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Abstract This article investigates the evolution of autonomous
agents that perform a memory-dependent counting task. Two types of
neurocontrollers are evolved: networks of McCulloch-Pitts neurons,
and spiking integrate-and-fire networks. The results demonstrate the
superiority of the spiky model in evolutionary success and network
simplicity. The combination of spiking dynamics with incremental
evolution leads to the successful evolution of agents counting over
very long periods. Analysis of the evolved networks unravels the
counting mechanism and demonstrates how the spiking dynamics
are utilized. Using new measures of spikiness we find that even in
agents with spiking dynamics, these are usually truly utilized only
when they are really needed, that is, in the evolved subnetwork
responsible for counting.

1 Introduction

The evolution of artificial neural networks of embedded autonomous agents constitutes a powerful
tool for creating agents with complex behaviors [9–11, 17, 21], and for studying properties of the
emergent network dynamics [20]. This study extends an evolutionary study of foraging [2], involving
an evolved autonomous agent (EAA) living in a 2D grid arena containing food and poison items. In
that study, the agent, possessing limited sensory inputs, had to consume as many food items as
possible, while avoiding poison items. The agent’s eating action consisted of standing still on food for
one time step with its mouth open. Aharonov et al. [2] concentrated on the short-term memory
mechanism underlying the foraging and navigation behaviors that evolved in this nonstationary
environment. Our study aims at finding out whether we can replace the rather simple stimulus-
response eating action with a memory-dependent delayed action, in which the agent has to remain
still on a food item for an exact constant number of steps before it can consume it. This kind of
delayed response is not trivial; the agent must develop a counting mechanism that will allow it to
‘‘remember’’ how many steps it has already waited. The goals of this study are to explore the limits
of evolving such a counting mechanism, and study the evolved network dynamics solving this type
of task.
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There is a large pool of evidence concerning the ability of animals to time their responses and
count. In the traditional Sidman avoidance operant conditioning procedure [6] a dog positioned in a
two-compartment shuttlebox learns to move back and forth from one compartment to the other
according to a predefined time schedule, to avoid receiving an aversive electrical current. There is no
sensory signal that marks the onset of the shock; hence the dog has to learn the fixed time interval
between shocks. Platt and Johnson [19] have shown that rats can be trained to press a lever a specific
number of times and then activate a feeder to receive food. Fetterman [7] has demonstrated that
pigeons learn to choose between two different responses based on the number of times they peck on
a lighted key before it is darkened, simultaneously counting the number of pecks and timing the
pecking duration. There is some similarity between the counting task and traditional delayed-
response match-to-sample behavioral tasks [6]. In a match-to-sample task, the animal receives a cue
indicating the appropriate action, which should be performed only after the presentation of a second
sensory trigger cue. In both types of tasks there is a significant delay between a stimulus and the
corresponding appropriate response that makes them impossible to solve by a simple sensory-motor
mapping. However, having the trigger cue, the challenge of a match-to-sample task is to remember,
throughout the delay period, which action should be performed, rather than when it should be
preformed, as in the counting task.

We evolve agents with two types of neurocontrollers: networks of McCulloch-Pitts neurons, and
spiky networks of discrete-time integrate-and-fire neurons. Models of spiking neurons have been
extensively studied in the neuroscience literature. Spiky networks have a greater computational power
than networks of sigmoidal and McCulloch-Pitts neurons [15], and are able to model the ability of
biological neurons to convey information by the exact timing of an individual pulse, and not only by
the frequency of the pulses [5, 16]. It is appealing to use spiky neural networks in EAA studies, since
they are biologically more plausible: Biological neurons perform integration over their presynaptic
inputs such that a neuron accumulates its membrane potential over time, and fires if it exceeds a
threshold. After firing, the neuron’s membrane potential returns to a resting value, remaining there
for a given refractory period. Recent studies that combine evolutionary computation with spiky
neural networks have analyzed properties of the spiking dynamics in the evolved networks, for
example, whether the spiking dynamics result in a time-dependent or a rate-dependent computation,
and the effect of noise on the emerging network [8, 18].

The goal of this study is to single out the effects of integration and memory in the integrate-and-fire
model. Thus we chose to employ a minimal integrate-and-fire model, which is similar in every other
respect to McCulloch-Pitts. However, while the McCulloch-Pitts model only permits a limited type
of dynamic behavior, by its self-connections and recurrent synapses, the integrate-and-fire model
allows for subthreshold dynamics. This type of dynamics may be useful in performing tasks that
require memory, such as the counting task. We compare the evolution of McCulloch-Pitts and
integrate-and-fire neurocontrollers performing the counting task, focusing on the evolutionary
success, the overall complexity of the evolved neurocontrollers, and their counting dynamics. To
perform this analysis we use a newly developed method, multi-perturbation Shapley value analysis [14],
with which we quantify various properties of the evolved networks.

The analysis of spiking neurocontrollers in the framework of EAAs brings up substantial issues
regarding spiking dynamics: whether an evolved network with spiking neurons is truly ‘‘spiky,’’ and
how we can define and measure the spikiness level of each neuron. This study addresses these
questions by presenting two new fundamental ways by which we define and quantify different
aspects of spikiness: the spikiness functional contribution, and the level of integration of inputs over
time of a spiky neuron.

The rest of this article is organized as follows: Section 2 describes network architecture and the
evolutionary process. Section 3 describes the multi-perturbation Shapley value analysis framework,
which we use to analyze the evolved agents. Section 4 presents the results of the evolutionary
experiments, and analyzes the evolved neurocontrollers and their dynamics. In Section 5 we present
and quantify two basic properties of spiking neurocontrollers, with which we analyze the evolved
spiky agents. These results and their implications are discussed in Section 6.
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2 The EAA Environment

2.1 The Task
The EAA environment is similar to that of [2]. The agents live in a discrete 2D grid world
surrounded by walls (Figure 1). Poison items are scattered all around the world, while food items are
scattered only in a food zone in one corner. The agent’s goal is to find and eat as many food items as
possible during its life, while avoiding the poison items. The fitness of the agent is proportional to
the number of food items minus the number of poison items it consumes. The agent is equipped
with a set of sensors, motors, and a fully recurrent neurocontroller.

Four agent sensors (input neurons) encode the presence of a wall, a resource (food or poison,
without distinction between the two), or a vacancy in the cell the agent occupies and in the three
cells directly in front of it. A fifth sensor is a smell sensor, which can differentiate between food
and poison underneath the agent, but gives a random reading if the agent is in an empty cell
(Figure 1). The four output neurons dictate a forward movement (neuron 1), a left turn (neuron
2), or a right one (neuron 3), and control the state of the mouth (open or closed, neuron 4).
Network updating is synchronous: in every time step a sensory reading occurs, network activity is
updated, and a motor action is taken according to the resulting activity in the designated output
neurons.

In [2], the agent consumed a resource by standing still on a grid cell containing it for one
time step. Here, the agent has to remain still on the resource for a waiting period of precisely K
steps, without moving or turning, in order to eat. Food is consumed by the agent closing its
mouth on the last waiting step and then moving forward at the next step. That is, the mouth
motor neuron should be open (a value of 0) in the (K – 1)th waiting step, and closed (a value of
1) in the Kth step, the state of this motor having no effect for the first K � 2 steps. Hence, in
essence, the agent has to learn to count precisely to K. The agent has a limited life span of 150
sensorimotor steps. In order to facilitate the evolution of the agents performing the counting
task, waiting steps (steps in which the agent does not move or turn) are not counted as part of
the life span.

Figure 1. The EAA environment. An outline of the grid world and the agent’s neurocontroller. The agent is marked by a
small arrow on the grid, whose direction indicates its orientation. The curved lines indicate where in the arena each of
the sensory inputs comes from. A value of 0, 1, or 3 in four of the input neurons encodes respectively the existence of a
vacancy, a resource, or a wall in the corresponding grid-cell (an input value of 2 was used in [2] but is no longer needed).
The fifth input neuron receives a value of 1 if the agent stands on food, a value of 0 if the agent stands on poison, and a
random value of either 0 or 1 otherwise.
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2.2 The Neurocontrollers
All neurocontrollers are fully recurrent with self-connections, containing ten neurons (of which
four are the output, motor neurons), such that the five sensory input neurons are connected to
all network neurons. We compare between neurocontrollers with McCulloch-Pitts (MP) neurons,
employed conventionally in most EAA studies, and ones with spiky discrete-time integrate-and-
fire neurons. In both types of networks, a neuron fires if its voltage exceeds a threshold (set to
0.05 in all evolutions). The spiking dynamics of an integrate-and-fire neuron i in our model are
defined by

ViðtÞ ¼ Ei ½Viðt � 1Þ �Vrest� þVrest þ
1

N

XN

j¼1

AjðtÞWi; j ; ð1Þ

where Vi (t ) is the voltage (membrane potential) of neuron i at time t, Ei is the memory factor of
neuron i (which corresponds to its membrane time constant ), Aj (t ) is the activation (firing) of
neuron j at time t, Wi, j is the synaptic weight from neuron j to neuron i, N is the number of neu-
rons, including the input sensory neurons, and Vrest is the resting voltage (set to zero in all
simulations). After firing, the voltage of a spiky neuron is reset to the resting voltage, with zero
refractory period.

This simple and minimal discrete-time integrate-and-fire model mimics the ability of bio-
logical spiking neurons to integrate sensory information over time. In each time step, the voltage
of a spiky neuron results from the interplay between the history of its inputs and its current input
field (the last summand in Equation 1). The memory factor, which ranges between 0 and 1,
determines the amount of integration over time that the neuron performs: The higher the memory
factor, the more important is the neuron’s history Vi (t–1), compared with the current input field.
Different memory factors may be required for neuronal computations demanding a different
amount of integration over time. A spiky neuron with a zero memory factor reduces to an MP
neuron, in which only the current input field determines the voltage. That is, the voltage of an MP
neuron is given by

ViðtÞ ¼
1

N

XN

j¼1

AjðtÞWi; j ; ð2Þ

and the neuron fires if its voltage exceeds the neuron’s firing threshold. Hence both the MP and the
integrate-and-fire network models used in this article communicate through spikes, so that the only
difference between them is the additional memory ability of the integrate-and-fire model, allowing it
to employ subthreshold dynamics.

2.3 The Evolution
A genetic algorithm is used to evolve the synaptic weights Wi, j (in the range [�1, 1]) of both types of
networks. For the spiky neurocontrollers, the memory factors Ei are evolved as well in the range
[0,1], allowing different neurons to perform a different amount of integration over time. The
synaptic weights and the memory factors are directly encoded as real values in the genome.
Evolution is conducted over a population of 100 agents for 30,000 generations, starting from
random neurocontrollers. In each generation every agent is evaluated, after which the parents
forming the next generation are chosen with probability proportional to their fitness. The
next generation is created using a mutation rate of 0.02, a mutation range of [�0.2, 0.2], and
uniform point crossover with a rate of 0.35. In each evolutionary run, the number of waiting steps
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is constant. Thirty evolutionary runs were performed for each number of waiting steps K, ranging
between 1 and 6.

3 Multi-Perturbation Shapley Value Analysis

In order to decipher the mechanisms underlying the agents’ behavior and understand the inner
workings of the evolved neurocontrollers, we utilize a newly developed method called multi-
perturbation Shapley value analysis (MSA) [14]. This method is designed to meet one of the
fundamental challenges of neuroscience, the identification of the individual roles of the network
elements. The basic idea behind the MSA and other related methods is that mere correlation
between the activations of the neural elements and the different behaviors is not sufficient to identify
causality. To allow for the correct identification of the elements that are causally important for a
given function, the deficit in performance should be measured after perturbing specific elements.
Additionally, single-lesion studies, in which only one element is disabled at a time, are limited in their
ability to reveal the significance of interacting elements. The MSA analyzes a data set composed of
numerous multiple perturbations that are inflicted upon a neurocontroller, along with the
performance score in a given set of functions. In each multi-perturbation experiment, several
elements are perturbed by concurrently disrupting their operation, and the agent’s performance in
each function is measured. The MSA views a set of multi-perturbation experiments as a coalitional
game, borrowing relevant concepts from the field of game theory. Specifically, the desired set of
contributions is captured by the Shapley value [23], which corresponds to the unique fair division of the
game’s worth (the system’s performance score when all elements are intact) among the different
players (the system’s elements). Hence, in this framework, a contribution of an element to a function
measures its importance, that is, the part it causally plays in the successful performance of the
function.

The basic MSA requires for its calculation the performance scores under all possible multi-
perturbation experiments (the full knowledge of the behavior of the game for all possible coalitions).
Thus, the computations needed to calculate the element’s contributions grow exponentially with the
number of elements in the analyzed system. For larger systems containing many elements, these
computations become infeasible. Hence, the estimated MSA variant [13, 14] computes an approxi-
mation of the elements’ contributions with high accuracy and efficiency from a relatively small set of
multi-perturbation experiments.

In the results to follow in Section 4, the contributions of a network’s neurons are computed
using the basic MSA. The perturbation method used is stochastic lesioning [1], performed by
randomizing the firing pattern of a perturbed neuron while keeping its firing probability equal to
its intact overall mean firing rate. In Section 5 we define a different perturbation method, which
allows us to segregate the contribution of a neuron’s spiking dynamics. To compute the contribu-
tions of a network’s synapses, we use the estimated MSA, allowing us to use only a small sample of
all 2100 possible synaptic perturbation configurations (resulting from 100 internal synapses). Each
perturbation configuration denotes a subgroup of synapses, when a synapse is perturbed by
stochastically clamping its presynaptic neuron, while keeping the mean firing rate it exhibits when
it is intact.

The MSA was utilized in the past in several studies to uncover the mechanisms underlying EAAs’
neurocontroller operations. In [13] four neurocontrollers were analyzed using various MSA variants,
with which their contributing elements were accurately identified. In [12] fault-tolerant neurocon-
trollers were examined with the MSA, uncovering the important neurons, the interactions between
the neurons, and the fault-tolerance mechanism. In all these studies, MP dynamics were explored,
and the stochastic lesioning perturbation method was utilized, finding the contributions of the
network’s elements, whether neurons or synapses. In this article a new perturbation method is
employed, which singles out the contribution of the spiking dynamics of each neuron to the
evolutionary task.
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4 Results

This section describes and analyzes the results of the evolutionary process. After presenting the
basic evolutionary results for both types of agents (Section 4.1), the successfully evolved spiky and
MP networks are compared in terms of the network’s distribution of processing (Section 4.2).
In Sections 4.3 and 4.4 the networks’ counting mechanism is analyzed. Section 4.5 presents the
results of incremental evolutions of the task, where the best agent evolved to perform a task with a
waiting period K is taken as a seed for the evolution of agents performing the task with a waiting
period of K + 1.

4.1 Performance Evaluation
The evolutionary task is fairly difficult, as many evolutionary runs converged without yielding
successful agents. Figure 2a compares the difficulty of evolving agents with different waiting pe-
riods. For a specific waiting period K, we average the fitness score of the best agent from the
last generation of each evolutionary run over many evolutionary runs. Evidently, the task is
harder as the agent has to wait on food for a longer period, manifested by a decreasing average
fitness score. Evolved spiky neurocontrollers are more successful than MP ones in performing
this task.

4.2 Distribution of Processing
An important step in understanding an evolved network is to measure the amount in which the
network processing is spread across the different neurons. For this, we first compute the functional
contribution of each neuron to the counting task, using the MSA (Section 3). We measure the
performance score of the agent under the entire set of neuronal perturbation configurations, using
the stochastic lesioning method, and compute by the MSA the causal importance of each neuron to the
behavioral task, namely, the contribution ci of neuron i.

Figure 2. (a) Average fitness versus waiting period K. The fitness score of the best evolved agent from the last generation
of each evolutionary run, with the specified waiting period (x axis). Results are mean and standard error across
30 evolutionary runs for each waiting period. (b) The distribution index—mean and standard error—across all
successful agents from the initial 30 evolutionary runs, with the specified waiting period (x axis). The number of
successful agents is 11, 9, 8, 6, 5, 4 for K = 1, . . . ,6, respectively, for the MP agents, and 30, 24, 16, 12, 6, 6 for the spiky
agents. For K = 5, 6 we performed more than 30 evolutionary runs to produce the specified number of successful agents,
since in the original 30 runs we received only one successful MP agent for K = 5, and no successful MP agents and only
four successful spiky agents for K = 6.
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Based on these neuronal contributions, we calculate the distribution of processing index D [1], which
measures how distributed is the function in the network, according to

D ¼ 1� jðcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=N2

p ; ð3Þ

where c is the vector of all neuronal contributions, j(c) is the standard deviation of c, and N is the
number of neurons. Distribution values are in the range [0, 1], where a zero distribution score
indicates localization of the task to one neuron alone. The higher the distribution index, the more
evenly spread is the network processing across many neurons, with a distribution value of 1
corresponding to equal participation of the neurons in the network’s processing.

The difficulty of evolving an agent that solves the counting task increases with the waiting period
(Section 4.1). Is there a correlation between the difficulty of evolving a network that solves the task
and the distribution level of the network? From all agents evolved in the 30 evolutionary runs
performed for each waiting period, we denote the successful agents as those whose fitness score is
higher than 0.3.1 Figure 2b presents the distribution score, averaged over all the successful agents,
for each waiting period. In both types of networks, the distribution index increases for longer waiting
periods. Since the tasks differ only by the duration of the waiting period K, the difference in the
distribution scores is due to the counting process. Comparing the dynamics of the two networks,
spiky networks have a more localized ( less distributed) processing than MP networks. Evidently,
there is a high correlation between the distribution index, averaged over the successful agents for
each waiting period (Figure 2b), and the average fitness score of each waiting period computed over
all evolutionary runs, successful and unsuccessful (Figure 2a) (correlation coefficient of �0.8 for the
spiky networks, and �0.9 for the MP ones). These results indicate that counting tasks with longer
waiting periods require more complex network solutions in terms of distribution of processing, and
that the network’s complexity in turn is negatively correlated with evolutionary success in performing
the task. This is true comparing agents employing a similar type of dynamics. Comparing between
different types of dynamics, we find that spiky agents have simpler network solutions ( lower
distribution levels) and are more successful in performing the counting task than MP agents. We shall
return to explain this finding in Section 4.4.

4.3 Identifying the Counting Subnetwork
Given a successfully evolved network, consisting of 10 neurons and 100 internal synapses, it is
almost impossible to identify the synaptic functional backbone of the network that is in charge of the
counting process. However, this can be quite easily done by using the estimated MSA (Section 3),
this time examining the network’s synapses rather than the neurons. First, we refer to the counting
process as an independent network function, among various different subgoals that the agent solves
in order to successfully forage for food. We define the counting fitness score as the number of food items
that the agent consumed divided by the number of times that the agent arrived at a grid cell
containing food. We perform multi-perturbation experiments on the neurocontrollers (each
perturbation configuration corresponds to a subgroup of synapses) and measure the counting
fitness score. The synaptic perturbations are performed only while the agent is standing on food,
preserving all other aspects of its foraging abilities. The perturbations are stochastic lesioning, using
as the intact mean firing rate of each neuron the firing rate it exhibits when the agent stands on food.
As a result, an estimated contribution of each synapse to the counting function is obtained. A
statistical t test (with a = 0.01) is then carried out for each of the synapses to determine whether its
contribution is significant.

1 This fitness value has been observed to ensure satisfactory foraging and food consumption abilities. See [2] for a comparison of the
fitness values of the evolved agents with several benchmarks.
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Figure 3 presents the synapses that significantly participate in the counting of agent S7, a spiky
agent that waits for K = 7 steps on food, and their corresponding neurons. This minimized
backbone counting subnetwork identifies the elements in the network that are in charge of the counting
process: Only neurons 1, 4, 7, and 3 participate in the counting process, so that all synapses between
neurons 1, 4, and 7 are significant (their magnitudes and signs are given in Figure 3). The food inputs
excite neuron 4, while inhibiting neuron 7. In the next section we explore the interactions between
the counting elements, explaining the role of each of S7’s synapses in the counting process.

4.4 Activation-Pattern Analysis of the Counting Process
To fully understand the counting process of successful neurocontrollers, we turn to study the
activation patterns of the agent’s neurons during counting. To demonstrate this we focus on two
agents, one with an MP network and one with a spiky network, and compare their activation
patterns. For a specific agent, the firing sequence during waiting periods usually repeats itself
precisely in all counting incidents (this is not guaranteed even though the dynamics are deterministic,
since the initial state at the entry point to counting may vary across the agent’s lifetime). Figure 4a
presents the activation pattern sequence during the waiting period of agent MP5, an MP agent with a
waiting period of 5 time steps. The sensory inputs, which are constant during the waiting period,
inhibit the first three motor neurons, responsible for moving and turning. On each time step, a
different subgroup of the remaining seven neurons is active, so that at the last waiting step the agent
closes its mouth and eats, and at the next step the forward motor (neuron 1) is reactivated and the
agent moves. In general, since the sensory inputs stay exactly the same throughout the waiting
period, for an MP agent to count to K, the network has to pass through K different activation states.

Figure 4b shows the firing pattern of the counting neurons of S7, the spiky agent whose
backbone was presented in Section 4.3. As was also observed from the synaptic backbone, neurons
1, 4, 7 participate in the counting process. The food inputs inhibit neuron 7 but activate neuron 4,
which has a excitatory synapse to neuron 7. Neuron 7, a spiky neuron with a memory factor of 0.43,
gradually accumulates voltage during steps 3 to 5, till it passes the threshold and fires at the sixth
time step. This firing inhibits the fourth neuron on the seventh step, closing the agent’s mouth to
consume the food. Closing the mouth removes the inhibition from neuron 4 to the forward motor,
which causes the agent to move, due to a parallel excitation from neuron 7. The excitatory synapse
from neuron 7 to neuron 3 (the turn-right motor) makes it more likely for the agent to turn right
after eating, thus remaining in the food zone. The three excitatory synapses (from the food inputs to
neuron 4, from neuron 4 to neuron 7, and from neuron 7 to the forward neuron) create the dynamic

Figure 3. The synaptic backbone forming the subnetwork responsible for the counting of agent S7. Numbered circles
represent neurons; arrow lines represent synapses, with the synaptic weight marked next to them. ‘‘Food’’ represents
the joint influence of the two food sensory inputs (the first sensory input receives a value of 1 when the agent stands on
a resource; the fifth sensory input identifies the exact resource type underneath the agent, and receives a value of 1 when
the agent stands on food). These two sensory inputs both excite neuron 4 and inhibit neuron 7 when the agent stands on
a food item. The presented synapses are the ones that came out significant from the synaptic MSA.
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pathway of the counting flow. The remaining inhibitory synapses ensure that this flow will take place
with the correct timing. For instance, the inhibitory synapse from neuron 1 to neuron 4 ensures that
the fourth neuron will start firing only a step after the agent stands still on a food item, thus initiating
the described sequence of activations responsible for counting, such that the agent precisely counts
to 7. As shown in Figure 4c, during steps 3 to 6 of the waiting period the input field of neuron 7 is
constant, below the threshold; hence the neuron’s accumulated input field history is the one causing
the increase in its membrane potential. In a spiky network, the same network activation pattern can
be repeated several times during the counting process, since the state of a neuron includes its voltage.
Thus, theoretically, using spiking dynamics, a network can count with a single neuron that
accumulates voltage over K � 1 steps and fires on the Kth step.

We now examine if we can generally show a difference in the efficiency of the counting process
between the evolved MP and spiky agents. We perform activation-pattern analysis on all the
successful agents from the original evolutionary runs, and count the number of neurons that are
active during the waiting period for each agent. As observed from Figure 5, more neurons are active
during counting as the waiting period increases in both spiky and MP agents. However, for the same
waiting period, more neurons are counting in the MP networks than in the spiky network. Thus, the
evolved spiky networks exhibit more efficient counting than the MP networks, but not the most
efficient kind (counting with only one neuron). The reason for this is that usually in the spiky
networks several neurons that do not perform integration participate in the counting process as well.
However, one or more neurons do use their spikiness to accumulate voltage and count for a few
steps. As a result, less neurons participate in the counting process than in MP networks, explaining
the lower distribution levels of spiky networks shown in Section 4.2.

4.5 Incremental Evolution
Since evolving agents with long waiting periods is a difficult evolutionary task (Section 4.1), we use
incremental evolution techniques [10] to further evolve agents counting for even longer periods:
Each evolutionary process starts with a population of 100 mutated copies of an already evolved
agent counting to K, and develops an agent with a waiting period of K + 1. We present an example of
two sets of incremental evolutions, one performed with MP agents and one with spiky agents. For

Figure 4. Information processing during counting in an MP versus a spiky agent: (a) The activation pattern of the
neurons of agent MP5 throughout the waiting period. An activation value of 1 states that the neuron fires. Each
column represents a neuron; the four leftmost neurons (1–4) are the forward, left, right, and open-mouth motor
neurons, respectively. Each row represents the firing at a different time step, in a consecutive order. Eating occurs at
the fifth time step (marked in bold) when the agent closes its mouth, which is open in the previous step. After eating,
the forward motor is activated and the agent moves. (b) The activation pattern of neurons 1, 4, and 7 of agent S7
during the waiting period (no other neurons fire throughout this period). Columns and rows as in (a); eating occurs at
the seventh time step. (c) The input field and the voltage of neuron 7 of agent S7 in time steps 3 to 7 of the waiting
period, along with the threshold above which the neuron fires (0.05). The memory factor of neuron 7 is 0.43. After
firing at the sixth time step the voltage is reset to Vrest, and the neuron fires again at the seventh step, activated by
neuron 4 and self-excitation, this time without any integration period.
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the MP networks, we have succeeded in evolving agents that count up to 15 (compared with a
waiting period of 7 time steps, the longest we reached in regular evolutions). Examining the
activation patterns of these agents during the waiting period revealed that agents counting to 3 use
two neurons in the counting process, agents that count to 4 and 5 achieve it with four neurons,
agents that count to 6 and 7 use five neurons, and an additional neuron is used for counting to 8 and
more. This exemplifies, as discussed in Section 4.4, that under MP dynamics more neurons are
needed to count for a longer period.

Using spiky networks, we have incrementally evolved agents that count up to 35, and arbitrarily
stopped at this number. This is compared with a waiting period of 8 time steps, which is the longest
we reached with regular evolutions using spiking dynamics. Exploring the counting dynamics of the
incrementally evolved spiky agents revealed two main counting patterns: The spiky networks with
waiting periods of 3 to 9 time steps all employ one pattern, in which two neurons are used for
counting: one is spiky, and the other has a vanishing memory factor, and de facto behaves like an MP
neuron that does not perform integration over its inputs. In the networks with a waiting period of 10
and longer, the counting MP-like neuron was transformed into a neuron with a significant memory
factor that accumulates voltage over time as well, changing the counting pattern to use two spiky
neurons, counting together. This result exemplifies that a spiky network can indeed employ a very
efficient localized counting method (as described in Section 4.4). Spiky agents with even larger
waiting periods can be constructed by continuing with the incremental evolutionary runs, further
modifying the memory factors and the synaptic weights.

5 Quantifying Spikiness

5.1 Spikiness Measurements
Given a network evolved with spiking dynamics, we would like to answer the questions: which
neurons really utilize their spiking dynamics, and are these the neurons involved in the counting
subtask? That is, we would like to know if indeed spiking dynamics are evolved and utilized in the
place where we intuitively would assume they are needed—where memory resides. To answer these
questions, one has to carefully examine the ‘‘spikiness’’ of neurons. First, having encoded the
neuronal memory factors in the genome gives rise to the possibility that evolution will come out with

Figure 5. The number of active neurons during counting. Mean and standard error across all successful agents from the
original 30 evolutionary runs for each waiting period (the same agents were averaged as in Figure 2b). For each agent the
number of neurons active during the waiting period was counted (not including the forward motor, which becomes
active after eating).
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non-spiky solutions. Second, even if the memory factor is high, it does not ensure that the neuron
indeed utilizes its ‘‘integration potential’’ in its firing.2 For example, a neuron may receive a large
excitatory input field in every time step and fire at a very high frequency, without performing any
integration over its past input fields. That is, its pattern of firing would be indistinguishable from that
of an MP neuron with the same input field. Third, even if the spikiness is utilized for firing, it does
not necessarily contribute to the agent’s performance. Essentially, we aim to distinguish between the
observation that a given neuron has been assigned spiking dynamics by evolution, that is, obtained a
nonvanishing memory factor, and the true level of its spikiness, that is, the amount by which it really
utilizes its spiking dynamics. As it turns out, no such measures exist in the literature, and we hence
decided to devise such measures and study them in our agents. In this section we present two
methods for measuring the ‘‘true spikiness level of a neuron,’’ which are based on two fundamentally
different perspectives.

5.1.1 Spiking Dynamic Factor
The first index of spikiness—the spiking dynamic factor (SDF)—measures how much the spiking dynamics
of a neuron influences its firing. If the firing pattern of a neuron is the same whether it possesses spiking
dynamics or not, then it will be considered non-spiky. The SDF is calculated by comparing the firing
of a spiky neuron with that of an MP neuron receiving an identical input field at each time step ( last
summand in Equation 1). The fraction of time steps in which there is a difference between the binary
activations of the spiky neuron and the corresponding benchmark MP neuron quantifies the average
percentage of lifetime steps in which the spiking dynamics made a difference in the firing of the
neuron.3 It is also possible to measure the counting SDF, reflecting the influence of the spiking
dynamics of a neuron on its firing pattern specifically during the counting process. This is performed
by simply calculating the SDF score only during steps in which the agent stands on food.

5.1.2 Spikiness Relevance
The second measurement of spikiness—the spiking relevance (SR)—answers the following question:
how essential are the spiking dynamics of a neuron for the good performance of the agent? If on abolishing the
spiking dynamics of a neuron the agent’s performance deteriorates considerably, then its spiking
dynamics contribute to the agent’s behavior. If, in contrast, the fitness of the agent is maintained
during this procedure, this neuron’s spiking dynamics are functionally insignificant. To quantify this
type of spikiness we use theMSA (Section 3) on data consisting of perturbations to the memory factors
of the neurons only, leaving the rest of their dynamics unaltered. A neuron is perturbed by clamping
its memory factor to zero (turning it into an MP neuron) and each perturbation configuration
corresponds to a different subgroup of perturbed neurons. The contributions yielded by the MSA
quantify the causal importance of the spiking dynamics of each neuron to successful behavior.

It is possible to further identify the neurons whose spikiness is specifically utilized for the
counting mechanism, by measuring the agent’s counting fitness score (Section 4.3) under each
perturbation configuration, so that the network is perturbed only when the agent stands on food.
The contribution yielded by the MSA on this data, called as the counting SR index, quantifies how
important the spikiness of each neuron is to the counting process.

2 This phenomenon frequently manifests itself in evolutionary optimization processes where some of the parameters may attain almost
arbitrary values in ‘‘flat’’ regions of the fitness landscape.

3 For each neuron i the SDF index is calculated as

SDF(i) ¼ 1

L

XL

t¼1

jSi(t)� Oi(t)j, (4)

where L is the number of life steps of the agent, Si(t ) is the activation of the spiky neuron at time t, and Oi(t ) is the activation of an MP
neuron observing an identical input field at time t.
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5.2 Analysis of Spikiness

5.2.1 Comparing the SDF and SR Indexes
We examine the spikiness level of the neurocontrollers evolved with spiking neurons, focusing on
two spiking agents, S5 and S7, with a waiting period of 5 and 7 time steps, respectively. For S5,
Figure 6 compares the SR values of the different neurons with the contributions of the neurons
(Section 3). These contributions quantify how much each neuron is generally responsible for
successful behavior. Notably, neurons 1, 4, 9, and 10 contribute significantly to the agent’s behavior,
as shown by their contributions, while the spikiness of only neurons 1 and 10 has a significant
contribution, according to their SR values. Figure 6 also presents the SDF values, which differ greatly
from the SR ones: Neuron 5 receives a very high SDF score, but a vanishing SR score. A more
pronounced difference between the two spikiness measurements is apparent in Figure 7a, which
shows both measures for agent S7 (previously analyzed in Sections 4.3 and 4.4). Here, neuron 7 has

Figure 6. Spikiness measurements of S5. SR and SDF scores of the neurons, along with their basic contributions. To be
comparable, all three measures are normalized so that the sum over all neurons equals one.

Figure 7. Spikiness measurements of S7. (a) SR and SDF scores. (b) Counting SR and counting SDF scores. All measures
are normalized so that the sum over all neurons equals one.
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the highest SR value, but a significantly lower SDF score. Neurons 5 and 8 are the most spiky ones
according to the SDF measure, while both have low SR values. Finally, examining the size of the
memory factors of the two agents, illustrating the extent to which the neuron’s history influences its
current membrane potential (Equation 1), reveals that they are not highly correlated with either of
the measurements. For instance, for agent S7, the memory factors of neurons 5, 6, and 9 equal 1,
although neuron 9 has vanishing values of both SR and SDF. In fact, it is common for a neuron with
a high SR score to have a relatively low memory factor, if the neuron counts over a long waiting
period.

The difference between the results of the two spikiness measurements originates in their different
nature, as each measurement is designed to capture inherently different aspects of spiking dynamics.
The SR measure targets the semantic role of spikiness—that is, its importance to the actual
performance of the agent (either relating to the agent’s overall survival, or computed for various
network functions). The SDF measure is confined to the syntactic perspective of spikiness—that is,
how the spiking dynamics alter neuronal firing compared with the null alternative of MP dynamics.
We term the latter effect ‘‘syntactic’’ because large effects on the firing (as measured by the SDF) may
turn out to have no effect on the actual behavior of the agent (as measured by the SR). However,
neurons with large SR must have a nonzero SDF, since influencing the firing pattern of a neuron is a
prerequisite of having a behavioral contribution. Such neurons also tend to be functionally important
in general, with high neuronal contributions. There is another fundamental difference between the
two measurements: The SDF index measures the influence of the neuron’s spikiness on that neuron
itself, performing the analysis on a ‘‘recorded’’ agent’s life, without changing the actual neuronal
activations. The SR index, by clamping the memory factor of the neuron during an active simulation,
propagates the influence of the clamping through time, and thus takes into account the influence
of a neuron on other neurons in consecutive time steps. In the case of agent S7, as described in
Section 4.4, the spikiness of neuron 7 plays a pivotal role in the agent’s counting ability by accu-
mulating voltage for 3 time steps and then firing. Clamping this neuron’s memory factor disables its
firing on the sixth counting step, and further modifies the firing of neurons 4 and 1 in the following
time steps, impairing the network’s counting, and thus explaining its very high SR value. However,
since the fraction of steps in which the spiking dynamics influence the activation of neuron 7 is only
about 3% of its total lifetime steps (the counting steps), this neuron receives a low SDF score.

5.2.2 Counting SDF and Counting SR Indexes
Figure 7b plots the counting SR and counting SDF scores of agent S7. Comparing first between the
SR and counting SR, and between the SDF and counting SDF scores, reveals that they are not
identical for either of the spikiness measurement. For example, when comparing the SDF indexes,
the relative influence of neuron 8’s spikiness on its overall firing pattern (its SDF value) is much
larger then its relative influence on the firing pattern during counting (its counting-SDF value). For
the SR indexes, the spikiness of neuron 1 is generally important for successful behavior, but has no
functional contribution to the counting mechanism (manifested by a zero counting-SR score).
Neuron 7, on the other hand, has both high SR and high counting-SR scores. Hence, by considering
solely the counting SR, we can detect that neuron 7’s spikiness is crucial for the counting process.
Still, it receives a relatively small counting-SDF score, since during the counting process the spikiness
of neuron 7 influences its firing pattern in a single time step (the sixth one). In the next section we
will further test whether it is generally the case in the evolved agents that the spikiness critically
contributes to the counting process.

Generally, the counting-SDF and counting-SR scores help us better understand the counting
dynamics of the spiky networks. As in the case of the SDF and SR indexes, the same fundamental
differences between the two measurements exist. While the counting SDF only reflects the syntactic
influence of spikiness on counting—namely, how the spiking dynamics alter neuronal firing during
counting—the counting SR identifies which of the neurons actually uses its spikiness for the
counting, in such a manner that impairing its spikiness will have an effect on the agent’s counting
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performance. In this respect the SR and counting-SR indexes are the true measures of the causality
and functionality of spikiness.

5.2.3 Overall Analysis
We turn to examine the extent to which the spiking dynamics is functionally utilized in the evolved
spiky agents. We compute the SR scores for all successfully evolved spiky agents counting to 4 and
higher (see Figure 2b for the number of agents for each K ). Each neuron whose SR score is at least
10% of the sum of the agent’s SR scores is considered to have a high SR contribution. Under this
definition, we receive a mean value of 2.16 neurons with a large spikiness functional contribution
(standard error of 0.168).4 This indicates that in the evolved spiky agents, on average, only a small
fraction of the network’s neurons utilize their spiking dynamics for successful behavior (have high SR
scores). But when considering, for the same agents, the number of neurons with large contributions
(Section 3), reflecting the size of the functional neuronal backbone, we obtain a mean value of
5.35 important neurons (standard error of 0.23).5 We can see that less than half of the neurons
that crucially contribute to the network’s successful behavior utilize their spiking dynamics for
this purpose. To further identify the relation between the SR index and the counting SR in the
evolved agents, we calculate for each tested agent the correlation between its SR and counting SR
over the neurons. Out of the 23 agents analyzed, in 14 agents (more than 60%) we find a significant
positive correlation ( p value < 0.05) between the SR and the counting SR over the neurons. Thus,
the neurons that have high SR scores tend to also have high counting-SR scores. The spiking
dynamics are hence usually utilized by the agent for performing the counting subtask that really
requires them.

6 Discussion

In this work we have succeeded in evolving agents solving a nontrivial, memory-dependent counting
task, without using any special structure for counting, or giving an external reinforcement to the
agent while waiting. Through incremental evolution we succeeded in evolving agents that count over
very long waiting periods. But even by a regular evolutionary process we evolved an agent that stands
still on a food item for precisely 8 time steps and then consumes it. We have shown that as the agents
have to count over longer time periods, the resulting evolved networks use more distributed
processing, and more neurons are active during the counting process. We found that the distribution
level of a network, and the difficulty of evolving such a network in evolution, are negatively
correlated. That is, in our settings, as the network solutions of a problem become more complex in
terms of the distribution of processing, it becomes harder to evolve such solutions. This might be
generally the case in other settings, making the chosen network architecture and dynamics an
important component in determining the success or failure of the evolutionary process. Comparing
two network dynamics, we have further shown that MP networks are more distributed and reach
poorer evolutionary results than spiky networks. Hence in a counting task, as may be the case for
other memory-dependent tasks, networks of spiking neurons can be less complex and easier to
evolve than MP networks. This accounts for the importance of choosing a network architecture with
characteristics and abilities that match the requirements of the given task. Additionally, we have
tackled the question of how the networks perform the counting task, using several functional analysis
methods. Specifically, we have illustrated how the ability of a spiky neuron to accumulate its
membrane potential is utilized for counting, in a way that enables the spiky networks to use less
neurons for the same counting process than do the MP ones.

4 If we change the threshold over which a neuron is considered to have a high SR value to 5% of the sum of the agent’s SR scores, we
receive a similar mean value of 2.33 (0.81) neurons with a large spikiness contribution. Changing to 15% results in 1.95 (0.13).

5 This was, analogously, calculated while considering a neuron with a large contribution as one whose contribution is at least 10% of the
sum of the agent’s contributions.
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The study of spiky neural networks in the context of EAAs brings forward basic questions
regarding spiking dynamics that have not yet been raised. Apparently, the potential spiking dynamics
does not necessarily transcribe to actual spikiness in the network. We have presented two different
ways by which the spikiness level of each neuron can be defined and quantified. Specifically, we have
shown that the evolved spiky networks contain a truly spiky subnetwork responsible for the
counting.

As a benchmark we compared the evolutionary results with another network model, of
continuous-time recurrent neural networks (CTRNNs) [3]. CTRNNs, like the spiky networks, are
capable of integrating inputs over time, and have been recently used in neuroscience experiments [4,
22]. We used CTRNN neurocontrollers composed of 10 continuous neurons, possessing a sigmoidal
activation function. A motor action is performed if the activation level of the corresponding motor
neuron exceeds a threshold. Each neuron has a memory factor (in the range [0, 1]) that evolves
through evolution, and the neuron’s dynamics are similar to the dynamics of the spiking neurons
(Equation 1), except that CTRNNs do not quench information by spiking. The CTRNNs were
successful in performing the counting task, also showing a decrease in the average fitness score as
the agent has to wait for a longer period. Their average fitness score is higher than that of the MP
networks, but lower than that of the spiky networks. The distribution index of the successfully
evolved CTRNNs is similar to that of the MP neurocontrollers (higher than that of the spiky ones).
Further work remains in comparing and understanding the differences between CTRNNs and spiky
network models in this counting task.

Future studies may further compare spiking neural networks with other network models, and
explore the spiking model in different environments and behavioral tasks. Specifically, it will be
interesting to continue exploring this in the framework of EAAs, focusing on the interplay between
the neural substrate, the environment, and the actual behavior. It is also possible to combine
counting with traditional delayed-response match-to-sample tasks, by having different sensory inputs
signal a different delay period for the requested behavior. The methods and indices presented in this
work provide the basic tools for the analysis of such more complex agents, performing more
complex types of tasks.
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