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Abstract 
 

The work presented in this Thesis concentrates on the practicalities of using 

Learning Classifier Systems (LCS) for control problems in which there exists 

more than one goal.  The emphasis is always upon the use of LCS on physical 

robot hardware. 

 

A number of simple simulated problems with multiple goals are introduced.  Two 

classifier systems, ZCS and XCS, are applied to these problems.  It is found that 

ZCS can solve the simplest problems given suitable parameterisation, and the 

performance landscape is explored with respect to these parameter settings.  

However, ZCS is not shown to be able to solve slightly more complex problems.  

XCS is shown to be capable of solving these more complex problems with little 

need to adjust parameters, and it is shown to be suitable to use in the physical 

world by replacing the usual random ‘explore’  policy. 

 

TCS, an extension of ZCS, is then applied to similar problems in the physical 

world.  TCS cannot be shown to be capable of solving these problems, 

presumably due to the same parameterisation problems.  X-TCS is presented; an 

accuracy-based classifier system working in continuous space on a hardware 

platform.  X-TCS solves problems of robot control with multiple goals optimally, 

quickly, and with little need for parameter adjustment.  X-TCS, which extends 

TCS, may be of interest to the Reinforcement Learning community due to its in-

built ability to discover appropriate levels of discretization in the problem space, 

requiring no a priori discretization or additional techniques to be used. 

 

Since this work is focused on continuous learning, rather than ‘ learn’  then 

‘perform’ , X-TCS may be suited to control in non-stationary conditions.  An 

example might be to maximise energy efficiency in an engine management 

system given different grades of fuel, and despite ongoing changes in 

performance characteristics due to mechanical degradation.
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Learning is but an adjunct to ourself, 
It adds a precious seeing to the eye. 

 
Shakespeare, “Love’s Labours Lost” , Act 4, Scene 3. 

 
 

Chapter 1 Introduction 
 
Mankind has long recognised the desirability of autonomous artefacts which can perform 

work on our behalf.  Literature and legend are filled with references to the likes of the man of 

brass, Talos, which guarded Crete and was destroyed by the Argonauts [Apollonius], Rabbi 

Loew’s Golem which was created to free the Jews of Prague from drudgery 

[Thieberger1955], Rossum’s Universal Robots;  the slaves of a new world [Capek1923], and 

the Monster of Mary Shelley’s Frankenstein [Shelley1818]. 

 

Ignoring the (sometimes severe) complications that dawning consciousness brings to these 

fictional creations, we are still impelled by the lure of creating artificial intelligence today.  

Although robots feature in much modern fiction and have found some static niches within 

industrial settings on carefully constrained problems, they are not yet widely available in a 

larger context.  One reason for this is a lack of adaptability or learning.  To deal with complex 

environments and changing conditions, robots must be capable of adapting their actions in 

order to be useful.  This motivates the work presented here; the focus is on continuous 

learning, rather than a ‘ training phase’  followed by performance in the absence of further 

learning. 

 

All living organisms exhibit the properties of homeostasis. While their external environment 

changes constantly, they are able to maintain a relatively constant internal environment - 

when their ability to do so is compromised, death may swiftly follow. In order to maintain this 
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stability, they must balance many conflicting goals or desires, and dynamically change their 

actions according to their circumstances. The needs of the moment may over-ride longer-term 

objectives; the need for food is less than the need to avoid being eaten, the need for shelter 

may overcome the drive to mate, etc. Balancing these conflicting drives is the difference 

between success and failure, between life and death, and the optimization of balancing 

behaviours is therefore subject to great evolutionary pressure. 

 

For any autonomous artificial entity to perform useful work, it will need to operate in 

complex problem domains, and also will need to adapt its behaviour to optimize the balance 

of tasks it must perform. This thesis considers the use of an adaptive system – here a Learning 

Classifier System (LCS) [Holland1976] – to control an agent that has to solve multi-objective 

problems. For example, in a simple case, the agent has to seek the shortest path to a goal state 

while it also maintains its energy levels, in similar fashion to a mobile robot that must 

perform tasks while maintaining its battery power. The optimal course of action can change 

dynamically during the course of performing a trial for its energy levels may be depleted by 

its actions; the learner is operating in a changing environment. 

 

Robotic platforms are a useful test bed for Artificial Intelligence (AI).  In the real world, 

decisions must be timely, data is noisy, movements are imperfect and processing power is 

constrained to preserve battery life.  Testing AI theories on machines that interact with the 

real world through physical sensors and effectors reveals areas of weakness.  New theories 

have been born from the inadequacies in a robotic context of systems that worked well in a 

disembodied setting.  Finally, autonomous physically situated entities are desirable; like the 

Golem they can do repetitive tasks that humans either do not wish to perform, or are unable to 

perform.  If we want to create physically situated autonomous entities we cannot expect to 

solve the inherent problems in a virtual environment, as shall be discussed below. 



 3

 

The work presented in this thesis concentrates on one important element of adaptability for 

autonomous physical robots.  We demonstrate that multiple behaviours may be optimally 

learnt using Learning Classifier Systems, as may the co-ordination of these behaviours such 

that a learner may switch between the behaviours in a fashion that is itself optimal.  This may 

be necessitated in circumstances where the robot has multiple (conflicting) goals that must be 

balanced. 

 

In this chapter, we briefly explore some of the history of AI.  We then examine two 

approaches inspired by the study of adaptation in biology, namely Evolutionary Computing 

(EC) and Reinforcement Learning (RL).  We then introduce Learning Classifier Systems, 

which combine both of these approaches, and explain why LCSs may be more suited to the 

task of robot control than either EC or RL in isolation.  Where possible, we mention how such 

approaches have been used for problems with multiple objectives. 

 

1.1 Artificial Intelligence 
 
In seeking to explain the behaviours of men and animals alike, an influential school of 

thought arose in the early part of the 20th Century.  Behaviourism, based upon the 

philosophical tradition of the British Empiricists such as Locke, asserted that behaviour 

should not be studied by the attribution of assumed mental states or processes.  The external 

behaviour of a person is not accounted for by referring to the internal behaviour of the person 

(say, his or her internal problem solving or thinking) if, therein, the behaviour of the person is 

unexplained. ‘The objection’ , wrote Skinner, ‘ to inner states is not that they do not exist, but 

that they are not relevant in a functional analysis’  [Skinner1953].  ‘Not relevant’  means, for 

Skinner, explanatorily circular or regressive.  (There are obvious flaws with the behaviourist 

stance; it disregards innate behaviours and capacities, and fails to explain the human condition 
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– the ‘qualia’  of e.g. pain is experienced, in addition to the generation of appropriate pain-

reduction behaviour which is observed from outside.) 

 

The early pioneers of computing such as Alan Turing formulated the belief that a ‘Universal 

Machine’  which could model any abstract computing engine could therefore simulate human 

intelligence.  The ‘Church - Turing’  thesis1 suggests that a problem which cannot be solved 

by such a theoretical machine cannot be solved by a human mind, and conversely that any 

problem soluble by a human is equally soluble by the machine.   

 

Since the Dartmouth Conference in 1956, AI became thought of as generating abstract 

intelligences that could solve all problems, providing that the environment of the intelligence 

can be suitably presented to them.   Based upon this doctrine of functional equivalence (for 

which the empiricism of the behaviourists is surely a sine qua non, stripping away mentalist 

models and innate drives), and the concept that intelligence is synonymous with computation, 

the position of classical AI is represented by the ‘Physical Symbol Systems Hypothesis’  

(PSSH) of Newell and Simon [Newell1976].  This asserted that ‘a physical symbol system has 

the necessary and sufficient means for general intelligent action.’   Physical symbols have 

some physical existence, whether as marks on paper, electronic charges in computer registers, 

or in some fashion in the physical brain that instantiates a mind.  The PSSH asserts that 

physical symbols are necessary for intelligence, that systems based upon them are sufficient to 

provide for intelligence with no addition, and such systems are widely and generally 

applicable.  The difference between Machine and Human Intelligence is one of substrate and 

plumbing; instantiation. 

 

                                                
1  The term 'Church-Turing thesis' seems to have been first introduced by Kleene: 
'So Turing's and Church's theses are equivalent. We shall usually refer to ... versions which deal(s) with 'Turing 
machines' as the Church-Turing thesis.' [Kleene1967]  
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Harnad presents a good overview of the characteristics of symbol systems [Harnad1990], 

quoted below. 

‘A symbol system is: 

1. a set of arbitrary ‘physical tokens’  scratches on paper, holes on a tape, events in a 

digital computer, etc. that are 

2. manipulated on the basis of ‘explicit rules’  that are 

3. likewise physical tokens and strings of tokens. The rule-governed symbol-token 

manipulation is based 

4. purely on the shape of the symbol tokens (not their ‘meaning’ ), i.e., it is purely 

syntactic, and consists of 

5. ‘ rulefully combining’  and recombining symbol tokens. There are 

6. primitive atomic symbol tokens and 

7. composite symbol-token strings. The entire system and all its parts -- the atomic 

tokens, the composite tokens, the syntactic manipulations both actual and possible 

and the rules -- are all 

8. ‘semantically interpretable’  The syntax can be systematically assigned a meaning 

e.g., as standing for objects, as describing states of affairs.’  

 

Intelligence is therefore reduced to the application of operators to data.  Given some sensory 

input, there exists a set of transformations which embody logical thought, and which thereby 

produce a set of outputs which we would recognise as being the product of intelligence in that 

they enable the successful attainment of a goal state.  This is the position which has now 

become known as ‘classical AI’ .   

 

Newell and Simon implemented the theories formalised in the Physical Symbol Hypothesis in 

a system they termed the General Problem Solver (GPS), and described originally in 1957 
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[Newell1957].  GPS was an example of a production system – symbols are manipulated 

according to rules, and limited inferences can be drawn.  Production systems of this type 

became known as expert systems.  For example, MYCIN [Shortliffe1973] has many rules 

about how to infer which bacterium is causing an illness based on symptoms and the result of 

laboratory tests. However, its formalism has no way of expressing the fact that bacteria are 

organisms that grow within the body.  

 

It is important to note that the symbols manipulated in such a system are operated upon on the 

basis of their ‘shape’ ; processing is on syntax, rather than semantics.  Such a system is 

therefore ‘ungrounded’ ; the symbols being processed have no meaning within the confines of 

the system, although they can be assigned a meaning from outside the system.  MYCIN has 

no knowledge that bacteria are physical organisms growing in the body of the patient or in the 

culture vessel.  This is exemplified by Searle’s famous ‘Chinese Room’ argument 

[Searle1980], and its derivatives.  Although the rules within the system allow for the 

manipulation of symbols, since the symbols have no meaning, no component of the system 

can be said to be intelligent, although to the intelligent observers outside the system its 

behaviour might appear intelligent.  This is unlike the intelligence of a biological mind in 

which meaning must be intrinsic, and hence symbol manipulation cannot provide the 

‘sufficient means for general intelligent action’  claimed by Newell and Simon [ibid., 

emphasis added].  Harnad provides a further example – consider the task of learning Chinese 

as a first language from a dictionary giving Chinese definitions of Chinese pictograms.  There 

is no way to bootstrap the process; there is no grounded starting point, no ‘Rosetta Stone’  that 

enables semantic interpretability. 

 

Within constrained problem domains in which the problem of externally attributing meaning 

to symbol is readily solved, the approach has been successful.  Programs have been written to 
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solve a class of problems that give humans intellectual difficulty: examples are playing chess, 

proving mathematical theorems, transforming one symbolic expression into another by given 

rules, integrating expressions composed of elementary functions, determining chemical 

compounds consistent with mass-spectrographic and other data.  Game playing has produced 

notable successes, such that of IBM’s ‘Deep Blue’  series of chess-playing systems against the 

best human opponents.  Classical AI has been similarly useful in other abstract domains, such 

as the automatic translation of defined and constrained knowledge in database applications 

and service negotiation where the problem of semantic mark-up has been addressed by 

humans.  KIF2, the Knowledge Interchange Format is an example of this.   

 

Despite their successes, when classical AI techniques have been applied to robotics they 

prove difficult to implement and fragile.  The frequently cited example of the robot ‘Shakey’  

[Nilsson1984] will demonstrate both the successes and failures of this approach.  Shakey was 

developed at the Stanford Research Institute between 1966 and 1972, and was provided with a 

specially constructed set of rooms in which to operate.  It was equipped with a world model 

containing representations of the named rooms, doors, and boxes, and could be tasked to 

enact goal-directed instructions such as moving from one room to another using a set of pre-

coded action routines. 

 

In order to determine which actions to take to achieve its goals, Shakey used the ‘STRIPS’  

planning system [Fikes1972].  STRIPS, like the GPS of Newell and Simon, is a hierarchical 

planning system; to achieve a goal, the problem is broken down into sub-goals.  In STRIPS, 

models of the action routines – which might have preconditions associated with them – 

allowed the prediction of an action’s effects.  STRIPS thus searched through the possible 

                                                
2 draft proposed American National Standard (dpANS) NCITS.T2/98-004  
http://logic.stanford.edu/kif/dpans.html 
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action sequences that would allow the robot to attain the goal state in order to formulate a 

plan. 

 

Shakey was slow in computation due to the limitations of the processing platform available at 

the time.  More importantly, it could only operate in the specially constructed environment 

that matched its internal model.  This illustrates the fragility of using a predefined model with 

no ability to adapt or generalise.  More important still, the approach scales poorly.  As the 

number of decision points within the decision hierarchy grows, the time required to search for 

a solution grows exponentially.  A system which has to ‘sit and think’  for hours before acting 

may find that the world has changed around it making its decisions invalid. 

 

In his seminal 1961 paper, Marvin Minsky [Minsky1961] identified the following sub-

problems in building artificial intelligences; Search, Pattern-Recognition, Learning, Planning, 

and Induction.  If pattern-recognition is separable from the other processes comprising an 

intelligent system, then to ground a symbol-based system is a matter of connecting the 

‘ intelligence’  to the world in the right way.  Unfortunately, the problem of connecting to the 

world in this way cannot be solved in isolation from cognition3.  A system is grounded 

because there is no necessity for an outside intelligence to attribute meaning to the syntactic 

symbols.  Minsky discussed the use of connectionist systems for pattern recognition, though 

he concluded that their contemporary form as perceptrons [Rosenblatt1958] was of limited 

use. 

 

                                                
3 In mammals, vision is learnt (upon a prenatally developed infrastructure) through changes in neuronal 
connections in the visual cortex; a young animal raised in the absence of visual stimuli (due to its eyes being 
sewn shut) may be unable to see when its eyes are opened, even though the retina is undamaged.  See 
[Hubel1988] for an overview by one of the main pioneers of such investigations.  To misapply the epigraph from 
‘Love’s Labours Lost’ , ‘…learning…adds a precious seeing to the eye’  since without learning - the adaptive 
processes of differential neuronal growth and connection - the eye is blind. 
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In contrast to the symbol manipulating approaches, an alternate approach has arisen which is 

often termed ‘sub-symbolic’ .  This is based upon the concept of having many (simple) sub-

units with complex interactions – Rosenblatt’s perceptrons were an early example of artificial 

neural networks in which the sub-units to some degree model the behaviours of biological 

nerve cells.  Such connectionist machines can be labelled ‘sub-symbolic’  since there is no 

concept of rule-governed combining and recombining of symbols.  Connectionist machines 

are grounded since they are capable of learning to distinguish categories within input data, 

and assigning new data to those categories.    No external intelligence is necessary to assign 

semantic content to syntactic symbols; semantic information arises within the system itself. 

 

It was in reaction to the problems exemplified by ‘Shakey’  that Rodney Brooks of MIT 

spearheaded the movement which was to become known as ‘behaviour-based robotics’ .  

Rather than the sequence of Sense-Model-Plan-Act of earlier approaches, Brooks’  model was 

based upon the principle that behaviour could be composed of modules, each of which 

received data directly from the environment, and which could directly produce actions via the 

robot’s effectors.  The co-ordination of these behaviours could be realised via a ‘subsumption 

architecture’ , in which higher-level behaviours could over-ride more-frequently triggered 

lower-level behaviours, the action of the robot being composed of either some combination of 

the actions proposed by all triggered behavioural modules or only that of the highest level 

‘ layer of competence’ . 

 

One advantage of this approach is that behaviours can be developed in isolation, and once 

developed re-used, in a manner in some ways analogous to the conservation of structure and 

information evinced in the evolution of life.  Developing robotic systems to perform complex 

tasks is therefore simplified through the use of pre-defined behavioural components.  Also, 

directly coupling sensors to effectors via behavioural modules rather than having a central 
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planning process using the sensor data against an internal model promotes real-time 

behaviour; when the world changes, the robot responds.  This too has biological justification.  

For example, the ‘knee-jerk’  response generated by a reflex arc is a direct link from sensors to 

effectors, like other reflexive responses thus requiring no ‘higher processing’4 or decision 

making. 

 

Rather than having the internal model of the classical approaches, Brooks claimed that since 

‘ the world is its own best model’  [Brooks1986] there is no necessity to either supply or build 

such an internal representation.  The intelligence displayed by the system is hidden within the 

co-ordination of layers of competence, and shown by the responsiveness of the system to its 

changing environment.  This approach was pioneered in the 1950s by W. Grey Walter with 

his ‘Tortoise’  robots, built using analogue electronics and mechanical components, and 

capable of autonomous phototaxis and, perhaps, more complex behaviours.  Owen Holland 

presents a review of this work of Grey Walter in [Holland1997]. 

 

As a pragmatic methodology it offers gains in terms of the speed of response to 

environmental input, and the possibility to reuse components developed in isolation from each 

other.  Brooks also concentrated on embodied systems in situ rather than attempting to create 

general-purpose systems in simulated environments which could then prove difficult or 

impossible to integrate with complicated, noisy data on physical platforms.  However, there 

are some problems with this sub-symbolic architecture.  The co-ordination of behaviours and 

the mechanisms of subsumption implicitly replace the global model.  This co-ordination 

becomes more complex as more modules are added, and requires careful design and perhaps 

considerable ad hoc adjustment in order that behaviours should be selected in an appropriate 

fashion.  Also, if the goal is to produce the type of intelligence we recognise in each other 

                                                
4 Although some reflexes involve intermediary neurons between sensory and motor neurons, these are most 
commonly in the spinal column of vertebrates, rather than the brain. 
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then it is difficult to see how this approach can succeed alone; our conscious experience of 

life suggests that we are not merely driven in our actions by circumstances. 

 

There now follows a brief overview of some areas of research related to the Learning 

Classifier Systems used in this thesis, including where possible evidence of their application 

to problems with multiple objectives.   

 

1.2 Evolutionary Computation 
 
Evolution by selective pressure can be simply summarised; 

• Individuals in a population differ from each other. 

• These difference are to some degree heritable. 

• The differences between individuals determine their success in profiting from their 

environment and in their interactions with other members of the population, and 

therefore determine the percentage of the next generation comprised of their offspring. 

In this way, a population changes in response to the challenges of its environment.   The 

simulation of evolution by selective pressure can thus allow for a population of candidates 

encoding possible solutions to a problem to converge upon its optimal solution – all that is 

needed is some measure of the relative fitness of the candidates in solving the problem, and a 

means by which these differences in fitness alter the replication of the candidates.  In order to 

sample areas of the search space not represented in the population, new candidates must be 

generated, typically through processes analogous to those of genetic change in natural 

organisms. 

 

There have been a number of approaches to simulate evolution within computers, including 

Holland’s Genetic Algorithms (GA) [Holland1975], Rechenberg’s Evolution Strategies (ES) 
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[Rechenberg1965],  Koza’s Genetic Programming (GP) [Koza1992], and the Evolutionary 

Programming of Fogel et al. [Fogel1966].  Since Learning Classifier Systems (LCS) stem 

from GAs, the latter are briefly considered below. 

 

1.2.1 Genetic Algorithms (GAs) 
Within the prototypic GA, a population of chromosomes is initially created at random.  These 

chromosomes are typically binary strings that in some way encode possible solutions to a 

problem.  As there is a mapping between the chromosomal representation and the solutions, 

the former are considered as the genotypes that explore the search space, and the latter as the 

phenotypes which search the problem space.   

 

Each chromosome in the population has an associated fitness value.  This represents the utility 

of the phenotype, typically assessed by a fitness function.  When the relative fitnesses of the 

phenotypes have been assessed, reproduction can take place.  Chromosomes have a chance of 

reproducing proportional to their relative fitness; a variety of schemes are used to implement 

this, such as tournament selection and roulette-wheel selection.  In reproduction, two parental 

chromosomes may be recombined through crossover at one or more randomly-chosen points 

to produce offspring.  There is also a constant probability that each position, or allele, in the 

chromosome of the offspring is changed at random in a process analogous to mutation. 

 

Since the number of individual chromosomes in the population is typically fixed, there must 

be a strategy for replacing old chromosomes with the ones generated by reproduction.  In 

Holland’s GA, this process was generational, that is, the entire population is replaced by new 

members on each iteration of the algorithm.  Again, other approaches are possible, such as the 

steady-state method [Syswerda1989] in which only a few lower-fitness members of the 

population are replaced on each iteration.  Once the genetic operators have produced new 
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individuals, relative fitness is again assessed and the cycle begins again.  The cycle is 

terminated when either some fitness criteria is reached, for example, a phenotype has perfect 

absolute fitness, or after some predetermined number of cycles have been performed. 

 

1.2.2 Schema Theory and the Building Block Hypothesis 
In order to prove the utility of GAs, Holland presented an application of schema theory 

[Holland1975].  In schema theory, the search space is partitioned into subspaces of varying 

levels of generality – the schemata - and mathematical models are constructed which estimate 

how the number of individuals in the population belonging to certain schema can be expected 

to grow in the next generation. From this model arose the building block hypothesis (BBH) 

[Goldberg1989], which attempted to explain how a GA solves a problem by positing that 

near-optimal solutions were forged from small, low-order, fitter-than-average schemata. 

 

A schema is a ternary string consisting of symbols from the set { 0,1,* } , in which ‘ * ’  –‘don’ t 

care’  - is a meta-character that matches both 0 and 1, and thereby provides for generalisation.  

In an alphabet of k characters, for a string of length l there are kl different strings.  Introducing 

the meta-character *  means there are (k+1)l schemata.  Since there are more schemata than 

there are (binary) strings, the fitness evaluation of a single string implicitly provides 

information about the fitness of a greater number of schemata.  There is thus an implicit 

parallelism in the search process. 

 

In general, any particular string is a member of 2l schemata because each position may take 

on its actual value, or a don't care symbol. As a result, a population of n strings contains 

somewhere between 2l (if all the strings are identical) and n x 2l (if all the strings are 

different), schemata - thus even a moderately-sized population contains a wealth of 

information about important similarities.  Holland showed how the proportion of schemata 
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varied in the population according to the relative fitness of (the phenotypes of) the genotypes 

which contain them. 

 

A schema H=0***0** represents all strings where l=7 and with the specific character 0 at 

positions one and five. H stands for hyperplane.  The order, o(H), of the schema is the 

number of specific characters in the schema, here two, and the defining length, d(H), is the 

distance between the outermost specific characters.  In this case d(H)=4, since the first 

specific character is at position one and the last at position five.  

 

Let m(H, t+1) be the number of schemata H found in the population at time t+1.  The 

probability of reproduction is dependent on relative fitness, which can be represented as  

avf
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where f(H) is the mean fitness of individuals containing H and fav is the average fitness of the 

population as a whole. 

 

If crossover occurs between the outermost defining characters of the schema, the schema will 

be disrupted.  With one-point crossover this will happen with the probability d(H)/(l-1).  

Mutation can occur with equal probability at each defining character of the schema, thereby 

disrupting it with probability proportional to the order of the schema o(H). 
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where pc is the probability of crossover, and pm is the probability of mutation for each 

character, or allele, of the chromosome. 
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This is an inequality since there may also be recruitment due to the creation of the schema H 

by the action of the genetic operators on other schemata in the population, and thus provides a 

pessimistic estimate of schema growth. 

 

The related BBH of Goldberg [ibid.] maintains that GAs discover low-order schema of high 

fitness first, and then recombine these building blocks to gradually discover higher order, 

high-fitness schema.    

 

Schema theory has been criticised since it says nothing about the reconstruction of schema by 

the positive action of genetic operators.  The theory of GAs remains an active field.  See 

Stephens and Waelbroeck [Stephens1999] or Langdon and Poli [Langdon2002] for  an 

overview of work deriving exact predictive equations based upon the schema concept. 

 

Evolutionary methods have been successfully applied to many problem domains, including 

control systems, data mining, game playing, machine learning, and scheduling.  As we shall 

see in Chapter 3, they have also been successfully used to generate controllers for mobile 

robots.  One advantage of evolutionary methods is that they are population based.  The 

individuals in the population sample many points in the search space concurrently, and search 

is improved by swapping information between individuals by means of the genetic operators.  

This may be particularly useful when compared with non-population based techniques in 

deceptive problems, i.e. problems in which the search space is multi-model with many small 

peaks of fitness that are not the globally optimal fitness. 

 

Another justification for using evolutionary techniques is that the core algorithm has proven 

its remarkable utility in the last 3.5 billion years of life on Earth.  The behaviour of the living 
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organisms that surround us and their multitude of intricate design fitting form to function is 

ultimately due to physically grounded and embodied evolution. 
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1.2.3 Evolutionary Algorithms for Multiple Objectives 
Most real-world problems involve multiple objectives that may conflict.  There has been a 

considerable amount of work on multi-objective optimization problems, and numerous 

researchers have reported success through the application of evolutionary techniques; see 

[Zitzler1999], [Coello2000], or [Fonseca1995] for an overview. 

 

The majority of this work concentrates on generating a population of candidate solutions 

using an evolutionary algorithm, such that each of the candidate solutions is 'Pareto Optimal'. 

That is, they are members of the set of solutions for which there exists no solution that is 

better in respect to one objective, without being worse in respect to another, and which still 

obeys all solution constraints.  The 'decision maker' then picks a solution from this set of non-

dominated solutions.   

 

A number of different evolutionary algorithms have been used, for example, various 

formulations of genetic algorithms, e.g. [Deb2000] and genetic programming, e.g. 

[Rodriguez-Vazquez1993]. 

 

Evolutionary Algorithms are especially suited to the problem of discovering members in the 

Pareto optimal set (i.e. the set of non-dominated solutions).  Firstly, they are population-

based, and thus can maintain information about many points on the Pareto front5 

simultaneously.  Secondly, they are less susceptible to the shape of the Pareto front; concave 

or discontinuous Pareto fronts pose difficulty to more traditional mathematical approaches 

[Coello2000].   

 

                                                
5 The Pareto front is the part of the boundary of the set of all solutions which comprises the Pareto Set. 
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A number of approaches have been used to apply genetic algorithms to multi-objective 

optimisation, for example: 

• Derive a fitness function that combines the multiple objectives into one function.  The 

multiple objectives need to be weighted relative to each other.  This may be difficult in 

problem domains about which little is known. 

• VEGA (Vector evaluated GA) [Schaffer1985].  Each generation the population is 

assessed for performance against each of the objectives in isolation, and the total 

population split into k sub-populations where k is the number of objectives.   

Individuals from these sub-populations are then intermingled again, and bred.  This 

approach suffers from the problems of ‘speciation’ , whereby there may arise sub-

populations which specialise in one objective. 

• MOGA (Multi-objective GA) [Fonseca1993].  The rank (ri) individual of the 

population is set to 1+ni, where ni is the number of individuals by which it is 

dominated.  Nondominated individuals are assigned the rank 1, and individuals at the 

same rank have their fitness assigned and averaged in such a way that nondominated 

individuals have higher fitness.  In order to maintain a population of diverse 

nondominated solutions a nicheing mechanism which considers the distance between 

any two individuals assigns higher fitness to individuals in less-crowded areas of the 

search space.  Fixing this sharing parameter is the chief difficulty in applying MOGA 

to problems. 

• NSGA (Nondominated Sorting GA) [Srinivas1994].  Similarly to MOGA, NSGA and 

NSGA-II [Deb] use a ranking scheme on the basis of level of domination to assign 

fitness, and also a nicheing strategy.  Although NSGA is less computationally efficient 

that MOGA, the later NSGA-II has improved efficiency and maintains a better spread 

of nondominated solutions in the final population.  
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It will be seen that there are two goals in multiobjective GAs.  Firstly, to discover candidate 

solutions in the Pareto-optimal set that are nondominated.  Secondly, to maintain as diverse a 

population as possible within the set of nondominated solutions.  The latter is important 

because the trade-offs that enable the experimenter to choose between solutions are not 

represented within the fitness assessment; all nondominated solutions are candidates which 

solve the problem.   

 

It would be possible to use multiobjective evolutionary algorithms to produce robotic 

controllers.  However, as shall be shown in Chapter 3, using GAs alone in a robot context is 

generally a slow process, since fitness evaluation on the physical platform is time consuming 

and must be repeatedly performed for all individuals in the population.  Essentially, GAs are 

an offline learning method, since the controller produced by each individual must run in order 

to establish its fitness, and while this is taking place no knowledge is incorporated into the 

system.  Also, the second goal of multiobjective GAs of maintaining a diverse population 

from which an experimenter may choose a representative is unnecessary in order to develop a 

single optimal controller, and introduces an additional human step which reduces the 

autonomy of the system. 

 

For further information on the subject of evolutionary multiobjective optimisation the reader 

is referred to Deb’s book for a comprehensive overview [Deb2001]. 
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1.3 Reinforcement Learning (RL) 
 
Natural organisms display adaptation in many ways.  We have briefly mentioned the process 

of evolution by natural selection, thought to be responsible in some part for the diversity of 

form and behaviour observable in the natural world.  Other forms of adaptability affect the 

phenotypes.  For example, the ontogenetic processes of development by which the phenotype 

is created from the genotypic encoding adapts to changes in its environment, and such 

plasticity of growth can generate many different forms from the same genomic starting point.  

In addition to the adaptation of evolution which takes place over many generations, animals 

also adapt through learning within their lifetime.  The study of learning provides another 

starting point for the simulation of adaptive behaviour. 

 

Learning mechanisms can be categorised according to whether they are supervised or 

unsupervised.  Supervised learning implies the concept of teaching by example; the learner is 

presented with examples for which the correct result is known, and after a training period can 

then predict results for new observations.  In unsupervised learning an agent learns through 

interaction within its environment.  Reinforcement learning is one such unsupervised learning 

methodology6, which draws upon biological examples and is represented by a number of 

different classes of algorithm. 

 

1.3.1 An Overview of Reinforcement Learning 
Skinner, the behaviourist student of animal learning, built on the work of Thorndike and 

others to develop a theory of learning known as operant conditioning.  In operant 

conditioning, an animal learns to associate a reward (an unconditioned stimulus (US) – i.e. 

something the animal innately ‘desires’  - such as food) with performing an action (an 

                                                
6 RL in single step problems is very similar to supervised learning, however, in RL the solutions are not directly 
manipulated to reduce observed error.  
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unconditioned response (UR)).  A conditioned stimulus (CS) such as a light is also presented 

at the same time as the US.  After a training period the animal will produce the UR in the 

absence of the US upon perceiving the CS.   This is contrasted with the experiments of Pavlov 

in classical conditioning in which an US that triggers a companion UR (e.g. as the perception 

of food triggers a dog to salivate) is presented at the same time as a CS, and after training the 

animal will produce the UR upon the presentation of the CS alone. 

 

In essence, operant conditioning is learning by trial and error.  The animal learns to associate 

a combination of environmental cues and behaviour with a reward.  Thereafter it is more 

likely to perform those actions that lead to higher reward in that particular environmental 

state.    

 

This is the model followed in reinforcement learning.  The environment is presented to the 

learner in some unambiguous way, so that the same environmental state can be recognised 

when it is encountered again.  There is also some measure of reward from the environment.  

In response to the environmental information, the learner chooses an action according to its 

policy.  After following the action advocated by the policy, the environmental state and 

reward are again supplied to the learner. 

 

For the value of an environmental state to be determined, the environment must be rendered 

in some way into distinct states.  The state signal cannot be expected to inform the learner of 

all useful information about the environment, but it should summarize past states compactly 

so that all relevant information necessary to make optimal decisions is presented to the 

learner.  Such a state signal is said to have the Markov Property, or to be Markov.  More 

formally, if the state has the Markov property, then the environment’s response at time t+1 
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depends only on the state and actions representations at time t.  The environment as a whole is 

considered Markov if this is true for all environmental states. 

 

Modern reinforcement learning implementations can be divided into three approaches.  The 

earliest, dating from the work of Richard Bellman in the 1950s, is dynamic programming 

(DP).  Dynamic programming requires that a model of the environment is perfectly known in 

order to iteratively estimate the value of states.  For this reason (and its great computational 

complexity) it is of little utility in the problems considered herein where an entity has no a 

priori knowledge of its environment.  The second approach is known as Monte Carlo methods 

which do not require a perfect model but can learn from experience.  Monte Carlo methods 

build knowledge in an episodic fashion – they require that a sequence of steps between 

Markov states has a defined termination, at which point the values of the states leading to that 

final state can be calculated.  Since this may not be true in the case of a robot that has to 

continually perform tasks, and should optimise its behaviour along the way without the 

concept of episodes, Monte Carlo methods are not dealt with further in this thesis. 

 

The third approach is a synthesis of Monte Carlo methods and DP, and is known as Temporal 

Difference (TD) learning.  It requires no perfect model, and can update value estimates as new 

states are experienced, guessing the values of states from other guesses.  The values estimated 

are either the values of states themselves V(s), or the values of taking a particular action when 

in a particular state Q(s,a). 

 

TD methods can be divided into two categories.  On-policy methods evaluate the values of a 

policy while using it for control.  Off-policy  methods use a different policy to choose their 

actions from the one which is being evaluated. 
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Sarsa [Rummery1995] is an on-policy TD control method which learns an action-value 

function rather than a state-value function.  As it learns the value of state-action combinations, 

it can be used to control an agent’s movements around an environment.  Its update function is 

given below; 

( ) ( ) ( ) ( )[ ]ttttttttt asQasQrasQasQ ,,,, 111 −++← +++ γα  

in which α is the learning rate,  γ  is the discount rate (both in the range [0,1]), and r is the 

reward from the environment.  Sarsa gets its name from the tuple (st, at, r, st+1, at+1), since all 

elements are used in the update equation.  It has been proven that Sarsa will converge to the 

optimal policy given that all state-action pairs are visited and their corresponding Q values are 

updated indefinitely. 

 

Q-learning [Watkins1989] is an off-policy method.  The learned action-value function Q 

directly approximates the optimal action-value function, Q*, independent of the policy being 

followed. 
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In contrast to Sarsa which updates Q(s,a) for the policy it is actually using, Q-learning 

updates Q(s,a) for greedy policy with respect to the current Q. Sutton and Barto [Sutton1998] 

show an example in a simulated grid-world problem called ‘Cliff Walking’  in which Q-

learning might achieve worse results than Sarsa due to its off-policy action selection.  The 

reader is directed to Sutton and Barto’s excellent book [Sutton1998] for further details on 

reinforcement learning. 

 

In summary, reinforcement learning presents methods which allow for online learning of 

optimal behaviour.  This would clearly be useful in problems of controlling robots.  One 

problem with Sarsa and Q-learning is that they need to maintain Q-values for every state-
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action combination.  If the state-action space is large, this may not be efficient.  Furthermore, 

the necessity to render the environment into uniquely identifiable Markov states requires that 

these methods should either have an artificial a priori discretisation imposed upon the 

environment, or that some external generalisation mechanism is supplied which will perform 

additional unsupervised learning in order to collate real-valued sensor data into a smaller 

number of discrete states. We shall see some examples of robotic applications and the ways in 

which these problems have been addressed in Chapter Three.   

 

There now follows a brief overview of some work in which reinforcement learning has been 

used in problems with multiple goals or objectives. 

 

1.3.2 Reinforcement learning for Multiple Objectives 
Mariano and Morales [Mariano1999] present work in which they used multiple co-operating 

families of Ant-Q reinforcement learners of the type first presented in [Gambardella1995].  

Ant-Q is a distributed algorithm for combinatorial optimization using RL to solve the 

travelling salesman problem (TSP).  Mariano and Morales extend this work to solve a TSP 

where there are a number of simultaneous objectives; in their application, this is an irrigation 

system which must be the least cost (i.e. the shortest path), and which places crops 

appropriately to the availability of water.  They report better results using this method than in 

a comparable treatment where the irrigation system was optimized first, and crop placement 

second. 

 

Crabbe makes the point that, in the case where an animat has multiple objectives to satisfy 

simultaneously, this cannot be optimally achieved through having separate Q learners for each 

objective [Crabbe2001], with the one with the highest activation determining the animat's 

action.  He considers the example of a robot that has two objectives, which can be satisfied in 

any order; getting power, and getting a building block.  If the environment is dynamic, there 
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is a chance that conditions will change while seeking one goal such that the other goal can no 

longer be achieved - another robot might consume the battery, for example.  Using Utility 

Theory, Crabbe shows that the best course of action is not only dependent on the expected 

value of the outcome, but is also dependent on the probability of success. Simply stated, in 

order to maximise the overall utility, sometimes one should pick the low-hanging fruit, 

although they may be less juicy!   

 

In order to solve such problems, Crabbe [ibid.] states that one could either combine the output 

of a number of Q-learners, or have one Q-learner that can manage multiple simultaneous 

goals. He examines the latter case, and goes on to show that while Q-learning systems 

typically use a linear scalar reinforcement function, there can be circumstances in multi-

objective problems where such a function cannot be used if the fitness landscape in respect 

for either of the objectives is not monotonic.  However, a bi-linear function can be used with a 

single Q-learner since such a function is non-linear in respect to the combination between its 

linear variables. 

 

Gabor et al. [Gabor1998] have considered similar multi-criteria sequential tasks.  Examples of 

such tasks would include situations where a robot has to perform a number of tasks, but the 

way in which it performs task A can lower the value it will receive from performing task B.  

The example they give is of ‘Buridan's Ass’ ; placed between two dishes of food its hunger 

drives it to one or the other, but in doing so it raises the possibility that the food on the other 

dish will be stolen.  Since the ass tries to optimize his overall utility, he guards both dishes, 

thereby eating nothing. He therefore has two different conflicting objectives.   

 

Gabor et al. present a method of determining how to mix behaviours such that the total loss 

due to conflict is reduced, without reducing the problem to a scalar-valued reinforcement 
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case. Using a vector-valued reinforcement signal is possible if policies are compared 

component-wise; but as noted above by Crabbe, this may in some cases give sub-optimal 

solutions. An alternative approach is to use the weighted sum of the components using their 

evaluation functions; this approach reduces to the scalar-valued reinforcement case if the 

discount factor is the same for each criterion.  They present a method that uses the framework 

of abstract dynamic programming, with vector-valued reinforcements, which can be used 

when there is no natural weighting between the components, and demonstrate its abilities to 

learn against a number of different players in the game of tic-tac-toe, its criteria for optimality 

being both winning, and reducing the number of moves made. 

 

Mannor and Shimkin [Mannor2004] also consider the case of vector-valued reinforcement in 

a dynamic environment, but they use a geometric approach to steer the learner through the 

space of possible policies until it is within a target region.  This approach is based upon the 

theory of approachability for repeated matrix games with vector payoffs.   Consider the task 

of a thermostat, which can be viewed as navigating through a one-dimensional space to stay 

within certain bounds.  More criteria increase the dimensions of the space through which the 

controller moves, the target region being the bounded n-dimensional space where all variables 

are within acceptable limits.  Note that this work deals with multiple criteria optimization, 

rather than multiple (conflicting) goals. 

 
 

1.4 Learning Classifier Systems 
 
From the production systems that stemmed from GPS came classifier systems, first described 

in the form of CS-1 (Cognitive System One) by Holland and Reitman [Holland1978].  

Classifier systems added the concept of schemas to the production rules, thereby allowing 

generality in matching.  Within the system proposed by Holland and Reitman there were two 

forms of learning; a ‘simple learning process’  and a ‘…more complex learning algorithm’ .  
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The latter was the GA which Holland had previously described [Holland1975].  The former is 

briefly described; 

‘When a reward enters the system …the predicted payoffs of the currently 

activated classifiers are then modified to reflect their accuracy in 

anticipating this reward.  Those predicted payoffs that were consistent with 

(not greater than) this reward are maintained or increased; those that 

overpredicted are significantly reduced…’ [Holland1978, emphasis added] 

CS-1 will not be described in any detail here, although we will return to it later.  Instead, 

below is presented a brief (and greatly simplified) overview of Holland’s ‘Michigan style’  

Learning Classifier System (LCS), as the systems which stemmed from CS-1 became known.  

Michigan style LCS [Holland1986] apply a GA to a population which is a set of rules, or 

‘classifiers’ .  The whole population functions essentially as one production system.  This is 

in contrast to ‘Pittsburgh style’  LCS [Smith1980] in which the population is a set of rule sets.  

Each individual, then, functions as a production system, and is evaluated by applying it for a 

short length of time to some problem and rating its performance.   

 

Although Pittsburgh classifier systems are more firmly grounded in GA theory, Michigan 

classifier systems have an additional mechanism of credit assignment resembling online 

reinforcement learning.  For this reason they are likely to learn quicker, since they do not 

require the performance of every individual in a population to have its fitness assessed before 

adaptation takes place. 

 

1.4.1 An overview of Michigan-style Learning Classifier Systems 
The Michigan-style classifier system operates on a population of rules or classifiers.  These 

take the form of  
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• Condition; a string of length k drawn from the alphabet { 0,1,#} 7.  

• Action; a string of length k drawn from the alphabet { 0,1,#} . 

• Some measure of the classifier’s ‘strength’ . 

In the condition, a ‘#’  symbol has the familiar meaning from GAs of ‘don’ t care’ .  In the 

action, a ‘#’  symbol means ‘pass through’ .  We shall examine the meaning of this below. 

 

The LCS incorporates two types of learning: a GA which searches the spaces of rules, 

generating novel rules and increasing the proportion of the population composed of higher 

fitness rules, and reinforcement learning which alters the fitness of rules according to their 

role in achieving reward.  In Figure 1-1 the GA is shown as the ‘Rule Discovery System’ , and 

the reinforcement learning system is shown as the ‘Credit Apportioning System’ .  These 

components, with the third ‘Performance System’ , are described below. 

 

                                                
7 Holland states that a classifier might also have an arbitrary number of conditions [Holland1986]. 
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Figure 1-1 The main components of a LCS, from Dorigo and Colombetti [Dorigo1998] 

 

 

 
Performance System. 
The Performance System of the LCS consists of three parts.   

• Interfaces.  Environmental input is presented via detectors, and the actions advocated 

by the performance system is carried out via the effectors.   

• Message List.  Processed environmental representations of length k in the alphabet 

{ 0,1}  are placed on the message list, where they can be matched by the condition part 

of the rules.  When a condition matches any message on the message list, it places a 

message on the message list itself.  This message will be the action of the rule.  Where 

a ‘#’  pass-through symbol occurs in the action, the corresponding character of the 

message matched by the condition is copied at that position. 
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• Rule Base.  The population of rules, or classifiers. 

 

The basic execution cycle is thus: 

1. Place all messages from the input interface on the current message list. 

2. Compare all messages to all conditions and record all matches. 

3. For each match generate a message for the new message list. 

4. Replace the current message list with the new message list. 

5. Process the new message list through the output interface to produce system 

output. 

6. Return to step 1. 

 

Because the condition of one classifier can be triggered by the message posted by another 

classifier, ‘semantic networks’  of classifiers can be implemented.  More general classifiers, 

i.e. those with a greater proportion of don’ t care symbols, are likely to be part of more such 

networks than more specific classifiers. 

 

The classifier system thus far described does not change in the composition of its rule base 

during operation.  In a learning classifier system, two further systems are introduced 
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Credit Apportioning System 
The credit apportioning system operates via the ‘Bucket Brigade’  algorithm, inspired by a 

simplified model of economics.  This changes the activities in the basic execution cycle 

outlined above.  In order to get its messages onto the message list when its condition matches 

any of the current message list, the classifiers bid in an auction.  A classifier’s bid is 

proportional to its strength, and also to its specificity.  The winning classifier pays part of its 

strength to the classifiers that posted the messages which its condition matched; the amount 

received by such classifiers is the amount of the bid divided (equally in the simplest case) 

between them.  At each iteration, all classifiers may also pay a tax, and have their strength 

reduced slightly. 

 

In this way each classifier can be seen as ‘…a kind of middleman in a complex economy…’  

dealing only ‘… with its suppliers – the classifiers that send messages satisfying its condition 

– and its consumers – the classifiers that are in turn satisfied by the messages it sends’  

[Holland1986].   The ultimate consumers are those classifiers that post messages leading to 

external actions via the effectors which directly lead to reinforcement signals being received 

from the environment.  The bucket brigade transfers the reinforcement signal back, step by 

step, through the supply chain of classifiers which participated in the eventual action which 

led to external reward. 

 
This then provides for online reinforcement learning by the system.  However, the ability of 

the system to solve problems through the implicit chaining of classifiers in the way outlined 

so far depends on the identities of the classifiers in the initial rule base.  In the case where the 

initial rule base does not encompass suitable classifiers, the system cannot function optimally.  

Holland therefore introduced the third component, the  Rule Discovery System. 
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The Rule Discovery System 
The Rule Discovery System is similar to a standard GA, as described in Section 1.2.1.  The 

population of classifiers in the rule base have a chance to reproduce proportional to their 

strength, which therefore also serves as a measure of their fitness.  In order to preserve 

knowledge, the population is not changed generation by generation, but instead a steady-state 

GA is used.  The offspring of parents chosen by fitness-proportionate selection replace the 

weakest members of the population, as the latter are likely to be classifiers which have 

participated little in chains of rules leading to external reward. 

 

1.4.2 Why use Learning Classifier Systems for Robotics? 
It will be clear from the description of Holland’s LCS given above that classifier systems can 

be very complicated.  Holland’s original LCS, and implementations based upon it, proved to 

be subject to a number of weaknesses, and difficult to implement.  The chaining of rules 

together in the bucket brigade was prone to exploitation by very general rules; a rule that is 

part of many chains may receive more reward.  Dorigo and Colombetti found that their 

implementation of the system suffered from ‘ .. rule strength oscillation, difficulty in 

regulating the interplay between the reinforcement system and the background genetic 

algorithm (GA), rule chains instability, and slow convergence’  [Dorigo1998]. 

 

Fortunately, there exist today a number of greatly simplified LCS.  Stewart Wilson first 

introduced such a version of Holland’s system, which he named ZCS [Wilson1994].  This 

was closely followed by XCS, a classifier system based on accuracy [Wilson1995].  In both 

these systems the link to the methods created within the reinforcement learning community 

was more clearly recognised and implemented.  The work in this thesis applies both ZCS and 

XCS to problems of learning optimal multiobjective robotic control, and detailed descriptions 

of the operation of both algorithms will be given in later chapters.  It is the author’s belief that 

there are a number of reasons for choosing a modern Michigan-style LCS for this task, rather 
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than a purely evolutionary method, artificial neural networks, or a pure reinforcement learning 

method. 

 

• Unlike a purely evolutionary approach, the addition of reinforcement learning allows 

for online learning.  Learning is incorporated into the system while the task is being 

performed, not episodically after the assessment of all individuals’  fitnesses. 

• Unlike an artificial neural network in which the weights of the connections between 

the neurons encode the learning of the system in a fashion which is difficult to 

understand, the rules of the classifier system offer the benefit of interpretability. 

• Unlike the implementations of reinforcement learning for robotics, in which the 

necessity to render continuous space into a discretised Markov space involves either 

a priori decisions about the problem which may be wrong, or the addition of function 

approximation mechanisms such as neural networks, an LCS has the ability to 

generalise built in. 

 

These points are expanded upon and further explained in Chapter Three.  

 

There now follows a brief description of some work in which the concept of multiple 

objectives has been tackled within the LCS community. 
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1.4.3 Learning Classifier Systems and Multiple Objectives 
The CS-1 algorithm described by Holland and Reitman [Holland1978] includes ‘ resource 

reservoirs’  which ‘… reflect simple biological needs…’  and ‘… deplete regularly in time’ .  

The authors note that these internal states could easily be used to model cognitive goals.  Note 

that the resource reservoirs are not presented to the condition part of the classifiers as the 

‘ internal environment’ , but instead influence the choice of which classifier’s action is taken 

by the learner.  A classifier’s chance of being chosen is proportional to the specificity of its 

match to the environment, both internal and external, ‘multiplied by the amount of the current 

needs fulfilled by this classifier’s predicted payoff’ .  The authors outline a simple linear 

environment where the system starts in the middle, and can receive at one end a reward that 

partially fills one internal resource reservoir, and at the other end a reward satisfying the other 

of these two internal needs.  One reward is twice the size of the other, and the system is 

shown to improve in performance to visit the rewards in the correct two-to-one proportion 

while also minimising the number of steps taken to achieve this behaviour.  They further 

show how the system uses past learning to cope with changing environments. 

 

Dorigo and Colombetti [Dorigo1998] used a novel LCS, Alecsys, to control a robot.  The 

main thrust of their work was to evolve simple behaviours, and then combine these to produce 

more complicated behaviours through a hierarchical system of LCS.  A hierarchy is imposed 

on a problem and an 'LCS coordinator' is introduced to select an action from the LCS lower in 

the hierarchy. The lower level LCSs are trained or shaped on their task in isolation, and once 

an acceptable level of performance is obtained for each lower-level module the rules that it 

contains are fixed and no more learning takes place. When this happens the training of the 

higher coordinating module is performed. Results were obtained for various 

following/avoiding tasks in simple environments in which the coordinator switches between 
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different behavioural modules as appropriate. This work will be examined more closely in 

Chapter Three. 

 

Llora and Goldberg [Llora2003] present an approach to Pittsburgh-style classifier systems 

which is in itself multi-objective, since they consider at the same time the objectives of 

accuracy of the classifiers, size of classifiers, and the generality of the solution.  In contrast 

with the work presented in this paper, their multiple objectives describe a balancing of 

desirable characteristics of the learning system, and then maintaining the Pareto front of 

solutions which balance these characters, rather than learning systems solving problems that 

have multiple objectives.  It is essentially the same as the multi-objective optimization work 

mentioned above. 
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Chapter 2 ZCS 
 

2.1  Introduction 
 
The Learning Classifier System, introduced by Holland [Holland1976, Holland1986], was 

complicated and difficult to realize.  Therefore, Wilson [Wilson1994] introduced the ‘Zeroth 

Level Classifier System’ , ZCS.  In this he made a number of simplifications to make the 

system easier to understand and to implement, ‘while retaining what we deemed to be the 

essence of the classifier system idea’  [ibid.].  The most notable of these simplifications was 

the absence of an internal message list; therefore the system has no temporary memory.  In 

this way, the system cannot act upon information stored in response to previous interactions 

with its external environment, nor can it internally generate ‘drives’  or ‘ intentions’ . 

 

This chapter investigates ZCS, showing that although it was initially believed to be incapable 

of optimal behaviour it has been shown to be capable of optimal performance in some 

environments, and review some related work in which ZCS’s performance has been 

investigated.  An examination of the use of ZCS in multi-objective problems of increasing 

complexity is presented thereafter. 

 

For ZCS to perform optimally, it must have its parameters carefully set [Bull2002a].  We 

shall see one method by which such optimal parameter settings can be discovered, and 

explore the space of ZCS’s performance in relation to the most important of these parameters.  
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2.2 ZCS Algorithmic Description 
 

 
 

Figure 2-1 Schematic Illustration of ZCS after [Wilson1994] 

 
 
As described in [Wilson1994], ZCS is a Michigan-style Learning Classifier System, without 

internal memory (Figure 2-1).  It is presented with an encoded representation of its 

environment, and may also be presented with a scalar reinforcement signal, or ‘ reward’ .  The 

reward is contingent upon the system’s success. 

 

ZCS contains a population [P] of N classifiers.  In Wilson’s original formulation, classifiers 

have a condition and action part encoded using the ternary and binary alphabets as detailed in 

Chapter 1, with the wildcard ‘#’  allowing generalization.  Upon presentation of the binary 

encoding of the environment, the subset of [P] which matches is termed the ‘match set’  [M]. 

 

It may happen that no classifier in [P] matches the environmental input, and [M] is empty.  In 

this case, a process known as covering takes place.  A classifier is created de novo.  Its 

condition matches the current environmental input, each character having a probability P# of 
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being replaced by a wildcard character.  An action is chosen at random from the set of 

possible actions.  The new classifier is assigned the average strength of the population, and 

replaces a classifier chosen from the population.  This choice takes place through roulette 

selection on the inverse of the strengths, and therefore it is more likely that a weak classifier 

will be replaced in this way.  Cover may also take place if the total strength of [M] is less than 

a certain pre-specified fraction φ of the mean strength of [P]. 

 
The classifiers which form [M] may be considered as hypotheses on which action to take in 

the current environmental state.  One action must be chosen from the set of actions thus 

advocated.  Although a number of selection schemes could be used, roulette selection on the 

strengths of the classifiers in [M] is used, such that classifiers of higher strength are more 

likely to be selected.  In contrast to Holland’s work, no measure of classifier specificity is 

involved.  All the classifiers in [M] which advocate the same action form the action set [A].  

The chosen action is then taken. 

 

Reinforcement in ZCS occurs through redistributing reward through the action sets that lead 

to this reward.  A percentage β of the strength of the classifiers in [A] is subtracted and placed 

in an initially empty ‘bucket’ .  After the action has been taken, a fraction β of any external 

reward received is divided amongst the classifiers in [A].  A record is kept of the previous 

action set [A]-1, and if this is not empty, the ‘bucket’  is discounted by λ and the then divided 

equally between its members, .  In this way a discounted reward flows back through the 

‘ implicit bucket brigade’ .  Additionally, the classifiers which were in [M] but not in [A] have 

their strengths reduced by a fixed fraction τ, the tax rate.  This causes classifiers which 

advocated a different action from the one taken to be penalised.  The interaction between the 

flow of reinforcement signals from the environment and tax rate will affect the balance of 

exploitation and exploration in the learning system, though it should be noted that the 



 39

likelihood of generation of new classifiers by cover and through genetic ‘churn’  will also 

interact with this balance. 

 

The ‘ implicit bucket brigade’  algorithm outlined above was noted by Wilson to be similar in 

some respects to Q-learning [Watkins1989].  However, it is more similar to Sarsa, a TD 

method for learning action-value functions rather than state-value functions, as noted in 

[Sutton1998]. 

 

In addition to the adjustment of strengths through the process outlined above, there is a 

panmictic8 genetic algorithm that replaces weak classifiers with copies of stronger classifiers.  

Parents and replaceable classifiers are once again chosen using roulette wheel selection. The 

new classifiers generated to replace the weak may undergo single point crossover with the 

probability χ and may mutate at any position in the condition or action part with the 

probability of µ per allele.  The GA is invoked after all reinforcement has taken place with the 

fixed probability ρ.  New classifiers generated by the GA are initialised at half their parent’s 

strength, and the parent has its strength reduced by a half.  Therefore reproduction (in the 

absence of the genetic operators) does not in itself change the likelihood that an action will be 

chosen. 

  
In Wilson’s original presentation of ZCS, he presented graphs showing that ZCS failed to 

achieve optimal performance on the Woods1 maze problem.  He suggested that this was due 

to failure in balancing exploration and exploitation; in short, the algorithm has found a sub-

optimal solution due to an incomplete exploration of the solution space, and fixated 

prematurely upon a solution.  He suggested a number of possible enhancements to this 

classifier system, and thereafter presented his influential XCS accuracy-based classifier 

system in which the simplicity of ZCS is lost. 
                                                
8 Panmictic. Referring to populations in which there are no constraints placed upon breeding. 
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2.3  Related ZCS Work 
 
Since ZCS provides a simpler platform on which to experiment with classifier systems, it has 

been used as the basis for work reported in the literature in a number of areas.  ZCS has been 

used to simulate multi-agent co-evolution [Bull1998, Bull1999].  Recently, Bull [Bull2002b] 

has used ZCS as a platform on which to investigate lookahead and latent learning, drawing 

inspiration from the sources which have also driven the development of ACS, the 

Anticipatory Classifier System [Stolzmann1998].  ‘Lookahead’  learning refers to systems in 

which the reinforcement is dependent on the ability to correctly predict the environmental 

state resulting from taking an action, while ‘ latent learning’  refers to the learning that occurs 

in the absence of reinforcement and that is not apparent until a reinforcement is introduced. 

Tomlinson and Bull [Tomlinson1998] extended ZCS to produce a ‘Corporate Classifier 

System’ , in which a macro-level evolutionary operator allowed the formation of 

‘corporations’  of rules.  The resulting corporations – linked classifiers – can take control of 

the system for a number of time steps.  This was compared against ZCS with a simple 

implementation of internal state, as described by Cliff and Ross [Cliff1994]. 

 

In Wilson’s original paper on ZCS, he mentions the potential to extend the expressiveness of 

the classifiers’  encoding.  Using a simple ternary alphabet in a string, one can only express 

logical ‘AND’ relationships between the values of the encoded environment.  Wilson 

mentions that Koza’s Genetic Programming [Koza1991] evolves Lisp S-expressions, and 

suggests that such representations might be used for the condition or action of a classifier.  A 

number of alternative classifier representations  have been explored, including Fuzzy Logic 

e.g. [Valenzuela-Rendon1991] and Artificial Neural Networks [Bull2002c]. 
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2.3.1  Self adaptation of parameters 
 
ZCS has 10 parameters, the values of which control its performance.  Some of these 

parameter values are critical to the success of the algorithm, while ZCS is more robust with 

respect to others.  It would be advantageous if the algorithm could itself discover the settings 

which are optimal for the problem at hand.  One approach that has been used to automatically 

set parameters in Evolutionary Programming [Fogel1992] and Evolutionary Strategies 

[Rechenberg1973] is to evolve the mutation rate itself. 

 

A similar method was used by Bull and Hurst [Bull2000b] to set the mutation rate for ZCS.  

Each classifier has an associated mutation rate, stored as a real number, and which is inherited 

by its offspring.  The mutation rate is itself mutated using a Gaussian distribution, and the 

resulting mutation rate is applied to the classifier’s condition and action as normal.  They 

showed that mutation rates decreased as the population converges upon a stable solution, and 

report that the mutation rates of classifiers close to the goal decreased faster and were fixed 

sooner than those of classifiers further down the chain of reinforcement. 

 

In [Hurst2001] they investigated self-adaptation of the parameters associated with the 

reinforcement process itself; learning rate β, discount rate λ and tax rate τ. Trying to use the 

same mechanism as for the mutation rate showed unpredictable behaviour, since the 

classifiers adapt their own parameters selfishly, for example by reducing their value of β to 

place less of their strength in the common bucket.  To avoid this, the learning rate at time t is 

determined by roulette wheel selection upon strength from the learning rates of the classifiers 

in the action set at t-1 .  The reverse is true of the discount rate; it is obtained in the same way 

from [A] and applied to [A-1].  They showed that self-adaptation of the reinforcement 

parameters can be used successfully. This is of obvious significance since the optimal settings 
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of parameter values is not generally known a priori, and require considerable trial and error 

on the part of the experimenter.  However, the authors do not report optimal performance. 

2.4  Parameter Sensitivity and Optimal Performance. 
 
ZCS is capable of optimal performance in the Woods1 grid-world in which ZCS was reported 

as sub-optimal [Wilson1994].  Bull and Hurst showed that ZCS can achieve optimal 

performance using a model of its performance based on simple difference equations, and 

demonstrated this empirically [Bull2002a].  The crucial difference was in the parameters 

which they used, see table 2.1 for a comparison with the parameters used in [Wilson1994]. 

 

Table 2-1 : ZCS Parameters for optimal Woods1 performance 

 Wilson1994 Bull2002a 
N 400 - 
P# 0.33 - 
S0 20 - 
β 0.2 0.8 
γ 0.71 0.02 
τ 0.1 - 
χ 0.5 - 
µ 0.002 - 
ρ 0.25 - 
φ 0.5 - 

 
 
It is important to note that the ‘online’  performance of ZCS using these parameters still falls 

short of optimality.  In order to make a clear comparison with XCS, in which of the alternate 

‘explore’  and ‘exploit’  trials only the performance on deterministic ‘exploit’  trials is shown, 

Bull and Hurst ran ZCS in a ‘deterministic mode’  at the end of training.  During this period, 

reinforcement continues, but the GA is switched off, and actions are chosen based 

deterministically on their strengths rather than by the use of the roulette wheel.    

 

Bull and Hurst note that it is the fitness sharing in ZCS which enables the algorithm to avoid 

over-general classifiers from dominating the population.  Consider the case of a classifier 
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which is the action set at the goal, and receives a high payoff, but which also matches an 

environmental input far from the goal where general payoff levels after successive discounts 

are low.  It might be expected to dominate its fellows in this latter niche in a simple strength-

based system like ZCS.  However, when a classifier is in [A] it has its strength reduced by β 

times its strength, and all classifiers in [A-1] are rewarded equally from the discounted bucket. 

With time, as noted in [Wilson1987]  all rule fitnesses tend towards the same value. 

 

ZCS has many parameters.  Unfortunately, there is a high degree of linkage between these 

parameters, such that it is not necessarily possible to optimise one parameter in isolation from 

the others.  This makes it difficult to find a parameter set with which ZCS can solve a 

particular problem.  Bull and Hurst [Bull2002a] further note that, since the implicit bucket 

brigade is a form of TD learning, there is a time delay in the operation of the fitness sharing 

process, and ‘ it is well known that sub-optimal solutions can arise if the learning rate and/or 

discount rate are incorrect for a given task’  (emphasis added). 

 

2.5  Single Objective Problem : Woods1 
 
The Woods1 environment shown in Fig. 2.2 is a ‘grid world’  consisting of a toroidal array of 

5 x 5 cells.  Each cell may be empty space into which the animat can move, and in one of 

which it is placed at the start of each individual trial.  A cell may also be filled by a ‘ rock’ , 

which prohibits a move onto that cell, or may instead contain ‘ food’ .  When the animat moves 

into the ‘ food’  cell, it receives an external reward, and a new trial starts. 
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Figure 2.2-2 The Woods1 grid-world 

 
Each environmental state is encoded by a unique combination of two characters.  The state of 

the eight cells - starting at North and moving clockwise - surrounding the animat are 

represented as the 16 position character string resulting from the concatenation of these two 

character representations. In order to match this, the classifiers have a condition of length 16.  

The animat can move in one of eight directions.  Each of these is similarly encoded as eight 

unique strings of three characters, and thus the action part of the classifier has three characters 

since a classifier can advocate only one action. 

 

As mentioned above, ZCS is capable of achieving the average optimum steps to goal in this 

environment, given suitable values of learning rate β and discount rate λ (Fig 2.4).  All graphs 

are the average of 10 runs.  There is a final deterministic phase lasting 20% of the number of 

‘on-line’  trials.  The optimum average steps to goal is about 1.7 steps. 
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Figure 2-3 Woods1 with parameters from [Wilson1994] 

 

 
Figure 2-4 Woods1 with parameters from [Bull2002a] 

 

Figure 2-3 and Figure 2-4 show the performance of ZCS in the Woods1 environment with 

Wilson’s original parameters and those of Bull and Hurst.  The latter enable optimality to be 

achieved, as mentioned above in Section 2.4. 
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2.6  Sequential Multi-objective problems. 
 
Given that ZCS is capable of optimally solving the simple Woods1 environment with one 

objective, let us now examine multi-objective problems in this environment.  Each is of 

increasing complexity.   As mentioned in Chapter One, several sequential multi-objective 

have been examined by the reinforcement learning community.   

2.6.1  Woods1 ‘Key and Door’ 
 
In the first such extension, the animat must visit a state in the environment before it reaches 

the goal.  If it does not first visit this state, the trial will not terminate.  This can be thought of 

as getting the ‘key’  to open the ‘door’  to reward.  In order to allow ZCS to ‘ remember’  

whether the animat has previously visited the ‘key’  state, an extra character is added to the 

representation of the environment, this character being set from its initial state of zero to one 

when the animat visits the ‘key’ .  This can be matched by a concomitant extra character in a 

classifier’s condition. In Fig. 2.5, the ‘key’  is shown as ‘K’ , and the reward state remains 

indicated as ‘F’ . 

 

 

Figure 2-5 Woods1 ‘Key and Door ’  

 
Again, with suitably chosen parameters, ZCS is capable of solving this problem, as shown in 

Figure 2.6.  The average optimum number of steps from any position in the environment to 

the goal state, going by way of the ‘key’ , is approximately 3.7. 
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Figure 2-6 ZCS optimal for  woods1 'Key and Door '   

 
Here, the parameters chosen to run ZCS are as follows:  

N=800, P#=0.33, S0=20, β=0.97, γ=0.17, τ=0.2, χ=0.5, µ=0.002, ρ=0.25, φ=0.5 
 
 

2.6.2  Woods1 ‘Carry the flag’ 
 
Of course, the above is a rather trivial problem.  The animat can only achieve its reward and 

terminate the trial if it has first visited the key state.  A slightly more complicated variant is 

provided by the same environment, in which the ‘door’  is always open.  However, the reward 

gained is dependent on whether the animat has previously visited the ‘key’  state, being 1000 

if it has, and otherwise 1.  Once again, an extra character in both environment and classifier 

condition allows ZCS to ‘ remember’  whether the animat has previously visited the ‘key’  state.  

Note that this ‘state character’  is not set by the classifier itself.   
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Figure 2-7 ZCS optimal for  Woods1 'Car ry the Flag' 

 

Figure 2.7 shows that ZCS can successfully solve this slightly more complicated sequential 

multi-objective problem.   All parameters remain as for the ‘key and door’  task, except: 

β=0.985, γ=0.2.  As can be seen, steps to goal falls to the optimum average, and the average 

reward gained (windowed over 50 trials) rises rapidly, eventually reaching the optimal 1000 

in the deterministic phase. 
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2.7  Concurrent Multi-objective problems. Woods1e 
 

2.7.1  Fixed Cost, Stepwise Reward (woods1e-type1) 
 
It is more interesting to consider the problems faced by a learner which has to juggle multiple 

simultaneous objectives.  In order to do this, an alteration of the previous Woods1 

environment is presented which not only has a ‘ food’  goal, but also has another goal which is 

labelled ‘energy’ .  In a similar fashion to the second sequential multi-objective task, the 

environment is presented to the classifiers with an additional character which is set to one if 

the animat’s ‘energy level’  is higher than 0.5, and otherwise set to zero.  The classifiers once 

again have an additional character in the condition which allow them to match this extension 

of the environment. 

 

 

Figure 2-8 The Woods1e environment with two goals 

 

At the start of the trial, the animat’s energy level is set randomly in the range [0,1], so that 

alternate trials start with energy levels of less than, or more than, 0.5.  The reward function is 

step-wise, giving an external reward of 1000 in the case that the animat arrives at the energy 

goal when its energy level is lower than 0.5, and a reward of 1 if the internal energy level is 

higher than 0.5.  Conversely, the animat receives a reward of 1000 if it arrives at the food goal 

when its energy level is higher than 0.5, and is given a reward of 1 if its energy level is lower 
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than 0.5.  This problem and the Woods1e environment were first reported by Bull and Studley 

[Bull2002c]. 

 

There is no cost associated with movement.  ZCS proves capable of optimally solving the 

Woods1e environment with no cost of movement and a step-wise reward function. 

 

 

Figure 2-9 ZCS achieves optimal steps and reward in Woods1e  

with stepwise reward function and no cost of movement 

 
As can be seen from Figure 2.9, steps to goal falls swiftly towards the optimum of 1.7, and the 

average reward gained rises to approach the optimum of 1000.  In the deterministic phase, the 

off-line behaviour of ZCS shows that the optima have indeed been reached.  All parameters 

remain as for the ‘key and door’  task, except: β = 0.85, γ = 0.05. 

 



 51

2.8  Achieving Optimality 
 
As Bull and Hurst discussed, the most important parameters in determining the optimality of 

ZCS’s performance are the learning rate β and discount rate λ.  The other parameters are of 

varying importance; clearly, too high a rate of genetic churn due to χ, µ and ρ might be 

deleterious to the stability of the system, while too low a rate might make the discovery of 

solutions less likely due to incomplete exploration.  However, it would appear from the 

experiments described in this thesis that the other main parameter upon which optimality 

depends is population size N.  Cliff and Ross discuss the role of N in relation to their work on 

ZCSM; ZCS having internal registers that may be set through an additional ‘ internal’  action 

part of the classifiers, and which are matched by an additional ‘ internal’  condition.  As the 

number of possible combinations of state and action increases, so a larger number of 

classifiers is needed in order to represent all combinations of state and action.  Since ZCS 

seeks only the highest reward combination of states and actions, it is not necessary for all 

state-action combinations to be represented; instinctively however, it would seem that for a 

given problem there must be a happy medium that allows exploration though genetic churn 

and cover, yet simultaneously allows the maintenance of good candidate solutions in the 

population.  In summary, in the author’s experience, the main parameters which must be 

adjusted from Wilson’s original settings are primarily β and λ, then N, and less importantly χ, 

µ and ρ. 

 

Given that, for a sufficient value of N one can hope to find optimal performance through the 

manipulation of β and λ, it must be hoped that finding the ‘sweet spots’  in the space of ZCS 

performance with respect to these parameters are not akin to finding a needle in the proverbial 

haystack.  If the performance landscape is rugged there is little hope of hitting upon optimal 

parameter settings. 
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2.8.1 Exploring the Performance Landscape. 
 
Given that ZCS can solve the single objective Woods1 task with a population of N = 400, a 

population of 800 was used in the dual objective problems described above.  This is because 

the problem may be seen in crude terms as two over-lying Woods1 trials, where the goal is in 

either one position or the other (see Figure 2-10 and Figure 2-11).  Since the extra 

environmental character representing the value of the internal energy level compared with the 

threshold value of 0.5 effectively determines which goal is optimal at any time, it may be 

impossible for a classifier to generalize with respect to this character in some environmental 

states and still lead to the optimally parsimonious solution.  In fact, examination of the 

environment shows that only three states9 can be optimally generalized in this way. 

 

 

Figure 2-10 Optimal moves in Woods1e 

  ‘energy tr ial’    

 

 

Figure 2-11 Optimal moves in Woods1e 

 ‘ food tr ial’  

 
 
Given the linkage between the parameters β and λ, it is difficult to hit upon the combination 

which will optimally solve a given problem, since one cannot adjust either in isolation. 

 

One approach then is to explore the whole space of these parameters, iterating through the 

various combinations of β and λ with large increments between successive settings of each.  

This gives a coarse-grained view of how the performance of ZCS varies with respect to β 

                                                
9 Numbering from the top left = 0, 0, the cell at 2,4 can be generalized to ‘South’ , 1,4 to ‘Southeast’ , and 3,4 to 
‘Southwest’  
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(learning rate) and λ (discount rate), all other parameters being constant, and these views are 

intended to illustrate general trends.   Figures 2.12 and 2.13 show respectively how the 

number of steps to goal, and reward gained, are influenced by these combinations of 

parameters.  All points are the average of ten runs.  Coloured contour lines on the x, y plane 

are b-spline interpolations of isometric values on the surface.  All experiments have: N=800, 

P#=0.33, S0=20, τ=0.2, χ=0.5, µ=0.002, ρ=0.25, φ=0.5. 

 

Figure 2-12 Coarse-grained exploration of steps to goal w.r.t. learning-rate and discount-rate in Woods1e 
with stepwise reward and no movement cost. 
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Figure 2-13 Coarse-grained exploration of reward gained w.r.t. learning-rate and discount-rate in 

Woods1e with stepwise reward and no movement cost. 

 
 
These graphs reveal that, for all values of β, the average steps to goal in the deterministic 

phase reduces towards the optimum with lower values of λ.  Lower values of λ decrease the 

amount of reward that flows back via the implicit bucket brigade to niches further away from 

the goal states.  This may encourage more parsimonious solutions.   

 

In contrast to the simple gradient we see with respect to steps to goal, the landscape with 

respect to average reward achieved in the deterministic phase is more complex.  Here we see 

there is a plateau of optimality, irrespective of λ, for high values of β.  As β drops, the 

landscape becomes more rugged; there is a higher degree of epistasis between β and λ with 

respect to reward than to steps to goal, allowing some points to achieve optimality while their 

near neighbours are distinctly sub-optimal. 
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In order to see where good candidate combinations of β and λ might be found, we may 

examine some measure of the overall performance of ZCS, taking into account both steps to 

goal (S) and the reward achieved (R). 

 

Performance = (( Rav / Ropt ) + (( Sopt - | Sopt – Sav | )/ Sopt )) / 2 

 

Where Rav is the experimental average reward, Ropt is the theoretical optimum reward, Sav is 

the experimental average steps to goal, and Sopt is the theoretical optimum steps to goal.  

Graphs of performance are presented with the axes of discount rate and learning rate swapped 

for clarity. 

 

 

 
Figure 2-14 Performance of ZCS in Woods1 with stepwise reward and no cost of movement,  

for varying learning rate and discount rate 
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Noting the change in orientation of the axes, Figure 2.14 provides a clearer picture.  We see 

that, for this problem and for N = 800, optimal combinations of β and λ are most likely to be 

discovered where λ is near to 0.1.  It is reassuring that the landscape appears to be quite 

smooth at this resolution, implying that it should be a relatively easy matter to discover 

combinations of β and λ which give optimal performance. 

 

The area which is suspected to hold optimal candidates for β and λ is next searched at a 

higher resolution, and the search is thus focused on a sub-set of the parameter space where 

reward achieved was on the optimal plateau noticed above.   

 

Figure 2-15 Homing in on optimal settings of learning rate and discount rate in Woods1e  

with stepwise reward and no cost of movement, w.r.t. average steps to goal 

 
Once again from Figure 2.15, the same decrease towards optimal steps to goal is seen as 

discount rate is decreased.  It would appear that the landscape is more rugged at this higher 
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resolution, though it should be noted that the scale of the z axis is reduced.  Clearly, the best 

solutions with respect to steps to goal are to be found where λ is less than 0.1. 

 
Figure 2-16 Average reward gained. 

 
The same plateau is visible with respect to average reward gained (Figure 2.16).  However, it 

is noteworthy that, in this more detailed investigation, there appears to be a rapid fall-off in 

reward as very low values of λ are approached.  Once again, high values of β would appear to 

be advantageous.   
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Figure 2-17 Performance. 

 
The fall off in reward at the lowest values of λ causes a decrease in the overall performance of 

the system, as shown in Figure 2.17.  From this graph it appears that a promising area for 

further investigation lies where β varies between 0.5 and 0.95, and λ is around 0.05.  These 

results are presented in Figures 2.18, 2.19, and 2.20. 
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Figure 2-18 Optimal steps achieved 

 

 
Figure 2-19 Reward. 
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Figure 2-20 A ridge of near optimal performance,  with peaks. 

 
Using this method of successive refinement of the search of the parameter space, it is possible 

to find the combinations of β and λ which produce the best performance for a problem, with 

all other parameters fixed.  As mentioned, it is reassuring that points in the parameter space 

seem seem to resemble more closely their near neighbours than they do more distant points, 

which underpins hope for success through this process of stepwise refinement.   

 

As mentioned earlier, the other parameters that have found to be of importance for ZCS to 

attain optimal performance are population size, and the rate of genetic churn.  As a simple 

exploration of how ZCS responds to these factors, we will briefly investigate the parameter 

space of population size against mutation rate.  With P#=0.33, S0=20, β=0.85, γ=0.05, τ=0.2, 

χ=0.5, φ=0.5 and ρ=1, so that the GA is triggered on every cycle, different values of N and 

µ,are explored (see Figures 2.21 and 2.22). 
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Figure 2-21 Steps to goal in Woods1e with stepwise reward and no movement cost, 

with varying population size and mutation rate. 

 
Figure 2-22 Performance with varying mutation rate and population size 
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Once again, it is useful to note that the landscape is smooth.  Predictably, a higher mutation 

rate causes more deleterious effects with smaller populations than in larger ones.  Differences 

in performance due to changing population size are less pronounced with lower mutation 

rates.  This is presumably because there is a dilution effect with larger population sizes. 

 

2.9 Moving towards real multi-objective problems. 
 
The experiments above were carried out in the ‘Woods1e’  environment where the reward 

received upon reaching either goal state is proportional to the animat’s ‘energy level’ , and 

when there is no cost associated with movement.   

 

Clearly, such a scenario is unrealistic.  We shall now examine the performance of ZCS in the 

Woods1e environment where the animat’s energy level is affected by the movements it 

makes, and where the reward it receives varies in direct proportion to its energy level.  As 

before, an additional 20% extra trials are performed at the end of an experiment in 

‘deterministic mode’  to show the underlying best performance achieved by ZCS. 

  

2.9.1 Dynamic Cost, Stepwise Reward (woods1e-type2). 
 
A cost of 0.01 ‘energy points’  is now associated with each move made by the animat.  This 

cost is deducted from the animat’s internal energy level after it has been assessed whether the 

most recent action has brought an external reward, and if so, what size the reward should be.  

This is important; if the animat is charged for moving before the potential reward is assessed, 

the environment is rendered non—Markov in those trials where the internal energy level is 

0.51.  The animat moves to the ‘ food’  state ‘expecting’  a high reward since the energy level is 

above 0.5, but this decision causes it to receive a low reward (see Figure 2-23 and Figure 2-24 
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below for a comparison of these treatments).  All other details remain the same as in the case 

with no cost of movement.   

 

As can be seen from Figure 2-23, ZCS proves itself to be capable of solving this problem 

optimally, with N=800, P#=0.33, S0=20, β = 0.85, γ = 0.05, τ=0.2, χ=0.5, µ=0.002, ρ=0.25, 

φ=0.5. 

 

Figure 2-23 ZCS achieves optimal steps and reward in Woods1e  

with stepwise reward function and cost of movement 
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Figure 2-24 ZCS fails to achieve optimal reward with identical parameters when the cost  

of movement is imposed before assessing whether a reward has been gained. 

 

2.9.2 Dynamic Cost, Continuous Reward (woods1e-type3). 
 
In a further effort to make the simulation more like the problem faced by a real robot, ZCS is 

now set the task of finding an optimal solution to the Woods1e problem when its energy level 

is altered by its movements, and where the reward received upon arriving at one or other goal 

state is directly proportional to the energy level, rather than varying in a step-wise fashion 

according to the energy level as has hitherto been the case. 

At the ‘energy’  goal   Reward = 1000.e 

At the ‘ food’  goal   Reward = 1000(1-e) 

 

Where e is the animat’s internal energy level which varies between zero and one.  As before 

this internal energy level is set randomly at the start of each trial, such that approximately half 

the trials will start with e < 0.5.  As in the previous experiment, a cost of 0.01 ‘energy points’  

is deducted for each move made by the animat in the grid-world.   The animat’s energy level 



 65

is not allowed to go below zero.   As in the preceding experiments, the real value of the 

internal energy level is hidden from ZCS, and is presented as an extra environmental character 

set to one if the energy level is above 0.5, otherwise zero. 

 

While the optimum steps to goal remains 1.7 as in the other parallel multi-objective tasks in 

the Woods1e environment, the optimum average reward is no longer 1000 due to the dynamic 

reward.  If the energy level at the goal state is above 0.5, achieving the correct ‘ food’  goal will 

gain a reward in the range [1000, 500].  The same is true when the animat correctly reaches 

the ‘energy’  goal with its energy below 0.5.  Assuming an equal random distribution of initial 

energy levels for trials, the average reward for success is 750.   

 

As will be seen from Figure 2-25 and Figure 2-26, ZCS is capable of producing performance 

that approaches optimality, but a parameter set could not be found which produced both 

perfect reward, and also a perfectly parsimonious solution.  This is discussed in section 2.10.  

The results presented in Figure 2-25 and Figure 2-26 were produced using the same settings 

as reported in 2.9.1 above, with the exception that in Figure 2-25 β=0.975, λ=0.775, and in 

Figure 2-26 β=0.98, λ=0.425. 
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Figure 2-25 ZCS achieves optimal reward with sub-optimal steps. 

 

 

Figure 2-26 ZCS achieves optimal steps to goal with sub-optimal reward 

 
It is important to underline the difference between this experiment and the preceding ones.  

Here the reward is dynamic and dependent on the learner’s actions; the reward is not only 
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dependent on deciding which goal to go to, but also upon achieving this goal in the minimum 

possible steps.   

2.10 Exploration of the Parameter Space. 
An exploration of the parameter space for the experiment with cost of movement and stepwise 

reward showed this surface to be very similar to that with no cost of movement.  For that 

reason those results are not presented here.  This is in contrast with the parameter space for 

the experiment in which there is a cost of movement and the reward varies in proportion to 

the internal energy level. 

 

Finding a set of parameters which would allow ZCS to optimally solve this problem was a 

time-consuming process.  Figure 2-27 through to Figure 2-35 show some part of this process. 

 
Figure 2-27 Search One :  steps 
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Figure 2-28 Search One :  reward 

 
Figure 2-29 Search One :  performance 
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Figure 2-27, Figure 2-28 and Figure 2-29 present the results of an initial scan of a sub-set of 

points in the space of β and λ.  Earlier searches which led to this area are not presented for the 

sake of brevity, but had allowed the isolation of this region as a promising candidate for 

further investigation.   

 
There appears to be an isolated region of good candidate solutions at approximately β = 0.9, λ 

= 0.7, and there is also an area where β is high where performance is good for a range of 

values of λ.  The latter is investigated in the next search. 

 

 
Figure 2-30 Search Two :   steps 
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Figure 2-31 Search Two :  reward 

 
Figure 2-32 Search Two :  performance 
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Figure 2-30, Figure 2-31 and Figure 2-32 explore this ridge of good candidate solutions noted 

in Figure 2-27, Figure 2-28 and Figure 2-29.  It can be seen from these graphs that there is an 

unfortunate relationship between varying discount rate λ and steps to goal and performance.  

As λ decreases, steps to goal becomes more optimal, but the reverse is true for the average 

reward achieved.  This makes it very difficult to find a parameter set which is optimal for both 

steps to goal and reward. 

 

Figure 2-32 shows that the best compromise solutions exist in the region where discount rate 

is lower than 0.5, and learning rate is above 0.97.  The search process now concentrates upon 

this region. 

 
Figure 2-33 Search Three : steps 
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Figure 2-34 Search Three : reward 

 
Figure 2-35 Search Three : performance 
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The surfaces formed in the graphs of steps, reward and performance in Search Three (as 

shown in Figure 2-33, Figure 2-34 and Figure 2-35) appears to be proportionally more rugged 

than they do in less detailed explorations.  However, it should be noted that appearances may 

be deceptive – the scales on the Z axis are much reduced from those in the previous figures.  

Search Three does not clearly present a single region for further investigation. 

 

As previously noted, there is a clear trade-off between optimal reward and optimal steps.  

Those points in the space of β and λ which gave high reward were poor in respect to the 

optimality of the number of steps to goal, and vice versa.  Reward is dependent on two 

factors; going to the correct goal based upon the presented one or zero that shows whether 

internal energy is greater or less than 0.5, and the number of steps taken to get there.  It would 

be possible to get the maximum reward by taking more and more steps until the internal 

energy level is zero, and then going to the energy goal.  In other words, it is possible to 

deceptively get a better reward than could be achieved by finding the parsimonious and 

‘correct’  solution.  Solutions which take extra steps on their way to the energy goal will 

prosper. 

 

Higher values of the discount factor λ give higher reward, but more steps to goal.   Lower 

values of λ will mean that less reward flows down the implicit bucket brigade to states earlier 

in the chain.  This explains the link between lowering the discount rate and decreasing the 

number of steps to goal.  It may be that the link between higher discount rates and higher 

reward is explained by the fact that, with less pressure to reduce the number of steps taken, 

the possibility arises to ‘cheat’  in the way outlined above, taking more steps on ‘energy trials’ . 

 

It is possible that a parameter set does exist which would allow ZCS to solve this problem in a 

fashion which is both optimally parsimonious and which gains an optimal reward.  Having 



 74

examined approximately 1250 unique sets of parameter settings, it must be stated that such a 

set is very difficult to find and at best solutions have been found which are nearly optimal for 

one or the other measure, but not for both. 

 

2.11 More objectives. 
 
Having explored the simple case of two objectives in the Woods1 environment, complexity is 

increased with three objectives.  A third objective is introduced, termed ‘maintenance’ .   

 

 
Figure 2-36 The 'Woods1em' 3 objective environment 

 
As in the simplest 2-objective experiment, there is no cost of movement for the animat.  The 

reward function changes slightly to accommodate the third objective. 

 

 
Figure 2-37 Graphical representation of cor rect goal  

in 3 objective Woods problem 
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If the animat reaches the ‘maintenance’  goal and its need for maintenance is higher than or 

equal to 0.5, it is rewarded 1000, otherwise 1, irrespective of the internal energy level.  If the 

animat reaches the ‘ food’  goal when the need for maintenance is lower than 0.5 and the 

energy level is higher than 0.5 it receives a high reward (1000), otherwise low (1).  

Conversely, if the animat reaches the ‘energy’  goal when the need for maintenance is lower 

than 0.5 and the energy level is lower than or equal to 0.5 it receives a high reward (1000), 

otherwise low (1).   

 
All other experimental details remain as before, except that the condition part of the classifier 

is extended by one character which is set to zero if the animat’s maintenance level is lower 

than 0.5, and otherwise set to one.  The optimum steps to goal10 is approximately 1.8, and the 

optimum average reward that can be achieved is 1000. 

 

All parameters are the same as in previous experiments, with the exception of the varying 

values of λ and β. 

 

2.11.1 Results 
 
Figure 2-38, Figure 2-39 and Figure 2-40 show steps to goal, reward gained and overall 

performance for an initial search of points across the space of discount rate and learning rate.    

                                                
10 Steps to goal is approximately 1.7 for the two previous goal states, but increases to about 2.1 for the new goal 
state, making the overall average approximately 1.8. 
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Figure 2-38 Steps to goal in 3-objective problem.  Search One. 

 
Figure 2-39 Reward in 3-objective problem.  Search One. 
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Figure 2-40 Performance in 3-objective problem.  Search One. 

As will be seen, once again there appears to be a large plateau in the space of β and λ values 

which produces solutions having optimal, or near optimal reward.  Again, as expected the 

steps to goal fall as discount rate is lowered, imposing a greater pressure on parsimony in the 

solution.  Even though the lowest value of λ used in search one was 0.1, it would appear from 

these figures that it is unlikely that optimal steps to goal can be achieved. 
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Figure 2-41 Steps in 3-objective problem. Search Two 

 
Figure 2-42 Reward in 3-objective problem. Search Two 
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Figure 2-43 Performance in 3-objective problem. Search Two 

 
Figure 2-41, Figure 2-42 and Figure 2-43 show a finer-grained exploration of ZCS’s 

performance on the three objective problem in the region that appeared promising in search 

one.  However, there are no good candidate parameter settings that suggest that further 

exploration would achieve an optimal solution.  Steps to goal is still far from optimal.  Further 

searches for an optimal solution by adjusting λ and β also failed. 

 

It would appear that ZCS is unable to discover an optimal solution using a population of 800.  

It may be possible that it will achieve an optimal solution using more classifiers.  Since there 

are few opportunities for generalization as discussed in Section 2, adding a second objective 

effectively doubles the space of condition-action pairs that must be explored by the classifier 

system, adding a third objective triples the size of the single objective problem, etc, so it is 

expected that the population required to achieve optimality to be approximately o.N where o 
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is the number of objectives, and N is the size of population required to achieve optimality for 

one objective. 

 

Some investigations of the parameter space for larger population sizes are reported below in 

Figure 2-44…Figure 2-49 

 

Figure 2-44 Steps to goal, N=1600 
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Figure 2-45 Reward, N=1600 

 

Figure 2-46 Performance, N=1600 
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Figure 2-44, Figure 2-45 and Figure 2-46 show results for N=1600.  There is a slight 

improvement over the results achieved with N=800 (Figure 2-38, Figure 2-39 and Figure 

2-40).  It is interesting to note the similarity of these two sets of figures; increasing the 

population size effects small changes in the performance landscape, but the general topology 

remains the same.  Thus areas which appear to hold the promise of good solutions with a 

small population may be expected to be equally promising with larger populations.  This 

implies that the degree of epistatic linkage between population size and the reinforcement 

learning parameters is not as strong as the linkage between the reinforcement parameters 

themselves.  Good settings of β and λ for small populations are likely to be good for larger 

populations. 

 

Figure 2-47 Steps to goal, N=3200 
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Figure 2-48 Reward, N=3200 

 

Figure 2-49 Performance, N=3200 
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Figure 2-47…Figure 2-49 show results for N=3200.  Again, there is a slight improvement 

with the increase in population size.  Again, the landscapes have a broadly similar topology, 

reinforcing the belief that an initial hunt for ‘sweet spots’  in the parameter space can be 

carried out using small populations, and these promising areas then explored more fully using 

larger populations. 

 

It may be that optimal solutions could be discovered with these, or larger, populations.  

However, to find parameter settings which allow optimality is a time-consuming process.  In 

order to use classifier systems in multi-objective problems with more than two objectives, the 

experimenter may be advised to ignore the simpler ZCS.  In Chapter 4 further three-objective 

problems are examined using XCS, an accuracy-based classifier system which proves much 

more successful at approaching optimality with less tuning.  

 
 

2.12 Conclusions 
 
We have seen that ZCS can achieve an optimal solution in a simple multi-objective problem 

in which the actions of the learner change its environment; imposing a cost of movement may 

cause the ‘correct’  goal to switch during a trial as the animat’s energy level drops below a 

critical threshold.  

 

The surfaces formed from measures of ZCS performance with different settings of discount 

rate and learning rate are in all cases quite smooth, and seem to tend towards being uni-modal.  

This suggests that in simple problems it should be fairly straightforward to converge upon a 

set of parameters which will allow an optimal solution. 

 

We have also seen that an extension to this problem in which the reward is a function of the 

internal energy level is much more difficult to solve.  The problem appears deceptive, 
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allowing the learner to gain extra reward at the expense of taking further steps to goal.  

Although a great number of parameter settings were examined, a solution could not be found 

that was optimal both in respect of steps to goal and reward. 

 

The complexity of the simplest task, with no cost of movement and a step-wise reward 

function, was increased by adding a further goal.  This proved impossible to solve with the 

same population size that was successful for the two objective task.  This is unsurprising.  It 

appears that using ZCS to tackle these problems is unrealistic, since with the harder problems 

tens of thousands of experiments had to be performed to find performance that was near to 

optimal. 

 

Although ZCS can therefore produce optimal behaviour in some simple multi-objective 

problems, the process of refinement of parameter settings is hardly the basis for a useful on-

line learner, since it requires the assessment of many sub-optimal solutions before the 

parameter settings can be adjusted.  While some parameters can be self-adapted effectively in 

ZCS [Bull2000b], they could not demonstrate optimal performance through the self-

adaptation of β and λ.  
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Chapter 3 TCS : Multi-objective robot control 
 

3.1 Introduction 
 
In the previous chapter, ZCS was shown to be capable of performing some simple multi-

objective tasks.  These tasks took the form of various grid-worlds, which provided a scalar 

reinforcement signal when an animat, the movements of which were controlled by ZCS in 

response to a binary representation of its environment, arrived at one of the various goals.  In 

this chapter, an adaptation of ZCS is used to address similar multi-objective problems on an 

autonomous robot. 

 

The task of controlling a physical agent in the real world presents more complicated 

challenges.  Unlike a grid-world, the real world is a continuous environment.  At each 

iteration of ZCS’s cycle of sense, decision, action, and reinforcement, the environment is 

presented to the population of classifiers, and an action must be chosen.  In a continuous 

environment, by analogy, the controlling classifier system must be presented with an 

encoding of the environment, and the robot moved accordingly.  How far should the robot 

move?  With no ‘grid’  in the world, how often should the world be presented to the 

classifiers, thus driving the reinforcement process? 

 

One approach would be to allow the robot to move in fixed increments.  The controlling 

classifier system waits for the movement to be completed, and the cycle continues.  This has 

the advantage of simplicity; the continuous environment has been reduced to a grid-world.  

However, it raises its own problems.  If the fixed-sized increments are too big, it may be that 

a problem cannot be solved optimally, or at all.  For example, consider a robot moving in one 

metre increments in an environment in which parts are less than a metre in size, or in a 
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situation where it is only half a metre from the goal.  Conversely, if the fixed-sized increments 

are too small, the solution may be inefficient.  For example, consider a robot moving in one 

centimetre steps in an environment where it is 10 metres from its goal; a single 10 metre 

move cannot be made, and the robot is forced to take 1000 small steps to get to the goal.  

Clearly, in order that a learner can solve a problem in the real world in a fashion that is both 

efficient and optimal,  the size of the incremental moves - and therefore the resolution at 

which the environment is experienced - must be adjusted to the characteristics of the 

environment in question. 

 

Since the resolution of the actions must be adjusted to the environment in which the learner 

finds itself, it would be advantageous if an appropriate resolution could be discovered and if 

this discovery could be a function of the learner itself.  Furthermore, the learner should be 

able to take big or small actions in the same environment, as appropriate.  For example, in the 

task of driving from home to a friend’s house in a city on the other side of the country, a large 

scale map of the motorways may serve for most of the journey, but towards the end one 

requires a smaller scale map of the destination city and its minor roads. 

 

Interlinked with the problem of determining the appropriate scale of movement is the problem 

of how fast the cycle of sense, decision, action, reinforcement should be performed.  If the 

cycle is paused while an action is taken, then the learner is oblivious to any important events 

that occur during this time.  This would clearly be a handicap in any but the most trivial 

autonomous application.  Any real robot must maintain the ability to interrupt the movement 

it has attempted – it must respond to unforeseen events resulting from an incomplete 

understanding of the world, or changes in the world in order that it can avoid potholes and 

bumping into experimenters’  legs. 
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This chapter presents an overview of some related work in which learning algorithms are 

applied to robotic control problems.  It shall be shown that in many cases learning is a slow 

process requiring significant a priori decisions to be taken by the experimenter.  An 

adaptation of the ZCS classifier system is then described in which the scale of movement 

appropriate to the environment is automatically determined.  This algorithm is implemented 

on a robot platform, and is tested in both single and dual objective real-world problems. 

 

3.2 Related Work 
 

3.2.1 Evolutionary Robotics. 
 

There have been many attempts to apply evolutionary algorithms such as Holland’s Genetic 

Algorithms, Rechenberg’s Evolution Strategies,  Koza’s Genetic Programming, and 

Evolutionary Programming to the problems of generating control programs for robots.  Most 

often, the approach used is that of Genetic Algorithms [Walker2003]. 

 

As described in Chapter 1, the approach to developing robotic controllers using simulated 

evolution by GAs is to create a population of solutions, which each either directly or 

indirectly encode a controller for a robot.  Each of these controllers is then tested to evaluate 

its utility, or fitness.  Since the assessment of fitness is the most time-consuming step, 

requiring a physical robot to interact with its environment in what may at first be a quite 

random fashion, the evolutionary robotics approach is hampered by the fact that all members 

of a population must have their fitness assessed for each generational cycle of the algorithm, 

and a number of such cycles may be required in order to converge upon even the simplest 

controller.  For this reason, much work that purports to describe the evolution of controllers 

for robots is done only in simulation. 
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However, there have been some noteworthy examples of the use of evolution on real robots.  

In most, simulation is used as a short-cut; after training in simulation, the controller is moved 

to a real robot to test the evolved system.  For example, Jakobi et al. [Jakobi1995] developed 

a simulation of the popular ‘Khepera’  robot.  The Khepera has eight IR sensors that also 

receive some signals in the visible light spectrum.  The simulation was based upon an 

idealized mathematical model of the sensors, environment, and kinematics of the Khepera.  A 

GA was used to evolve neural network controllers in simulation, and these were validated on 

the physical robot.  Controllers were evolved for some simple problems including light-

seeking and obstacle avoidance. 

 

Jakobi [ibid.] also experimented with the introduction of noise into simulations.  Perhaps 

unsurprisingly, he showed that when the level of noise in the simulation is similar to that of 

the real system, evolution in simulation can produce controllers that work well on the physical 

robot.  The controller experiences problems when the amount of noise in simulation is too low 

or too high; when the simulation is inaccurate the evolved controllers will not transfer easily 

to the real robot. 

 

Nolfi et al. [Nolfi1994] built a simulator of a Khepera, though theirs was based on actual 

recorded sensor data.  They too used this simulation to evolve neural network controllers, and 

then transferred to the physical robot to affirm the validity of the evolved solution.  They 

found that the controller evolved in simulation performed less well on the real robot, but 

interestingly noticed that a few iterations of evolution on the real platform adjusted for this, 

showing that the simulation had been quite close to reality. 
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There are obvious problems with this approach.  As Brooks famously noted; ‘The world is its 

own best model’  [Brooks1986], thereby issuing the rallying cry for behaviour-based robotics 

in which behaviour is orchestrated by the interaction of independent but interlinked modules, 

with no concept of a symbolic internal model of the world.   Evolutionary robotics, perhaps 

developing artificial neural control systems, is clearly allied to the sub-symbolic behaviourist 

school.  However, to build a model of the world in which to develop a controller seems self-

defeating.  Rather than have the learner build a model, we have built the model ourselves.  

The simulation will most likely only be applicable to a small set of the problem domains in 

which we might like to evolve controllers, and therefore the costly process of building a 

sufficiently accurate model must be undertaken again and again. 

 

Also, it may be that there are some classes of robot task we can envisage in which a robot has 

to perform a task in an environment which we cannot accurately model or predict.  For 

example, consider a space-exploration mission.  We may define the purpose of the mission – 

perhaps to collect rock samples – but we cannot know how the environment will be perceived 

before the robot arrives.  If our simulation of the unknown is too inaccurate, we cannot expect 

the evolved controller to function as we hope. 

 

Thirdly, there are two goals in the automatic production of robot controllers by adaptive 

means.  One goal is the production of a controller for a robot without the need to write this 

control program ourselves.  This goal could be addressed by evolution in a suitable 

simulation.  The second goal is that of generating a controller that is itself adaptive – it has the 

capacity to learn during its lifetime.  In order to address this second goal of ‘ lifetime 

learning’ , adaptation must take place on the physical platform even though it is possible that 

an earlier training phase could usefully have been in simulation. 
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While it may seem merely a pragmatic approach to shorten the lengthy training process, the 

use of simulation in evolutionary robotics is therefore a contentious issue.  There are some 

examples of work in which evolution of robot controllers has been carried out solely on robot 

platforms.  Some notable examples are described below. 

 

Cliff et al. [Cliff1993] report the evolution of vision systems.  Initial experiments were done 

in simulation, and latterly on a gantry robot in which a suspended camera could be moved in 

two dimensions.  An angled mirror below the camera reflects the image of what is ahead of 

the robot.  This visual input is pre-processed on a workstation before being presented to the 

recurrent artificial neural networks that are the phenotypic realisation of the evolved 

genotypes.  Each individual in the population consisted of two chromosomes, one specifying 

the position and size of three receptive fields within the image, and the other the architecture 

of a neural network.  Values averaged from pixels in the receptive fields are then presented to 

the input nodes of the neural network, as are bumper information.  Artificial evolution was 

carried out in three stages of increasing behavioural complexity, with a modified environment 

and fitness function being used for each stage.  Using this methodology they demonstrate the 

evolution of a controller that will approach a white triangle attached to the arena wall, and 

avoid a white rectangle.   

 

Floreano and Mondada [Floreano1996] also used a GA to evolve a population of strings of 

floating-point numbers representing weights and threshold values of a discrete time recurrent 

neural network topology.  These controllers were tested on a Khepera, where the inputs to the 

network were the values of the IR sensors, and the outputs were velocity commands sent to 

the two motors of the Khepera’s wheels.  The authors describe two sets of experiments, in 

both of which the environment was carefully controlled (for example, there was a single 

constant source of light in the room containing the experimental set-up).  In the first the robot 
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learnt to walk along a winding corridor without hitting the walls.  The evolution process took 

at least 50 generations until the best individuals were approaching optimality, and each 

generation took about 40 minutes to complete, a total of about 33 hours until good behaviour 

had been discovered.  In their second experiments, in which evolution continued for 10 days, 

the fitness function depended on the distance travelled by the robot – in order to travel far, the 

simulated battery which discharged in 20 seconds would have to be topped up by recharging, 

which the robot could do by driving over an area of the arena which had a different floor 

colour (the floor colour could be detected using a downwards-pointing sensor). 

 

Matellan et al. evolved fuzzy controllers for a Khepera, again to perform the navigation and 

obstacle avoidance tasks [Matellan1998].  Similarly to the work of Floreano and Mondada, 

the genomes that coded for the fuzzy controllers were evolved on a workstation, and each 

individual controller was embodied on the Khepera in order to assess its fitness.  There was a 

clear improvement as the evolutionary process continued.  With a population of 100 

individuals being tested for 20 seconds each on the Khepera, over 100 generations, the total 

time spent in evolving the controllers was 55 hours, excluding failures and accidents. 

 

Hornby et al. describe a series of experiments to evolve gaits for the Sony AIBO ‘ robot dog’  

[Hornby1999, Hornby 2000].  In their earlier experiments they evolved gaits for the AIBO, 

but found that these were not necessarily robust enough, experiencing difficulties when the 

AIBO was on a different surface to the one on which the gait was evolved, or when a 

controller evolved on one AIBO was installed on another.  The locomotion of the AIBO is 

controlled by a central locomotion module, that produces different gaits through the setting of  

61 parameters.  For the evolutionary experiments, all except 20 were set to constants.  

Experiments were performed on two types of surface, one smooth and the other ridged.  The 

parameters of the locomotion module are set to each of the evolved sets, and the AIBO then 
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measures how far it travels in seven seconds.   The authors suggest that the technique worked 

well in that it both developed robust controllers, developed novel, interesting gaits, and 

automated a tedious manual process.  Each run of 500 generations took around 25 hours to 

complete. 

 

Marocco and Floreano used an evolutionary approach to evolve an active vision system for a 

Koala robot [Marocco2002].  Active vision is the use of movement to shift objects in the 

visual field, making it possible to recognise or disambiguate them.  A GA was used to evolve 

a population of genomes encoding weights and thresholds in a fixed-topology recurrent neural 

network. The fitness of the evolved controllers was assessed on the task of driving around an 

arena without bumping into the walls, based on the input of a pan-and tilt camera that 

returned a 240 x 240 grid of black and white image information. Each of 25 input nodes 

encodes a value from a non-overlapping 48x48 tile of the image.  Two additional input nodes 

encode camera pan and tilt information.  Output to effectors was by two nodes which 

delivered real-valued motor commands for forward or backwards velocity, and by two nodes 

that similarly set the pan and tilt motors of the camera.  Each generation took 1.5 hours, and 

after eight generations (12 hours) the best and average performance had been reached, 

although evolution was continued until the 15th generation (22.5 hours).  The reader is 

referred to the book by Nolfi and Floreano for an overview of evolutionary robotics, and 

further details [Nolfi2000]. 

 

In summary, evolution has been shown to be an effective way of developing simple robotic 

controllers.  For example, when the genotype is used to specify the weights for a neural 

architecture, the direct input from sensors can be used without mandatory pre-processing.  

However, evolution requires the assessment of the fitness of many phenotypes.  If this 

requires the phenotypes to be embodied, the process is slow.  Speed-up can be achieved by 
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the use of simulation, but this runs counter to the philosophical and pragmatic reasons for 

evolving the controllers. 

 

3.2.2 Reinforcement Learning on Robots. 
 
Reinforcement learning consists of iteratively learning better estimations of the optimal value 

function that predicts the best reward that can be achieved in a particular state by taking a 

particular action, and that the optimal policy is followed thereafter.  In environments with 

continuous state or action spaces,  the value of an infinite number of state/action combinations 

must be stored.  This would make learning very difficult, since the learner is unlikely to 

encounter any particular situation again.  The learner must therefore generalise in some way.  

This presents a major challenge to the use of reinforcement learning in continuous 

environments. 

 
A number of researchers have used reinforcement learning on robotic platforms and a few of 

the more noteworthy are mentioned below.  Mahadevan and Connell [Mahadevan1991] used 

Q-learning to control a robot named ‘Obelix’ .  The robot’s task was to push boxes across a 

room.  Obelix was based on a Pioneer robot with a sensory system consisting of eight sonar 

units, each with a field of view of 20 degrees, of which four look forward, two point to the left 

and two to the right.  Each of these sensors can return one of two values, ‘NEAR’ and ‘FAR’ .  

An Infra-Red (IR) sensor on the front of the robot is switched on when an obstacle is pressed 

against the front of the robot, allowing the recognition of the state termed ‘BUMP’.  The 

electric current supplying the motors used for forward motion is also monitored.  If this 

exceeds a threshold value, the robot is determined to be ‘STUCK’.  The environment is thus 

presented in 18 state bits, comprising two possible value for each of the sonar sensors, and 

one each for ‘BUMP’ and ‘STUCK’.  These 18 bits provide 218 perceptual states; 

approximately 250, 000. 
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Motor control outputs for the robot were limited to five choices; moving forwards, turning left 

or right by 22 degrees, and turning left or right by 45 degrees.   

 

The robot’s task was to learn the mapping between perceptual states and the five motor 

actions such that it could best push boxes around the room. 

 

In initial experiments they attempted to use Q-Learning to develop a monolithic controller 

that would encode the state-action mapping.  However, this was abandoned in favour of a 

modular approach.  It was discovered that when reinforcement was based upon ‘a simple 

reward function’ , reward was obtained too infrequently, but when a more complicated reward 

schedule was devised the robot became trapped in local minima, for example, trying to avoid 

everything in the room, or to push everything.  Also, perceptual aliasing was a problem – 

even with its quarter of a million distinguishable states, the robot was unable to tell the 

difference between some areas of the environment, ‘boxes often looked like walls in sonar 

images’ . 

 

Mahadevan and Connell then split the architecture of the robot into three behavioural 

modules, applying a ‘divide and conquer’  methodology.  The behavioural modules which 

would be linked together in the fashion of Connell’s ‘colony-style’  architecture11 

[Connell1990] were; 

• ‘Finder’ .  Rewarded when the input contained ‘NEAR’ bits, and punished when 

‘NEAR’ bits previously on are turned off.  This behaviour was intended to move the 

robot towards boxes, and was the lowest level behaviour in the subsumption stack. 

                                                
11 Also termed ‘winner takes all’  subsumption, i.e. the actions of the robot are those suggested by a single 
module. 
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• ‘Pusher’ .  This module was intended to learn how to push boxes.  A reward was given 

when ‘BUMP’ was on and the robot continued to move forward, with a negative 

reinforcement applied when this became no longer true (the robot had been pushing a 

box but had then lost it).  This behaviour was switched on by the ‘BUMP’ bit. 

• ‘Unwedger’ .  At the top of the subsumption stack, this module would start if the 

‘STUCK’ bit is switched on.  The robot would receive a reward if the ‘STUCK’ bit 

was switched off, and a negative reinforcement should it remain switched on.  This 

module was intended to remove the robot once it had pushed a box into an immovable 

object, or if the robot became stuck. 

 

Mahadevan and Connell state that the robot was ‘ fairly successful’  in learning these 

behavioural modules.  The overall behaviour after learning was said to be close to that 

achieved by the hand-coded agent.   

 

It is important to note the role of a priori knowledge of the problem in this work.  Without a 

hierarchical decomposition of the problem into separate modules, Q-learning was unable to 

find an adequate solution. Also, the environment was pre-processed and sonar signals were 

classified into the categories ‘NEAR’ and ‘FAR’ .  Since the authors report some perceptual 

aliasing, this imposed ‘discretisation’  clearly hides potentially important environmental 

information from the learner.  However, it is the discretisation which provides the 

generalisations that enable Q-learning to be practical in this example. 

 

A similar approach of generalising through the a priori discretisation of continuous data is 

used by Asada et al., who have published many works in the field of robot soccer.  In 

[Asada96] they tackle what seems to be a much more complex task than the one approached 

by Mahadevan and Connell, namely, to use Q-learning to solve the problem of shooting a ball 
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into a goal using video camera input.  Once again, the environment is simplified into discrete 

categories before being presented to the learner.  The ball’s position is classified in terms of 

its position as right, centre, or left, and in terms of its size and hence distance as large/near, 

middle, small/far, i.e. 9 states.  The goal’s position is also quantified in terms of distance and 

relative position, and in addition in terms of relative angle (angled away to the left, to the 

right, or straight-on), i.e. 27 states.  Finally, two states exist for when the ball has left the 

visual field to left or right, and likewise when the robot loses sight of the goal.  The 

environment can therefore be described in a total of 9*27*2*2 states = 972.    

 

The authors do not impose a predetermined hierarchy on the method of solution, and also do 

not present complex pre-programmed actions in the action set.  The actions available to the 

robot are three commands, forward, back, and stop, that can be sent to each of the two motors, 

making a total of 9 actions. 

 

The authors used a sparse reward function, giving a positive reinforcement of ‘1 when the ball 

is kicked into the goal and 0 otherwise’ .  Once an action has been chosen, the robot continues 

to take that action until the environmental state changes, at which point another action is 

chosen and the action value function is updated.  In this way an action always causes the 

transition from one state to another, even though the real distance travelled in order to achieve 

this transition might be different in different parts of the environment – for example, in order 

to cause the perceived angle of the goal to change, the robot need move less far when it is 

near to the goal than when it is further away. 

 

Mahadevan and Connell experienced problems with developing their ‘monolithic’  version of 

Obelix when using a sparse reward function (the delayed reinforcement problem), and thus 

tried complex reward schedules which resulted in convergence on local minima.  It was for 
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this reason that they adopted an a priori decomposition of the task into learnable modules.  In 

contrast, Asada et al. [Asada1996] increase the frequency of reinforcement by using a 

methodology they term ‘Learning from Easy Missions’  (LEM).  Put simply, the robot is 

initially started in states from which it might be expected easily to achieve reinforcement, and 

thereafter placed into successively more difficult conditions.  By using this methodology they 

demonstrate impressive results on this difficult problem.  They note that in comparison with a 

hand-coded fuzzy logic system, the robot learner is less efficient.  They suggest that this 

might be due to the learner having achieved reward in some cases after taking the wrong 

actions, such that ‘ the optimal path obtained by the learning method might include detours’  

[Asada1996].  It might be the case that optimality would have been achieved had the 

experiment continued for longer. 

 

In both the work reported by Mahadevan and Connell, and Asada et al, the world has been 

discretised according to an arbitrary scheme invented by the experimenters.  This approach, 

while effective in allowing the learner to build a table of values mapping discrete states to 

actions, limits the learner’s ability to deal with different environments.  The discretisation 

may need to be changed (by the experimenter according to his specialist understanding of the 

new environment and learner) to learn the same task in a bigger room.  If the discretisation is 

too coarse-grained then optimality cannot be achieved, but since Q-values must be established 

for every combination of state and action a fine-grained discretisation will result in having to 

build a huge map of state-action values, thus impeding learning.  The memory requirements 

grow, and inefficient use is made of experience – since each state-action value must be 

estimated in isolation, no use is made of the fact that states near to each other are likely to 

have similar values and similarly optimal actions [Kaelbling1996]. 
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In order to address the problem of the combinatorial explosion of state-action values that must 

be learned, function approximators [Sutton1998] are widely used to generalize over the state-

action space.  Many techniques have been applied, including neural networks, fuzzy logic, 

and CMAC [Santamaria1998].   

 

Santamaria et al. demonstrate the use of CMAC, or Cerebellar Model Articulation Controller, 

in which each input activates some subset of overlapping tiles of the state-action space.  The 

predicted Q-value is the sum of the values represented by these ‘ features’ .  Clearly, the size of 

the ‘ tiles’  controls the generalising abilities, and resource consumption, of the function 

approximator.  They suggest that there are few problems in which some knowledge is not 

available to the designer, and that this knowledge might be used to skew the function 

approximator’s resource allocation across the state-action space in order to achieve different 

degrees of resolution.  They demonstrate good results using CMAC and other methods 

coupled with reinforcement learning in some simulated problems.  However, as they mention, 

the skewing function they used was chosen by hand for each problem; should this skewing 

function be incorrect the resolution of the state-action space will not be correctly represented, 

impeding or even prohibiting learning.  

 

Thrun and Schwartz [Thrun1993] make the point that since a function approximator 

introduces some noise due to over-generalization, when combined with a recursive value 

estimation scheme this may preclude the learner from achieving optimality for certain values 

of the discount rate λ.  Smart and Kaelbling [Smart2000] show one solution to this problem in 

their HEDGER learning algorithm.  HEDGER uses locally weighted regression (LWR) in 

which training points close to the query point have more weight than those further away.  The 

function relating weight to distance is typically a Gaussian.  When a new environmental 

condition is experienced, a prediction of Q-values can be generated based upon similar past 
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experience.  They present results in simulation and in a corridor-following robot-based task, 

in which they first ‘boot-strap’  the learner by allowing it to passively observe the decisions 

made by a training program or human operator, thereby updating its value function.  In a 

second stage of learning they allow the learner to continue learning while in control of action 

selection.   They report rapid learning which approaches the best results achieved under 

human control.  In [Smart2002a] they expand upon this algorithm.  Noting from 

[Gordon1999] that ‘a function approximator can be safely used to replace the tabular value 

function representation if it never extrapolates from its training data’ , they check that new 

observations are within the training data already seen, and that the predicted value is within 

some accurate limits.  Should these checks fail, a prediction is returned based upon the locally 

weighted average (LWA) instead of LWR.  LWA is a function approximator that fits 

Gordon’s criteria.  Smart [Smart2002b] shows that the algorithm learns faster when optionally 

employing LWR than one that relies upon LWA alone. 

 

3.2.3 Learning Classifier Systems for Robots. 
 
Cliff and Ross discuss results [Cliff1994] using ZCS in a simulated environment with 

continuous space and discrete actions of fixed size and Stolzmann  presented results using a 

simulated Khepera to explore latent learning with the Anticipatory Classifier System (ACS) 

[Stolzmann1999] in which the environment was rendered into discrete states before 

presentation to the classifier system, but comparatively few accounts have been published on 

the application of LCS to the control of physical robots in the real world.   

 

The most widely cited example of robot-based LCS learning is that of Dorigo and Colombetti 

[Dorigo1998].  In this work they present a novel LCS, based upon Holland’s original 

formulation.  They make two classes of enhancement.  Firstly, they address some of the 

problems in their original implementation of Holland’s system.  Secondly, they demonstrate a 
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parallel implementation of this algorithm which increases performance and lends itself to 

hierarchical decomposition of the learner to aid learning. 

 

In LCS0, their original implementation of Holland’s LCS, they noted the following problems.  

Rules oscillated in strength, there was difficulty in regulating the interaction between the 

reinforcement system and the GA-based rule discovery system, chains of rules were unstable, 

and the system was slow to converge.  They addressed these in their ‘ Improved Classifier 

System’  (ICS) in the following ways; 

• Overgeneral rules may advocate an action which is good in one state, but bad in 

another.  In LCS0 this resulted in such rules oscillating in strength, which would be 

used too often when they predict the wrong action, and not often enough when they 

are right.  To solve this problem, they introduced the ‘mutespec’  operator.  The system 

monitors the variance in rewards that a classifier receives.  If a classifier is judged to 

be oscillating (its variance exceeds some user-defined percentage of the population 

average), the mutespec operator is invoked.  Unlike normal mutation, this changes 

‘don’ t care’  # symbols in the ternary condition representation to the specific ‘1’  or ‘0’ ; 

i.e. there is a chance of point mutation to a more specific representation. 

• In most LCS, the genetic algorithm is called with some pre-defined, fixed frequency.  

As Dorigo and Colombetti point out, this frequency must not only be problem-

specific, but also must vary according to the progress of the learning system in 

ascertaining the correct classifier strengths.  As such, it should be adaptively 

controlled.  They chose to implement this control on a systemic basis – it is difficult to 

see how it could be self-evolving as each individual would selfishly try to increase its 

own frequency of reproduction.  In ICS the genetic algorithm operates when the 

‘energy’  of the system has reached a steady state.  Therefore the GA does not operate 
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when the sum of all classifier strengths is either increasing or decreasing over a 

sample period, nor when there are many oscillating classifiers. 

• In ICS to speed convergence and reduce computational overheads very weak rules are 

deleted from the population.  The rationale for this is that such rules are unlikely to be 

chosen by fitness-proportionate selection mechanisms, and if chosen would very likely 

advocate a less useful action.  The authors claim that this speeds convergence since 

the population shrinks, and there are fewer rules to iterate through in set-based 

operations, thereby allowing faster iteration of the learning algorithm.  While this may 

be very evident in simulation it seems unlikely to make a great difference in 

experiments on real robots where the amount of time to, for example, check whether a 

low strength rule matches the environment, is wholly insignificant compared with the 

amount of time that the robot takes to physically move from one state to the next.  

 

Having addressed these shortfalls in LCS0, the authors then present a parallel implementation 

of the ICS called ALECSYS.  They implement parallelism at two levels.  At the lower level, 

the basic LCS is parallelised.   At the higher level, the control system for the robotic tasks is 

itself composed of multiple LCS which co-operate in a hierarchical arrangement in which 

sub-problems are addressed by separate LCS. 

 

 At the lower level, the population within a classifier system is split into sub-populations 

which are each handled on a separate processor.  Many processes can be carried out without 

reference to global properties or lists, such as the composition of match sets.  However, some 

activities such as the choice of action to be taken are carried out by a single process. 

 

More interesting parallelism is evident at the higher level.  Here the authors follow the 

familiar ‘divide and conquer’  approach to problem complexity by implementing a number of 
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separate learning modules, each with the task of learning a different behaviour.  These can be 

trained in ‘modular’  fashion whereby they each have a separate reinforcement function, or 

‘holistically’  where the same reinforcement scheme is applied to all modules.  In order to 

choose an action from the possibly conflicting recommendations of these behaviours, one or 

more further ICS are used as ‘switches’  which decide which of two modules should have its 

recommended action passed onwards towards the effectors, the other being suppressed.  In 

this way, the architecture produced by Dorigo and Colombetti closely resembles that of 

Connell’s colony-style subsumption architecture [Connell1990] as used in Mahadevan and 

Connell’s paper above. 

 

Dorigo and Colombetti apply this parallelised, hierarchical system to a number of real robot 

control problems of varying complexity.  They use two training policies, either to reward the 

result (i.e. give reward when some goal is achieved), or to reward ‘ the intention’ .  In the latter, 

small rewards are given when an action is taken that is consistent with a predefined model of 

the ‘correct’  state-action map.  They tested both reward schemes in the generation of a simple 

light-following behaviour, and found that on this task performance was better with the reward 

the result policy. 

 

In experiments with their ‘AutonoMouse’  robot, the environment was presented in discrete 

binary format, for example, a bit can be set to show that a light is in front of one of the eyes.  

Four discrete movement commands can be issued to each of the two motors; step backward, 

stay still, step forward, two steps forward.  There are thus 16 composite actions which can be 

suggested by a behaviour module. 

 

While the work presented in [Dorigo1998] is impressive, a number of points should be made; 
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• There is considerable reliance on a priori knowledge of the problem.  This informs the 

hierarchical decomposition into behavioural modules, and the training policy used to 

reward the intention. 

• Discrete inputs and actions are used.  In effect, the robot is operating in a noisy grid-

world.  Once again, a priori knowledge must be used to establish the size of a ‘square’  

in the ‘grid’  in which the robot is operating – how big is a step forward? 

• The use of a ‘ reward the intention’  policy which aids learning by providing continual 

reinforcement requires the experimenter to provide a training program that can assess 

the quality of each action taken by the learner.  For some problems this could be easy 

to specify; the authors give the example of a ‘ follow the light’  behaviour, where 

partial rewards are based upon a measure of the light intensity.  They state;  

‘… that the distance between the robot’s sensor and the goal should decrease is simply 

a formal statement of the specification of the light-following behaviour.’  [ibid., p. 177] 

However, this relies on much more knowledge than a scheme based upon delayed 

reinforcements.  As the task becomes more complex, the reinforcement program will 

become more difficult to write, prone to error and therefore could result in the learning 

of behaviours which, rather than solving the overall task, profit from exploiting 

unforeseen local minima.  Indeed they note that in some comparisons between ‘ reward 

the intention’  and ‘ reward the result’ , performance was reduced with the partial reward 

strategy, stating that; 

‘… a trainer, in order to be a good trainer, needs very accurate low-level knowledge 

of the input-output mapping … in order to give the correct reinforcements.’  [ibid., p. 

104] 

 

The reader is referred to [Dorigo1998] for more details of this work.  
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Bonarini et al. detail a novel system called ELF, a controller based upon the evolution of 

fuzzy rules [Bonarini1994, Bonarini1996].  They note that in cases of delayed reinforcement, 

rules must co-operate together to solve a problem, but this is at odds with the fact that rules 

are competing for reward, may be over-general, and commonly in Fuzzy Logic Controllers 

(FLC) contribute to taking actions which are the combination of the recommendations of 

many rules matching at the same time (in fuzzy logic terminology these rules are said to have 

the same antecedent but different consequents).   

 

Since rules that are triggered at the same time have the same antecedent, they compete with 

each other.  Rules with different antecedents are triggered at different times, and therefore 

may co-operate together.  Rather than evolving many complete FLCs – an approach they 

liken to Pittsburgh classifier systems, and which they ignore as unfeasible for evolving real 

robots – or evolving individual rules in a GA as used in Michigan classifier systems, they 

instead partition rules with the same antecedents together considering them to belong to the 

same sub-population, and run their evolutionary algorithm on each of these subsets in 

isolation.  This is similar to the niche GA [Booker1985] as used in XCS [Wilson1995].  If 

there exists too many rules in an ELF sub-population, the worst are deleted, providing a 

fitness-proportionate selective pressure. 

 

ELF uses a cover operator, and reinforcement with discounting in a similar fashion to Q-

learning.  There is dynamic resizing of the population according to measures of whether there 

are too many or too few rules.  The GA uses only mutation of the consequents (actions) as an 

operator, and a rule is only considered for mutation if it has sufficient experience and has low 

fitness. 
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Reinforcement is carried out at the end of an ‘episode’  – a number of control cycles.  The 

number of control cycles in an episode can be predefined, or can be triggered upon reaching a 

certain state.  During an episode, only one rule in each sub-population can fire, and this rule is 

chosen randomly.  Reinforcement is proportional ‘…to a rule’s contribution to the obtained 

result’ .  It also reinforces with discounting the rules that triggered in past episodes. 

 

ELF continues in this way for a number of episodes.  When the performance is satisfactory 

and the rule base has been steady for some period, the rule-base is stored and a random 

mutation is forced. 

 

The ELF algorithm is an interesting approach that attempts to solve a number of specific 

challenges.  It uses real-valued input, and in the animat experiments described in 

[Bonarini1996]  using the ‘FAMOUSE’ agent, discrete actions (the consequents are limited to 

seven angles evenly distributed in the range –180o to +180o for steering).  The authors 

describe good results in a task to follow a light.  Later extensions to the algorithm included  S-

ELF [Bonarini1997], intended to co-ordinate predefined basic behaviours, and were tested on 

a physical robot called ‘CAT’ . 

 

The following points should be noted in relation to ELF; 

• With random action selection, this may not be suitable for online control, though the 

final rule base may indeed produce excellent results.  There can be few tasks we 

would want a robot to undertake where it could safely learn in such a way. 

• This algorithm is not suited to lifetime learning.  Each time a rule base is saved, there 

are random perturbations and performance drops.  It seems well suited to training, 

followed by the cessation of learning.  In contrast, and as outlined in the Introduction, 

the work in this thesis is motivated by the desire that a autonomous learner should not 
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distinguish between a ‘ training’  phase in which learning occurs and a ‘performance 

phase’  where no further adaptation is possible.  While such a distinction may allow for 

the automatic discovery of solutions, it may become rigid and fragile when training 

ends since the system cannot adapt to changes in its environment. 

 

Katagami and Yamada report work in which they attempt to speed learning by bootstrapping 

an LCS through interactive human training [Katagami2000, Katagami2001].  The 

environment is presented to the classifier system as 16 binary characters where the first 8 

correspond to the robot’s eight IR proximity sensors, and the second eight represent the 

robot’s eight light detectors, these being set to 1 if some predetermined threshold value is 

exceeded.  The environment as perceived by the robot is presented to the operator who can 

guide the actions of the robot using a joystick.  If the state-action pair thus generated is not 

represented by a classifier in the rule-base, a new matching classifier is created.  If there is a 

classifier which matches, its numerosity is increased by one.  Their LCS is based upon 

Wilson’s XCS [Wilson1995].  The learner performs alternating taught and autonomous trials.  

They present results which show an improvement in the speed of learning with teaching, 

compared with the LCS alone.   

 

One problem with this approach may be that the environment as presented to the classifier 

system is represented as, for example, an array of real numbers, which may not be readily 

comprehensible by a human operator.  In Katagami and Yamada’s work, they allow the 

human operator to see both video from the robot’s perspective and the sensory data which is 

fed to the classifier system.  A human trainer using rich video data  may be able to discern 

environmental cues which are not available to the classifier system which is presented with 

much simpler input; this problem will not be apparent in simulation since a visual 

representation of a grid world contains no more data than the description of the environment 
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which is presented to the classifier system.  However, they show better performance if the 

robot is trained with an operator using the easily-understood video, rather than the robot’s 

sensory data. 

 

We have seen that evolutionary methods generally take many hours to produce robotic 

controllers, unless partially or totally trained in simulation (or trained in real-time by a human 

operator).  We have seen that reinforcement learning techniques commonly require the 

discretisation of the input space, which may compound the problem of perceptual aliasing.  

 

Ideally, a mechanism for producing robot controllers should show the following desirable 

characteristics; 

• Life-time learning to enable the controller to adapt to changes in its environment, 

rather than separate ‘ train’  and ‘perform’  phases. 

• Simulation should not be necessary. 

• The system should be able to deal with delayed reinforcement.  Complex problems 

that must be solved by the composition of behaviours may not be easily represented by 

a ‘ reward the intention’  system of continual assessment.  

• It should not take excessive time to produce optimal, or near optimal,  behaviour. 

• It should not be necessary for the experimenter to decide a priori schemes for 

reducing the environment’s complexity, since such schemes may be inaccurate, hide 

vital environmental cues, and may stop the controller from adapting to changes in its 

environment.  Therefore neither the input or output space should be manually 

discretised. 

• The system should be robust in the presence of noise, both externally and internally 

generated. 
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TCS – A Temporal Classifier System 
 

3.2.4 Introduction 
 
Hurst et al. presented work in which they applied two classifier systems to problems of 

robotic control [Hurst2002a, Hurst2002b, Hurst2003].  They first demonstrate that ZCS can 

be used successfully to learn an obstacle avoidance behaviour on a LinuxBot (see section 

3.4.1).  The robot has three IR collision detectors, one facing forward, one facing slightly to 

the left, and to the right.  These can be on or off, providing a simple three-character 

representation of the environment. Actions are encoded as a single integer – this represents 

the continuous actions turn left, go forward, or turn right.  The classifier system chooses an 

action in response to environmental input, and the robot initiates this action.  The ZCS 

algorithm then pauses until a change in state is observed; i.e. the environmental input has 

changed, and a new cycle starts with the production of the match set.  This is similar to the 

application of ZCS in a simulated continuous environment by Cliff and Ross [Cliff1994].  A 

reward of 1000 is given when the robot is in clear space, and to encourage the robot to 

continue in clear space for as long as possible, ‘ if the last reward was the maximal reward the 

reward given to the robot is increased by 100’  [Hurst2003].  This occurs when the robot has 

continued to move in free space for more than some time-out value.  A diagrammatic 

representation of ZCS as used here is presented in Figure 3-1. 
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Figure 3-1  'Event'-based extension of ZCS, after  Hurst et al, 2003 

 

Concentrating on the concept of ‘events’  allows ZCS to use continuous actions, rather than 

actions which move the robot a predetermined distance.  Once an action has been selected it is 

performed until environmental change is perceived, or the time-out value is reached.  As the 

sensory input is composed of discrete binary values, it is easy to determine when an event has 

occurred. 

 

However, consider the case where the environment is represented by continuous values.  It 

would be possible to impose a discretisation upon it, rendering the problem similar to the 

familiar grid worlds.  As discussed above, this is undesirable; incorrect a priori assumptions 

may make optimality unachievable.  Hurst et al. addressed this problem with TCS – a 

Temporal Classifier System – which incorporates an approach that tackles Semi-Markov 
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Decision Problems within the Reinforcement Learning framework.  This addresses a second 

problem; how to choose between actions that move the learner from one state to the next, but 

take different amounts of time to complete. 

 

3.2.5 Reinforcement learning in a Semi-Markov Decision Problem 
 
Consider the case where more than one action can move the robot from one state to another.  

In the algorithm as presented above, reinforcement occurs when a new environmental state 

has been achieved, or when the desired state of having the bumpers clear has been maintained 

for more than the timeout value.  If the robot could move from having a bumper triggered to 

having no bumpers on in two ways, one only taking seconds, but the other taking hours, both 

actions would receive the same reinforcement and would thus appear equally good. 

 

In such circumstances, where in effect a continuous environment must be rendered into 

discrete states in order to use a reinforcement learning algorithm, the value of a state-action 

pair should be related to temporal considerations.  This sort of problem is known as a Semi-

Markov Decision Problem; an excellent overview can be found in the work of Sutton et al. 

[Sutton1999].  As stated by Parr [Parr1998], ‘…an SMDP is just like an ordinary MDP, with 

the difference that transitions may have a stochastic time duration’ . 

 

As noted in section Chapter Two, the reinforcement mechanism implemented in ZCS closely 

resembles the Sarsa algorithm, a development of the TD(0) algorithm which derives the value 

of state-action pairs in place of states.  In Sarsa, the update equation is as follows; 

( ) ( ) ( ) ( )[ ]ttttttttt asQasQrasQasQ ,,,, 111 −++← +++ γα   (1) 
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The external reward r is discounted by α and the reward from the next state, if any, is 

discounted by γ *α.  Neither of these rates is influenced by time.  Parr [Parr1998] presents a 

modification of the Q-learning algorithm in which both the external reward and the operation 

of the ‘bucket brigade’  are effected by time.   

‘On a transition from state s to s’  under action a that has taken time t and received reward r 

(which is assumed to be the appropriately weighted sum of rewards received during t):’  

( ) ( ) ( ) ( ) ( )( )asQsVrasasQasQ iitiii ,',,, 111 −−+ −++← βα   (2) 

 

where β is a discount rate that varies both with state and action. 

 

Hurst et al. incorporated these changes to the bucket-brigade into ZCS in the following ways.   

 

Firstly, the external reward is discounted according to the amount of time taken to reach the 

goal, tt.  This will favour efficient over-all solutions. 

rer
ttσ−=  (3) 

 

Secondly, the discount factor γ  also factors in time, but in this case the time taken to make the 

transition between events, ti.  This will favour actions that transition between states efficiently. 

ite ηγ −=  (4) 

 

In effect, σ  and η  are different learning rates that change the emphasis placed upon the overall 

time to achieve external reinforcement, and the time taken performing individual actions. 

 

The original ZCS update algorithm [Wilson1994] was; 
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]'[][ AimmA SrS γβ +←   (5) 

 

in which S[A] is the current action set, r imm is the immediate reward, S[A] ’ is the next action set, 

and ←β
is the Widrow Hoff gradient descent procedure with the learning rate β.  

Incorporating (3) and (4) into (5) gives the update procedure that Hurst et al. used in TCS;  

]'[][ A
t

imm
t

A SereS
it ησβ −− +←  (6) 

 

In summary then, there are now two forms of discounting;  external reward is dependent on 

the total time taken to achieve the goal, and the amount of reinforcement flowing to previous 

action sets is proportional to time, favouring longer actions over short ones. 

 

3.2.6 Algorithmic description 
 
By incorporating Parr’s equations relating to SMDPs into the ZCS reinforcement algorithm, 

Hurst et al. addressed the second of the problems outlined at the close of section 3.2.4; real 

time is now considered in the reinforcement scheme.  They also addressed the first problem, 

namely, how to define events in a continuous space with real-valued inputs. 

 

It will be recalled that in applying ZCS to the problem of robotic control, the binary nature of 

the sensor array rendered the environment as an aliased discrete space.  Events were simply 

determined as changes in this discrete representation; this discretisation being imposed by the 

hardware that was used to generate the environmental representation.  This led to a small state 

space, which promotes ease of learning as even without the generalizing abilities of a 

classifier system, the state-action space is small (in this case, 23 input bits describe state, and 

there are three possible actions, so the Q-table comprises 24 values). 
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With an environment that is represented with real numbers, the problem becomes much 

trickier.  We have seen that one common approach to a complex environment is to impose a 

hand-crafted discretisation upon the input, declaring in effect that the continuous world can be 

reduced in complexity to ‘blocks’  of a predetermined and fixed size.  The onus is upon the 

experimenter to decide what resolution of discretisation is appropriate for a problem, but the 

abstraction suited to one environment may not suit another, and robot hardware may differ 

significantly, one platform from another.  This approach is thus inflexible, and requires the 

experimenter to attempt to ‘view the world through a robot’s eyes’ ; the values returned by 

physical sensors may not be as expected. 

 

Alternate approaches within the reinforcement learning literature such as that described by 

Uchibe et al. [Uchibe1997] rely upon pre-processing the complex environmental 

representation to build a model, and then applying reinforcement learning to this model.  

Sutton and Barto suggest two approaches to the problem of non-Markov environments 

[Sutton].  The first is to use pre-processing of the environmental input to render it Markov; for 

example, Bayesian methods can be used to compute at each time step the probability that the 

environment is reducible to an underlying Markov Decision Problem.  The second approach is 

to use some sort of aggregation technique, for example, a function approximator such as a 

neural network, to treat a set of observable states as a single state to present to the 

reinforcement learning system.  They make the point;  

 

‘… the overall problem divides into two parts: constructing an improved representation, and 

making do with the current representation.  In both cases, the ‘making do’  part is relatively 

well understood, whereas the constructive part is unclear and wide open.’  
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This then is the context in which TCS was developed.  In order to define automatically what 

constitutes an ‘event’ , the action-selection sub-system of ZCS was extended.  Initially, a 

match set is formed in the same way as in ZCS, and thence an action set.  The action is taken.  

In a new ‘drop decision’  cycle, the environmental representation is repeatedly presented to the 

members of the action set [A].  If a time-out value has been reached, or an external reward has 

been received, the drop decision cycle terminates.  In the case that the timeout value has been 

reached, the members of [A] are not assigned to the previous action set [A-1] so they receive 

no update in the next cycle.  If an external reward is achieved, the members of [A] are 

rewarded, and the next cycle of sense, match set [M] formation, etc. starts. 

 

If neither external reward nor time-out has terminated the algorithmic cycle then a decision is 

made on whether the classifiers in [A] continue to match the current environment.  Two sets 

are formed, the ‘drop set’  of classifiers in [A] which no longer match, and the ‘continue set’  

of classifiers which do.  The drop decision cycle is illustrated in Figure 3-2, and occurs as 

follows; 

• If no classifier matches the current input, i.e. [continue] is empty, then the drop 

decision cycle ends, and the familiar stages of reinforcement (and optionally the GA) 

are performed, [A-1] being set to [A]. 

• If all classifiers match the current input, i.e. [drop] is the null set, the cycle continues, 

and thus the original action carries on. 

• If some classifiers are in [drop], and some are in [continue], a decision must be made 

on whether to continue or terminate the current action.  This decision is made on the 

strengths of the classifiers, and may be done stochastically using e.g. roulette-wheel 

selection on [A] to pick a classifier, or deterministically by picking the strongest.  If 

the classifier thus chosen is in [continue], [A] is set equal to [continue].  The 

classifiers in [drop] will not receive an update via the bucket brigade.  If the picked 
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classifier is in [drop], [A] is set equal to [drop], the classifiers in [continue] will be 

excluded from the bucket brigade updates, the current action is terminated and the 

processes of reinforcement etc. take place. 

 

It should be noted that TCS achieves operation in continuous time and space by two different 

methods.  It operates in continuous time as reflected through the two discounting methods, but 

deals with continuous space by the automated disovery of useful interval representations; the 

discovery and refinement of hypercubes. 
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Figure 3-2 The TCS action-selection mechanism.  The shaded area represents the 

'drop decision' cycle. 
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3.3 Experimental set-up. 
 

3.3.1 Hardware : The LinuxBot. 
 
The hardware platform used for the experiments reported in this chapter is the same type as 

that used by Hurst et al., that is, a ‘LinuxBot’ .  The LinuxBot [Winfield2000, 2003] consists 

of a wheeled platform with a driven wheel on each side and a trailing tail wheel.  On this 

platform sits a miniaturised PC running a distribution of the Linux operating system, in this 

case Slackware 7.1.  The PC is networked using a Wireless Ethernet card that allows remote 

operation via Telnet, etc.  A combination of battery and electrical pickups that contact the 

floor surface provide power for hours of continuous autonomous operation. 

 

The LinuxBot may be equipped with a variety of different sensors, including IR receivers, IR 

proximity detectors, physical bumpers operating switches, and light sensors.  In the 

experiments presented here, the robot was equipped with three IR proximity detectors, or ‘ IR 

bumpers’ , one facing forward, one forward and slightly to the left, and the third slightly to the 

right.  Two physical bumpers are mounted at the front of the robot, one wrapping around to 

the left side, and one to the right.  The robot is equipped with an elevated mast on which three 

light-dependent resistors (LDRs) are mounted.  Again, one faces forward, one is angled 45o to 

the left, and one 45o to the right.  This arrangement is shown in  Figure 3-3, in which the IR 

bumpers are pink, the LDRs are blue, and the physical bumpers are red.  The LDRs and 

various bumpers can be clearly seen in Figure 3-4. 
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Figure 3-3  The LinuxBot (plan and side elevations) showing bumpers and light sensors 
(see text). 

 

 
Figure 3-4  The LinuxBot on powered floor. 

The LinuxBot is approximately 30 cm in diameter, and 40 cm in height from the floor to the 

top of the LDR stack. 
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3.3.2 Environment. 
The environment in which the LinuxBot performed the learning experiments to be described 

in Section 3.4 consists of a square enclosure, measuring approximately 270 cm on each side.  

The walls of the enclosure are approximately 25 cm in height, and are painted matte black.  

The floor of the enclosure is composed of tiles that have alternating positive and negative DC 

current; this power is intermittently available as the robot moves around the arena, and is used 

to extend the operating time by recharging the battery via the downwards-pointing electrical 

pickups. 

 

There is a light source (halogen lamps) at one end of the enclosure, approximately half way 

between the two sides.   

 

The tiles of the powered floor are supplied with electricity using computer-controllable power 

supplies.  All tiles are powered, but three of the tiles are powered by their own power supply, 

which supplies no other tile.  By monitoring the current drain on these three power supplies 

using an RS232 serial communication link, a PC can signal to the LinuxBot when it is on one 

of these tiles via the wireless LAN.  This is illustrated in Figure 3-5, in which the lamps are 

shown as yellow circles, and the three monitored power supplies are shown as black, white 

and grey, supplying their corresponding square. 
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Figure 3-5 The arena, showing lights and power. 

 
The black and white tiles to either side of the lamps provide two possible goal states.  The 

grey tile is ‘home’ , i.e. the tile to which the robot must return before starting a new learning 

trial. 

 

Due to some peculiar inadequacy of the communications system on the power supplies, the 

monitoring PC is unable to poll them too quickly.  Due to this, there may be a delay of up to 

one second between successive readings being reported from a power supply.  This introduces 

noise into the reward signal. 

 

No special measures were taken to insulate the environment.  The arena is open to natural 

diffuse light, and is situated next to a busy corridor with passing staff and students.  The 

laboratory in which the experiments took place is large, and there may be other experiments 

involving halogen lamps switching on and off outside our control.  Any learning must 
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therefore cope with quite a high potential of noise, in addition to the noise introduced by the 

LDR sensors themselves. 

 

Although the environment has tiles which represent reward states, it should not be considered 

to be a ‘ real grid world’ .  There is no grid-like discretisation of the input to the system, the 

actions perfromed by the robot are not of fixed size, and as stated above, the reward signal is 

noisy.  

3.3.3 Software.  
 
TCS is presented with an environmental input consisting of three real numbers representing 

the resistance of the LDR sensors, scaled between 0.2 and 0.8.  The condition part of the 

classifiers is encoded as un-ordered pairs of real numbers in the range [0, 1], one pair for each 

environmental input.  A pair is considered to match the corresponding input value if one of 

the pair is smaller or equal to the target, and the other is larger or equal.  The action of the 

classifier is an integer, representing the actions move forward, turn continuously to the left, 

and to the right. 

 

An unordered representation was chosen for the condition pairs based upon the work reported 

by Stone and Bull [Stone2003].  In extending XCS for use in real valued environments, 

Wilson has suggested two representations;  ‘Centre-spread’  [Wilson2000]  and ‘Lower-Upper 

Bound’  [Wilson2001].  In the ‘centre spread representation’  the condition has a pair of 

numbers for each environmental input.  The two numbers encode respectively a real number 

(the ‘centre’ ), and the ‘spread’  on either side of this number within which the corresponding 

environmental input is said to match, i.e. the environmental reading e is said to match the 

tuple (c1, c2) if c1 - c2  <= e <= c1 + c2  In the ‘Lower-Upper Bound’  representation, the 

numbers in the condition pair (c1, c2)  match a single environmental input e if  c1<=e<= c2.  

Stone and Bull show that the ‘Centre-spread’  representation introduces significant bias, and 
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point out that the ‘Lower-Upper Bound’  representation demands that any operation that could 

result in c1 > c2  must result in a reordering of the alleles.  To simplify this, they introduced 

the ‘Unordered Bound Representation’  as used here, which they show has the same desirable 

properties as the ‘Lower-Upper Bound’  scheme. 

 

One problem with the ‘Unordered Bound Representation’  is that values at the extremes of the 

solution space are much less likely to be covered.  Consider the case where input is scaled 

between 0 and 1, as are the numbers of the condition representation.  An environmental input 

of 1.0 can only be matched by a classifier having a 1 as one of the two unordered pair.  Values 

in the centre of the range are more likely to be matched.  To address this, the environmental 

input was scaled in the range [0.2, 0.8]. 

 

The crossover and mutation operators are altered from those in ZCS to deal with the new 

condition.  In crossover, there is an equal chance of crossing over at any point in the 

condition.  Mutation can occur at any point in the classifier with probability µ.  The real 

numbers of a classifier’s condition are mutated by a fixed small change of ± 0.005.  Action 

mutation is by picking an integer from the set { 0,1,2}  at random, such that the chosen action 

is different from the current one. 

 

In the initial population, classifier conditions are created randomly in the range [0,1].  During 

cover, the current environmental input e is used as a centre and two values are created in the 

range [e-Cmax, e+ Cmax], where Cmax is 0.2 

 

To speed convergence, the classifier from [A] which determines whether the drop decision 

terminates is selected deterministically on the basis of fitness, rather than by using roulette-

wheel selection. 
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In addition to the conditions of the drop decision described by Hurst et al. and detailed here in 

Section 3.2.6,  the drop-decision cycle is also terminated if the bumpers are on.  In this case 

the last drop-set is returned as the set which will receive reinforcement to discourage the 

robot from walking into obstacles.  If there is no ‘ last drop-set’ , the null set is returned. 

 

3.3.4 A ‘Trial’ 
 
In the experiments described here, the system is first calibrated on the light readings 

immediately next to the light source, and pointing in the opposite direction.  To reduce the 

impact of noise from the LDR sensors, these readings are the average of 100.  The robot is 

then placed on the ‘home’  tile, and the first learning trial begins.  TCS is stopped when the 

robot reaches an appropriate ‘goal’  tile.  The learning algorithm is then stopped, and the robot 

is placed under the control of a ‘Braitenberg Vehicle-style’  algorithm [Braitenberg1984] that 

performs obstacle avoidance, ‘bouncing’  around the experimental pen until the robot is 

informed that it is on the ‘home’  tile.  Once there, the robot orientates itself approximately 

towards the light, and the next trial begins.  In order to save time, any trial that lasts for longer 

than 30 seconds is considered to have ‘ timed out’  – there is no reinforcement, and the robot 

return to start a new trial as above. 
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3.4 Results 
 

3.4.1 One Objective 
 
The performance of the TCS algorithm is first demonstrated on the robotic platform in a 

single objective task.  Only one of the ‘goal’  tiles causes an external reinforcement to be 

applied, thereby ending a trial.  The external reward is 1000.   

 

The robot may start at any point on the ‘home tile’ , and so the distance to the goal may  vary 

between trials by approximately 80 cm.  Also, as mentioned above, delays in polling the 

power supplies may mean that the robot is on the goal tile for up to a second before this fact is 

signalled to TCS.  These two factors mean that the ‘optimal’  time to complete a trial should 

be considered as a range of values; in the best case, approximately six seconds, and at the 

other extreme about nine seconds.  

 

The following parameter settings were used on this single objective task. 

N 600 

S0 10 

β 0.2 

σ 0.1 

η  0.7 

τ 0.1 

χ 0.5 

µ 0.05 

Table 3-1 Parameter settings for single objective TCS task 

 
TCS was found to easily achieve good results on this single objective task, comparable to 

those reported in [Hurst2003].  In the Figure 3-6 and the accompanying Figure 3-7 the 

average results of five runs are presented, each run lasting for 200 trials.  In Figure 3-6 it can 

be seen that TCS is soon capable of performing nearly optimally, finding the goal each time 
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with only an occasional failure.  Figure 3-7 shows the windowed average of the percentage 

success,12 windowed over 50 trials, and the average time taken to reach the goal.  After a short 

initial period in which performance fluctuates, the algorithm quickly shows that it is capable 

of nearly optimal performance.  There is a strong trend for the time taken in each trial to reach 

the goal to be within the range considered optimal. 

 

In order to complete a run of 200 trials, the experiment must run for approximately three and 

a quarter hours. 

 
Figure 3-6 Failure to Success ratio 

                                                
12 The step in the graphs of percentage success is an artefact of the graphing package.  Since a windowed average 
is used, there is no data for the first n trials, where n is the window size; this is shown as a line at 0, followed by 
a sudden jump when n is reached. 
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Figure 3-7 Percentage Success and time to goal  

In Figure 3-8 and Figure 3-9 we see graphs of individual trials.  Once again we see that TCS 

is capable of achieving the goal nearly all the time.  It is also apparent that the time taken to 

reach the goal is falling towards the optimal band.  Figure 3-9 shows a longer run which 

demonstrates that TCS is capable of maintaining successful behaviour.   

 
Figure 3-8 Percentage Success and time to goal. 
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Figure 3-9 Percentage Success and time to goal. 

 
It should be noted that the settings of the reinforcement parameters were based upon those 

reported by Hurst et al. in their ‘ towards the light’  experiment.   The system may have 

achieved better or worse results with different settings. 
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3.4.2 Two Objectives 
 

The experiment was then expanded to include two goal states, which shall be referred to as 

‘back’  and ‘white’  as shown in Figure 3-5.  The classifier condition is extended by an 

additional unordered pair of real numbers, which are tested to see if they match the robot’s 

‘ internal energy level’ .  This level is set at the beginning of each trial so that 50% of the trials 

have an ‘energy level’  of more than 0.5, and the rest are lower than 0.5. The reward scheme 

resembles that in the simplest of the three concurrent dual-objective tasks presented in 

Chapter 2, i.e. a high reward (here 10000) is discounted according to the time taken to 

complete the trial and given when the robot has been guided to the correct goal (see section 

2.7.1).  A low reward (10) is similarly discounted according to the time taken to reach the 

incorrect goal, should the trial end there.  No reward is given if the trial times out without 

either goal being reached.  The energy level of the robot is static. 

 

The results TCS achieved are not optimal.  There is considerable variation between different 

runs.  In Figure 3-10 we again see time to goal, broken down by the goal state achieved.  

These figures also show a windowed average of the percentage of trials that are successful.  A 

trial is considered successful if the robot reached the goal which was appropriate for the 

‘ internal energy level’ .   

 

All parameter settings remain the same as in the single objective trial, except the population 

size was increased.  If 600 classifiers were used to correctly encode the relationships of states 

and actions for a single objective task, it seemed realistic to expect that double this number 

would be required for the dual objective task (of course, generalization over the ‘energy level’  

might allow this number to be reduced in the early stages of navigation when the robot is far 

from the goal states). 
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In Figure 3-10 we see that there is little sign that the time to goal is decreasing towards the 

optimum.  The percentage of trials in which the robot achieved the correct trial increases 

slowly.   

 

Figure 3-10 Percentage Success and Time to Goal.   

Two objectives.  Average of 10 trials 

 
We have seen in the previous chapter that optimal behaviour with ZCS is very dependent on 

the settings of the reinforcement learning parameters, in addition to the population size.  

Figure 3-11 and Figure 3-12 present results from two runs in which the experiment was 

allowed to continue for longer, and in which the population size was increased to 2000.  The 

values of the temporal discounting parameters were also changed, in order to try to force TCS 

towards optimality in the time taken to reach the goals, setting σ to 0.05 and η  to 0.1. 
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Although in Figure 3-11 we see a slow increase in percentage success, there is little sign that 

optimal time to goal will be achieved.  Figure 3-12 is even more disappointing, since on 

average the robot reaches the wrong goal more often than the right one! 

 

 

Figure 3-11 Percentage Success and Time to Goal.  Two objectives.  
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Figure 3-12 Percentage Success and Time to Goal.  Two objectives.  

 
Keeping the same parameter settings, the system was then run for 1000 trials.  Due to 

restrictions beyond my control, it was not possible to run the robot continually overnight, and 

so these experiments had to be done in stages.  The population was stored, the robot stopped, 

and then the system started again the next day.  In order to complete 1000 trials in a single 

run, the robot had to operate for approximately 20 hours, spread over 4 days. 
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Figure 3-13 Dual objective, 1000 trials.  Average of 5 runs. 

 
Figure 3-13 shows the average of five runs, each run lasting for 1000 trials.  With more trials, 

there is more evidence that TCS is able to choose the correct goal dependent on the internal 

energy level, and there is clearly a trend towards faster solutions.  Even with a much longer 

experimental run, it was not possible to achieve near-optimal performance with TCS on this 

simple dual objective problem.  The behaviour of the robot seemed consistently to 

‘concentrate’  on one goal, and then switch to the other.  This can be seen in the figures below.  

While some experiments (e.g., Figure 3-14) showed progress towards successfully reaching 

the correct goal each time, others were much less good, e.g., Figure 3-17.    In no case can we 

see a convincing case for an approach to optimal time. 
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Figure 3-14 Longer run of TCS on the dual objective problem.  

 

Figure 3-15 Longer run of TCS on the dual objective problem.  
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Figure 3-16 Longer run of TCS on the dual objective problem.  

 

Figure 3-17 Longer run of TCS on the dual objective problem.  
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This was very frustrating.  It may be that TCS is capable of optimally solving the dual-

objective robot problem.  However, as we have seen in Section 2.8.1 for a comparable 

problem in simulation, the high degree of epistatic linkage between the reinforcement 

parameters in ZCS makes it very difficult to find a set of parameters which will allow optimal 

behaviour.  In simulation, it was easy to perform iterative searches of the parameter space to 

discover areas in which good parameter sets might be found.  Even this painstaking approach 

proved unable to allow the optimal solution of the harder multi-objective problems.  To carry 

out a similar search of the parameter space with the robot would have taken a long time; even 

if the robot had been run continuously, night and day, it would have taken approximately 25 

years to examine the parameter space in the same detail as in simulation for a single problem, 

even if the runs were limited to only 200 trials! 
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3.5 Conclusions 
 
Some characteristics of a useful robotic learning system have been suggested.  It should not 

require the experimenter to decide on a priori discretisations of the problem space.  It should 

be capable of determining these for itself, in order that it might be flexibly used on different 

hardware platforms, and in different environments.  It should not require many days of 

training.  Hurst’s TCS was presented as a candidate system, which integrates a reinforcement-

learning framework dealing with Semi-Markov Decision Problems into Wilson’s ZCS.  

However, the optimal solution of a simple two objective task using TCS on a real robot could 

not be demonstrated.  

 

It seems likely that TCS shares the parameter sensitivity of its parent, and it may be that 

optimality could be reliably achieved given much time, or luck.  Therefore it would seem 

from these results that TCS is not suited to solving multi-objective problems of robot control. 
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Chapter 4 XCS 
 

4.1 Introduction 
 
Although results indicate that ZCS can tackle multi-objective problems if its parameters are 

set correctly, it is difficult to discover these settings.  Indeed, in some cases it was not possible 

to find parameter sets that would allow the optimal solution of simple multi-step, multi-

objective tasks.  The majority of current LCS research uses XCS [Wilson1995], an accuracy-

based classifier system, which has been shown to require less careful tuning to solve many 

problems optimally. 

 

This chapter describes XCS, investigates some related work, and applies XCS to the same 

problems we set for ZCS in Chapter 2.  The complexity of the problems is then increased, and 

XCS’s performance is examined. 

 

Since the aim of the work presented in this thesis is to use classifier systems to solve multi-

objective control problems on a physical robot, some simple alterations to XCS are 

investigated that will provide a platform for this work.  These bring their own problems which 

are examined.  We will find that the performance of XCS depends on, among other factors, 

the chosen exploration policy, and these observations are related to current XCS theory and 

research. 

 



 139

4.2 XCS Described 
 
XCS was first introduced in Stewart Wilson’s seminal work, ‘Classifier Fitness Based on 

Accuracy’  [Wilson1995].  In the paper, he states that this work ‘stemmed from dissatisfaction 

with the behaviour of traditional classifier systems, and the hypothesis that the short-comings 

were due in part to the definition of fitness’ .    

 

XCS differs from Wilson’s ZCS [Wilson1994] in many ways, most importantly; 

• fitness is proportionate to the accuracy of the classifier’s prediction 

• the GA does not choose parents from the population as a whole, but instead from 

members of action sets.  

The intention behind XCS is that the system should form a set of rules that provide a 

complete and accurate, maximally general map of the space of state-action pairs.   

 

XCS performs cycles of interaction and response to environmental stimulus, and unlike the 

‘ traditional’  LCS as formulated by Holland, XCS has no internal message list.  In the classic 

implementation13, as here [Butz2001], the environment is presented as a binary string, and 

this is matched to a greater or lesser extent – or not at all – by classifiers which have a 

‘condition’  encoded as a ternary string.  Covering takes place if the ‘match set’  thus formed, 

[M], is empty or the number of actions in [M] is smaller than θmna.  Covering generates new 

classifiers with random actions, their conditions matching the current environment with 

characters changes to the ‘don’ t care’  symbol ‘#’  with the probability p#.  System parameters 

such as θmna and p# are explained in Table 4-1. 

                                                
13 All experiments here use Martin Butz’s XCS classifier system implementation in C, version 1.1, available 
from ftp://ftp-illigal.ge.uiuc.edu/pub/src/XCS/XCS-C1.1.tar.Z 
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N Maximum size of the population (sum of classifiers’  numerosities – see 

text) 
β Learning Rate 
γ Discount Rate 
α, ε0, and ν Used in classifier fitness updates.  See text 
θGA GA threshold.  The GA is applied to a set when the average time since 

the GA last operated is greater than this value 
χ probability of crossover  
µ probability per allele of mutation 
θdel deletion threshold.  If a classifier’s value of exp is greater than θdel  it’s 

fitness is included in assessing its likelihood of deletion 
δ if a classifier’s fitness is less than this fraction of the mean fitness of [P] 

then its fitness is included in assessing its likelihood of deletion 
θsub a classifier may subsume (see text) another classifier if its value of exp 

is greater than the subsumption threshold. 
p1, ε1, and F1 initial values for p, ε, and F  in new classifiers 
θmna specifies the minimal number of actions that must be present in [A] or 

covering will occur. 

Table 4-1 XCS System Parameters 

 

In addition to its condition and an associated action, each XCS classifier also records;  

• p, the predicted value of taking this action 

• ε , the prediction error 

• exp, which records the number of times the classifier has been in the ‘action set’ , [A] 

• ts,  a time-stamp that records when the classifier was last in [A] when the GA 

operated. 

• as, which keeps an estimate of the average size of [A] containing this classifier. 

• n, the ‘numerosity’ , records the number of individuals in the population represented by 

this ‘macroclassifier’ .  Macroclassifiers are treated as if they are n copies of identical 

classifiers, providing a computational advantage. 

• F, the classifier’s fitness. 

 

Once [M] has been formed, XCS then forms a prediction P(ai) of the payoff expected from 

each possible action.  These values are stored in the Prediction Array PA. Some of these 
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values will be null if no member of [M] advocates this action.  The system prediction for an 

action is a fitness-weighted average of the predictions of all classifiers in [M] which advocate 

that action. 

 

An action is chosen from the set of actions suggested by the classifiers in [M].  Wilson 

suggests that ‘Many action-selection methods are possible’ .   Actions may be chosen 

probabilistically with the probability of selection proportional to the value of P(ai), for 

example via roulette selection, randomly without reference to the values of P(ai), or 

deterministically by picking the action with the highest value of P(ai). In typical 

implementations, a balance between ‘exploration’  and ‘exploitation’  is represented by 

performing half the trials with a random action selection policy, and the other half with a 

deterministic policy.  This is equivalent to ε-greedy learning [Sutton1998] with ε set at 0.5. 

 

However it is chosen, one action is selected and an action set [A] is formed.  The chosen 

action is performed, and any external reward is returned by the environment. 

 

The reinforcement component in XCS consists of modifying the following parameters 

associated with each classifier, in the following order; exp, p, ε and F.  exp is incremented to 

record the number of times this classifier has appeared in an [A].  p and ε are adjusted using 

the Widrow-Hoff procedure with the learning rate parameter β (0 < β ≤  1) only after a 

classifier has been adjusted at least 1/β times, otherwise the new value is simply the average 

of the previous value and the current one.  This technique is known as MAM (‘moyenne 

adaptive modifée’ ).  That is, for classifier j if expj >= 1/β 

pj = pj + β( P - pj ) 

ε j = ε j + β( |P -  pj| - ε j ) 

and otherwise; 



 142

pj = pj + ( P - pj ) / expj 

ε j = ε j + ( |P -  pj| - ε j ) / expj 

where P is the maximum value of the Prediction Array, discounted by multiplying by γ  (0 < γ  

≤  1), and with the addition of any external reward from the previous time-step.  This closely 

resembles the Q-learning technique [Watkins1989];   

 

Q(st, at) = Q(st, at)  + β (R + γ max Q(st+1, a t+1) - Q(st, at) ) 

 

where  Q(st, at) is the payoff predicted under the hypothesis that the agent performs action at 

in state st, and thereafter always selects the action predicting the highest payoff, γ  is the 

discount rate, and R is the reward received for performing action at in state st,  In contrast to 

Tabular Q-learning, where a Q value is derived for every state-action pair in the environment, 

an LCS allows the generation of rules that generalize over many states.  In Reinforcement 

Learning, function approximation techniques such as artificial neural networks are used for 

similar reasons; see [Sutton1998] for an overview. 

 

In the final step of the reinforcement process, each classifier in the set has its fitness F 

adjusted.  This is performed in three stages; 

• Each rule has its accuracy Kj determined: 

Kj = α  (ε j / ε 0)
-v

  for ε j > ε 0 , otherwise Kj ← 1. 

• A relative accuracy K’ j is determined for each classifier by dividing by the sum of 

accuracies of classifiers in the set.  Numerosity must be accounted for here. 

• The Widrow-Hoff delta rule is applied with the learning rate β:  

Fj = Fj + β (K’ j - Fj) 
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As noted above, the second main area in which XCS differs from ZCS is in the application of 

the GA.  Wilson was motivated to develop XCS by the belief that ZCS failed to achieve 

optimality due to the emergence of over-general rules; rules which are good in one niche and 

achieve a high fitness value are chosen over more optimal rules in a different niche where 

they also match, but in which they are of lower utility.  Wilson attempted to address this 

problem by the use of accuracy as a basis for fitness, and also through restricting the GA to 

choose parents from within [M]. 

 

In the version of XCS used in this chapter, the GA is restricted in its choice of parents to [A] 

rather than [M], as first detailed in [Wilson1998].  By restricting the GA to [A], there is 

exploration of the space of possible generalizations containing a specific state-action pair.  

Since classifiers that participate in more niches (and are accurate) are rewarded more often 

and have more opportunities to replicate and search the space of generalizations through the 

genetic operators, this introduces a pressure towards the generation of general classifiers for 

each state-action pair explored by the system.   

 

The ‘ triggered-niche’  GA used by XCS in this implementation works in the following way.  

Each classifier has an associated measure of the number of time steps since it was last 

involved in an application of the GA.  The GA is invoked if the average time period since the 

classifiers currently in [A] were last subject to the GA is greater than a threshold value θGA.   

Two parents are selected by a fitness-proportionate method (roulette selection) and after 

possible two-point crossover and mutation, are inserted into the population.   

 

Classifiers are selected for deletion from the population as a whole [P], while parents are 

selected from [A].  If the sum of the numerosities is less than the preset maximum N, no 

deletion takes place.  Otherwise, a classifier is chosen to be deleted (if it is a macroclassifier, 
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its numerosity is decreased by 1) by roulette selection with increasing probability on the 

strength of its ‘deletion vote’ .  The latter is calculated based upon numerosity and the 

classifier’s action set size estimate.  Additionally, if the classifier is sufficiently experienced 

i.e. exp > θdel, and its fitness is less than δ multiplied by the average fitness in [P], its deletion 

vote is increased in inverse proportion to its fitness. 

 

There are two forms of ‘subsumption’  in XCS that contribute to computational efficiency at 

the expense of a decrease in diversity in the population.  In ‘GA subsumption’  an offspring 

that has a condition already represented by a more general and experienced parent is not 

added to the system, but the parent’s numerosity is incremented.  In ‘Action Set 

subsumption’ , the most general classifier in [A] is found, and all other classifiers in [A] are 

tested against it to see whether it subsumes their condition.  If it does, they are discarded and 

the most general classifier has its numerosity increased by one as before. 

 

Other work using XCS includes that of Butz et al. [Butz2003b] in which they examine the 

pressures that influence generality in XCS.  They recognise;  

• Set Pressure: since classifiers are more likely to be reproduced the more often they are 

in [A], but classifiers are deleted from [P] as a whole, there is an intrinsic pressure 

towards generality. 

• Mutation Pressure:  mutation changes alleles, either at random (‘ free mutation’ ), or 

while maintaining a match to the current input (‘niche mutation’ ).  This provides a 

pressure depending on the frequency of the GA and the mutation rate towards a 

specificity of 0.66 or 0.5 for the two types of mutation, respectively. 

• Deletion Pressure: deletion depends upon as and fitness.  In the absence of other 

pressures, the average specificity of deleted classifiers will approximate to the average 

specificity of [P]. 
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• Subsumption Pressure: subsumption provides an explicit pressure towards generality. 

• Fitness Pressure.  In general, since fitness is dependent on accuracy, the effect of 

fitness will be to inhibit over-general rules that are inaccurate in some niches, thereby 

producing a pressure towards the specific. 

 

They also note two ‘challenges’  that XCS must overcome in order to learn a problem.  Firstly, 

if cover is invoked too often, classifiers may be deleted before their true value can be assessed  

The parameter θdel was introduced to minimise this problem, first  noted in [Kovacs1999].  

Whether this happens will also depend on the complexity of the problem, the setting of p#, 

and the value of N. They term this the ‘covering challenge’ .   

 

Secondly, since XCS uses accuracy-based fitness, [P] must contain enough specificity – 

building blocks with matching characters that are not wildcards - to allow the production of 

accurate classifiers.  The impact of this ‘schema challenge’  will clearly depend on the extent 

to which the problem space can be solved by general rules - how rugged is the problem 

landscape - and also upon the settings of p# and N as before. 

 

In [Butz2003a], Butz et al. extend this examination of the pressures on XCS to include time, 

and also examine the effect of population size N. They suggest that ‘ the necessary specificity 

actually decreases with increasing population sizes’ , although their main finding is the reverse 

of this.   They derive equations for the ‘Reproductive Opportunity Bound’  (ROP) in XCS, 

based on the probability that a suitably specific classifier will be generated by mutation, and 

subsequently maintained in the population by reproduction, and not deleted.  It should be 

noted that their theoretical treatment assumes that all states in the environment are sampled 

with equal frequency.   
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The results presented in the following sections of this chapter show that it is not always the 

case that the necessary specificity of the population decreases with increasing values of N, 

suggesting that the ROP is influenced by the action selection scheme.  It appears that there is 

another challenge to XCS’s success, which could be termed the ‘niche resource challenge’ . 

 
Many methods could be used to select an action suggested by the classifiers forming [M].  In 

most multi-step experiments that have been described in the literature, a balance has been 

enforced between ‘exploration’  and ‘exploitation’  by simply performing half the trials using a 

random action selection policy, and half using a deterministic policy.  Results are presented 

based purely upon the performance of the deterministic trials [e.g. Wilson1995]. 

 

Since it is the intention in these investigations to aim always at the use of LCS for multi-

objective problems performed by physical agents in the real world, this presents some minor 

problems.  Although in simulated problems this simple distinction between random 

exploration and deterministic exploitation is a valid approach, one must doubt the utility of 

any agent that performs randomly 50% of the time. 

 

Thus the experiments that are presented below first demonstrate the performance of XCS 

using the traditional 50/50 random exploration, and then investigate XCS’  performance using 

roulette-wheel selection in the prediction array during the exploration trials.  To enable easy 

comparison with results in the literature, results are still presented based upon only the 

deterministic trials.  

 

An adaptive ε-greedy parameter could be used, adjusting ε according to some measure of 

error in [P] or more likely [A].  Wilson [Wilson1994] mentions some possible methods of 

self-adapting the balance of exploration and exploitation.  However, as the values of fitness 

are updated, roulette-wheel selection can be said to self-anneal so that the system gradually 
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converges upon a mainly exploitative policy while still allowing some exploration to take 

place. 
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4.3 Sequential Multi-objective problems 
 
The performance of XCS is first examined in two sequential multi-objective tasks.  These 

take place in adaptations of the familiar Woods1 grid-world [Wilson1994].  In these, and all 

following experiments with XCS, all results are the average of 10 experiments, presented as 

the running average of the last 50 deterministic exploit trials as in [Wilson1995].   

 

Figure 4-1 The Woods1 Environment. 

 

Woods1 is a toroid comprised of 25 squares.  A virtual agent, or ‘animat’  (Wilson, ibid.), 

moves between the squares under the control of the learning algorithm.  Movement is possible 

from a square to any of the eight adjoining squares, except where this contains a ‘ rock’  

(shown in Figure 4-1 as a grey square).  A trial starts in an empty square chosen at random, 

and finishes when the animat reaches the goal state, here marked with ‘F’  for ‘ food’ .  In the 

experiments described here, three14 characters are used to describe each state in the 

environment, and the environment is presented to the classifier system as a binary string 

representing the state of the eight cells that surround the animat’s current position, from 

‘North’  clockwise to ‘North-West’ .  The condition of a classifier has an equal number of 

characters to the environmental representation.  Three characters, allowing the eight possible 

directions to be represented, again encode the action.  In the Woods1 environment, the reward 

                                                
14 Although only two characters are required in to encode the states in the Woods1 environment, three are 
necessary as the number of different states increases in the further multiobjective problems reported here.  We 
have used the same encoding throughout. 
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given upon reaching the goal is 1000, and the optimum average path from start to finish is 1.7 

steps. 

 

4.3.1.1 Key and Door  
 
In the first extension of the Woods1 environment, the animat must visit a state in the 

environment before it reaches the goal.  If it does not first visit this state, the trial will not 

terminate.  This can be thought of as getting a ‘key’  to open a ‘door’  to gain reward.  In order 

to allow XCS to ‘ remember’  whether the animat has previously visited the ‘key’  state, an 

extra character is added to the representation of the environment, this character being set from 

its initial state of zero to one when the animat visits the ‘key’ .  This can be matched by a 

concomitant extra character in a classifier’s condition. In Figure 4-2, the ‘key’  is shown as 

‘K’ , and the reward state is indicated as ‘F’  (food). 

 

 

Figure 4-2 Woods1 ‘Key and Door ’  

 

 
The average optimum number of steps from any position in the environment to the goal state, 

going by way of the ‘key’ , is 3.7.  The results presented below in  

Figure 4-3 and Figure 4-4 show the performance of XCS with a population size (N) 1600 and 

3200, and random exploration.  Figure 4-5 and Figure 4-6 show the same treatments using 

roulette-wheel selection.   
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Other parameters are; 

Table 4-2 Common parameters used in all XCS experiments 

(unless otherwise stated) 

β  0.2 Learning Rate 
γ  0.71 Discount Rate 
θ GA  25 GA Threshold 
ε 0  0.01 
α   0.1 
v 0.1 

used in fitness calculations 

χ   0.8 probability of crossover in GA 
µ   0.01 probability of mutation per character 

in GA 
θ del 20 
δ  0.1 

if exp > θ del AND fitness < δ  *  (mean 
fitness in[P]), deletion vote increases 
in inverse proportion to fitness. 

p# 0.33 likelihood that a classifier created by 
cover will have a ‘#’  at a character. 

p I 10 
ε I  0 
F I 10 

initialisation values for new classifier 

θ sub 20 a classifier can subsume another if 
exp > θ sub 

θ mna 8 if number of actions in [M] is less 
than θ mna, cover will take place 

 

Only GA subsumption is performed.
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Figure 4-3 Key and Door: N=1600, random exploration 

 

 
Figure 4-4 Key and Door: N=3200, random exploration 
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As can be seen, in all treatments XCS achieves optimal performance.  However, it would 

appear as though it takes longer to converge to an optimal solution with the roulette action 

selection mechanism; with N=1600 and using random exploration, XCS achieves optimality 

after about 500 exploit trials, whereas using roulette exploration requires almost double this 

number of trials with the same value of N.  Increasing N is required to allow roulette selection 

to perform as well; here a doubling of N. 

 

 
Figure 4-5 Key and Door: N=1600, roulette exploration 
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Figure 4-6 Key and Door: N=3200, roulette exploration 

 
 
 

4.3.1.2 Carry the Flag 
 

Of course, the above is a rather trivial problem.  The animat can only achieve its reward and 

terminate the trial if it has first visited the key state.  A slightly more complicated variant is 

provided by the same environment, in which the ‘door’  is always open.  However, the reward 

gained is dependent on whether the animat has previously visited the ‘key’  state, being 1000 

if it has, and otherwise 1.  Once again, an extra character in both environment and classifier 

condition allows XCS to ‘ remember’  whether the animat has previously visited the ‘key’  

state.  
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Figure 4-7 'Car ry the Flag', N=1600, random exploration 

 

 
Figure 4-8 'Car ry the Flag', N=3200, random exploration 
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Figure 4-9 'Car ry the Flag', N=1600, roulette exploration 

 
Figure 4-10 'Car ry the Flag', N=3200, roulette exploration 
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Figure 4-7 -Figure 4-10 show the performance of XCS on this second sequential multi-

objective task.  With both roulette-wheel and random exploration, there is a slight reduction in 

the time needed to achieve optimal steps to goal as the population size is increased from 1600 

to 3200.  Once again, we also see that random exploration achieves optimal performance 

faster than with roulette-wheel exploration.  Note also that where N=1600, the treatment with 

random exploration clearly achieves a better average reward (1000 ± 0.00 (mean ± std. dev.)) 

than the treatment using roulette-wheel exploration (986 ± 9.51 (mean ± std. dev.)), implying 

that the map of predicted payoffs is less accurate in the latter. 

 

4.4 Concurrent Multi-objective problems 
 

4.4.1 Two objective problems 
 
We have seen that XCS is capable of optimal performance on the simple sequential two-

objective problems using both random and roulette-wheel exploration policies.  It is more 

interesting to consider the problems faced by a learner that has to juggle multiple 

simultaneous objectives.  In order to do this, an alteration of the previous Woods1 

environment is used that not only has a ‘ food’  goal, but also has another goal labelled 

‘energy’ .  In a similar fashion to the second sequential multi-objective task, the environment 

is presented to the classifiers with an additional character, which is set to one if the animat’s 

internal ‘energy level’  is higher than 0.5, and otherwise set to zero.  The internal energy level 

can vary between 0 and 1.  The classifiers once again have an additional character in the 

condition that allows them to match this extension of the environment.  A trial is terminated 

and reward is given when the animat reaches either of the goal states. 
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Figure 4-11 The Woods1e environment with two goals 

 

4.4.1.1 Stepwise reward, no cost of movement(Woods1e-type1) 
 
In the first version of the Woods1e problem there is no cost of movement.  Each trial starts 

with the animat’s internal energy level initialised at random in the range [0, 1].  The reward 

function is step-wise, giving an external reward of 1000 in the case that the animat arrives at 

the energy goal when its energy level is lower than or equal to 0.5, the reward being otherwise 

1.  Conversely, the animat receives a reward of 1000 if it arrives at the food goal when its 

energy level is higher than 0.5,  the reward being otherwise 1. This problem and the Woods1e 

environment were first reported in [Bull2002b].  The optimal average reward that can be 

attained is 1000, and the optimal average steps to either goal state is 1.7. 
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Figure 4-12 Woods1e-type1.  N=1600, random exploration 

 
Figure 4-12 shows XCS achieving optimal performance with N=1600 using random 

exploration.  In Figure 4-13 it will be seen that using roulette exploration,  performance is 

slightly worse in terms of the average reward achieved (random 1000 ± 0, roulette 993 ± 3.69 

(mean ± std. dev)).  Increasing the population size allows XCS to address this problem using 

roulette exploration  (see Figure 4-14), again indicating the significance of N as seen in the 

sequential problems above. 
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Figure 4-13 Woods1e-type1.   N=1600, roulette exploration 

 

 
Figure 4-14 Woods1e-type1.   N=3200, roulette exploration 
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In Figure 4-15 - Figure 4-17 we see how average steps to goal, average reward achieved, and 

average performance vary in response to changing values of learning rate and discount rate, 

using the random exploration policy.  Performance is measured as before (Section 2.8.1).  

 

It is apparent that XCS is largely insensitive to the setting of learning rate and discount rate, 

apart from at extreme settings of γ and β.  Indeed, optimal (or very nearly optimal) behaviour 

appears to be the norm rather than the exception. 

 

 
Figure 4-15 Exploration of steps to goal with varying learning- and discount- rate. 
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Figure 4-16 Exploration of reward gained with varying learning- and discount- rate. 

 
Figure 4-17 Exploration of performance with varying learning- and discount- rate. 
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4.4.1.2 Stepwise reward, dynamic cost(Woods1e-type2) 
 
Once again, a cost of 0.01 ‘energy points’  as introduced for each move made by the animat.  

This cost is deducted from the animat’s internal energy level after it has been assessed 

whether the most recent action has brought an external reward, and if so, what size the reward 

should be.  (This is important; if the animat is charged for moving before the potential reward 

is assessed, the environment is made ambiguous in those trials where the internal energy level 

is 0.51.  The animat moves to the ‘ food’  state ‘expecting’  a high reward of since the energy 

level is above 0.5, but this decision causes it to receive a low reward.)  All other details 

remain the same as in the case with no cost of movement.   

 

Figure 4-18 and Figure 4-19 show two treatments with random exploration, while Figure 4-20 

and Figure 4-21 show the same treatments using roulette exploration.  Once again we see that 

it is necessary to increase the population size with roulette exploration to achieve similar 

performance as that attained with random exploration. 

 
Figure 4-18 Woods1e-type2.  N=1600, random exploration. 
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Figure 4-19 Woods1e-type2.  N=3200, random exploration. 

 

 
Figure 4-20 Woods1e-type2.  N=1600, roulette exploration. 
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Figure 4-21 Woods1e-type2.  N=3200, roulette exploration. 
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 t Stat t Critical two-tail 
Steps to Goal 0.191 0.850 
Reward 0.125 0.902 

Table 4-3 Two-Tailed Student t-test, Roulette N=3200, Random N=1600 

 
As shown in Table 4-3, the difference between the treatments is not significant at the 95% 

confidence level either in terms of the steps to goal or the reward achieved. 
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4.4.1.3 Continuous reward, dynamic cost(Woods1e-type3) 
 

In a further effort to make the simulation more like the problem faced by a real robot, XCS is 

now set the task of finding an optimal solution to the Woods1e problem when its energy level 

is altered by its movements, and where the reward received upon arriving at one or other goal 

state is directly proportional to the energy level, rather than varying in a step-wise fashion 

according to the energy level as has hitherto been the case. 

At the ‘energy’  goal   Reward = 1000.e 

At the ‘ food’  goal   Reward = 1000(1-e) 

 

Where e is the animat’s internal energy level that varies between zero and one.  As before this 

internal energy level is set randomly at the start of each trial, such that half the trials will start 

with e < 0.5.  As in the previous experiment, a cost of 0.01 ‘energy points’  is deducted for 

each move made by the animat in the grid-world.   The animat’s energy level is not allowed to 

go below zero.   As in the preceding experiments, the real value of the internal energy level is 

hidden from XCS, and is presented as an extra environmental character set to one if the 

energy level is above 0.5, otherwise zero. 

 

While the optimum steps to goal remains 1.7 as in the other parallel multi-objective tasks in 

the Woods1e environment, the optimum average reward is no longer 1000 due to the dynamic 

reward.  If the energy level at the goal state is above 0.5, achieving the correct ‘ food’  goal will 

gain a reward in the range [1000, 500].  The same is true when the animat correctly reaches 

the ‘energy’  goal with its energy below 0.5.  Assuming an equal random distribution of initial 

energy levels for trials, the average reward for success is 750.   
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Figure 4-22 and Figure 4-23 show results using random exploration, while Figure 4-24 and 

Figure 4-25 show the same population sizes with roulette-wheel exploration.  Using both 

methods of exploration, XCS was able to solve this problem with a minimum of adjustment, 

achieving simultaneously optimal performance both in terms of reward achieved and steps 

taken. 

 

Figure 4-22 Woods1e-type3.  N=1600, random exploration 
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Figure 4-23 Woods1e-type3.  N=3200, random exploration 

 

Figure 4-24 Woods1e-type3.  N=1600, roulette exploration 
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Figure 4-25 Woods1e-type3.  N=3200, roulette exploration 

 

We have so far observed that XCS is generally less able to achieve such good results with 

smaller populations when using roulette wheel exploration, compared with random 

exploration.  As can be seen from Figs 5-19 – 5-22, this is not the case with this problem.  

Interestingly,  with N=1600, the treatment using roulette exploration out-performs the 

equivalent treatment using random exploration both in terms of reducing to an optimum the 

average steps taken to the goal state (roulette 1.76 ±0.03, random 1.98 ±0.04), and also with 

respect to the average reward gained (roulette 743 ±7.34, random 714 ±9.97). This result is 

returned to in section 4.7. 

 

 t Stat t Critical two-tail 
Steps to Goal 1.850 2.131 
Reward 0.780 2.101 

Table 4-4 Two Tailed Student t-test, Roulette & Random N=3200.   

No significant difference at 95% confidence level. 
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4.5 Increasing Complexity 
 

4.5.1 More objectives 

 
The complexity of the Woods1e task is again increased by adding a third goal state.  The new 

goal, ‘maintenance’ , takes priority over the other two goals.  The ‘Woods1em’  environment is 

show in Figure 4-26. 

 

 
Figure 4-26 The 'Woods1em' 3 objective environment 

 

 
The reward function changes slightly to accommodate the third objective, as represented in 

Figure 4-27. 

 

 
Figure 4-27 Graphical representation of cor rect goal  

in 3 objective Woods problem 

 
If the animat reaches the ‘maintenance’  goal and its need for maintenance is higher than or 

equal to 0.5, it is rewarded 1000, otherwise 1, irrespective of the internal energy level.  If the 
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animat reaches the ‘ food’  goal when the need for maintenance is lower than 0.5 and the 

energy level is higher than 0.5 it receives a high reward (1000), otherwise low (1).  

Conversely, if the animat reaches the ‘energy’  goal when the need for maintenance is lower 

than 0.5 and the energy level is lower than or equal to 0.5 it receives a high reward (1000), 

otherwise low (1).   

 
All other experimental details remain as before, except that the condition part of the classifier 

is extended by a further character which is set to zero if the animat’s maintenance level is 

lower than 0.5, and otherwise set to one.  As is the case with the internal energy level, the 

animat’s ‘need’  for maintenance is set randomly between 0 and 1 at the start of each trial, 

such that all combinations of high and low maintenance need, and high and low energy need 

are represented in equal numbers of trials.  The optimum steps to goal is 1.8, and the optimum 

average reward that can be achieved is once again 1000.  

 

4.5.1.1.1 Stepwise reward, no cost of movement(Woods1em-type1) 
 
As shown in Figure 4-28, XCS easily achieves an optimal average reward and steps to goal 

using N=3200 and random exploration.  With an equivalent population size (Figure 4-29), 

roulette-wheel exploration takes longer to achieve similar performance, and the system shows 

more variability in the average reward achieved.  Increasing the population size allowed XCS 

with roulette-wheel exploration to achieve results that match those with random exploration, 

as shown in Figure 4-30. 
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Figure 4-28 Woods1em-type1.  N=3200, random exploration. 

 

 
Figure 4-29 Woods1em-type1.  N=3200, roulette exploration. 
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Figure 4-30 Woods1em-type1.  N=6400, roulette exploration. 

 
 t Stat t Critical two-tail 
Steps to Goal 0.240 2.131 
Reward - - 

Table 4-5 Two Tailed Student t-test, Roulette N=6400, Random N=3200 

As can be seen from Table 4-5, there is no significant difference in steps to goal at p=0.05.  

Figures for reward are not included as both treatments were identically perfect with no 

variance. 

 

4.5.1.1.2 Stepwise reward, dynamic cost (Woods1em-type2) 
 
Having shown that XCS is easily capable of optimal performance in the three objective 

Woods1em environment with no change in the parameters that were used in the simpler two 

objective environment, once again a cost of movement of 0.01 ‘energy points’  is introduced 

for each move taken by the animat. 
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Figure 4-31 and Figure 4-32 show that, although XCS was unable to achieve optimal 

performance with N=1600 and random exploration, increasing N to 3200 allowed optimal 

performance.  

 

Figure 4-33, Figure 4-34 and Table 4-6 show that equivalent performance can be achieved 

using roulette-wheel exploration, but only by increasing N once more. 

 
Figure 4-31 Woods1em-type2.  N=1600, random exploration. 
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Figure 4-32 Woods1em-type2.  N=3200, random exploration. 

 
Figure 4-33 Woods1em-type2.  N=3200, roulette exploration. 
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Figure 4-34 Woods1em-type2.  N=6400, roulette exploration. 

 
 t Stat t Critical two-tail 
Steps to Goal 0.303 2.145 
Reward - - 

Table 4-6 Two Tailed Student t-test, Roulette N=6400, Random N=3200.  No significant 
difference at 95% confidence level. 
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4.5.2 Bigger Environment 
 
The complexity of the task is now further increased by enlarging the environment.  An 

adapted version of the well-known Maze5 grid-world is used [Lanzi1999], termed Maze5em.  

Figure 4-35 shows Maze5em – a bounded environment containing obstacles (‘O’ ) and three 

goal states; Food (‘F’ ), Energy, (‘E’ ) and Maintenance (‘M’).   As before, all environmental 

states are encoded in three characters, and eight actions are possible. 

 
Figure 4-35 The Maze5em 3-objective grid-world 

 
The payoff matrix remains the same as for the three objective Woods1em problem, as 

outlined above (Figure 4-27).   
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Figure 4-36 Maze5em, random exploration, N=6400, p# =0.33 

 
Figure 4-37 Maze5em, random exploration, N=6400, p#=0.1 
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Figure 4-36 and Figure 4-37 show the performance of XCS with N=6400 and p#= 0.33, and 

0.1 respectively.  XCS achieve both optimal steps to goal (4.8) and an optimal average reward 

(1000) in the Maze5em environment using a random action selection policy in the 50% of 

trials that are intended for ‘exploration’  when p# = 0.1.  When p#=0.33, some runs are 

optimal, but some are not. 

 

However, it was less easy to achieve similar performance using a roulette-wheel exploration 

policy.  Once again, it was found that increasing the value of N was helpful, as was reducing 

the value of p#, as shown in Figure 4-38 - Figure 4-40.  (Table 4-7 shows that the results 

gained with roulette wheel selection at N=8000 and p#=0.1 are significantly different from 

those gained with random selection  at N=6400, p#=0.1.  However, the improvements with 

increasing N and decreasing p# are obvious.) 

 

Figure 4-38 Maze5em, roulette exploration, N=6400, p#=0.33 
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Figure 4-39 Maze5em, roulette exploration, N=6400, p#=0.1 

 

 
Figure 4-40 Maze5em, roulette exploration, N=8000, p#=0.1 
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 t Stat t Critical two-tail 
Steps to Goal 4.304 2.110 
Reward 4.304 2.110 

Table 4-7 Two Tailed Student t-test, Roulette N=8000, Random N=6400, p#=0.1 

 
 
This behaviour is interesting.  In the majority of cases, we have found that roulette-wheel 

exploration can produce comparable results to that achieved using a random action selection 

policy at the expense of increasing N.  We now see that in this latter case it is not enough to 

increase N, we also need to decrease p#. 

 

P# is the probability that an allele in the condition of a classifier will have the ‘don’ t care’  

symbol, ‘#’ .  It would therefore appear that XCS is suffering from a tendency to produce 

over-general classifiers in Maze5em.  This tendency may be exacerbated when using the 

roulette-wheel action selection policy in the explore phase. 

 

Lanzi makes the following observations in his investigations of generalization in XCS 

[Lanzi1999]. 

• In the Maze5 environment with N=1600, Lanzi reports that ‘biased exploration’  gives 

better results than standard XCS.  ‘Biased exploration chooses an action randomly 

with a probability Ps=0.3’ .  In the normal 50:50 balance between random exploration 

and deterministic exploitation, this value would be 0.5.  Biased exploration therefore 

results in less exploration. 

• Over-generalization stops XCS from reaching optimal performance.  When p#=0, 

XCS is an approximation of a ‘ tabular Q-learner’  and achieves optimality in Maze5.  

Decreasing p# may help XCS in problems where there are fewer generalizations - this 

is the ‘schema challenge’  [Butz2003b] in operation. 

•  Lanzi suggests that over-generals arise because some states are visited less often than 

others, so classifiers which are accurate in a frequently-visited niche but less accurate 
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in a niche which is less often visited – for example, one further from the goal – have a 

high fitness and are more likely to be reproduced.  The GA chooses parents from [A], 

so there will be fewer chances to discover optimal rules in infrequently visited states.  

He introduces a new operator ‘ tele-transportation’ , which restarts an exploration trial 

at a new randomly selected position if the animat takes more than a maximum number 

of steps before reaching the goal.  This in effect addresses the issues of the ‘class 

imbalance problem’ .  It is known that datasets in which one class is represented by 

more instances than other classes present difficulties to machine learning techniques 

[Japkowicz2002].  Techniques that attempt to discover generalizations are likely to be 

more susceptible to this problem than those that do not, such as k-Nearest Neighbour.  

Recent work on an accuracy-based classifier system, UCS, shows that the class-

imbalance problem affects LCSs [Orriols2005a, Orriols2005b].  In essence, Lanzi’s 

teletransportation implements a naïve form of oversampling. 

• In summary, Lanzi states; ‘XCS fails to learn an optimal policy in environments where 

the system is not very likely to explore all the environmental niches frequently’ .  This 

is contradicted by the results he presents using biased exploration. 

 

We have observed that lowering p# improves XCS’  performance in the three objective 

Maze5em problem in the same way it does in Maze5.  If roulette-wheel selection is in effect 

‘annealing too fast’ , then there will be insufficient exploration.  There may be greater 

variation between experiments; in some, the best actions in any particular environmental state 

are not explored sufficiently and over-general classifiers are allowed to direct the system into 

sub-optimal actions. 
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4.6 Roulette-wheel Exploration - Discussion 
 

The hypothesis next tested is that increasing N with roulette selection improves performance 

by decreasing the tendency towards excessive generalization.  For each experimental 

treatment of increasing values of N, with p#=0.33 and roulette-wheel exploration, the average 

specificity is shown for all classifiers which match in each environmental state.  These figures 

are the end result after 15000 exploit trials, and are the average of ten runs. 

 

As can be seen from Table 4-8, with increasing values of N there is a tendency for the amount 

of generalization to drop.  Shaded values indicate that optimal performance was not achieved.  

Considered over all states in the environment, the average percentage specificity (i.e., the 

average percentage of non-‘#’  alleles in the classifiers’  conditions) is; 

 

Random Exploration Roulette Exploration 

N p# 0.33  p# 0.1 p# 0.33  p# 0.1 

1600 82 80 10 75 

6400 87 87 18 88 

8000  90  90 

Table 4-8 Percentage specificity in all matching classifiers 
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• We have seen that as N increases, performance improves.   

• It is interesting to note that although the two treatments that used random exploration 

at N=6400 had the same overall specificity, it was only by using a low value of p# that 

consistently optimal performance was produced.   

• There is a general tendency for specificity to increase with N. 

• There is a dramatic difference between the results with roulette selection and p# = 

0.33, and those of all other treatments.  

 

It seems safe to assume that increasing N reduces the speed at which the roulette-wheel action 

selection anneals.  A larger population size allows more diversity to be maintained, giving the 

GA more time to weed out the over-general rules.    

 

In [Butz2003a], the reproductive opportunity bound (ROP-bound) upon N is derived.  Given 

that there are no effects of action set size or fitness influences in the deletion process, they 

show that,  

1][)(2 +−+> pskdldknN  

where S[p] is the value to which the specificity of the population would converge if no fitness 

influence was present, and n is the number of actions.  kd  is the ‘difficulty’  of the problem – 

determined by the length of the minimum order schema that provides guidance on whether 

one solution is better than another (they illustrate this with the extreme case of the parity 

problem in which all bits must be specified to correctly predict the outcome; in such a case 

any partial solution is as little use as a completely general classifier).   

 

It can be seen from the above equation that N must grow with bigger values of both the order 

of difficulty kd , and also the necessary specificity S[p] in the population.  This is based upon 
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the assumption that ‘binary input strings are encountered which are uniformly distributed over 

the whole problem instance space { 0, 1} l.’  

 

The Maze5 environment is one in which little generalization is possible, and thus is difficult 

for XCS.  To achieve optimal performance with either action selection mechanism required 

more specificity (i.e. a lower value of p#).  This is as predicted by the ROP-bound, above.   

The assumption that ‘binary input strings are encountered ... uniformly…’ will be true neither 

in multi-step problems (states further from the goal are less frequently visited), nor when the 

action selection scheme is other than random.  The necessity to increase N when using 

roulette wheel exploration must be due to the effects of bias in sampling frequency on the 

ROP-bound.  In further support of the predictions of Butz et al, we would expect that given a 

sufficient value of N and S[p] to satisfy the ROP-bound, and for a given value of µ (assumed 

to be sub-optimal), as we further increase N we will achieve optimal performance sooner.  

This is indeed the case, as is shown in Figure 4-41 and Figure 4-42. 
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Figure 4-41 N=6400, p#=0.1  Optimal performance achieved after approx 4500 trials. 

 

Figure 4-42 N=8000, p#=0.1  Optimal performance achieved by approx 2500 trials. 
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Generally then, we have seen that random exploration gives better results for a given value of 

N  than roulette wheel exploration.  However, it will be recalled that when we examined the 

behaviour of XCS using random and roulette action selection on the Woods1e problem with a 

continuous reward function and associated cost of movement (Woods1e-type3), we noticed 

that with lower values of N, roulette selection outperformed random selection.  This 

contradicts all other results, and requires explanation. 

 

Figure 4-43 and Figure 4-44 show a map of all state-action pairs in the Woods1e 

environment.  For each state-action pair the action encoding is shown, with the values of 

prediction (p), error/1000 (e), and fitness*1000 (f) for the classifier in [M] with the highest P 

value for this action – the highest of these then indicates which action would be taken in the 

deterministic phase.  Figure 4-43 shows values when the internal energy level is below 0.5; 

i.e. the learner should seek the energy goal.  Figure 4-44 shows the opposite case, the ‘ food 

goal’ .  In both figures, state-action pairs for which the representative classifier has a p value 

over 500 are shaded proportionally to the p value.  A state-action cell with a p-value over 500 

indicates ‘a step in the right direction’ .  The darker the shading, the more likely an action will 

be chosen by roulette selection. 

 

It will be seen that there are more shaded boxes in Figure 4-43 than in Figure 4-44.   This 

indicates that using random selection with N=1600, XCS has concentrated its resources on the 

‘Energy Trials’  where e<0.5, in which it seems to point towards the shortest path to goal from 

each state space.  In the ‘Food Trials’ , few values are over 500, indicating that there is little 

knowledge of where the best reward may be found.  Using random exploration with N=1600, 

XCS has nearly solved ‘half the problem’ . 
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Figure 4-43 Random exploration. 'Energy Tr ial' 
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Figure 4-44 Random exploration. 'Food Tr ial'  

 
Figure 4-45 and Figure 4-46 show the same diagrams generated using roulette selection in the 

exploration phase.  There appears to be a much more even distribution of shaded boxes, 

indicating that the two halves of the problem; what to do when energy is low, and what to do 

when it is high, have both been solved equally well. 
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Figure 4-45 Roulette exploration. 'Energy Tr ial' 
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Figure 4-46 Roulette exploration. 'Food Tr ial'  

 

It appears then that XCS may be able to concentrate resources better using roulette action 

selection in the exploration phase when these resources are a limiting factor in its 

performance; i.e. N is too small.  

 

This problem (Woods1e-type3) in which the seemingly anomalous results occur is a difficult 

one for XCS to solve.  The reward varies in direct proportion to the animat’s internal ‘energy 

level’  when it is at a goal state.  There will thus be a high degree of error in all predictions.  

Perhaps the results observed in this continuous reward problem reveal an effect of low values 

of N that have been masked in the other, less challenging problems? 
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Figure 4-47 Woods1e-type3.  Effect of increasing N with roulette and random exploration (continuous 
reward, cost of movement). 

 
In Figure 4-47 we see the effect of N on the performance of XCS in the Woods1e-type3 

problem, using the two exploration action-selection strategies.   It will be seen that at low 

values of N, roulette selection strongly out-performs random exploration. 

 

N t Stat t Crit 
200 -0.107 2.110 
400 0.090 2.145 
600 12.650 2.101 
800 16.579 2.101 

1000 16.216 2.131 
1200 9.420 2.101 
1400 7.050 2.101 
1600 0.854 2.101 

 

N t Stat t Crit 
1800 0.890 2.110 
2000 0.780 2.131 
2200 0.444 2.101 
2400 0.260 2.101 
2600 0.470 2.101 
2800 0.160 2.101 
3000 0.370 2.101 

 

Table 4-9 Two-tailed Student t-Test for hypothesised zero difference between reward gained using 
roulette and random action selection, for increasing values of N.  Significantly different  region shaded. 
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Figure 4-48 Graph of Table 4-8, showing area of significant difference (above the t Critical line). 

 
 
The same is true in the simpler Woods1e-type1 problem, as shown in Figure 4-49.  Note that 

the advantages of roulette action selection are reduced as N rises, until a random exploration 

policy is better.  This eventual benefit of random exploration is explained by the tendency of 

XCS with roulette selection to over-generalise, as shown earlier with Maze5em.  
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Figure 4-49 Woods1e-type1.  Effect of increasing N with roulette and random exploration (stepwise 

reward, free movement). 

 
How then can we explain the advantages shown by roulette selection at low values of N?  It 

was suggested above that using roulette selection, XCS was able to concentrate scarce 

resources on the high value areas of the problem space, thus maximising its overall returns.  If 

resources are scarce, roulette selection can only give this performance advantage if classifiers 

that predict a lower payoff can be deleted. 
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Figure 4-50 Without f itness reduction in offspr ing, roulette's advantage at lower  
N is reduced. 

 
In XCS there is typically a reduction in fitness levied on the offspring of classifiers newly 

produced by the GA.  Figure 4-50 shows that when this fitness reduction does not occur, 

roulette wheel exploration ceases to give such a marked advantage at lower values of N for 

the Woods1e-type1 problem.  This supports the hypothesis that roulette wheel exploration 

provides a performance advantage by allowing the system to grab resources from lower 

payoff niches.  In less visited niches, offspring would normally have their fitness reduced (as 

indeed would offspring in all niches).  Because the niche is less often visited, they have little 

chance to boost their fitness by participation in [A] (in any case, fitness increases slowly since 

MAM does not operate on fitness updates.).  These lower fitness classifiers then become 

candidates for deletion when the GA is triggered in a more frequently visited state.  In this 

way resources are ‘stolen’  from low payoff state-action niches, since the roulette-wheel 

exploration strategy increases the bias towards visiting the higher payoff niches. 
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We can relate these findings to the pressures and challenges recognised by Butz at al in 

[Butz2003, Butz2003b].  Figure 4-51 shows two areas where different challenges face XCS.  

In Area 1, it is suggested that a new challenge is operating, which will be termed the ‘niche 

resource challenge’ .  At values of N insufficient to satisfy the ROP-bound, the roulette wheel 

exploration strategy benefits performance through ‘ resource theft’ , as indicated above. 

 

Figure 4-51 At different values of N, XCS faces different challenges 

 
  Figure 4-52 indicates that the sub-optimal performance of XCS is not due to the ‘cover 

challenge’ , since for all values of N, cover occurs infrequently and has stopped after trial 

2000 of the total 15000 exploit trials in each experiment. 
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Figure 4-52 Frequency of covering against trial for different values of N - random 
action selection, Woods1e-type1. 

 
In Area 2, it is suggested that the sub-optimal behaviour using roulette-wheel exploration is 

evidence of the effect of the bias on the ‘reproductive opportunity bound’  of Butz et al. 

[Butz2003a].  As previously stated, the ROP-bound is derived on the assumption that all 

possible states in the space { 0, 1} l will be uniformly presented to the system.  All other things 

being equal, this will be true if the exploration policy does not introduce any bias15.   

 

There is a bias in exploration when using roulette-wheel action selection; fitter classifiers will 

be picked more often than less fit ones, and this bias will increase as more trials are 

performed.  Therefore new candidate solutions in lower-payoff niches will be more likely to 

be deleted when using roulette exploration.  It seems that this might explain the necessity to 

increase N in order to get equivalent optimality to that achieved with random exploration – 

the dilution effect reduces the probability of deletion.  The ROP-bound is dependent upon the 

exploration policy. 
                                                
15 This theoretical work by Butz et al considers only single step environments.  Clearly, in multi-step 
environments a further bias is created as states nearer the goal will be sampled more frequently than states 
further away. 
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4.7 Conclusions 
 
In this chapter we have seen that XCS can optimally solve a variety of simple multi-objective 

tasks.  It can do these using a variety of action-selection policies in the exploration phase.  In 

the results presented here, we have seen that; 

• Although XCS has many parameters, these seem to need little adjustment to function 

(nearly) optimally.  This is unlike e.g. ZCS [Wilson1994]  in which optimal 

performance has been shown [Bull2002a] to be strongly dependent on the values of 

the reinforcement learning parameters.  In XCS, optimality is the norm rather than the 

exception with respect to the settings of β and γ. 

• XCS can be used successfully with roulette-wheel exploration replacing random 

action selection, suggesting that it may be used for on-line learning where random 

actions would be inappropriate. 

• When population sizes are too small for random action selection to perform optimally,  

roulette-wheel action selection may give a performance benefit.  This appears to be 

due to the advantages of concentrating resources on high payoff niches where there are 

insufficient resources to form a complete and accurate map of state-action pairs. This 

may be of value in a robotic environment; smaller populations are less 

computationally expensive.  Within this thesis, this has been termed the ‘niche 

resource challenge’ . 

• Roulette-wheel action selection functions less well than a random action-selection 

policy at population sizes sufficient for optimal performance using random action 

selection.  This appears to be due to over-generality resulting from a lack of 

exploration, and adds weight to the observations of Lanzi [Lanzi1999] and the 

theoretical work of Butz et al. [Butz2003a] 
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• There is evidence for the ROP-bound of Butz et al. in multi-step environments, but it 

is dependent on the action-selection policy. 
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Chapter 5 X-TCS 
 
 

5.1 Introduction 
We have seen that ZCS, a strength-based LCS, is capable of optimal performance in 

simulated problems with multiple goals.  However, optimal performance can only be achieved 

after much careful adjustment of the reinforcement learning parameters.  TCS, an adapted 

version of ZCS which automatically determines the change in environmental state that can be 

considered significant and which applies reinforcement according to the time taken both to 

achieve reward and for individual actions was used to control a real robot.  Although TCS 

was able to approach optimal behaviour on a single objective task, it was not possible to 

demonstrate reliably optimal behaviour with two objectives.   

 

In contrast to the parameter sensitivity of ZCS, the accuracy-based XCS requires little 

adjustment of its reinforcement learning parameters in order to achieve optimality in the same 

simulated tasks.  It was suggested that XCS could be made suitable for online control of a 

robot by substituting a probabilistic action selection policy for the random action selection 

policy typically used in ‘explore’  trials, and noted that there is some evidence that using such 

a policy may enable better performance with smaller population sizes as might be necessary 

in a resource-limited environment such as a physical robot. 

 

This chapter describes an extension of XCS that incorporates the changes that Hurst et al. 

made to ZCS in order to produce TCS [Hurst2002a, Hurst2002b, Hurst 2003].  The new 

algorithm, X-TCS, is set the same tasks of controlling a physical robot as described in 

Chapter 3.  Experimental results are presented which show convincing performance 

improvements over TCS. 
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To the best of the author’s knowledge, this is the first application of an accuracy-based LCS 

to controlling a physical agent in the real world without a priori discretisation.   

5.2 Algorithmic Description 
 
The changes made to XCS to produce X-TCS are a parallel of those described in Section 

3.3.3.  XCS forms a match set, and thence an action set using either a deterministic exploit 

policy or a roulette-wheel explore policy.  The action is then initiated and the algorithm enters 

the drop decision cycle, in which it is determined whether to carry on with the current action 

or stop and create a new match set.  The process continues until external reinforcement is 

attained or some time-out value for the trial is reached.  This is pictorially represented in 

Figure 3-2.  Rather than basing the drop decision on the fitness of the classifiers in drop and 

continue sets, X-TCS uses the values in the prediction array.  In this way the drop decision is 

reward-based as is the fitness-based decision in TCS. 

 

In addition to the use of the drop decision cycle to discover what scale of environmental 

change may optimally be regarded as ‘significant’  in different parts of the environment, the 

update procedures of reinforcement learning are also modified.  As in Section 3.3.3, the 

external reward is discounted according to the amount of time taken to reach the goal, and the 

reinforcement that flows from the classifiers that advocate an action to their predecessors is 

similarly discounted.  As before, these alterations should favour efficiency of the solution as a 

whole, and the use of a smaller number of long actions rather than a large number of small 

actions. 
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5.3 Experimental set-up 
 
To enable a useful comparison with the performance of TCS, the physical environment and 

robot platform are unchanged.  Attainment of external goal states is through the monitoring of 

power supplies as before.  The alterations to XCS additional to those outlined in the previous 

section are as in Section 3.4.3, and are listed briefly below, viz; 

 
• Unordered pairs of real numbers are used to match the environmental input of the 

three LDRs.  The condition of the classifiers is composed of three such pairs, one for 

each LDR. 

• Classifiers have an action from the set {0, 1, 2} corresponding to drive left, forward or 

right. 

• The genetic operators of crossover and mutation are altered such that crossover occurs 

with uniform probability within the condition of the classifier, and to allow mutation 

of a real number within the bounds [0, 1] 

• Cover is altered to account for real-valued environmental input. 

 

Although GA subsumption is used to compact the rule base and promote generalization, 

action set subsumption is not used since this would remove the variability in the action set 

upon which the drop decision cycle relies. 

 

Apart from the addition of the drop decision cycle, the changes to the reinforcement regime to 

account for the time taken to perform actions, and the implementation details outlined above, 

X-TCS is identical to the description of XCS outlined in Section 4.2. 
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5.4 Results 
 
As in the work using TCS presented in Chapter 3, a single objective problem was first used to 

demonstrate the ability of the system to learn.  Thereafter, a two objective problem was used.  

Since the XCS policy of alternating explore and exploit trials was used all metrics are 

presented in three forms, these being only exploit trials, only explore trials, and the average of 

both on a per-trial basis. 

 

All results are the average of five experiments, unless otherwise stated. The total number of 

trials performed is comparable to that presented for TCS, i.e. where 200 TCS trials were 

performed, 100 explore and 100 exploit trials were performed with X-TCS.  Where a 

windowed average is shown, the window size is therefore reduced to 20 trials rather than 50 

as used for the TCS results. 

 

5.4.1 One Objective 
 
The single objective task is identical to that reported in Section 3.5.1.  As before, external 

reinforcement upon reaching the goal state is 1000 before time-proportionate discounting is 

applied.  Trial time-out occurs after 30 seconds. 

 

 
Figure 5-1, Figure 5-2 and Figure 5-3 show the number of actions taken by X-TCS to reach 

the goal state and gain external reinforcement.  It can be seen that in each case there is a trend 

for the number of actions taken to diminish with time, showing that the system is finding 

more efficient paths to the goal.   
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Figure 5-1 Actions Taken.  Explore and Exploit 

 
Figure 5-2 Actions Taken.  Exploit only. 
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Figure 5-3 Actions Taken.  Explore only 

 
Figure 5-4, Figure 5-5 and Figure 5-6 show the ratio of failure to success.  As with TCS, a 

trial is counted as a failure in the single objective task if the time-out value of 30 seconds is 

reached without the robot arriving at the goal.  It can be seen that there is a  strong tendency 

for the system to fail less often as learning continues to take place.  As learning continues, the 

explore trials fail slightly more than the exploit trials, as would be expected. 
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Figure 5-4 Failure to Success Ratio.  Explore and Exploit 

 
Figure 5-5 Failure to Success Ratio.  Exploit only 
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Figure 5-6 Failure to Success Ratio.  Explore only 

 
Figure 5-7, Figure 5-8, and Figure 5-9 show the total time taken to reach the goal in 

successful trials.  It can be seen that there is a tendency for the time taken to decrease as 

learning takes place, falling towards the optimal case of between six and nine seconds.  Again 

there is a visible difference between the performance in the explore and exploit trials – as 

expected, the exploit trials are both more nearly optimal with a mean of 10.8 compared with 

11.7 for the explore trials, and are more consistently optimal with lower variance of 18.4 

compared with 19.9. 

 

Importantly, the average of the explore and exploit behaviour shows strong evidence of 

learning for all these metrics.  Thus it would appear that X-TCS with a non-random explore 

policy is truly suited to online control. 
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Figure 5-7 Time to Goal.  Explore and Exploit 

 

 

Figure 5-8  Time to Goal.  Exploit only 
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Figure 5-9 Time to Goal.  Explore only 

 
Figure 5-10, Figure 5-11 and Figure 5-12 show the windowed average of percentage success.  

As previously stated, the window size is 20 trials.  Overall, the average performance of both 

exploit and explore trials shows a strong tendency towards the optimum, although neither 

exploit or explore trials on average were 100% successful. 
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Figure 5-10  Windowed average % success.  Explore and Exploit 

 

Figure 5-11 Windowed average % success.  Exploit  only 
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Figure 5-12 Windowed average % success.  Explore only 

 
Figure 5-13 and Figure 5-14 show windowed average time to goal and windowed average 

percentage success for the exploit and explore trials of a single run, as do Figure 5-15 and 

Figure 5-16 for a different run.  In the first of these pairs of graphs, X-TCS shows itself to be 

capable of almost perfect performance.  In the exploit trials, the robot consistently achieves an 

average time to goal which is within the optimal bounds, while in the explore trials average 

time to goal is only slightly worse.  In both cases, percentage success rises rapidly to the 

optimum, deviating only occasionally.  In Figure 5-15 and Figure 5-16 a second individual 

run is shown.  In this case performance was slightly more variable.  Apart from the 

differences in the initial population which might account for variation, each trial starts with 

the robot at only approximately the same position and orientation in the environment, and 

there may be delays in response from the power supplies thereby introducing variation into 

the signalling of reward.  
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Figure 5-13  Individual Trial 1.  Windowed average % success and time to goal.  Exploit only 

 

Figure 5-14  Individual Trial 1.  Windowed average % success and time to goal.  Explore only 
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Figure 5-15 Individual Trial 2.  Windowed average % success and time to goal.  Exploit only 

 

Figure 5-16 Individual Trial 2.  Windowed average % success and time to goal.  Explore only 
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In comparison with TCS, the behaviour of the robot seemed strikingly better.  After a short 

initial phase the robot quickly learned to home in on the goal, and having learned this 

deviated seldom from the desired behaviour.  This subjective impression is validated by the 

statistics in Table 5-1.  When the overall average of the failure to success ratios of X-TCS and 

TCS are compared, we see that X-TCS has a lower mean.  Thus X-TCS more reliably 

achieves success in this single objective task than TCS (statistically significant at the 95% 

confidence level). 

 

X-TCS 
(average of both explore and exploit) 

0.155 ± 0.033 
(Mean ± SE.  n=100) 

TCS 0.294 ± 0.038 
(Mean ± SE.  n=200) 

t Stat 2.737, t Critical two-tail 1.968 

Table 5-1 Overall average failure to success 

 

Before embarking on these experiments with X-TCS, it was uncertain how XCS would fare.  

XCS depends for its success upon building a complete map of the payoffs of taking all 

possible actions.  It seemed possible that the robot would take many small actions as it 

explored the space, resulting in inefficient locomotion.  Subjectively, it appeared that X-TCS 

did take more small actions than TCS, although the trajectories the robot followed were much 

less snakelike than the winding paths of alternating left and right turns that TCS seemed often 

to adopt.  Under the control of X-TCS, the robot appeared to turn to orientate itself and then 

drive forwards giving the subjective impression of more purposeful behaviour than the 

waggling progression achieved with TCS.   

 

Figure 5-17 shows the average number of actions taken by TCS in the one-objective task 

reported in Section 3.5.1, compared with the number of actions taken in the experiment 

described above.  With a two-tailed t-test, there seems no reason to reject the null hypothesis 

that there is no difference between the means, as shown in Table 5-2.   
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t-Test: Two-Sample Assuming Unequal Variances 
Number of actions taken to reach the goal. 

   
  TCS X-TCS 

Mean 11.27723 12.35402
Variance 35.06738 44.72051
Observations 100 100
Hypothesized Mean Difference 0 
df 197 
t Stat -1.2115 
P(T<=t) two-tail 0.227156 
t Critical two-tail 1.97208  

Table 5-2 Two-Tailed t-test. 100 trials TCS, 100 X-TCS 

  

 

 

Figure 5-17 Comparison of X-TCS and TCS actions per trial 
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5.4.2 Two Objectives 
 
Having shown that X-TCS is capable of achieving near-optimal behaviour in the simple one 

objective task, results in the two objective task are now presented.  The experimental set-up 

remains as detailed in Section 3.5.2.   

 

X-TCS here performs an explore and an exploit trial with an internal energy level of less than 

0.5, and then both an explore and exploit trial with an internal energy level of greater than 0.5.  

The figures that follow show both the explore and exploit trials, only exploit, and only 

explore, and show metrics for both goal states.  All graphs are the average of five 

experiments.  An experiment lasted 100 trials, taking around three and a quarter hours to 

complete.  N=2000, σ is 0.05 and η  is 0.1.  These results are therefore directly comparable to 

those shown in Section 3.5.2, in which TCS was not shown to be capable of achieving 

optimal performance, even when the learning process was allowed to continue for 1200 trials. 

 

In Figure 5-18, Figure 5-19 and Figure 5-20 the number of actions taken to reach the goal is 

shown.  Again, it can be seen that there is a tendency for the number of actions taken to 

reduce as learning continues. 
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Figure 5-18 Two Objectives.  Actions taken.  Average of Explore and Exploit trials. 

 

Figure 5-19 Two Objectives.  Actions taken.  Exploit only 
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Figure 5-20 Two Objectives.  Actions taken.  Explore only 

 
Figure 5-21, Figure 5-22 and Figure 5-23 show the ratio of failure to success.  As was the case 

with TCS, a trial is counted as a failure if the goal reached is not the correct one or if the trial 

continues for more than 30 seconds.  As in the single objective task, the ratio of failures to 

success decreases with successive trials.  In both explore and exploit trials the problem is 

quickly learned and thereafter there is a small and decreasing tendency to occasionally fail. 
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Figure 5-21 Two Objectives.  Failure to Success Ratio.  Average of Explore and Exploit. 

 

Figure 5-22 Two Objectives.  Failure to Success Ratio.  Exploit only 
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Figure 5-23 Two Objectives.  Failure to Success Ratio.  Explore only 

 
Figure 5-24, Figure 5-25 and Figure 5-26 show the amount of time taken for the robot to 

reach its goal.  The amount of time taken decreases as learning continues, approaching the 

upper limit of the optimal band.  However, the robot generally takes longer to achieve its goal 

in the two objective problem than in the single objective case.  The spread of the results also 

decreases as learning continues, showing that the system is becoming more consistent. 
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Figure 5-24 Two Objectives.  Time to Goal.  Average Explore and Exploit 

 

Figure 5-25 Two Objectives.  Time to Goal.  Exploit only 
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Figure 5-26 Two Objectives.  Time to Goal.  Explore only 

 
Figure 5-27, Figure 5-28 and Figure 5-29 show the windowed average of the percentage 

successful trials.  In contrast to the results presented for TCS in the comparable Figures 3-11 

and 3-12, we see a much improved picture.  Where TCS varied considerably between 

individual runs and showed little sign of approaching 100% success, the performance of X-

TCS swiftly improves and approaches the optimum after only 100 explore and exploit trials. 

 

This shows a marked improvement over TCS for the dual objective problem (see Figure 

3-10).  Figure 5-27 which shows the average performance of both explore and exploit trials 

shows that X-TCS learns quicker than TCS, and achieves better results. 
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Figure 5-27 Two Objectives.  Windowed average percentage success.  Average Explore and Exploit 

 

Figure 5-28 Two Objectives.  Windowed average percentage success.   Exploit only 
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Figure 5-29 Two Objectives.  Windowed average percentage success.   Explore only 

 
Figure 5-30 and Figure 5-31 show results for the best of the five trials which produced the 

average results presented above.  Figure 5-32 and Figure 5-33 show the worst of the trials.  In 

Figure 5-30 and Figure 5-31 we see that percentage success rises swiftly until it attains 100%.  

After achieving this, the learner does not deviate, consistently staying perfect in respect to 

attaining the correct goal as determined by its internal energy level.  Perfection is attained 

quicker in the exploit trials than in the explore trials.  Since there is no deviation from 

perfection in the explore trials it is clear that accurate rules have been discovered and have 

come to dominate such that roulette wheel selection has in effect self-annealed, and become 

deterministic.  Time taken to achieve the goal state is less optimal.  In Figure 5-30 it can be 

seen that time to goal is suboptimal until approximately trial 80, after which it attains the 

upper limit of optimality.  In contrast the explore trials are less good with respect to time 

taken, and deviate away from optimality slightly after achieving it.  This suggests that 

exploration is continuing after all. 
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Figure 5-30  Two Objectives.  Run 1.  Exploit only 
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Figure 5-31  Two Objectives.  Run 1.  Explore only 

 
Figure 5-32 and Figure 5-33 in contrast show the worst of the individual runs.  In the first of 

these we see that in the exploit trials learning is much slower, but again, eventually converges 

upon 100% success.  Time taken is worse, showing little sign of converging to the optimal 

band.  In the explore trials there is a slow increase in percentage success, finally approaching 

100%.  Time taken is worse still, although it seems to be improving towards the end of the 

experiment. 
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Figure 5-32  Two Objectives.  Run 2.  Exploit only 

 

Figure 5-33  Two Objectives.  Run 2.  Explore only 

 



 231

5.5 Conclusions 
 
In this chapter have been described the alterations to XCS which are necessary to incorporate 

the changes Hurst made to ZCS, thereby producing TCS.  The new system  has been named 

X-TCS.  In simulation we have seen that XCS requires far less parameter adjustment than 

ZCS in order to achieve optimal performance.  We saw previously that TCS was unable to 

solve optimally the two objective robot task, even when run for very long periods of time. 

 

In contrast, X-TCS has shown the same ability to optimally solve the two objective problem 

on the robot that XCS showed in simulation.  X-TCS seems good when assessed against the 

desirable characteristics for a robot learning system outlined in Section 3.2.3 .  The online 

behaviour (i.e. the average of both explore and exploit trials) of the robot approaches 100% 

performance, which would certainly not have been the case had a random exploration policy 

been used.  Optimality was achieved after a relatively short period of time; X-TCS is quick to 

learn.  In comparison to the purely evolutionary robotics approaches discussed in e.g. 

[Floreano1996] where a controller for a single objective navigation task was evolved after ten 

days, X-TCS achieved optimal behaviour on the similar single objective task detailed here 

after an average of about two and a half hours, which included the time taken to restore the 

robot to its starting state by a random walk around the arena.  Even the worst individual 

experiment presented for the dual objective task eventually approaches 100% success, and the 

average behaviour of the learner is very nearly perfect.  In contrast to ZCS and –  it seems 

likely – TCS, there was no necessity for careful adjustment of the reinforcement learning 

parameters in order to achieve these results, and the parameters were indeed set the same as 

used in the TCS experiments.  Although X-TCS takes more actions to attain its goals than 

TCS, this difference is small.  Even though X-TCS takes more actions, its performance is 

more nearly optimal than that of TCS; the larger number of actions indicates a more specific 

solution, suggesting that TCS may have suffered from over-generalization. 
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In conclusion, X-TCS seems to satisfy the criteria for a good learning algorithm for simple 

robot control problems in which the robot’s behaviour must alter according to the internal 

state of the learning system.  Learning is fast and attains near optimal results with no 

necessity for manual intervention.  There was no a priori discretisation imposed, no 

assumptions made about how the problem would be solved, and no need for parameter 

adjustment. 
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Chapter 6 Conclusions and Future Work 
 

This chapter briefly reviews the work presented in this thesis, and then suggest some avenues 

of investigation which might be profitable for future research. 

 

6.1 Conclusions 
 
The focus in this thesis has been upon the practicalities of learning on a robotic platform.   It 

was asserted that, in any but the most trivial applications, a robot will need to switch between 

the satisfaction of different goals depending on its internal state.  The use of various LCS was 

examined for problems of robot control with multiple goals in both simulated and physical 

environments. 

 

We saw that ZCS was capable of optimal performance in simple dual objective tasks in 

simulation.  However, this was only true when its parameters were set correctly; a difficult 

task since some parameters cannot be tuned in isolation.  In order to set the reinforcement 

learning parameters of ZCS the performance of the system was examined – measured in terms 

of both the steps taken in a trial, and the percentage of trials in which the goal state achieved 

was the optimum one given the animat’s internal state – as it varied with different settings of 

the RL parameters.  To the author’s knowledge, these parameters have otherwise been set by 

trial and error by the experimenter, as in [Bull2002a] in which ZCS was first reported to be 

capable of optimal behaviour.  Using a process of refinement it was possible to find parameter 

sets that allowed ZCS to perform optimally in the simple dual objective tasks.  However, it 

was not possible to find a parameter set that would allow ZCS to solve optimally the slightly 
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more complicated tasks such as ‘woods1e-type3’ .  Similarly, it was not possible to find 

parameter sets allowing the optimal solution of a simple three objective problem.   

 

Given the need to carefully select the parameter set in order to enable ZCS to solve even these 

simple problems, it seemed an unlikely candidate as a practical means of enabling a robotic 

learner to solve problems with multiple goals.  Although Bull et al. showed the successful 

self-adaptation of some parameters [Bull2000a, Bull2000b], they were unable to achieve this 

with the RL parameters without modifying the algorithm to enforce co-operation between 

rules in successive action sets, and even so were unable to achieve optimality.  Using a meta-

heuristic such as an evolutionary algorithm to search the space of parameter combinations 

automatically would be possible, but likely to take an unacceptable amount of time.  

 

Tthe Temporal Classifier System TCS was implemented on a robotic platform, and achieved 

results in a single objective task similar to those reported by Hurst et al.  However, it was 

unable to achieve reliably optimal performance with TCS in the dual objective task.  To 

gather enough results to draw statistically valid conclusions took many hours; days with 

experiments comprising a thousand trials.  Since ZCS is so dependent on the settings of its 

parameters, it seemed likely that TCS is equally sensitive.  This suggested that TCS was not a 

suitable candidate to solve the problem of a practical robotic learner for problems with 

multiple goals. 

 

In the same simulated problems solved by ZCS, XCS showed itself equally able to achieve 

optimal performance.  However, XCS required much less tuning of its parameters, making it a 

more practical choice.  XCS was able to solve problems that had proved intractable to optimal 

solution with ZCS.  Typically, XCS is implemented with alternating deterministic action 

selection ‘exploit’  trials, and random action selection in the ‘explore’  trials.  Any robot that 
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acts randomly half the time is likely to be of little use.  This motivated an exploration of the 

use of a roulette-wheel action selection policy in the explore trials.  This was shown to be 

capable of achieving optimal results.   Interestingly, it was found that roulette-wheel selection 

required a larger population than random action selection to achieve fully optimal 

performance, but that at population sizes where random exploration was itself sub-optimal, 

could offer a performance advantage.  We noted that this might be advantageous on a robotic 

platform where resources may be limited and explored ways in which the action selection 

policy was linked to performance at different population sizes, thus linking this work to the 

emerging theories of Butz et al. 

 

X-TCS was then implemented and experiments on the robotic platform were described.  This 

algorithm implements the features of TCS – the automatic determination of what constitutes 

an environmental event, and a temporally-adjusted reinforcement schedule – within the 

framework of XCS.  X-TCS showed itself to be capable of achieving optimal results on the 

single objective problem.  In the dual objective problem, with the same settings of population 

size, and reinforcement parameters as TCS, X-TCS quickly demonstrated nearly optimal 

behaviour. 

 

X-TCS required little a priori knowledge or problem-specific adjustment in order to achieve 

these results.  There was no necessity to discover elusive settings of the many parameters, 

neither manually nor by employing a heuristic.  There was no need to impose an a priori 

scheme in which the world is rendered into a grid of states of predetermined size.  Learning 

was reliable and rapid.  In most experiments lasting just over three hours for 100 trials, the 

robot was reliably achieving 100% accurate performance after around 20 trials; around 40 

minutes.  Of this, an average of 22.6 minutes was actually spent in learning – the rest of the 

time was spent returning the robot to its starting position by a random walk around its arena. 
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With no need to tune the algorithm, rapid real-time learning, reliably near-optimal 

performance, and without the need for the experimenter to tailor the algorithm to the problem 

or to build models, X-TCS seems to satisfy the criteria listed on page 110 of being a truly 

practical mechanism for learning to solve these simple problems with multiple goals on a 

robotic platform. 

 

6.2 Future Work 
 
The problems presented in this thesis have been simple, in order to prove the utility of 

different approaches.  Future work should improve utility, and explore more complicated 

problems. 

 

6.2.1 Self Adaptation of Parameters 
 
Hurst explored the use of self-adaptation of mutation rate and learning rate in XCS 

[Hurst2003].  He demonstrated that the use of a self-adaptive  mutation rate improved the 

ability of XCS to solve multi-step problems in which long chains of actions are needed before 

reward is given.  This could clearly be of benefit in X-TCS.  In particular, he shows that in 

replicating experiments performed by Lanzi [Lanzi1999] the use of self-adaptive mutation 

greatly improves the otherwise disappointing performance he observed while using roulette-

wheel selection in Woods 12-14. 

 

Hurst (ibid.) suggests that ‘ it is difficult to adapt the learning rate in XCS’ , and that ‘self-

adaptation of β learning rate within ZCS was a failure’ , citing a lack of selective pressure for 

the latter.  In the work of Butz et al. incorporating gradient descent into XCS, they suggest 

that since they adjust the update procedure for a classifiers prediction according to the ratio of 
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its fitness to the sum of fitnesses of others in the same action set, this represents an adaptive 

learning rate [Butz2004].  They show an increase in performance in long multi-step 

environments such as Woods14 which XCS is generally believed to be unable to solve 

without the use of  specify or teletransportation [Lanzi1999] . 

 

Since these adaptive techniques allow XCS to solve problems with longer chains of actions, 

they could be useful avenues for investigation in order to apply X-TCS to more complex real-

world problems.  There may also be great benefit in further investigating the use of self-

adaptive parameters in TCS, since parameterisation was believed to be the cause of its sub-

optimal behaviour in the dual objective robot task.  

 

The self-adaptation of parameters might also hold the key for the successful and general 

application of TCS. 

 
 

6.2.2 Action Selection Policies 
 
XCS, as used here in its original form and as the basis for X-TCS, uses fitness proportionate 

selection in its GA.    Butz et al. [Butz2003c]  suggest that the use of tournament selection 

offers a number of advantages.  Firstly, it may aid the production of accurate classifiers that 

more quickly replace overgeneral rules.  Secondly, it may make the system more resilient in 

noisy environments.  Thirdly, it may promote good performance with less dependence on 

parameter settings.  They show an improvement in performance in the Woods6 multi-step 

environment which proves insoluble in the absence of tournament selection. 

 

Butz et al. find no problem where performance suffers from the inclusion of tournament 

selection, and many that benefit.  Since there may be a benefit in noisy environments such as 

experienced with a physical robot in the real world, and also since there may be further 
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benefits in terms of stability in respect to parameter settings, tournament selection would 

seem an interesting technique to include in X-TCS.  We might expect it to speed up learning, 

allow the use in more noisy environments, and reduce still further the necessity to tune 

parameters to the problem at hand.  However, recent work by Kharbat et al. [Kharbat2005] 

suggests that tournament and roulette-wheel selection are both equally dependent upon 

parameter settings and may be equivalent in terms of performance.  They also find that rule 

compaction is more efficient with roulette selection due to its inherent bias towards the fitter 

individuals in a population.  

 

6.2.3 Noise 
 
Although no special precautions were taken to insulate the robot experiments from the 

variations in light occasioned by diurnal variation, the British climate and passing students 

and visitors, we saw good performance.  We must assume that the levels of noise present in 

the environment did not prove a significant challenge to X-TCS in this setting.   

 

Christopher Stone of the UWE reports16 that in single-step problems in simulation in which 

varying amounts of Gaussian noise are introduced, XCS performs less well than ZCS as noise 

levels are increased, until it is finally unable to learn at all. 

 

The noise in these experiments may be quite different from that experienced in Stone’s 

experiments.  Firstly, Stone is applying constant noise by smoothly altering the reward signal.  

It may be that in the experiments described in this thesis noise may be more sporadic in 

nature, when for example, clouds momentarily occlude sunlight from entering the lab.  

                                                
16 Personal Communication, to appear initially as UWE Learning Classifier System Group technical Report 
UWELCSG05-002 
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Secondly, Stone’s problems are single step while the ones described in this thesis are multi-

step. 

 

It would be interesting to attempt to characterise how robust X-TCS is with respect to noise.  

It would be a simple matter to shield the arena from varying background light, and then 

provide a ‘noise generator’  by varying the light levels.  If X-TCS proves to be sensitive to 

noise this might suggest further investigation of TCS, perhaps adding weight to the need to 

investigate the automatic setting of parameters through self-adaptation. 

 

6.2.4 Increasing Complexity 
 
The problems to which X-TCS has been applied are very simple ones.  In order for a robot to 

perform in complex problem domains, it will need to switch between many different 

competencies.  In its current form, X-TCS has a ‘ flat’  structure; all the classifiers are in the 

same population, and can all participate in every match set depending on their level on 

generality.  The system learns not only the optimal behaviours, but also the optimal strategy 

for switching between them.  For this reason it may be that X-TCS will not scale well as more 

goals need to be satisfied, demanding more complicated behaviours to be learned, perhaps 

with longer delay before external reward. 

 

A number of approaches have been tried, as exemplified by the continual research interest in 

Robot Soccer, where, e.g., Bonarini et al. use their ‘BRIAN’  architecture to control the 

interaction of predefined behaviours through the use of a fuzzy control system 

[Bonarini2003].   Dorigo and Colombetti used a hierarchy of LCS to co-ordinate between 

learners that had been trained and then fixed [Dorigo1998].  Hierarchies of LCS – in this case 

XCS - were also used by Barry, and found suitable to solve the difficult Maze14 problem 

through the use of sub-goals to effectively increase the frequency of reward [Barry2001].  
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Again, Barry used a predefined hierarchical structure.  Recent work by Gadanho 

[Gadano2002, Gadanho2003] uses predefined behaviours in a RL framework. A model of 

homeostatic variables based upon emotional states is presented to the neural networks that act 

as function approximators for a Q-Learner, which therefore has information about both 

external and internal environments.  A value representing the ‘well-being’  of the system is 

derived from the differentially weighted sum of these internal variables, and this is fed to the 

learner as a reinforcement signal.  They demonstrate the controller on a simulated Khepera 

robot.  One problem with this approach is the sensitivity to the weighting of the homeostatic 

variables, which must be tuned by hand. 

 

A most interesting direction for further research would be to investigate the ability to 

automatically generate hierarchies.  Barry [ibid.] enumerates the benefits of a hierarchical 

approach as summarised below: 

• Abstraction – solve simple problems first, and then build solutions to complex 

problems from these building blocks. 

• Decomposition – divide complex problems into smaller problems that can be solved in 

isolation.  Divide and Conquer. 

• Reuse – once a behaviour has been learned, it need not be learned again. 

By automatically generating hierarchies, X-TCS could become more widely applicable and 

generally adaptable.  One possible approach for determining when to construct another layer 

in the hierarchy could be based upon the concept of Entropy as defined in Shannon’s work on 

Information Theory [Shannon1948], and used in the work of Waldock et al. [Waldock2003] 

to construct a hierarchical fuzzy rule-base which the authors intend to apply to robotic 

learning, and as also used in the ID3 and C4.5 machine learning algorithms for decision tree 

construction [Quinlan1993].    
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6.2.5 Grounding – routes to semantic content 
 
It will be recalled from the Introduction that ‘ungrounded’  intelligences operate purely 

syntactically.  Semantic meaning can only be attributed from outside the system.  Grounded 

systems, in which semantic content is intrinsic, are necessary for truly general applicability.  

In the multi-goal problems presented to the learners in this thesis the ‘energy character’  of the 

environmental input is linked to the internal state (i.e. energy level) of the learner through the 

action of the designer – semantic content has been assigned extrinsically.  For X-TCS to be a 

more generally applicable solution to problems of robot control, this should not be necessary.  

Meaning should arise within the system itself, although of course at some level it must be 

necessary for ‘meaning’  to be externally assigned; a sensor must be supplied by the designer 

that measures some quantity, and this sensory reading must be made visible to the learner as a 

part of its environment. 

 

There are a number of approaches which might be used to ground X-TCS.  Hurst and Bull 

presented an extension of TCS in which the classifiers have a genotype encoding an artificial 

neural network and associated parameters for self-adaptation [Hurst2005].  Of these 

parameters, two encode the probability of adding or removing a node from the ANN encoded 

by the classifier.  Classifiers can therefore grow or shrink in complexity to meet the demands 

of the problem, thereby having the potential to generalise over any subset of the 

environmental space.  The ability to automatically adjust to problem complexity might further 

increase the generality of applicability of X-TCS.  Some initial work using neural classifiers 

for multi-goal problems in simulation has already been undertaken by the author [Bull2002c]. 

 

An additional benefit may also be realised from a more complex classifier representation.  In 

the current model used in this thesis, the condition of the classifier matches with some degree 

of generality the logical conjunction of the input variables.  A hypothetical classifier might 
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advocate the action ‘go ahead’  if the left sensor value is in the range [c1, c2] AND the 

forward sensor value is in the range [c3, c4] AND the right sensor value is in the range [c5, 

c6].  Unfortunately this representation allows for no comparison between the sensor values 

(e.g. go ahead if forward sensor value is bigger than both other sensors).  The learner may be 

able to solve a problem at noon, but if faced with the same problem at dusk has to relearn the 

task!  More complex condition semantics through the use of GP trees or artificial neural 

networks could solve this problem, once again increasing system utility. 

 

An alternative approach to grounding the classifiers system might be to give it ‘memory’  in 

the fashion suggested by Wilson [Wilson1994].  Lanzi extended XCS in the same fashion that 

Cliff and Ross had used in ZCS [Cliff1994] to produce XCSM [Lanzi1998], in which a pre-

specified number of characters could be used as internal memory.  These were matched by an 

internal condition and might have their value changed by an internal action, both of which 

were extensions to the normal classifier representation.  Lanzi used XCSM to show an 

increase in performance on simulated non-Markov mazes such as Woods101 where some 

states cannot be disambiguated from the environmental input, and in which therefore optimal 

performance is impossible without the ability to store information based upon previously 

encountered unambiguous states.  This is similar to the use of ‘ tags’  in Holland’s classifier 

systems [Holland1986] in which semantic networks could arise through rule-chaining and 

classifiers posted messages for matching on the internal message board along with the 

external environmental representation.  In a multi-goal problem, an LCS might be able to 

evolve an optimum solution by using its ability to update an internal blackboard or change the 

value of memory characters, thereby recording information about past states in order to 

inform its decisions at a future time.  Such an approach would be more grounded – the 

meanings of the symbols that predicate behaviour-switching are endogenous and hence the 

syntax-semantics barrier has been breached to some extent. 
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6.2.6 Accelerating Learning – Dyna and Eligibility Traces 
 
One approach to increasing the speed of learning is to learn a model of the environment and 

make updates to the policy being followed on the basis of this model as well as on the basis of 

direct external RL updates, as in, e.g., Dyna-Q, presented in [Sutton1991, Sutton1998] which 

is an application of the general ‘Dyna’  architecture using Q-Learning.  The indirect RL 

updates originating from the model may be viewed as a sort of simulated experience.  Lanzi 

implemented the Dyna architecture with XCS as the learner and used it in some simple 

simulated mazes, reporting little improvement in such trivial problems [Lanzi1999].  In his 

implementation the model was simply composed of tuples storing information about state-

action pairs, the subsequent state, and the reward received.  Such a model is possible due to 

the discrete nature of the grid-world state-action space. 

 

Lanzi notes that the size of the model would grow prohibitively as learning continued since a 

complete map of the environment would be produced,  and therefore suggests the use of some 

form of generalization in the model.  This would obviously be necessary to produce ‘Dyna-X-

TCS’ , as the state space is continuous.  An additional instance of XCS could be used to learn 

the model with appropriate generalizations. 

 

In the classifier systems used in this thesis, the process of reinforcement learning takes place 

through adapted versions of the implicit bucket brigade.  Classifiers participating in an action 

set pass some reinforcement to their immediate predecessors, and will receive an update 

themselves from either their successors, or from an external reward.  If we picture a chain of 

action sets leading from a start position to a goal state in a corridor, then we can see that after 

the first trial only the classifiers that caused the final action to be taken will be strengthened 

by the external reward.  The second time the state two steps from the goal is reached some 

portion of this reward signal will flow back to the classifiers at that state.  The flow of 
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external reward, indicating true utility, is slow and step-wise.  In a more complicated 

environment the flow will be slower still as many actions are possible at each state and many 

more state-action pairs must be assessed.   

 

Given this delay in the flow of reinforcement in single-step temporal difference learning, the 

TD(λ) method is used in the RL community to improve the speed of prediction updates.  A 

decaying log is kept of the states which can be updated and this has been shown to provide 

faster distribution of the reward to earlier states and faster convergence to optimal values.  

Drugowitsch and Barry have experimented with integrating eligibility traces into XCS, using 

a simple 7-step Finite State grid-world [Drugowitsch2005].  They find a reduction in 

performance in the resulting XCS(λ), which they suggest is due to overgeneral rules causing a 

propagation of errors resulting from incomplete exploration through the chain of rules to be 

updated.  They show that a reduction in generality by lowering P# addresses this loss in 

performance.  Since one of the major attractions of LCS over RL is the ability to generalize, 

this is unfortunate.  However, they suggest that the problem may be less significant if the 

encoding allows for smooth changes in the degree of generalization.  For this reason it might 

be expected that eligibility traces could add benefit and speed convergence in X-TCS or TCS, 

where the unordered-pair real number encoding does indeed allow such gradual adjustment.  

ANN classifier representations would be equally well-suited. 

 

6.2.7 Whither TCS? 
 
Given the poor performance of TCS on the dual objective task when compared to X-TCS, it 

might be tempting to ignore the former in favour of the latter in future work.  However, as 

noted above, Stone has found that a strength-based LCS fared better than  an accuracy-based 

LCS in very noisy environments, and that self-adaptation of parameters has been used to good 
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effect which may help to solve the parameterisation problems. Finally Bull [Bull2005] 

suggests that the fundamental difference between accuracy-based and strength-based LCS 

may be in the level of fitness pressure such that there is a greater pressure in accuracy-based 

systems.  It may be that further theoretical insight following from this work will enable 

simpler strength-based systems such as ZCS and its progeny TCS to perform as optimally and 

reliably as XCS and X-TCS. 
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Glossary17 
 
Agent  A system that is embedded in an environment, and takes actions to change the state of 

the environment. Examples include mobile robots, software agents, or industrial controllers.  

Average-Reward Methods  A framework where the agent's goal is to maximize the expected 

payoff per step. Average-reward methods are appropriate in problems where the goal is 

maximize the long-term performance. They are usually much more difficult to analyze than 

discounted algorithms.  

Building Block A pattern of genes in a contiguous section of a chromosome which, if 

present, confers a high fitness to the individual. According to the building block hypothesis, a 

complete solution can be constructed by crossover joining together in a single individual 

many building blocks which where originally spread throughout the population. 

Chromosome Normally, in genetic algorithms the bit string which represents the individual. 

In genetic programming the individual and its representation are usually the same, both being 

the program parse tree. In nature many species store their genetic information on more than 

one chromosome. 

Coevolution Two or more populations are evolved at the same time. Often the separate 

populations compete against each other. 

Convergence Tendency of members of the population to be the same. May be used to mean 

either their representation or behaviour are identical. Loosely a genetic algorithm solution has 

been reached. 

Crossover Creating a new individual's representation from parts of its parents' 

representations. 

                                                
17 The definitions in this glossary have been drawn from the following sources: 

http://en.wikipedia.org/ 

http://www-all.cs.umass.edu/rlr/terms.html 

http://www.cs.bham.ac.uk/~wbl/thesis.glossary.html 
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Discount Factor  A scalar value between 0 and 1 which determines the present value of 

future rewards. If the discount factor is 0, the agent is concerned with maximizing immediate 

rewards. As the discount factor approaches 1, the agent takes more future rewards into 

account. Algorithms which discount future rewards include Q-learning and TD(lambda).  

Dynamic Programming (DP) is a class of solution methods for solving sequential decision 

problems with a compositional cost structure.  

Elitist An elitist genetic algorithm is one that always retains in the population the best 

individual found so far. Tournament selection is naturally elitist. 

Environment  The external system in which an agent is ‘embedded’ , and which it can 

perceive and act upon.   

Epistasis A term from biology used to denote that the fitness of an individual depends upon 

the interaction of a number of their genes. In genetic algorithms this would be indicated by 

the fitness containing a non-linear combination of components of the string. 

Evolution Strategy Each point in the search space is represented by a vector of real values. 

In the original Evolution Strategy, (1+1)-ES, the next point to search is given by adding 

gaussian random noise to the current search point. The new point is evaluated and if better the 

search continues from it. If not the search continues from the original point. The level of noise 

is automatically adjusted as the search proceeds. 

Evolutionary Programming like Evolution Strategy produces new children by mutating at 

random from a single parent solution. The analogue components (e.g. the connection weights 

when applied to artificial neural networks) are changed by a gaussian function whose standard 

deviation is given by a function of the parent's error called its temperature. Digital 

components (e.g. presence of a hidden node) are created and destroyed at random. 

Fitness Function A process which evaluates a member of a population and gives it a score or 

fitness. In most cases the goal is to find an individual with the maximum (or minimum) 

fitness. 
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Genetic Algorithm (GA) A population containing a number of trial solutions each of which 

is evaluated (to yield a fitness) and a new generation is created from the better of them. The 

process is continued through a number of generations with the aim that the population should 

evolve to contain an acceptable solution.  GAs are characterised by representing the solution 

as an (often fixed length) string of digital symbols, selecting parents from the current 

population in proportion to their fitness (or some approximation of this) and the use of 

crossover as the dominate means of creating new members of the population. The initial 

population may be created at random or from some known starting point. 

Genetic Operator An operator in a genetic algorithm or genetic programming, which acts 

upon the chromosome to produce a new individual. Example operators are mutation and 

crossover. 

Genetic Programming A subset of genetic algorithms. The members of the populations are 

the parse trees of computer programs whose fitness is evaluated by running them. The 

reproduction operators (e.g. crossover) are refined to ensure that the child is syntactically 

correct (some protection may be given against semantic errors too). 

Learning Classifier System An extension of genetic algorithms in which the population 

consists of a co-operating set of rules (i.e. a rulebase) which are to learn to solve a problem 

given a number of test cases. Between each generation the population as a whole is evaluated 

and a fitness is assigned to each rule using the bucket-brigade algorithm or other credit 

sharing scheme (e.g. the Pitt scheme). These schemes aims to reward or punish rules which 

contribute to a test case according to how good the total solution is by adjusting the individual 

rules fitness. 

Markov Decision Process (MDP)  A probabilistic model of a sequential decision problem, 

where states can be perceived exactly, and the current state and action selected determine a 

probability distribution on future states. Essentially, the outcome of applying an action to a 

state depends only on the current action and state (and not on preceding actions or states).   
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Model  The agent's view of the environment, which maps state-action pairs to probability 

distributions over states. Note that not every reinforcement learning agent uses a model of its 

environment.  

Model-Free Algorithms  These directly learn a value function without requiring knowledge 

of the consequences of doing actions. Q-learning is the best known example of a model-free 

algorithm.  

Monte Carlo Methods  A class of methods for learning of value functions, which estimates 

the value of a state by running many trials starting at that state, then averages the total rewards 

received on those trials.  

Mutation Arbitrary change to representation, often at random. GP subtrees or nodes of trees 

are replaced at random, real numbers are increased or decreased, letters in an alphabet are 

replaced with other members of the set of letters. 

Panmictic Descriptive of an evolutionary system in which no constraints are placed on 

mating.  Such restrictions might be due to analogues of spatial distribution or mate choice. 

Policy  The decision-making function (control strategy) of the agent, which represents a 

mapping from situations to actions.  

Reproduction Production of new member of population from existing members. May be 

used to mean an exact copy of the original member. 

Reinforcement Learning (RL) is learning from interaction with an environment, from the 

consequences of action, rather than from explicit teaching. RL become popular in the 1990s 

within machine learning and artificial intelligence, but also within operations research and 

with offshoots in psychology and neuroscience. 

Reward  A scalar value which represents the degree to which a state or action is desirable. 

Reward functions can be used to specify a wide range of planning goals (e.g. by penalizing 

every non-goal state, an agent can be guided towards learning the fastest route to the final 

state).  
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Roulette Wheel Selection The simplest selection scheme is roulette-wheel selection, also 

called stochastic sampling with replacement.  This is a stochastic algorithm in which 

individuals are mapped to contiguous segments of a line, such that each individual's segment 

is equal in size to its fitness. A random number is generated and the individual whose segment 

spans the random number is selected. This technique is analogous to a roulette wheel with 

each slice proportional in size to the fitness of the individuals. 

Sensor  Agents perceive the state of their environment using sensors, which can refer to 

physical transducers, such as ultrasound, or simulated feature-detectors.  

Simulated Annealing Search technique where a single trial solution is modified at random. 

An energy is defined which represents how good the solution is. The goal is to find the best 

solution by minimising the energy. Changes which lead to a lower energy are always 

accepted; an increase is probabilistically accepted. The probability is given by exp(-Delta 

E/kT). Where Delta E is the change in energy, k is a constant and T is the Temperature. 

Initially the temperature is high corresponding to a liquid or molten state where large changes 

are possible and it is progressively reduced using a cooling schedule so allowing smaller 

changes until the system solidifies at a low energy solution. 

State  This can be viewed as a summary of the past history of the system, that determines its 

future evolution.   

Stochastic Random or probabilistic but with some direction. For example the arrival of 

people at a post office might be random but average properties (such as the queue length) can 

be predicted. 

Supervised Learning is a machine learning technique for creating a function from training 

data. The training data consist of pairs of input objects (typically vectors), and desired 

outputs. The output of the function can be a continuous value (called regression), or can 

predict a class label of the input object (called classification). The task of the supervised 

learner is to predict the value of the function for any valid input object after having seen a 
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number of training examples (i.e. pairs of input and target output). To achieve this, the learner 

has to generalize from the presented data to unseen situations in a ‘ reasonable’  way 

TD (Temporal Difference) Algorithms  A class of learning methods, based on the idea of 

comparing temporally successive predictions. Possibly the single most fundamental idea in all 

of reinforcement learning.  

Tournament Selection A mechanism for choosing individuals from a population. A group 

(typically between 2 and 7 individuals) are selected at random from the population and the 

best (normally only one, but possibly more) is chosen. 

Unsupervised Learning  The area of machine learning in which an agent learns from 

interaction with its environment, rather than from a knowledgeable teacher that specifies the 

action the agent should take in any given state.  

Value Function A mapping from states to real numbers, where the value of a state represents 

the long-term reward achieved starting from that state, and executing a particular policy. The 

key distinguishing feature of RL methods is that they learn policies indirectly, by instead 

learning value functions. RL methods can be constrasted with direct optimization methods, 

such as genetic algorithms (GA), which attempt to search the policy space directly. 


