me
hanism 
ulminating in a single neuron. Thisdemonstrates that di�erent 
omputations 
an result in the same phenomenon of a \pla
e
ell". We show that the emerging pla
e 
ell takes the role of a 
ommand neuron whi
hmodulates a 
omplex swit
h in network dynami
s between two distin
t operational modes,that in turn manifest themselves in two di�erent behavioural modes of the agent.The rest of the paper is organized as follows: Se
tion 2 gives an overview of the model.A more elaborate des
ription 
an be found in Appendix 1. Se
tion 3 des
ribes the per-forman
e levels attained by evolved agents. In se
tion 4 we demonstrate the emergen
e of
ommand neurons modulating the behaviour, and de�ne the two basi
 modes of behaviour.Se
tions 5 and 6 investigate the properties of the 
ommand neurons under two di�erentsensory s
enarios. We show that when sensory information is s
ar
e a memory me
hanismis evolved and helps to 
ontrol the behaviour of the agent. Se
tion 7 investigates in de-tail the network stru
ture in a parti
ular su

essful agent. Finally, se
tion 8 dis
usses theresults. Appendix 1 gives a self-
ontained, detailed des
ription of the simulation model.2



Appendix 2 des
ribes the various behavioural measures we used to quantify the agents' twobasi
 behavioural modes and appendix 3 gives the algorithm we wrote as a ben
hmark forone of the behavioural tasks.2 The ModelThe basi
 environment 
onsists of a grid arena surrounded by walls. In this arena two kindsof resour
es are s
attered. \Poison" is randomly s
attered all over the arena. Consumingthis resour
e de
reases the �tness of an agent. \Food", the 
onsumption of whi
h in
reases�tness, is randomly s
attered in a restri
ted \food zone" in the south-western 
orner of thearena. The agents' behavioural task resembles other models found in the literature (e.g.[Nol�, Elman and Parisi, 1994; Miglino, Nol� and Parisi, 1996℄ and is seemingly very simple- to eat as mu
h of the food while avoiding the poison. The 
omplexity of the task in thiswork stems from the limited and low-level sensory information the agents have about theirenvironment. The agents are equipped with a set of sensors, motors, and a fully-re
urrentANN 
ontroller. It is this neuro
ontroller that is 
oded in the genome and evolved; thesensors and motors are given and 
onstant. The models we explore di�er in the sensors theagents are equipped with, the size of the network (15-50 neurons), and whether or not thefood zone border is marked.The agents in all the models explored were equipped with a basi
 sensor we termedsomatosensor, 
onsisting of �ve probes. Four probes sense the grid 
ell the agent is lo
atedin and the three grid 
ells ahead of it (see Figure 1). These probes 
an sense the di�eren
ebetween an empty 
ell, a 
ell 
ontaining a resour
e (either poison or food { with no distin
-tion between those two 
ases), an arena boundary and food zone boundary. The �fth probe
an be thought of as a smell probe, whi
h 
an dis
riminate between food and poison justunder the agent, but whi
h gives a random identi�
ation if the agent is not standing on aresour
e. This requires sensory integration in order to identify the presen
e of food or poi-son. In addition, in some models the agents are equipped with a position sensor, e�e
tivelygiving the absolute 
oordinates of the agent in the arena. Note that the somatosensor alonegives only purely lo
al information to the agent, making navigation in the environment a3
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Figure 1: An outline of the grid arena (southwest 
orner) and the agent's 
ontrolling net-work. The agent is marked by a small arrow on the grid, whose dire
tion indi
ates itsorientation. The 
urved lines indi
ate where in the arena ea
h of the sensory inputs 
omesfrom. Output neurons and interneurons are all fully 
onne
ted to ea
h other.
hallenging task. Moreover, even in models where the agents are equipped with a positionsensor, they la
k any information about orientation, so navigation remains a diÆ
ult task.The motor system allows the agent to go forward, turn 90 degrees in ea
h dire
tion, andattempt to eat, a 
ostly pro
edure sin
e it requires a step with no movement.In ea
h generation a population of 100 agents is evaluated. The life 
y
le of an agent (anepo
h) lasts 150 time steps, ea
h step 
onsisting of one sensory reading, network updating,and one motor a
tion. At the end of its life-
y
le ea
h agent re
eives a �tness s
ore 
al
ulatedas the total amount of food it has 
onsumed minus the total amount of poison it haseaten and normalized by the number of food items available to give a maximal value of 1.Simulations last a pre-de�ned number of generations, ranging between 10000 and 30000.Figure 2 shows a typi
al evolutionary run. The initial population 
onsists of agents equippedwith random neuro-
ontrollers. In a typi
al simulation run, the average �tness of agents inthe initial population is around -0.05. As evolution pro
eeds better 
ontrollers emerge andboth the best and average �tness in the population in
rease until a plateau is rea
hed. In thenext se
tion we assess the performan
e of the evolved agents at these �nal generations by4



0 5000 10000 15000 20000 25000 30000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generation

F
itn

es
s

max

mean

std

Figure 2: A typi
al evolutionary run: maximum, mean and standard deviation of �tnessin a population plotted over 30000 generations of an evolutionary run. Values are plottedevery 100 generations. Note that the �tness here is evaluated over a single epo
h for ea
hagent and the mean is the average of the �tness in the population (100 agents). Due to thebig variety of possible environments the measured �tness is quite noisy. Throughout thepaper, we assess the a

urate �tness of an agent by averaging over 5000 epo
hs.
omparing them to ben
hmarks. For more details of the model and evolutionary dynami
ssee Appendix 1.3 Agents' Performan
eIn the framework des
ribed above ANN-
ontrolled agents were evolved. We studied twotypes of agents: An SP-type agent possessing both a somatosensor and a position sensor,and an S-type agent possessing a somatosensor only (i.e. no positional 
ues available).These two types of agents were evolved in one of two possible environments. One in whi
hthe food zone borders were marked, and one in whi
h they were not. These 
onditionsde�ne the four di�erent models studied (see Figure 3).In order to evaluate the performan
e of the evolved agents, we used two ben
hmarks.First, we 
ompared their performan
e to the best memoryless algorithm designed by us toperform the same task. The basi
 idea behind all the designed algorithms we used was thesame, and 
an be sket
hed as follows: \When rea
hing a resour
e { eat it if and only if it'sa food item. Unless you 'believe' you are inside the food zone, try to navigate into it, and5
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Figure 3: Comparison between ben
hmark performan
e and that a
hieved by evolved agentson the four models studied. S = somatosensor, SP = somato+position sensor. M = markedfood zone, U = unmarked food zone. Fitness is averaged over 5000 epo
hs { the standarddeviation is less than 0.5% of the �tness (< �0:003).ignore all resour
es on your sides. If you 'believe' you are inside the food zone, swit
h to aneÆ
ient grazing mode, and try not to leave the food zone...". This basi
 idea translates intodi�erent instru
tions, a

ording to the available sensory input. Appendix 3 des
ribes one ofthese algorithms in more detail. As a se
ond performan
e ben
hmark we solved the sametasks using Reinfor
ement Learning (RL) te
hniques, using an �-greedy SARSA algorithm[Sutton, 1996; Sutton and Barto, 1998℄ and training for up to ten million iterations.Figure 3 summarizes the performan
e levels a
hieved by the above ben
hmarks, andthose attained by the best evolved agents, for ea
h of the four models studied. The �t-ness was averaged over 5000 epo
hs to a
hieve an a

urate measure. (All �tness measuresthroughout the paper are averages of 5000 epo
hs, resulting in a vanishing standard de-viation (less than 0.003)). As is evident, the evolved agents do well 
ompared with theben
hmarks in all possible s
enarios. Sin
e both ben
hmarks use no memory, a mu
h highers
ore a
hieved by an agent indi
ated that it is employing some kind of memory. Indeed,as shall be seen below, the superior performan
e of evolved agents in models devoid of aposition sensor is due to the development of memory under these s
enarios.6



4 Exploration vs. Grazing: The Emergen
e of CommandNeuronsAs a �rst step in the analysis, we investigated the emergent behaviour. We found thatfor both types of agents the most su

essful strategy relied upon a swit
h between twobehavioural modes { exploration and grazing. The exploration mode 
onsists of moving instraight lines, ignoring resour
es in the sensory �eld whi
h are not dire
tly under or in frontof the agent, and turning at walls. When food zone borders are marked agents operating inexploration mode 
ross them. The grazing mode, on the other hand, 
onsists of turning toresour
es to the right or left in order to examine them, turning both at walls and at foodzone border markings, and maintaining the agent's lo
ation on the grid in a relatively small,restri
ted region. In both modes when stepping on a food item eating o

urs. Explorationmode is mostly observed when the agent is out of the food zone, allowing it to explorethe environment and �nd the food zone. Inside the food zone, however, the agents almostalways display grazing behaviour, whi
h results in eÆ
ient 
onsumption of food.To 
hara
terize the agent's mode in a quantitative manner, we de�ned behaviouralmeasures (see Appendix 2). Using these measures and systemati
ally 
lamping the a
tivityof neurons in the network we identi�ed a 
ommon stru
ture in su

essful agents wherebythe mode swit
h was always mediated by a 
entral \
ommand neuron". The a
tivity modeof this 
ommand neuron determines the agent's behavioural mode. Clamping the a
tivityof the 
ommand neuron, 
onstantly maintaining an a
tive or a quies
ent state, reliablyprodu
es exploration or grazing modes respe
tively, regardless of the a
tual lo
ation of theagent in the environment.As will be seen, although the fun
tional role of the 
ommand neuron is nearly identi
alin all models studied, the 
omputational basis underlying its a
tivity is quite di�erent. Thedynami
al properties of the 
ommand neuron depend on the type of sensors mounted onthe agent and not on whether food zone markings exist. Hen
e, from this point on, weshall 
on
entrate on the S vs. SP-type agents, without making the distin
tion between themarked (M) and unmarked (U) 
ases in ea
h.7



5 Lo
ation-driven Command Neurons: The SP model.Examining the networks of su

essful agents equipped with a position sensor reveals animportant 
ommon feature: Certain interneurons have a position-sensitive response. Oneof these neurons typi
ally �res outside the food zone and remains quies
ent inside the foodzone and in its 
lose vi
inity. Figure 4 depi
ts the mean a
tivity of su
h a neuron as afun
tion of the agent's lo
ation. The 
enter sub-�gure 
orresponds to the mean a
tivity ofthe position-sensitive neuron in ea
h grid 
ell, averaged over 5000 epo
hs. As is evident, itsa
tivity 
orresponds to the lo
ation of the food zone { a
tive outside and ina
tive inside.Clamping this \position-sensitive 
ell" and measuring the behavioural mode of the agent,reveals that it a
ts as a 
ommand neuron. When this 
ommand neuron is a
tive the agentassumes an exploration behaviour, regardless of where it is in the environment, whereas
lamping it to a silent state results in grazing behaviour. Thus, the pla
e-dependent a
tivitymap of the 
ommand neuron serves as an a

urate predi
tor of the agent's behaviour; wherethe map values are low the agent will graze, whereas where they are high it will explore.Su
h pla
e-driven 
ommand neurons were found 
onsistently in agents evolved withsomato and position sensors. The 
omputational basis for these neurons' a
tivity is theabsolute position of the agent in the environment, and is not in
uen
ed by the existen
eor lo
ation of resour
es in the arena. Shifting the food zone to a new lo
ation (adja
ent tothe middle of the northern wall), produ
es no 
hange in the a
tivity map of the 
ommandneuron, and thus no 
hange in the behaviour of the agent relative to its lo
ation (see Figure5 [1b℄ vs. [1a℄). This obviously leads to a near-zero performan
e level sin
e the 
ommandedbehavioural mode is no longer adequate. Given the dire
t sensory information about thelo
ation in the environment, the existen
e of a \position-sensitive 
ell" in these agents isnot very surprising. It is the emerging \
ommand neuron" fun
tion of these neurons whi
his interesting.Further investigation of the a
tivity of pla
e-sensitive 
ommand neurons revealed thatthey are also orientation sele
tive. The surrounding sub-�gures in Figure 4 depi
t the meana
tivities when the agent was fa
ing a given orientation. As is evident, when fa
ing east or8



north, the area where the 
ommand neuron is ina
tive (
orresponding to grazing mode) is'smeared' to the east or north respe
tively, 
ompared to the opposite orientations. The graz-ing mode is thus maintained further out of the food zone when the agent is fa
ing outward,in
reasing the 
han
e to turn ba
k and return to the food zone after a

identally leaving it,and in turn in
reasing these agents' �tness s
ores 
ompared with agents 
ontrolled by a non-orientation-sele
tive programmed algorithm (see the pertaining performan
e 
omparison inFigure 3). Fa
ing north
Fa
ing west Fa
ing east

Fa
ing southFigure 4: Lo
ation- and Orientation-sele
tivity of 
ommand neuron a
tivity in an agent withsomato+position sensor. The 
enter sub-�gure shows average 
ommand neuron a
tivityover 5000 epo
hs. The peripheral sub-�gures show average a
tivity when the agent is fa
inga given orientation. Darker means higher average a
tivity. White grid 
ells near walls
orrespond to lo
ations the agent never visited with the given orientation. The thi
k linemarks the border of the food zone (not seen by the agent in this s
enario). The \smearing"of grazing a
tivity towards north and east when fa
ing these dire
tions helps the agent toreturn to the food zone after a

identally leaving it.
9



6 Memory-driven Command Neurons: The S model.6.1 A
tivity Maps of the Command NeuronDue to the purely lo
al sensory information and the la
k of any positional 
ue in the Smodel, it is diÆ
ult to adopt a strategy that grazes eÆ
iently inside the food zone andyet explores the environment qui
kly enough to rea
h the food zone within a reasonabletime. The two atomi
 strategies { always moving in straight lines or always examining everyresour
e in the sensory �eld { both yield near-zero performan
e.Similar to the previous SP 
ase we have identi�ed in every network 
ontrolling a su
-
essful agent at least one neuron whose a
tivity was pla
e-dependent. Figure 5 [2a℄ depi
tsthe a
tivity map of su
h a neuron, demonstrating that it is quies
ent when the agent isinside the food zone and in
reases its a
tivity the further the agent is from the food zone.Again, this neuron takes the role of a 
ommand neuron, i.e. when it is a
tive the agentmanifests exploratory behaviour, whereas when it is quies
ent the agent swit
hes to grazingmode. In 
ontrast to the SP-agents, shifting the food zone from its original lo
ation to anew lo
ation (Figure 5[2b℄) 
auses no malfun
tion, as the sele
tive a
tivity pattern shiftsa

ordingly.Sin
e the agents in the S-model re
eived no expli
it sensory 
ues regarding their lo
ation,the intriguing question is what 
onstitutes the 
omputational basis for the pla
e-dependenta
tivity of the 
ommand neuron. The observed behaviour led us to hypothesize that thesu

essful agents utilize short-term memory, maintaining grazing mode for several time-steps after eating. This hypothesis was supported by the performan
e level of these agents,whi
h a
tually surpassed both kinds of memory-less ben
hmarks for the same task (seeFigure 3).6.2 Command Neuron A
tivity Pro�lesWe now turn to study the dynami
s of the S-type memory neuron in detail. To this end,we tra
ed the average a
tivity of the memory 
ommand neuron as a fun
tion of the elapsedtime sin
e the last eating episode (Figure 7, solid line, with 250 poison items). As isevident, the a
tivity of the 
ommand neuron undergoes sharp inhibition immediately after10



[1a℄ [1b℄ [1
℄
SP

[2a℄ [2b℄ [2
℄
S

Figure 5: Lo
ation-dependent a
tivity maps of the 
ommand neurons. Darker means higheraverage a
tivity. Average is taken over 2000 epo
hs. Somato+Pos Sensor (SP model):[1a℄ Baseline 
ondition, [1b℄ Shifted food zone [1
℄ Two food zones. Somatosensor (Smodel): [2a℄ Baseline 
ondition, [2b℄ Shifted food zone [2
℄ Two food zones. In all 
asesagent populations were evolved in environments with one food zone at the south-western
orner (baseline 
ondition). Thi
k lines depi
t the food zone borders (the agents presentedhere were evolved in worlds with no food zone border markings, whi
h were added here for
larity of exposition only).eating, its probability of �ring gradually in
reasing thereafter. Thus, the 
ommand neuron\remembers" the number of steps elapsed sin
e the agent has last 
onsumed a food item;its a
tivity re
e
ts a sto
hasti
 short-term memory me
hanism.Figure 6 presents a raster plot of the a
tivity of a sto
hasti
 memory 
ommand neuron,with the small triangles indi
ating the times of feeding events. The baseline �ring stateof the neuron is fully a
tive (i.e., 
ommanding exploration mode) 1, and it is inhibitedfollowing feeding. The post-eating quies
en
e periods vary in duration. Thus, the emergingdynami
s of the neuron is sustained a
tivity, interrupted by periods of ina
tivity triggeredby the feeding events. This behaviourally translates into sustained exploration interruptedby grazing periods of varying durations whi
h are triggered by feeding. From the agent's1At the beginning of ea
h epo
h the network is reset to an ina
tive state, resulting in the few steps ofquies
en
e initiating ea
h epo
h. 11



perspe
tive this is likely to 
onstitute an optimal strategy: As long as the agent frequentlyen
ounters food it \knows" it is in a food zone and remains in grazing mode. However,if food is not en
ountered for a prolonged period, the agent swit
hes to exploration modeto sear
h ba
k for the food zone. The robustness of this strategy 
an be demonstratedby distributing the food in two designated zones in the arena. Figure 5[2
℄ shows theresulting a
tivity map, with the two zones 
learly evident. This map 
orre
tly predi
ts theadequate behaviour of the agent. Indeed, S-type agents that evolved a memory me
hanismin environments with one food zone but were evaluated in arenas with two zones, behavedadequately: Exploring the environment they rea
hed one food zone, grazed there and aftera while swit
hed to exploration (sin
e the food density de
reased), rea
hed the other foodzone, and again swit
hed to grazing mode. This is in sharp 
ontrast to the 
ase of the SP-type agents whi
h rely on absolute lo
ation, whose behaviour was 
ompletely inadequate,grazing only in the south-west 
orner (Figure 5[1
℄).
20 40 60 80 100 120 140

20 40 60 80 100 120 140

20 40 60 80 100 120 140
stepFigure 6: A
tivity of a sto
hasti
 memory 
ommand neuron: A raster plot of 3 di�erentepo
hs. Verti
al bars mark steps where the neuron �red. The small triangles above themmark feeding events.The sto
hasti
 nature of su
h a memory me
hanism whi
h emerges in a binary neuralnetwork with deterministi
 dynami
s 
an be a

ounted for by the random distribution of12
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tivity pro�les of a sto
hasti
 memory 
ommand neuron: The average a
tivitylevel is portrayed as a fun
tion of the time elapsed sin
e last eating episode. The agent wasevolved with 250 poison items in the environment (solid line), but its a
tivity is measuredunder various poison 
on
entrations over 1500 distin
t epo
hs.resour
es in the arena, as well as the random 
omponent of input from the somatosensor.Indeed, we found that the a
tivation of the memory neuron strongly depends on the poisondistribution in the arena (Figure 7). For poison distributions deviating from the one theagents were evolved with, the a
tivation as a fun
tion of elapsed time plot is perturbed. Forhigher poison 
on
entration this merely 
hanges the memory-span, whereas for lower 
on-
entrations it a
tually distorts the shape of the plot, eventually making it non-monotonous,and thus a poor 
orrelate of the elapsed time. In the absent poison 
ase this results in a10% de
rease in the performan
e of the agents. This is an interesting example of the wayin whi
h evolution harnesses harmful features of the environment: A high 
on
entration ofpoison in the environment would seem like a burdening feature, the elimination of whi
hshould in
rease performan
e. However, the sto
hasti
 memory me
hanism takes advan-tage of exa
tly this feature. As will be shown below, it �nely tunes itself to near-optimalperforman
e for the given \e
ologi
al ni
he" in whi
h the agents evolved.

13



6.3 The Underlying Sto
hasti
 MemoryExamining the input �eld (post synapti
 potential) of the sto
hasti
 memory neuron ex
lud-ing the input from itself revealed that its �ring threshold is around one standard deviationabove the �eld's mean. Given that the input �eld is noisy, a transition of the memoryneuron from a quies
ent state to �ring will o

ur spontaneously. The synapse from thememory neuron to itself is strong enough to keep it above threshold on
e a
tive, whereasan eating event indu
es a strong inhibition whi
h shunts its a
tivity. This 
orresponds wellto the observed a
tivity pro�les des
ribed above.To investigate the spontaneous return to an a
tive state, we plotted the distributionof the post-eating quies
ent period durations (see Figure 8[a℄). After a refra
tory periodthat lasts one time-step, the length of the quies
en
e period (behaviourally 
ommandinga grazing mode) 
an be roughly approximated to a �rst order by a 
ontinuous exponen-tial distribution fun
tion. Thus, a �rst approximation for the underlying dynami
s of thememory 
ommand neuron is a one-parameter geometri
 distribution model spe
ifying theprobability to resume �ring at any quies
ent step. This approximation assumes that theprobability to resume �ring is 
onstant and does not depend on the sensory input in thestep. However, further inspe
tion reveals that the probability to resume �ring does dependon the sensory input. Spe
i�
ally, it is mu
h higher near walls than in other pla
es in thearena.Therefore, to better assess the adaptation of the emerging memory me
hanism to thebehavioural task, we used a two-parameter sto
hasti
 model. A

ording to this model,the normal state of the memory neuron is a
tive, and it is shunted right after eating withprobability one (whereas the probability to swit
h from a
tivity to ina
tivity otherwiseis zero). The probability to swit
h ba
k from ina
tive to a
tive state depends on twoparameters: it is p if the agent senses a wall, and q otherwise 2. This two parameter modelwas then used to determine the �ring state of the 
ommand neuron at every step. Note thatthis is not an algorithmi
 ben
hmark. The model is \mounted" on an evolved S-type agent,2It is straightforward to envisage a neural me
hanism realizing su
h a two-parameter model, utilizing twodi�erent �eld distributions. 14



whose 
ommand neuron's a
tivity is determined by the values predi
ted by the model, whilethe rest of the network's a
tivity is updated naturally.[a℄ [b℄
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Figure 8: Sto
hasti
 Behaviour of the Command Neuron [a℄ The distribution of the 
om-mand neuron's quies
ent period durations. The solid line 
orresponds to an exponentialdistribution with � = 0:26 (shifted by one time-step for the refra
tory period), 
orrespond-ing to a mean memory maintenan
e of 4.85 time-steps 
ompared with 4.74 observed exper-imentally. [b℄ A two-parameter sto
hasti
 model of the a
tivity of the sto
hasti
 memory
ommand neuron in the basi
 S model. The surfa
e depi
ts the �tness attained for di�erentvalues of p and q. The best �tness obtained using the model was 0.39 (p = 0:8 and q = 0:1(lower 
ir
le)). The best evolved agent s
ored 0.42, with p = 0:51 and q = 0:08 (higher
ir
le, the line pointing to the �tness obtained using the same parameters in the \mounted"model). The diagonal p = q 
orresponds to the �rst-order approximation, stating that theprobability to resume �ring is a 
onstant.The �tness values obtained by running agents whose 
ommand neuron's a
tivity wasdriven by this two-parameter sto
hasti
 model with p; q values ranging between 0 and 1 areshown in Figure 8[b℄. The a
tual parameter values obtained by the evolutionary pro
ess lieon the high ridge of the �tness surfa
e. The best evolved agents however still obtained ahigher �tness (line 
onne
ted 
ir
le, 0.42) than that of the two-parameter mounted modelagents (un
onne
ted 
ir
le, 0.39). This 
an be explained by the fa
t that the two-parametermodel 
aptures the essential dynami
s of the memory-driven 
ommand neuron, yet negle
ts
ertain variations in the probability to swit
h between �ring states, whi
h enhan
e the15



performan
e.7 Neural Network Stru
ture of An S-type AgentAlthough su

essful neuro-
ontrollers of di�erent agents share the 
ommand neuron me
h-anism, they di�er in their stru
ture and in some aspe
ts of their fun
tion. To demonstratethe evolving network's stru
tures we fo
us here on one of the evolved S-type agents whi
hhas a remarkably simple yet very su

essful network. Clamping the 
ommand neuron to itsaverage a
tivity has a marked e�e
t on this agent's behaviour (Figure 9), while 
lampingall the other interneurons to their average a
tivity values results in no signi�
ant de
reasein the agent's �tness. The interneurons in this parti
ular agent merely set the bias of otherneurons, and the network 
an thus be redu
ed to the one depi
ted in Figure 10 (top).
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CNFigure 9: Fitness de
rease after sele
tive 
lamping of interneurons: Ea
h interneuron was
lamped in turn to its average a
tivity value, and the �tness of the agent measured. Thede
rease in the �tness is plotted for ea
h interneuron. Only one interneuron, the 
ommandneuron (CN), signi�
antly e�e
ts the �tness when 
lamped alone. Fitness was averagedover 5000 epo
hs, standard deviation is less than 0.5% of the �tness.The �ring state of the 
ommand neuron, whose dynami
s has been explained earlier,triggers a swit
h between two distin
t input-output networks 
ontrolling exploration vs.grazing (Figure 10 (bottom)). These two basi
 sub-networks reside in the same network.They are modulated by the memory-based 
ommand neuron, whi
h when a
tive adds itsset of weights to the network's 
onne
tivity matrix. It should be noted that the ability to16
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Figure 10: An S-type neuro-
ontroller: W
n is the weight ve
tor from the 
ommand neuron(CN) to the output neurons. Win is the weight matrix from the input to the output neurons.Wout are the re
urrent 
onne
tions within the output layer. The rest of the neurons 
anbe redu
ed to a single neuron serving as a bias input to the 
ommand neuron and theneurons of the output layer. When in Grazing mode, the a
tivity of the CN is 0, and theresulting network is the one depi
ted on the left. In exploration mode its a
tivity is 1, andthe equivalent network is the one on the right.dis
riminate between food and poison remains inta
t with any manipulation of interneurons'a
tivities. This basi
 ability relies on dire
t 
onne
tions between the input and output layers,and indeed evolves at the �rst stages of the evolutionary pro
ess.8 Dis
ussionThis paper presents a novel attempt to perform an in-depth analysis of stru
ture-to-fun
tionrelations in evolved neuro-
ontrollers for autonomous agents. To this end, we analyzed the
ontrol me
hanisms evolving in autonomous agents performing a simple foraging task andgoverned by a re
urrent ANN, without any prede�ned network ar
hite
ture. In order tosu

eed in their behavioural task, the agents developed a me
hanism for swit
hing betweentwo distin
t types of behaviours { grazing and exploration. In all four experimental s
enariosexamined, the evolved agents managed to 
losely mat
h the best memoryless algorithms for17



the task, and in 
ases 
hara
terized by limited sensory input surpassed them by far. Thiswas a
hieved with 
ompletely un
onstrained network ar
hite
tures.We dis
ussed in detail two types of evolved agents, di�ering in the sensory input availableto them. In both 
ases, a similar me
hanism has evolved, whereby a \
ommand neuron"modulates the dynami
s of the whole network and swit
hes between grazing and explorationbehaviours. In the 
ase where the agents had no sensory position information a memoryme
hanism emerged, whi
h then be
ame the basis for the pla
e-sensitivity of the 
ommandneuron. Using a two-parameter sto
hasti
 model for the memory me
hanism we demon-strated that evolution �ne-tuned this me
hanism towards near-optimal parameters, usingthe inherent environmental noise and taking advantage of features of the environment thatare a-priori harmful, su
h as the distribution of poison in the arena. An analysis of theneuro-
ontroller of a simple S-type agent demonstrates that the 
ommand neuron essen-tially swit
hes the dynami
s between two basi
 input-output networks residing within thesame network. Other networks 
ontrolling su

essful agents may be far more 
omplex. It isthe subje
t of further studies to fully understand all aspe
ts of their stru
ture and fun
tion,and will demand the utilization of more advan
ed analyti
al methods.Several studies have previously dealt with the analysis of evolved neuro
ontrollers. [Can-gelosi, Parisi and Nol�, 1994℄ des
ribe agents 
oping with a foraging task that demandsnavigation into areas with food and water respe
tively a

ording to an externally-governedmotivational state. They demonstrate the emergen
e of two distin
t neural pathways fordealing with the two states. The ar
hite
ture of the neuro
ontrollers they developed is
onstrained to be purely feed-forward, and their primary analysis method is re
eptive-�eldanalysis. In a series of works, Beer et al. use dynami
al systems approa
h to analyze
ontinuous-time re
urrent neuro
ontrollers. [Beer, 1997; Chiel, Beer and Gallagher, 1999;Beer, Chiel and Gallagher, 1999℄ deal with the evolution of small Pattern Generators (PGs)
onsisting of 3-5 neurons with re
urrent 
onne
tivity. Similar to our analysis, the sensoryinput available during evolution is shown to a�e
t the type of the evolving 
ontrol me
ha-nism. [Gallagher and Beer, 1999℄ evolves a 22-neuron symmetri
 feed-forward ar
hite
turefor 
oping with a visually-guided walking task, and used sele
tive lesioning to identify the18



role of single neurons in the resulting 
ontrollers. The work presented in the 
urrent paperfollows similar lines, extending previous work by using un
onstrained ar
hite
tures in the
ontext of a non-trivial task requiring more than a purely rea
tive behaviour. The resultingstru
tures are relevant to the understanding of an important biologi
al neural ar
hetype -that of a Command Neuron.The idea of Command Neurons, i.e. single neurons whose a
tivity 
ommands a high levelbehavioural pattern, was �rst suggested some �fty years ago. Sin
e then their existen
e wasveri�ed in a number of animal models, in
luding 
ray�sh [Edwards, Heitler and Krasne,1999℄, Aplysia [Xin, Weiss and Kupfermann, 1996a; Xin, Weiss and Kupfermann, 1996b;Gamkrelidze, Laurienti and Blankenship, 1995; Nagahama, Weiss and Kupfermann, 1994;Teyke, Weiss and Kupfermann, 1990℄, Clione [Pan
hin, Arshavsky, Deliagina, Orlovsky,Popova and Selverston, 1996℄, 
rabs [Norris, Coleman and Nusbaum, 1994; DiCaprio, 1990℄and lobsters [Combes, Meyrand and Simmers, 1999℄. Command neuron a
tivity has beenshown to 
ontrol a variety of motor repertoires. It has been demonstrated that in some 
asesbehaviour is modulated by the 
ommand neurons on the basis of 
ertain sensory stimuli[Xin, Weiss and Kupfermann, 1996b℄, and in parti
ular by food arousal [Nagahama, Weissand Kupfermann, 1994; Teyke, Weiss and Kupfermann, 1990℄. Moreover, 
ommand neuronshave been shown to indu
e di�erent a
tivity patterns in the same neural stru
tures by mod-ulating the a
tivity of other neurons in a pattern-generating network [Combes, Meyrandand Simmers, 1999; DiCaprio, 1990℄. One of the me
hanisms by whi
h 
ommand neu-rons a
t on other neurons is by modulating their ex
itability [DiCaprio, 1990℄, similar tothe me
hanism emerging in our simulations. The resemblan
e between these �ndings andthe emerging properties of networks in the simulations we des
ribed is noteworthy. Nev-ertheless, biologi
al reality is mu
h ri
her. For example, 
hemi
al neuro-modulation playsan important role in the 
ommand neuron a
tivity [Brisson and Simmers, 1998; Pan
hin,Arshavsky, Deliagina, Orlovsky, Popova and Selverston, 1996℄, while totally absent fromour model. Another example is the �nding of Command Systems 
omprising several 
om-mand neurons that a
t in 
oordination to 
ontrol a varied behavioural repertoire [Combes,Meyrand and Simmers, 1999; Edwards, Heitler and Krasne, 1999; Gamkrelidze, Laurienti19



and Blankenship, 1995℄.The 
urrent model, although simple, gives a 
omputational insight into 
ommand neu-ron me
hanisms. It shows for the �rst time a 
on
rete model in whi
h a single 
ommandneuron 
an swit
h the dynami
s of a small neural network between two markedly di�erentbehavioural modes. This is a
hieved by dynami
ally setting the biases of other neuronsin the network, thus e�e
tively multiplexing two networks within the same set of neurons.We demonstrate that this stru
ture does not have to be hand-
rafted - it evolves sponta-neously in a variety of s
enarios, proving to be a robust 
omputational me
hanism. The
hara
terization of the set of tasks that 
an be solved by su
h multiplexed networks stillawaits further study. However, it is interesting to know that su
h non-trivial tasks indeedexist, that multiplexed networks solving them 
an be evolved and moreover that they 
anbe su

essfully identi�ed.The results presented in this paper were obtained using the 
rudest form of geneti
 en-
oding { dire
t spe
i�
ation of all the synapti
 weights in the genome. This bears a limitinge�e
t on the s
alability and speed of the evolutionary pro
ess. With the appli
ation ofmore sophisti
ated geneti
 en
oding s
hemes, su
h as grammati
al or ontogeni
 en
odings[Kitano, 1990; Cangelosi, Parisi and Nol�, 1994℄, and of more eÆ
ient sele
tion pro
eduressu
h as in
remental evolution [Gomez and Miikkulainen, 1997℄, one may expe
t the evo-lution of larger re
urrent EANNs, pro
essing more 
omplex sensory input to a
hieve moreintelligent behaviours. Adding learning as an additional adaptive for
e 
an enhan
e theeÆ
ien
y of the evolutionary pro
ess (see [Hinton and Nowlan, 1987; A
kley and Littman,1991; Nol�, Elman and Parisi, 1994℄) and may be needed for the stru
tural �ne-tuning oflarge evolved networks.The similarity to known neural me
hanisms that was a
hieved even under the 
ur-rent basi
 and almost toy-like te
hniques leads us to believe that on
e better s
alability isa
hieved, EANNs may provide an ex
ellent vehi
le to study the fundamental problem ofstru
ture and fun
tion relation in nervous systems. The a

essibility of su
h EANN modelsto thorough analysis should make them important means of investigation in the tool-
hestof 
omputational neuros
ientists. 20
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Appendix 1: Detailed Model Des
riptionThe Simulation SystemA 
exible simulation system was used to build a variety of evolutionary models in
orporat-ing autonomous agents a
ting in a life-like environment. The 
ore system de�nes the basi
notions of an agent, a simulation world in whi
h several agents 
an 
oexist, and the simu-lation universe (in whi
h several simulation worlds 
an 
oexist). It is implemented in C++and runs on the Linux operating system. The spe
ialized implementation in C++ allows forintensive optimization, resulting in running times of about 4 hours for 10,000 generations of100 agents performing the task des
ribed above. Around the 
ore system parti
ular modelsare built. Ea
h model de�nes the spe
i�
 properties of simulation worlds and agents. Atthe level of the simulation world, this in
ludes the geometry, appearan
e, and availability ofdi�erent resour
es. At the level of the agent, it in
ludes its sensory 
apabilities, its motor
apabilities and the nature of the 
ontrol me
hanism mediating between the sensory inputand motor output. Currently, the evolutionary pro
ess only a�e
ts the neural network 
on-trol me
hanism. A parti
ular model also de�nes the spe
i�
 geneti
 methods used in thesimulation - whether it uses sexual or a-sexual breeding, the variational operators and thesele
tion methods.The Environment and the Behavioural TaskThe agents all operate in a grid arena of size 30x30 with two kinds of resour
es. Oneresour
e, de�ned as \poison" (i.e. 
ausing a negative reward), is randomly s
attered allover the arena. A se
ond, \food" resour
e bringing positive reward is randomly s
atteredin a restri
ted food zone lo
ation in the environment. In most experiments, the food zonewas of size 10x10 and was lo
ated at the south-west 
orner of the arena. In some of themodels studied the boundaries of the food zone were marked, enabling the agents to sensethem, while in other models this marker was absent. A life 
y
le of an agent (an epo
h)lasts 150 time steps, in whi
h one motor a
tion takes pla
e. At the beginning of an epo
hthe agent is introdu
ed to the environment at a random lo
ation and orientation.In ea
h generation a population of 100 agents is evaluated. Ea
h agent is evaluated in25



it's own environment, whi
h is earlier initialized with 250 poison items and 30 food items.At the end of its life-
y
le ea
h agent re
eives a �tness s
ore 
al
ulated as the total amountof food it has 
onsumed minus the total amount of poison it has eaten divided by 30, thenumber of distributed food items. Thus the �tness ranges between -2.5 (eating the maximalnumber of poison items possible within the 150 steps of an epo
h) and 1 (
onsuming all thedistributed food items).The Controlling Network: Stru
ture and Dynami
sEa
h agent is 
ontrolled by a neural network 
onsisting of 15 to 50 neurons (the number was�xed within a given simulation run). Out of these, Kin neurons (5 or 7) are dedi
ated sensoryneurons, whose values are 
lamped to the sensory input. Four neurons are designatedas output neurons 
ommanding the motor system. The network is 
omposed of binaryM
Cullo
h-Pitts neurons whi
h are fully 
onne
ted, with the ex
eption of the non-binarysensory neurons whi
h have no input from other neurons. Network updating is syn
hronous.In every step a sensory reading o

urs, network a
tivity is then updated, and a motor a
tionis taken a

ording to the resulting a
tivity in the designated output neurons.The Sensory SystemEa
h agent is equipped with a basi
 sensor we termed somatosensor, 
onsisting of �veprobes, to ea
h of whi
h a sensory neuron is asso
iated. Four probes sense the grid 
ell theagent is lo
ated in and the three grid 
ells ahead of it (see Figure 1). These probes 
an sensethe di�eren
e between an empty 
ell, a 
ell 
ontaining a resour
e (either poison or food {with no distin
tion between those two 
ases), an arena boundary and food zone boundary.The �fth probe 
an be thought of as a smell probe,3 returning -1 or +1 if the agent is
urrently in a grid 
ell where there is poison or food respe
tively, and -1 or +1 randomlyotherwise. Thus, the agent has to integrate the input from two sensors in order to identifythe presen
e of food or poison. In addition, in some models the agents were equipped witha position sensor, 
onsisting of two sensors, giving the agent's absolute 
oordinates in thearena, where the origin is taken as the south-western 
orner. The agent has no information3The term somatosensor is ina

urate due to the smell sensor, but we shall use it for brevity of notation.26



about its orientation.The Motor SystemThe motor system of an agent 
onsists of four motors, re
eiving binary 
ommands from thefour output neurons. The �rst motor indu
es forward movement when a
tivated. Two othermotors 
ontrol right and left turns, indu
ing a 90 degrees turn in the respe
tive dire
tionwhen only one of them is a
tivated, and maintaining the 
urrent orientation otherwise.The fourth motor 
ontrols eating, 
onsuming whatever resour
e is available in the 
urrentlo
ation when a
tivated. For eating to a
tually take pla
e, however, there has to be noother movement (forward step and/or turn) in the same time step. This both enfor
essimple motor integration, and makes any attempt to eat a 
ostly pro
edure.Evolutionary Dynami
sEa
h agent is equipped with a 
hromosome de�ning the stru
ture of its N-neurons 
ontrol-ling EANN, 
onsisting of N(N �Kin) real numbers spe
ifying the synapti
 weights. At theend of a generation a phase of sexual reprodu
tion takes pla
e, in whi
h 
hromosomes are
rossed over and then mutated to obtain the agents of the next generation. There are 50 re-produ
tion events ea
h generation. In ea
h of them two agents from the parents populationare randomly sele
ted with probability proportional to their �tness.We used uniform point-
rossover with probability 0.35, after whi
h point mutations wererandomly applied to two per
ent of the lo
ations in the genome. These mutations 
hangedthe pertaining synapti
 weights by a random value between -0.6 and +0.6. Simulationslasted a pre-de�ned number of generations, ranging between 10000 and 30000. In the lastgeneration, every agent was evaluated during 5000 epo
hs, on a variety of initial 
onditions,to a

urately measure its �tness.
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Appendix 2: Behavioural Indi
es of Exploration and GrazingTo quantify the behaviour of the agents we used the following indi
es:1. Time it takes the agent to rea
h the food zone for the �rst time in an epo
h. Thisindex should be short for exploration mode and long for grazing mode.2. Time it takes the agent to return to the food zone on
e it leaves it. This should beshort for grazing mode and long for the exploration mode.3. Per
entage of turns to resour
es: Out of all steps in whi
h there is a resour
e lo
atedon either side of the sensory �eld, we measure the per
entage of steps in whi
h theagent turned to inspe
t the resour
e. This should be high for grazing mode, and lowfor exploration mode.4. Per
entage of turning steps out of all steps in the epo
h. Exploration mode 
onsistsof moving in straight lines, and thus this measure is low for exploration mode, andhigh for grazing mode.5. Extent of arena 
overage. In exploration mode, the main goal is to 
over distan
es,but not to waste time on densely 
overing the explored areas. In grazing mode, on theother hand, the sear
hed area should be small but it should be thoroughly 
overed. Inorder to measure this, we 
al
ulated two numbers. First, the per
entage of arena 
ellsvisited (out of the total number of 
ells). Se
ond, the area of the minimal re
tangleen
apsulating all the 
ells visited, divided by the total area of the arena. The index isthe ratio of these two numbers. A high value signals grazing mode (i.e., high 
overage),whereas a low one testi�es to exploration mode.Table 1 depi
ts the values of these indi
es in two su

essful agents, one of the S-type andone of the SP-type. Note the e�e
ts of 
lamping the 
ommand neuron: When it is 
lampedto an a
tive state, in both agents the indi
es of exploration are high, while 
lamping to asilent state indu
es grazing behaviour. Also note that in the 
ontrol state (no 
lamping) thebehavioural mode is usually adequate, e.g �nding the food zone under 
ontrol 
onditionstakes the same time as under a 
lamped-to-exploration mode, et
.28



S-typeTime to rea
h Return time % turn to % turn in Arenafood zone to food zone resour
e general 
overageControl 55.7(�0:85) 24.2(�0:56) 22.5 (�0:11) 17.3(�0:06) 0.22(�0:003)Command neuron
lamped to a
tivestate (exploration) 53.5(�0:84) 93.7(�0:39) 17.1(�0:08) 16.1(�0:06) 0.16(�0:0002)Command neuron
lamped to silentstate (grazing) 113.8(�1:32) 15.2(�0:3) 30.1(�0:18) 20.7(�0:12) 0.53(�0:005)SP-typeTime to rea
h Return time % turn to % turn in Arenafood zone to food zone resour
e general 
overageControl 45.4(�0:68) 13.5(�0:38) 23(�0:19) 16.3(�0:14) 0.3(�0:005)Command neuron
lamped to a
tivestate (exploration) 44(�0:66) 53.5(�0:36) 4.9(�0:05) 5.7(�0:03) 0.21(�0:002)Command neuron
lamped to silentstate (grazing) 105.2(�1:37) 12.5(�0:3) 37.7(�0:3) 25.6(�0:28) 0.63(�0:009)Table 1: Behavioural mode indi
es: For ea
h of the agents we measured the �ve indi
es underthree 
onditions: 
ontrol (i.e. normal 
onditions with no 
lamping), the 
ommand neuron
lamped to a 
onstant a
tive state, and to a 
onstant silent state. Results are averages over2000 epo
hs. The standard deviation of these averages is given in parenthesis.
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Appendix 3: Ben
hmark Algorithm for the SP-modelThe following is the algorithm in pseudo-
ode.if(stepping on food) eatelseif(in front of wall)if(x>y and ~infoodzone) turn rightelse turn leftelse if(in front of foodzone marking)if(infoodzone) turn leftelse move fwdelse if(sense resour
e in front-left grid)if(infoodzone) move fwd and turn leftelse move fwdelse if(sense resour
e in front-right grid)if(infoodzone) move fwd and turn rightelse move fwdelsemove fwdUsing the input from the position sensor the algorithm determines if the agent is in thefood zone and takes the appropriate motor a
tion. Loosening the \infoodzone" 
ondition,i.e. a
ting in a grazing mode when the agent is within a 
ertain range around the food zone,does not improve the performan
e of the algorithm.
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