Learning Classifier Systems for
Multi-objective Robot Control

Matthew Studley

Learning Classifier Systems Group Technical Report — UWELCSG06-005

Faculty of Computing, Engineering and Mathematics

University of the West of England
Coldharbour Lane, Frenchay
Bristol BS16 1QY, UK.

Abstract

The work presented in this Thesis concentrates on the practicalities of using
Learning Classifier Systems (LCS) for control problems in which there exists
more than one goal. The emphasis is aways upon the use of LCS on physical
robot hardware.

A number of simple simulated problems with multiple goals are introduced. Two
classifier systems, ZCS and XCS, are applied to these problems. It isfound that
ZCS can solve the simplest problems given suitable parameterisation, and the
performance landscape is explored with respect to these parameter settings.
However, ZCS is not shown to be able to solve slightly more complex problems.
XCSis shown to be capable of solving these more complex problems with little
need to adjust parameters, and it is shown to be suitable to use in the physical

world by replacing the usual random ‘explore’ policy.

TCS, an extension of ZCS, is then applied to similar problems in the physical
world. TCS cannot be shown to be capable of solving these problems,
presumably due to the same parameterisation problems. X-TCS is presented; an
accuracy-based classifier system working in continuous space on a hardware
platform. X-TCS solves problems of robot control with multiple goals optimally,
quickly, and with little need for parameter adjustment. X-TCS, which extends
TCS, may be of interest to the Reinforcement Learning community due to itsin-
built ability to discover appropriate levels of discretization in the problem space,

requiring no a priori discretization or additional techniques to be used.

Since this work is focused on continuous learning, rather than ‘learn’ then
‘perform’, X-TCS may be suited to control in non-stationary conditions. An
example might be to maximise energy efficiency in an engine management
system given different grades of fuel, and despite ongoing changes in
performance characteristics due to mechanical degradation.

Acknowledgements

| would like to take this opportunity to thank my supervisor, Professor Larry Bull, for his
unfailing interest, guidance and wisdom throughout this project. Similarly, | owe a huge debt
of gratitude to Dr Jacob Hurst for his help and friendship.

In addition, | would like to thank the members of the UWE Learning Classifier Systems group
and in particular, Dr Alwyn Barry and Dr Tony Pipe, for their support, questions and

contributions.

My heartfelt thanks also go to the members of the UWE IAS Lab. Professor Chris Melhuish
has been both a source of practical advice, a sounding-board, and a witty and erudite friend,
and the other members of the Lab have helped enormously to extend my understanding and

expand my horizonsin the field of robotics.

Finally, none of the robot experiments would have taken place had it not been for the support
staff of the IAS Lab. Moving from the safely-constrained world of simulation to physical
robotics involves a massive increase in complexity, where the casual assumptions of
determinism upon which experimentation and fault-finding are based ‘in virtua’ provide
surprising traps for the unwary and naive. lan Horsfield and Chris Bytheway have helped me

realise that sometimes all that is necessary is some extra grease or atightened nut!

I have enjoyed the last three years enormously! Thank you all for your support, friendship

and conviviality.

Contents

CHAPTER 1 INTRODUCTION ..ottt ettt 1
O AN =3 1 | = o Y I 1 N = I = N2 3
1.2 EVOLUTIONARY COMPUTATION ...ceiieeertnieieeeiieessssssssssssesssrsssssssssssssessresssssnes 11

121 Genetic AlgOrithms (GAS).......eeeuieee e e 12
122 Schema Theory and the Building Block Hypothessccceveenieeee 13
123 Evolutionary Algorithms for Multiple Objectives...........cccccocveviieeinens 17
1.3 REINFORCEMENT LEARNING (RL) ..coviiiiiiieiiie et 20
131 An Overview of Reinforcement Learningcccceevveeviveeeiieecieeesneenns 20
132 Reinforcement learning for Multiple Objectives...........cccevvveviieeinens 24
14 LEARNING CLASSIFIER SYSTEMS ...ccittttiiiiiieeeieeeettsiniieeeeseessssnssseesssssesssssnes 26
14.1 An overview of Michigan-style Learning Classifier Systems................. 27
1.4.2 Why use Learning Classifier Systems for Robotics?.........cccocveeieeiiineenn, 32
1.4.3 Learning Classifier Systems and Multiple Objectives............ccccoeeeivnennes 34

(OF o N e I = = A G S 36
2.1 INTRODUGCTION 1.uiiiiiiiieieetiiteiieeeeeeeeeestsaesseeesseessssssanssseesssesssssssanssesssseessssnnes 36
2.2 ZCS ALGORITHMIC DESCRIPTIONceciveettnesseeeseeeessssssssssssssessesssssansssssssssenes 37
2.3 RELATED ZCS WORK ..covvvttiiiiiiiecieeeeeie s s e e eeseessassa s s s s sssseessssssssssssssssesssssnes 40

231 Self adaptation Of ParamEters.........cooieieiee e 41
2.4 PARAMETER SENSITIVITY AND OPTIMAL PERFORMANCE.cccuvvveeeeieeeeeeeennnnns 42
2.5 SINGLE OBJECTIVE PROBLEM : WOODSL ...ccvvviee e 43
2.6 SEQUENTIAL MULTI-OBJECTIVE PROBLEMS......ccceeeeeeeeeeeeeeeeeeeeeeeeeeee e 46

26.1 WOOdSL ‘Key and DOOKcooueiiieiieeiie e 46

2.6.2 Woodsl ‘Carry the flag’cooeereiiee e 47
2.7 CONCURRENT MULTI-OBJECTIVE PROBLEMS. WOODSIEcooeeiiieiiirvviiennn. 49

271 Fixed Cost, Sepwise Reward (Woodsle-typel)cccccceveeneerieeneeeen. 49
2.8 ACHIEVING OPTIMALITY 1utttuiiiiieeiieeeertiiieiieeeseeesssssssaseesssssessssssssessssseesssnnnn, 51

28.1 Exploring the Performance Landscape.ccoceevveeiiieeciieeciee e 52
2.9 MOVING TOWARDS REAL MULTI-OBJECTIVE PROBLEMS.ccvvvuviieiieeeneeeeennnnns 62

29.1 Dynamic Cost, Stepwise Reward (Woodsle-type2).cccceeveeevveeeirneens 62

29.2 Dynamic Cost, Continuous Reward (woodsle-type3)..........cccceeeeeiunennns 64
2.10 EXPLORATION OF THE PARAMETER SPACE. ...iiiiiiiiiiviiiii e eeee e eeevebb e e e e eeeens 67
211 MORE OBJIECTIVES. .uuiiiiiiiiieetitiiiieeeeeeeeesssttaaseseessesssssssasasesassssesssssnnnssseessesens 74

2 N R = <= | =X 75
P A O N o U S o) N T 84

CHAPTER 3 TCS: MULTI-OBJECTIVE ROBOT CONTROLc.ccceeeuuneee. 86
31 INTRODUCTIONccoiiiieeee ettt e e e e e e e s s b bbb bbb abbbababaaabareenes 86
3.2 RELATED WORK ...iiiiiiiiitiiiii ittt st e e e e e e seaa s s e e e e e s eessaaab s e esseeeesensenes 88

321 Evolutionary RODOLICS.ccveiiiieiieic e 88

322 Reinforcement Learning on RODOLS.ccocvieiiiie e 9

323 Learning Classifier Systems for RODOLS.ccccoeevieeiiieeciee e, 100
3.3 TCS — A TEMPORAL CLASSIFIER SYSTEM 1uvuiiiiiiiiiieeeiiiiiineee e eeeeevaann e 109

331 (a1 (o (V1w 10 o N 109

332 Reinforcement learning in a Semi-Markov Decision Problem............. 111

333 AlgorithmiC deSCriptioNcc.ceeiiee i 113
34 EXPERIMENTAL SET=UP. ...iiietiiieiiieeiieeeei e e e eete e e eeaba s e s eeaaa s ssssasansssssnnnsssennns 118

34.1 Hardware : The LINUXBOL.ooeiveevee e ee e ee e 118

34.2 1Y 101 01017= 0| TR 120

3.4.3 S0 1T TR 122
3.4.4 F N I A T= | R 124

35 =t S T 125
351 ONE ODJECTIVE.......eeceiiee e 125
35.2 TWO ODJECTIVES......eeeiieeeiiie et ee et see e sree e s e e sneeesnneeens 129

3.6 CONCLUSIONS.ccetttttiiieeeeieeeessssssssessseresssssssssssaserrssbbasasesssssrrsssrasasnseess 137

(O o N o I = R 1 T 138
41 INTRODUCTION ...ccoeiieieeee ettt saaaaanes 138
4.2 DO Y B =S Ter 1] =l 139
4.3 SEQUENTIAL MULTI-OBJIECTIVE PROBLEMS....uuiiiiiiiiiieiiiriien e eeeeeeerannnen e 148
44 CONCURRENT MULTI-OBJECTIVE PROBLEMS....ciiiiiiiieiiiiiieeee e eeeeevrinaen e 156
44.1 TWO ObjECtiVE ProbIEMS. .. .o e 156

45 INCREASING COMPLEXITY t1tuuiiiiieiieieeresiniieeeeeeeeersssssanseeesesesessssisnseeeseeeeesens 170
45.1 MOFE OLJECLIVES.......eeiiiieeceiee ettt et 170
452 Bigger ENVIrONMENTccviiiiiee et 177

4.6 ROULETTE-WHEEL EXPLORATION = DISCUSSION ...cvvvuiiieeeeieieriiiiiineeeeeeeeennns 183
4.7 CONCLUSIONS.cetttttiiiieeeeieeeessiiste s e e e s eeessab s e asessressbb e eeesseseesabbnaaeeaans 201
(O N o = = T G G 203
51 INTRODUGCTION ..cuutiiiieetieeiete e e e eea s e e s eaa s s e e sba s s eebbsssseaaa e esssasansssessnnsssennns 203
52 ALGORITHMIC DESCRIPTIONiivtutiieeetiieeeeraeeeeesseessessnseessssansssessnsessessns 204
53 EXPERIMENTAL SETUP ..uiiiiitiiee et e et e e e eete s e et e s s seaaa e e s s sananssseanasessennns 205
54 =t S T 206
541 ONE ODJECLIVE.......eeieeie ettt e 206
54.2 TWO ODJECLIVES. ...t 219

55 CONCLUSIONS.ccitttttieieeeeeieeressstssssssssseesssssssssssseressbsasasssssssrrsssbasaseaees 231
CHAPTER 6 CONCLUSIONSAND FUTUREWORKcoooviiiiiiii 233
6.1 CONCLUSIONS.ccettttteiiieeeieeressstsssssssssrrsssssssssssserrsssaasssssssssrrsssbasssseaas 233
6.2 FUTUREWORK ..ot 236
6.2.1 Self Adaptation of Parameters..........ooovveeceecciee e 236
6.2.2 ACtion SElECHION POLICIES.........occeeeee et 237
6.2.3 I [o 1= ST 238
6.2.4 Increasing CompleXity.........cccveeiieciiie e 239
6.2.5 Grounding — routes to semantic CONteNtcccccveeeveeeceeeciee e, 241
6.2.6 Accelerating Learning — Dyna and Eligibility Traces.........c...ccoe....... 243
6.2.7 WHITNET TCS?.eiie e 244
REFERENCES. ... 246
(IO 1 ST 2 2 259

Learning is but an adjunct to ourself,
It adds a precious seeing to the eye.

Shakespeare, “Love's Labours Lost”, Act 4, Scene 3.

Chapter 1 Introduction

Mankind has long recognised the desirability of autonomous artefacts which can perform
work on our behalf. Literature and legend are filled with references to the likes of the man of
brass, Talos, which guarded Crete and was destroyed by the Argonauts [Apollonius], Rabbi
Loew’'s Golem which was created to free the Jews of Prague from drudgery
[Thieberger1955], Rossum’'s Universal Robots; the slaves of a new world [Capek1923], and

the Monster of Mary Shelley’s Frankenstein [Shelley1818].

Ignoring the (sometimes severe) complications that dawning consciousness brings to these
fictional creations, we are still impelled by the lure of creating artificia intelligence today.
Although robots feature in much modern fiction and have found some static niches within
industrial settings on carefully constrained problems, they are not yet widely available in a
larger context. One reason for thisis alack of adaptability or learning. To deal with complex
environments and changing conditions, robots must be capable of adapting their actions in
order to be useful. This motivates the work presented here; the focus is on continuous
learning, rather than a ‘training phase’ followed by performance in the absence of further

learning.

All living organisms exhibit the properties of homeostasis. While their external environment
changes constantly, they are able to maintain a relatively constant internal environment -

when their ability to do so is compromised, death may swiftly follow. In order to maintain this

stability, they must balance many conflicting goals or desires, and dynamically change their
actions according to their circumstances. The needs of the moment may over-ride longer-term
objectives; the need for food is less than the need to avoid being eaten, the need for shelter
may overcome the drive to mate, etc. Balancing these conflicting drives is the difference
between success and failure, between life and death, and the optimization of balancing

behaviours is therefore subject to great evolutionary pressure.

For any autonomous artificial entity to perform useful work, it will need to operate in
complex problem domains, and also will need to adapt its behaviour to optimize the balance
of tasksit must perform. This thesis considers the use of an adaptive system — here aLearning
Classifier System (LCS) [Holland1976] — to control an agent that has to solve multi-objective
problems. For example, in asimple case, the agent has to seek the shortest path to a goal state
while it also maintains its energy levels, in similar fashion to a mobile robot that must
perform tasks while maintaining its battery power. The optimal course of action can change
dynamically during the course of performing atrial for its energy levels may be depleted by

its actions; the learner is operating in a changing environment.

Robotic platforms are a useful test bed for Artificial Intelligence (Al). In the real world,
decisions must be timely, data is noisy, movements are imperfect and processing power is
constrained to preserve battery life. Testing Al theories on machines that interact with the
real world through physical sensors and effectors reveals areas of weakness. New theories
have been born from the inadequacies in a robotic context of systems that worked well in a
disembodied setting. Finaly, autonomous physically situated entities are desirable; like the
Golem they can do repetitive tasks that humans either do not wish to perform, or are unable to
perform. If we want to create physically situated autonomous entities we cannot expect to

solve the inherent problemsin a virtual environment, as shall be discussed below.

The work presented in this thesis concentrates on one important element of adaptability for
autonomous physical robots. We demonstrate that multiple behaviours may be optimally
learnt using Learning Classifier Systems, as may the co-ordination of these behaviours such
that alearner may switch between the behavioursin a fashion that isitself optimal. This may
be necessitated in circumstances where the robot has multiple (conflicting) goals that must be

balanced.

In this chapter, we briefly explore some of the history of Al. We then examine two
approaches inspired by the study of adaptation in biology, namely Evolutionary Computing
(EC) and Reinforcement Learning (RL). We then introduce Learning Classifier Systems,
which combine both of these approaches, and explain why LCSs may be more suited to the
task of robot control than either EC or RL inisolation. Where possible, we mention how such

approaches have been used for problems with multiple objectives.

1.1 Artificial Intelligence

In seeking to explain the behaviours of men and animals alike, an influential school of
thought arose in the early part of the 20" Century. Behaviourism, based upon the
philosophical tradition of the British Empiricists such as Locke, asserted that behaviour
should not be studied by the attribution of assumed mental states or processes. The external
behaviour of a person is not accounted for by referring to the internal behaviour of the person
(say, his or her internal problem solving or thinking) if, therein, the behaviour of the person is
unexplained. ‘ The objection’, wrote Skinner, ‘to inner states is not that they do not exist, but
that they are not relevant in a functional analysis' [Skinner1953]. ‘Not relevant’ means, for
Skinner, explanatorily circular or regressive. (There are obvious flaws with the behaviourist
stance; it disregards innate behaviours and capacities, and fails to explain the human condition

3

— the ‘qualia of e.g. pain is experienced, in addition to the generation of appropriate pain-

reduction behaviour which is observed from outside.)

The early pioneers of computing such as Alan Turing formulated the belief that a ‘Universal
Machine’ which could model any abstract computing engine could therefore simulate human
intelligence. The ‘Church - Turing’ thesis’ suggests that a problem which cannot be solved
by such a theoretical machine cannot be solved by a human mind, and conversely that any

problem soluble by a human is equally soluble by the machine.

Since the Dartmouth Conference in 1956, Al became thought of as generating abstract
intelligences that could solve all problems, providing that the environment of the intelligence
can be suitably presented to them. Based upon this doctrine of functional equivalence (for
which the empiricism of the behaviourists is surely a sine qua non, stripping away mentalist
models and innate drives), and the concept that intelligence is synonymous with computation,
the position of classical Al is represented by the ‘Physical Symbol Systems Hypothesis
(PSSH) of Newell and Simon [Newell1976]. This asserted that ‘a physical symbol system has
the necessary and sufficient means for general intelligent action.” Physical symbols have
some physical existence, whether as marks on paper, electronic charges in computer registers,
or in some fashion in the physical brain that instantiates a mind. The PSSH asserts that
physical symbols are necessary for intelligence, that systems based upon them are sufficient to
provide for intelligence with no addition, and such systems are widely and generally
applicable. The difference between Machine and Human Intelligence is one of substrate and

plumbing; instantiation.

! The term 'Church-Turing thesis seems to have been first introduced by Kleene:
'So Turing's and Church's theses are equivalent. We shall usually refer to ... versions which deal (s) with "Turing
machines' as the Church-Turing thesis.' [Kleenel967]

Harnad presents a good overview of the characteristics of symbol systems [Harnad1990],
guoted below.
‘A symbol systemis:
1. aset of arbitrary ‘physical tokens' scratches on paper, holes on a tape, eventsin a
digital computer, etc. that are
2. manipulated on the basis of ‘explicit rules that are
3. likewise physical tokens and strings of tokens. The rule-governed symbol-token
manipulation is based
4. purely on the shape of the symbol tokens (not their ‘meaning’), i.e., it is purely
syntactic, and consists of
5. ‘rulefully combining’ and recombining symbol tokens. There are
6. primitive atomic symbol tokens and
7. composite symbol-token strings. The entire system and all its parts -- the atomic
tokens, the composite tokens, the syntactic manipulations both actual and possible
and therules-- are all
8. ‘semantically interpretable’ The syntax can be systematically assigned a meaning

e.g., as standing for objects, as describing states of affairs.’

Intelligence is therefore reduced to the application of operators to data. Given some sensory
input, there exists a set of transformations which embody logical thought, and which thereby
produce a set of outputs which we would recognise as being the product of intelligence in that
they enable the successful attainment of a goal state. This is the position which has now

become known as ‘classical Al’.

Newell and Simon implemented the theories formalised in the Physical Symbol Hypothesisin

a system they termed the General Problem Solver (GPS), and described originally in 1957

[Newell1957]. GPS was an example of a production system — symbols are manipulated
according to rules, and limited inferences can be drawn. Production systems of this type
became known as expert systems. For example, MY CIN [Shortliffe1973] has many rules
about how to infer which bacterium is causing an illness based on symptoms and the result of
laboratory tests. However, its formalism has no way of expressing the fact that bacteria are

organisms that grow within the body.

It isimportant to note that the symbols manipulated in such a system are operated upon on the
basis of their ‘shape’; processing is on syntax, rather than semantics. Such a system is
therefore ‘ungrounded’ ; the symbols being processed have no meaning within the confines of
the system, although they can be assigned a meaning from outside the system. MY CIN has
no knowledge that bacteria are physical organisms growing in the body of the patient or in the
culture vessel. This is exemplified by Searle’s famous ‘Chinese Room’ argument
[Searle1980], and its derivatives. Although the rules within the system allow for the
manipulation of symbols, since the symbols have no meaning, no component of the system
can be said to be intelligent, although to the intelligent observers outside the system its
behaviour might appear intelligent. This is unlike the intelligence of a biological mind in
which meaning must be intrinsic, and hence symbol manipulation cannot provide the
‘sufficient means for general intelligent action’ claimed by Newell and Simon [ibid.,
emphasis added]. Harnad provides a further example — consider the task of learning Chinese
as afirst language from a dictionary giving Chinese definitions of Chinese pictograms. There
is no way to bootstrap the process; there is no grounded starting point, no ‘ Rosetta Stone’ that

enables semantic interpretability.

Within constrained problem domains in which the problem of externally attributing meaning

to symbol is readily solved, the approach has been successful. Programs have been written to

solve a class of problems that give humans intellectual difficulty: examples are playing chess,
proving mathematical theorems, transforming one symbolic expression into another by given
rules, integrating expressions composed of elementary functions, determining chemical
compounds consistent with mass-spectrographic and other data. Game playing has produced
notable successes, such that of IBM’s ‘Deep Blue' series of chess-playing systems against the
best human opponents. Classical Al has been similarly useful in other abstract domains, such
as the automatic tranglation of defined and constrained knowledge in database applications
and service negotiation where the problem of semantic mark-up has been addressed by

humans. KIF?, the Knowledge Interchange Format is an example of this.

Despite their successes, when classical Al techniques have been applied to robotics they
prove difficult to implement and fragile. The frequently cited example of the robot * Shakey’
[Nilsson1984] will demonstrate both the successes and failures of this approach. Shakey was
devel oped at the Stanford Research Institute between 1966 and 1972, and was provided with a
specialy constructed set of rooms in which to operate. It was equipped with a world model
containing representations of the named rooms, doors, and boxes, and could be tasked to
enact goal-directed instructions such as moving from one room to another using a set of pre-

coded action routines.

In order to determine which actions to take to achieve its goals, Shakey used the ‘STRIPS
planning system [Fikes1972]. STRIPS, like the GPS of Newell and Simon, is a hierarchical
planning system; to achieve a goal, the problem is broken down into sub-goals. In STRIPS,
models of the action routines — which might have preconditions associated with them —

allowed the prediction of an action’s effects. STRIPS thus searched through the possible

2 draft proposed American National Standard (dpANS) NCITS.T2/98-004
http://logic.stanford.edu/kif/dpans.html

action sequences that would allow the robot to attain the goal state in order to formulate a

plan.

Shakey was slow in computation due to the limitations of the processing platform available at
the time. More importantly, it could only operate in the specially constructed environment
that matched itsinternal model. Thisillustrates the fragility of using a predefined model with
no ability to adapt or generalise. More important till, the approach scales poorly. As the
number of decision points within the decision hierarchy grows, the time required to search for
a solution grows exponentially. A system which hasto ‘sit and think’ for hours before acting

may find that the world has changed around it making its decisions invalid.

In his seminal 1961 paper, Marvin Minsky [Minsky1961] identified the following sub-
problems in building artificial intelligences; Search, Pattern-Recognition, Learning, Planning,
and Induction. If pattern-recognition is separable from the other processes comprising an
intelligent system, then to ground a symbol-based system is a matter of connecting the
‘intelligence’ to the world in the right way. Unfortunately, the problem of connecting to the
world in this way cannot be solved in isolation from cognition®. A system is grounded
because there is no necessity for an outside intelligence to attribute meaning to the syntactic
symbols. Minsky discussed the use of connectionist systems for pattern recognition, though
he concluded that their contemporary form as perceptrons [Rosenblatt1958] was of limited

use.

% In mammals, vision is learnt (upon a prenatally developed infrastructure) through changes in neuronal
connections in the visual cortex; a young animal raised in the absence of visual stimuli (due to its eyes being
sewn shut) may be unable to see when its eyes are opened, even though the retinais undamaged. See

[Hubel 1988] for an overview by one of the main pioneers of such investigations. To misapply the epigraph from
‘Love’sLabours Lost’, “...learning...adds a precious seeing to the eye’ since without learning - the adaptive
processes of differential neuronal growth and connection - the eyeis blind.

In contrast to the symbol manipulating approaches, an alternate approach has arisen which is
often termed ‘sub-symbolic’. This is based upon the concept of having many (simple) sub-
units with complex interactions — Rosenbl att’ s perceptrons were an early example of artificial
neural networks in which the sub-units to some degree model the behaviours of biological
nerve cells. Such connectionist machines can be labelled ‘sub-symbolic’ since there is no
concept of rule-governed combining and recombining of symbols. Connectionist machines
are grounded since they are capable of learning to distinguish categories within input data,
and assigning new data to those categories. No external intelligence is necessary to assign

semantic content to syntactic symbols; semantic information arises within the system itself.

It was in reaction to the problems exemplified by ‘Shakey’ that Rodney Brooks of MIT
spearheaded the movement which was to become known as ‘behaviour-based robotics'.
Rather than the sequence of Sense-Model-Plan-Act of earlier approaches, Brooks model was
based upon the principle that behaviour could be composed of modules, each of which
received data directly from the environment, and which could directly produce actions via the
robot’s effectors. The co-ordination of these behaviours could be realised via a ‘ subsumption
architecture’, in which higher-level behaviours could over-ride more-frequently triggered
lower-level behaviours, the action of the robot being composed of either some combination of
the actions proposed by all triggered behavioural modules or only that of the highest level

‘layer of competence’.

One advantage of this approach is that behaviours can be developed in isolation, and once
developed re-used, in a manner in some ways analogous to the conservation of structure and
information evinced in the evolution of life. Developing robotic systems to perform complex
tasks is therefore simplified through the use of pre-defined behavioural components. Also,

directly coupling sensors to effectors via behavioural modules rather than having a central

planning process using the sensor data against an internal model promotes real-time
behaviour; when the world changes, the robot responds. This too has biological justification.
For example, the ‘knee-jerk’ response generated by areflex arc isadirect link from sensors to
effectors, like other reflexive responses thus requiring no ‘higher processing'® or decision

making.

Rather than having the internal model of the classical approaches, Brooks claimed that since
‘the world is its own best model’ [Brooks1986] there is no necessity to either supply or build
such an internal representation. The intelligence displayed by the system is hidden within the
co-ordination of layers of competence, and shown by the responsiveness of the system to its
changing environment. This approach was pioneered in the 1950s by W. Grey Walter with
his ‘Tortoise’ robots, built using analogue electronics and mechanical components, and
capable of autonomous phototaxis and, perhaps, more complex behaviours. Owen Holland

presents areview of thiswork of Grey Walter in [Holland1997].

As a pragmatic methodology it offers gains in terms of the speed of response to
environmental input, and the possibility to reuse components devel oped in isolation from each
other. Brooks also concentrated on embodied systems in situ rather than attempting to create
general-purpose systems in simulated environments which could then prove difficult or
impossible to integrate with complicated, noisy data on physical platforms. However, there
are some problems with this sub-symbolic architecture. The co-ordination of behaviours and
the mechanisms of subsumption implicitly replace the global model. This co-ordination
becomes more complex as more modules are added, and requires careful design and perhaps
considerable ad hoc adjustment in order that behaviours should be selected in an appropriate

fashion. Also, if the goal is to produce the type of intelligence we recognise in each other

* Although some reflexes involve intermediary neurons between sensory and motor neurons, these are most
commonly in the spinal column of vertebrates, rather than the brain.

10

then it is difficult to see how this approach can succeed alone; our conscious experience of

life suggests that we are not merely driven in our actions by circumstances.

There now follows a brief overview of some areas of research related to the Learning
Classifier Systems used in this thesis, including where possible evidence of their application

to problems with multiple objectives.

1.2 Evolutionary Computation

Evolution by selective pressure can be simply summarised;

* Individualsin a population differ from each other.

» These difference are to some degree heritable.

» The differences between individuals determine their success in profiting from their
environment and in their interactions with other members of the population, and
therefore determine the percentage of the next generation comprised of their offspring.

In this way, a population changes in response to the chalenges of its environment. The
simulation of evolution by selective pressure can thus alow for a population of candidates
encoding possible solutions to a problem to converge upon its optimal solution — al that is
needed is some measure of the relative fithess of the candidates in solving the problem, and a
means by which these differencesin fitness alter the replication of the candidates. In order to
sample areas of the search space not represented in the population, new candidates must be
generated, typically through processes analogous to those of genetic change in natural

organisms.

There have been a number of approaches to simulate evolution within computers, including

Holland’s Genetic Algorithms (GA) [Holland1975], Rechenberg’s Evolution Strategies (ES)

11

[Rechenberg1965], Koza's Genetic Programming (GP) [K0zal992], and the Evolutionary
Programming of Fogel et al. [Fogel1966]. Since Learning Classifier Systems (LCS) stem

from GAs, the latter are briefly considered below.

1.2.1 Genetic Algorithms (GASs)
Within the prototypic GA, a population of chromosomesisinitially created at random. These

chromosomes are typically binary strings that in some way encode possible solutions to a
problem. As there is a mapping between the chromosomal representation and the solutions,
the former are considered as the genotypes that explore the search space, and the latter as the

phenotypes which search the problem space.

Each chromosome in the population has an associated fitness value. This represents the utility
of the phenotype, typically assessed by a fithess function. When the relative fitnesses of the
phenotypes have been assessed, reproduction can take place. Chromosomes have a chance of
reproducing proportional to their relative fitness; a variety of schemes are used to implement
this, such as tournament selection and roulette-wheel selection. In reproduction, two parental
chromosomes may be recombined through crossover at one or more randomly-chosen points
to produce offspring. There is also a constant probability that each position, or allele, in the

chromosome of the offspring is changed at random in a process anal ogous to mutation.

Since the number of individual chromosomes in the population is typically fixed, there must
be a strategy for replacing old chromosomes with the ones generated by reproduction. In
Holland’s GA, this process was generational, that is, the entire population is replaced by new
members on each iteration of the algorithm. Again, other approaches are possible, such asthe
steady-state method [Syswerdal989] in which only a few lower-fitness members of the

population are replaced on each iteration. Once the genetic operators have produced new

12

individuals, relative fitness is again assessed and the cycle begins again. The cycle is
terminated when either some fitness criteria is reached, for example, a phenotype has perfect

absolute fitness, or after some predetermined number of cycles have been performed.

1.2.2 Schema Theory and the Building Block Hypothesis
In order to prove the utility of GAs, Holland presented an application of schema theory

[Holland1975]. In schema theory, the search space is partitioned into subspaces of varying
levels of generality — the schemata - and mathematical models are constructed which estimate
how the number of individuals in the population belonging to certain schema can be expected
to grow in the next generation. From this model arose the building block hypothesis (BBH)
[Goldberg1989], which attempted to explain how a GA solves a problem by positing that

near-optimal solutions were forged from small, low-order, fitter-than-average schemata.

A schema is a ternary string consisting of symbols from the set {0,1,*}, in which ‘*’ —'don’t
care’ - is ameta-character that matches both 0 and 1, and thereby provides for generalisation.
In an alphabet of k characters, for astring of length | there are k' different strings. Introducing
the meta-character * means there are (k+1)' schemata. Since there are more schemata than
there are (binary) strings, the fitness evaluation of a single string implicitly provides
information about the fitness of a greater number of schemata. There is thus an implicit

parallelism in the search process.

In general, any particular string is a member of 2' schemata because each position may take
on its actual value, or a don't care symbol. As a result, a population of n strings contains
somewhere between 2' (if al the strings are identical) and n x 2' (if al the strings are
different), schemata - thus even a moderately-sized population contains a weath of

information about important similarities. Holland showed how the proportion of schemata

13

varied in the population according to the relative fitness of (the phenotypes of) the genotypes

which contain them.

A schema H=0***0** represents all strings where |=7 and with the specific character O at
positions one and five. H stands for hyperplane. The order, o(H), of the schema is the
number of specific characters in the schema, here two, and the defining length, d(H), is the
distance between the outermost specific characters. In this case d(H)=4, since the first

specific character is at position one and the last at position five.

Let m(H, t:1) be the number of schemata H found in the population at time t.;. The
probability of reproduction is dependent on relative fitness, which can be represented as

f(H)

fav

where f(H) is the mean fitness of individuals containing H and f,, is the average fitness of the

population as awhole.

If crossover occurs between the outermost defining characters of the schema, the schema will
be disrupted. With one-point crossover this will happen with the probability d(H)/(I-1).
Mutation can occur with equal probability at each defining character of the schema, thereby

disrupting it with probability proportional to the order of the schema o(H).

Thus;
m(H tq) = m(H,t) B 1) ”H EE pmm(H)}

where pc is the probability of crossover, and pnm is the probability of mutation for each

character, or allele, of the chromosome.

14

Thisis an inequality since there may also be recruitment due to the creation of the schemaH
by the action of the genetic operators on other schemata in the population, and thus provides a

pessimistic estimate of schema growth.

The related BBH of Goldberg [ibid.] maintains that GAs discover low-order schema of high
fitness first, and then recombine these building blocks to gradually discover higher order,

high-fitness schema.

Schema theory has been criticised since it says nothing about the reconstruction of schema by
the positive action of genetic operators. The theory of GAs remains an active field. See
Stephens and Waelbroeck [Stephens1999] or Langdon and Poli [Langdon2002] for an

overview of work deriving exact predictive equations based upon the schema concept.

Evolutionary methods have been successfully applied to many problem domains, including
control systems, data mining, game playing, machine learning, and scheduling. As we shall
see in Chapter 3, they have also been successfully used to generate controllers for mobile
robots. One advantage of evolutionary methods is that they are population based. The
individuals in the population sample many points in the search space concurrently, and search
is improved by swapping information between individuals by means of the genetic operators.
This may be particularly useful when compared with non-population based techniques in
deceptive problems, i.e. problems in which the search space is multi-model with many small

peaks of fitness that are not the globally optimal fitness.

Another justification for using evolutionary techniques is that the core agorithm has proven

its remarkable utility in the last 3.5 billion years of life on Earth. The behaviour of the living

15

organisms that surround us and their multitude of intricate design fitting form to function is

ultimately due to physically grounded and embodied evolution.

16

1.2.3 Evolutionary Algorithms for Multiple Objectives
Most real-world problems involve multiple objectives that may conflict. There has been a

considerable amount of work on multi-objective optimization problems, and numerous
researchers have reported success through the application of evolutionary techniques, see

[ZitzIer1999], [Coell02000], or [Fonsecal995] for an overview.

The majority of this work concentrates on generating a population of candidate solutions
using an evolutionary algorithm, such that each of the candidate solutions is 'Pareto Optimal'.
That is, they are members of the set of solutions for which there exists no solution that is
better in respect to one objective, without being worse in respect to another, and which still
obeys all solution constraints. The 'decision maker' then picks a solution from this set of non-

dominated solutions.

A number of different evolutionary algorithms have been used, for example, various
formulations of genetic algorithms, e.g. [Deb2000] and genetic programming, e.g.

[Rodriguez-Vazquez1993].

Evolutionary Algorithms are especially suited to the problem of discovering members in the
Pareto optimal set (i.e. the set of non-dominated solutions). Firstly, they are population-
based, and thus can maintain information about many points on the Pareto front®
simultaneously. Secondly, they are less susceptible to the shape of the Pareto front; concave
or discontinuous Pareto fronts pose difficulty to more traditional mathematical approaches

[Coell02000].

® The Pareto front is the part of the boundary of the set of all solutions which comprises the Pareto Set.

17

A number of approaches have been used to apply genetic algorithms to multi-objective

optimisation, for example:

Derive afitness function that combines the multiple objectives into one function. The
multiple objectives need to be weighted relative to each other. Thismay be difficult in
problem domains about which little is known.

VEGA (Vector evaluated GA) [Schaffer1985]. Each generation the population is
assessed for performance against each of the objectives in isolation, and the total
population split into k sub-populations where k is the number of objectives.
Individuals from these sub-populations are then intermingled again, and bred. This
approach suffers from the problems of ‘speciation’, whereby there may arise sub-
popul ations which specialise in one objective.

MOGA (Multi-objective GA) [Fonsecal993]. The rank (r;) individual of the
population is set to 1+n;, where n; is the number of individuals by which it is
dominated. Nondominated individuals are assigned the rank 1, and individuals at the
same rank have their fitness assigned and averaged in such a way that nondominated
individuals have higher fitness. In order to maintain a population of diverse
nondominated solutions a nicheing mechanism which considers the distance between
any two individuals assigns higher fitness to individuals in less-crowded areas of the
search space. Fixing this sharing parameter is the chief difficulty in applying MOGA
to problems.

NSGA (Nondominated Sorting GA) [Srinivas1994]. Similarly to MOGA, NSGA and
NSGA-II [Deb] use a ranking scheme on the basis of level of domination to assign
fitness, and also a nicheing strategy. Although NSGA isless computationally efficient
that MOGA, the later NSGA-II has improved efficiency and maintains a better spread

of nondominated solutions in the final population.

18

It will be seen that there are two goals in multiobjective GAs. Firstly, to discover candidate
solutions in the Pareto-optimal set that are nondominated. Secondly, to maintain as diverse a
population as possible within the set of nondominated solutions. The latter is important
because the trade-offs that enable the experimenter to choose between solutions are not
represented within the fitness assessment; all nondominated solutions are candidates which

solve the problem.

It would be possible to use multiobjective evolutionary agorithms to produce robotic
controllers. However, as shall be shown in Chapter 3, using GAs alone in a robot context is
generally a slow process, since fitness evaluation on the physical platform is time consuming
and must be repeatedly performed for al individuals in the population. Essentially, GAs are
an offline learning method, since the controller produced by each individual must run in order
to establish its fitness, and while this is taking place no knowledge is incorporated into the
system. Also, the second goal of multiobjective GAs of maintaining a diverse population
from which an experimenter may choose a representative is unnecessary in order to develop a
single optimal controller, and introduces an additional human step which reduces the

autonomy of the system.

For further information on the subject of evolutionary multiobjective optimisation the reader

isreferred to Deb’s book for a comprehensive overview [Deb2001].

19

1.3 Reinforcement Learning (RL)

Natural organisms display adaptation in many ways. We have briefly mentioned the process
of evolution by natural selection, thought to be responsible in some part for the diversity of
form and behaviour observable in the natural world. Other forms of adaptability affect the
phenotypes. For example, the ontogenetic processes of development by which the phenotype
is created from the genotypic encoding adapts to changes in its environment, and such
plasticity of growth can generate many different forms from the same genomic starting point.
In addition to the adaptation of evolution which takes place over many generations, animals
also adapt through learning within their lifetime. The study of learning provides another

starting point for the simulation of adaptive behaviour.

Learning mechanisms can be categorised according to whether they are supervised or
unsupervised. Supervised learning implies the concept of teaching by example; the learner is
presented with examples for which the correct result is known, and after atraining period can
then predict results for new observations. In unsupervised learning an agent learns through
interaction within its environment. Reinforcement learning is one such unsupervised learning
methodology®, which draws upon biological examples and is represented by a number of

different classes of algorithm.

1.3.1 An Overview of Reinforcement Learning
Skinner, the behaviourist student of animal learning, built on the work of Thorndike and

others to develop a theory of learning known as operant conditioning. In operant
conditioning, an animal learns to associate a reward (an unconditioned stimulus (US) —i.e.

something the animal innately ‘desires - such as food) with performing an action (an

® RL in single step problems is very similar to supervised learning, however, in RL the solutions are not directly
manipulated to reduce observed error.

20

unconditioned response (UR)). A conditioned stimulus (CS) such as alight is also presented
at the same time as the US. After a training period the animal will produce the UR in the
absence of the US upon perceiving the CS. Thisis contrasted with the experiments of Pavlov
in classical conditioning in which an US that trigger s a companion UR (e.g. as the perception
of food triggers a dog to salivate) is presented at the same time as a CS, and after training the

animal will produce the UR upon the presentation of the CS alone.

In essence, operant conditioning is learning by trial and error. The animal learns to associate
a combination of environmental cues and behaviour with a reward. Thereafter it is more
likely to perform those actions that lead to higher reward in that particular environmental

state.

This is the model followed in reinforcement learning. The environment is presented to the
learner in some unambiguous way, so that the same environmental state can be recognised
when it is encountered again. There is aso some measure of reward from the environment.
In response to the environmental information, the learner chooses an action according to its
policy. After following the action advocated by the policy, the environmental state and

reward are again supplied to the learner.

For the value of an environmental state to be determined, the environment must be rendered
in some way into distinct states. The state signal cannot be expected to inform the learner of
all useful information about the environment, but it should summarize past states compactly
so that all relevant information necessary to make optimal decisions is presented to the
learner. Such a state signal is said to have the Markov Property, or to be Markov. More

formally, if the state has the Markov property, then the environment’s response at time t+1

21

depends only on the state and actions representations at timet. The environment asawholeis

considered Markov if thisistruefor all environmental states.

Modern reinforcement learning implementations can be divided into three approaches. The
earliest, dating from the work of Richard Bellman in the 1950s, is dynamic programming
(DP). Dynamic programming requires that a model of the environment is perfectly known in
order to iteratively estimate the value of states. For this reason (and its great computational
complexity) it is of little utility in the problems considered herein where an entity has no a
priori knowledge of its environment. The second approach is known as Monte Carlo methods
which do not require a perfect model but can learn from experience. Monte Carlo methods
build knowledge in an episodic fashion — they require that a sequence of steps between
Markov states has a defined termination, at which point the values of the states |eading to that
final state can be calculated. Since this may not be true in the case of a robot that has to
continually perform tasks, and should optimise its behaviour along the way without the

concept of episodes, Monte Carlo methods are not dealt with further in this thesis.

The third approach is a synthesis of Monte Carlo methods and DP, and is known as Temporal
Difference (TD) learning. It requires no perfect model, and can update value estimates as new
states are experienced, guessing the values of states from other guesses. The values estimated
are either the values of states themselves V(s), or the values of taking a particular action when

in a particular state Q(s,a).

TD methods can be divided into two categories. On-policy methods evaluate the values of a

policy while using it for control. Off-policy methods use a different policy to choose their

actions from the one which is being eval uated.

22

Sarsa [Rummery1995] is an on-policy TD control method which learns an action-value
function rather than a state-value function. Asit learns the value of state-action combinations,
it can be used to control an agent’s movements around an environment. Its update function is

given below;

Qlst.ar) 80 Qlst,ar)+afras +1Q(st+1,841) - Qlst. 2)|
in which a is the learning rate, 7y is the discount rate (both in the range [0,1]), and r is the
reward from the environment. Sarsa getsits name from the tuple (s, a;, r, S+1, &+1), Since al
elements are used in the update equation. It has been proven that Sarsa will converge to the
optimal policy given that all state-action pairs are visited and their corresponding Q values are

updated indefinitely.

Q-learning [Watkins1989] is an off-policy method. The learned action-value function Q
directly approximates the optimal action-value function, Q*, independent of the policy being

followed.

Qls2) 910 Qls)+ i +ymaxQlse acea)-Qlsc)|

In contrast to Sarsa which updates Q(s,a) for the policy it is actually using, Q-learning
updates Q(s,a) for greedy policy with respect to the current Q. Sutton and Barto [Sutton1998]
show an example in a simulated grid-world problem called ‘Cliff Walking' in which Q-
learning might achieve worse results than Sarsa due to its off-policy action selection. The
reader is directed to Sutton and Barto’'s excellent book [Sutton1998] for further details on

reinforcement learning.

In summary, reinforcement learning presents methods which allow for online learning of
optimal behaviour. This would clearly be useful in problems of controlling robots. One

problem with Sarsa and Q-learning is that they need to maintain Q-values for every state-

23

action combination. If the state-action space is large, this may not be efficient. Furthermore,
the necessity to render the environment into uniquely identifiable Markov states requires that
these methods should either have an artificial a priori discretisation imposed upon the
environment, or that some external generalisation mechanism is supplied which will perform
additional unsupervised learning in order to collate real-valued sensor data into a smaller
number of discrete states. We shall see some examples of robotic applications and the ways in

which these problems have been addressed in Chapter Three.

There now follows a brief overview of some work in which reinforcement learning has been

used in problems with multiple goals or objectives.

1.3.2 Reinforcement learning for Multiple Objectives
Mariano and Morales [Mariano1999] present work in which they used multiple co-operating

families of Ant-Q reinforcement learners of the type first presented in [Gambardellal995].
Ant-Q is a distributed agorithm for combinatorial optimization using RL to solve the
travelling salesman problem (TSP). Mariano and Morales extend this work to solve a TSP
where there are a number of simultaneous objectives; in their application, thisis an irrigation
system which must be the least cost (i.e. the shortest path), and which places crops
appropriately to the availability of water. They report better results using this method than in
a comparable treatment where the irrigation system was optimized first, and crop placement

second.

Crabbe makes the point that, in the case where an animat has multiple objectives to satisfy
simultaneously, this cannot be optimally achieved through having separate Q learners for each
objective [Crabbe2001], with the one with the highest activation determining the animat's
action. He considers the example of arobot that has two objectives, which can be satisfied in

any order; getting power, and getting a building block. If the environment is dynamic, there

24

is a chance that conditions will change while seeking one goa such that the other goal can no
longer be achieved - another robot might consume the battery, for example. Using Utility
Theory, Crabbe shows that the best course of action is not only dependent on the expected
value of the outcome, but is also dependent on the probability of success. Smply stated, in
order to maximise the overall utility, sometimes one should pick the low-hanging fruit,

although they may be lessjuicy!

In order to solve such problems, Crabbe [ibid.] states that one could either combine the output
of a number of Q-learners, or have one Q-learner that can manage multiple simultaneous
goals. He examines the latter case, and goes on to show that while Q-learning systems
typically use a linear scalar reinforcement function, there can be circumstances in multi-
objective problems where such a function cannot be used if the fitness landscape in respect
for either of the objectivesisnot monotonic. However, a bi-linear function can be used with a
single Q-learner since such a function is non-linear in respect to the combination between its

linear variables.

Gabor et al. [Gabor1998] have considered similar multi-criteria sequential tasks. Examples of
such tasks would include situations where a robot has to perform a number of tasks, but the
way in which it performs task A can lower the value it will receive from performing task B.
The example they give is of ‘Buridan's Ass’; placed between two dishes of food its hunger
drives it to one or the other, but in doing so it raises the possibility that the food on the other
dish will be stolen. Since the ass tries to optimize his overall utility, he guards both dishes,

thereby eating nothing. He therefore has two different conflicting objectives.

Gabor et al. present a method of determining how to mix behaviours such that the total loss

due to conflict is reduced, without reducing the problem to a scalar-valued reinforcement

25

case. Using a vector-valued reinforcement signal is possible if policies are compared
component-wise; but as noted above by Crabbe, this may in some cases give sub-optimal
solutions. An alternative approach is to use the weighted sum of the components using their
evaluation functions; this approach reduces to the scalar-valued reinforcement case if the
discount factor is the same for each criterion. They present a method that uses the framework
of abstract dynamic programming, with vector-valued reinforcements, which can be used
when there is no natural weighting between the components, and demonstrate its abilities to
learn against a number of different players in the game of tic-tac-toe, its criteria for optimality

being both winning, and reducing the number of moves made.

Mannor and Shimkin [Mannor2004] also consider the case of vector-valued reinforcement in
a dynamic environment, but they use a geometric approach to steer the learner through the
space of possible policies until it is within a target region. This approach is based upon the
theory of approachability for repeated matrix games with vector payoffs. Consider the task
of athermostat, which can be viewed as navigating through a one-dimensional space to stay
within certain bounds. More criteria increase the dimensions of the space through which the
controller moves, the target region being the bounded n-dimensional space where all variables
are within acceptable limits. Note that this work deals with multiple criteria optimization,

rather than multiple (conflicting) goals.

1.4 Learning Classifier Systems

From the production systems that stemmed from GPS came classifier systems, first described
in the form of CS1 (Cognitive System One) by Holland and Reitman [Holland1978].
Classifier systems added the concept of schemas to the production rules, thereby alowing
generality in matching. Within the system proposed by Holland and Reitman there were two
forms of learning; a ‘simple learning process and a ‘...more complex learning algorithm’.

26

The latter was the GA which Holland had previously described [Holland1975]. The former is
briefly described;
‘When a reward enters the system ...the predicted payoffs of the currently
activated classifiers are then modified to reflect their accuracy in
anticipating this reward. Those predicted payoffs that were consistent with
(not greater than) this reward are maintained or increased; those that
overpredicted are significantly reduced...’” [Holland1978, emphasis added]
CS-1 will not be described in any detail here, although we will return to it later. Instead,
below is presented a brief (and greatly simplified) overview of Holland's ‘Michigan style
Learning Classifier System (LCS), as the systems which stemmed from CS-1 became known.
Michigan style LCS [Holland1986] apply a GA to a population which is a set of rules, or
‘classifiers’. The whole population functions essentially as one production system. Thisis
in contrast to * Pittsburgh style’ LCS [Smith1980] in which the population is a set of rule sets.
Each individual, then, functions as a production system, and is evaluated by applying it for a

short length of time to some problem and rating its performance.

Although Pittsburgh classifier systems are more firmly grounded in GA theory, Michigan
classifier systems have an additional mechanism of credit assignment resembling online
reinforcement learning. For this reason they are likely to learn quicker, since they do not
require the performance of every individual in a population to have its fitness assessed before

adaptation takes place.

1.4.1 An overview of Michigan-style Learning Classifier Systems
The Michigan-style classifier system operates on a population of rules or classifiers. These

take the form of

27

« Condition; astring of length k drawn from the alphabet {0,1,#} .
« Action; astring of length k drawn from the alphabet {0,1,#} .
» Some measure of the classifier's ‘strength’.
In the condition, a ‘# symbol has the familiar meaning from GAs of ‘don’t care’. In the

action, a‘'# symbol means ‘pass through’. We shall examine the meaning of this below.

The LCS incorporates two types of learning: a GA which searches the spaces of rules,
generating novel rules and increasing the proportion of the population composed of higher
fitness rules, and reinforcement learning which alters the fitness of rules according to their
role in achieving reward. In Figure 1-1 the GA is shown as the ‘Rule Discovery System’, and
the reinforcement learning system is shown as the ‘Credit Apportioning System’. These

components, with the third ‘ Performance System’, are described below.

" Holland states that a classifier might also have an arbitrary number of conditions [Holland1986].

28

LCS

Fule Piscovery
Iystem

I ¢

new "good™
classifiers classifiecs
l | ' .
perceptions Environment
Performance b
System —
actions
Strenagth Current
changes Strengths
Ccredit SApptDrtlnnlng
yovas reinforcements
N I, \ .

Figure 1-1 The main components of a LCS, from Dorigo and Colombetti [Dorigo1998]

Per for mance System.
The Performance System of the LCS consists of three parts.

Interfaces. Environmental input is presented via detectors, and the actions advocated
by the performance system is carried out via the effectors.

Message List. Processed environmental representations of length k in the alphabet
{0,1} are placed on the message list, where they can be matched by the condition part
of the rules. When a condition matches any message on the message list, it places a
message on the message list itself. This message will be the action of the rule. Where
a ‘# pass-through symbol occurs in the action, the corresponding character of the

message matched by the condition is copied at that position.

29

* RuleBase. The population of rules, or classifiers.

The basic execution cycle is thus:

1

2.

Place all messages from the input interface on the current message list.
Compare all messagesto al conditions and record all matches.

For each match generate a message for the new message list.

Replace the current message list with the new message list.

Process the new message list through the output interface to produce system
output.

Return to step 1.

Because the condition of one classifier can be triggered by the message posted by another

classifier, ‘semantic networks of classifiers can be implemented. More general classifiers,

i.e. those with a greater proportion of don’'t care symbols, are likely to be part of more such

networks than more specific classifiers.

The classifier system thus far described does not change in the composition of its rule base

during operation. In alearning classifier system, two further systems are introduced

30

Credit Apportioning System
The credit apportioning system operates via the ‘Bucket Brigade' algorithm, inspired by a

simplified model of economics. This changes the activities in the basic execution cycle
outlined above. In order to get its messages onto the message list when its condition matches
any of the current message list, the classifiers bid in an auction. A classifier's bid is
proportional to its strength, and also to its specificity. The winning classifier pays part of its
strength to the classifiers that posted the messages which its condition matched; the amount
received by such classifiers is the amount of the bid divided (equally in the simplest case)
between them. At each iteration, al classifiers may also pay a tax, and have their strength

reduced slightly.

In this way each classifier can be seen as *...a kind of middleman in a complex economy...
dealing only ‘... with its suppliers — the classifiers that send messages satisfying its condition
— and its consumers — the classifiers that are in turn satisfied by the messages it sends
[Holland1986]. The ultimate consumers are those classifiers that post messages leading to
external actions via the effectors which directly lead to reinforcement signals being received
from the environment. The bucket brigade transfers the reinforcement signal back, step by
step, through the supply chain of classifiers which participated in the eventual action which

led to external reward.

This then provides for online reinforcement learning by the system. However, the ability of
the system to solve problems through the implicit chaining of classifiers in the way outlined
so far depends on the identities of the classifiersin theinitial rule base. In the case where the
initial rule base does not encompass suitable classifiers, the system cannot function optimally.

Holland therefore introduced the third component, the Rule Discovery System.

31

The Rule Discovery System
The Rule Discovery System is similar to a standard GA, as described in Section 1.2.1. The

population of classifiers in the rule base have a chance to reproduce proportional to their
strength, which therefore also serves as a measure of their fitness. In order to preserve
knowledge, the population is not changed generation by generation, but instead a steady-state
GA isused. The offspring of parents chosen by fitness-proportionate selection replace the
weakest members of the population, as the latter are likely to be classifiers which have

participated little in chains of rules leading to external reward.

1.4.2 Why use Learning Classifier Systems for Robotics?
It will be clear from the description of Holland’'s LCS given above that classifier systems can

be very complicated. Holland’s original LCS, and implementations based upon it, proved to
be subject to a number of weaknesses, and difficult to implement. The chaining of rules
together in the bucket brigade was prone to exploitation by very genera rules; arule that is
part of many chains may receive more reward. Dorigo and Colombetti found that their
implementation of the system suffered from ‘.. rule strength oscillation, difficulty in
regulating the interplay between the reinforcement system and the background genetic

algorithm (GA), rule chains instability, and slow convergence’ [Dorigo1998].

Fortunately, there exist today a number of greatly simplified LCS. Stewart Wilson first
introduced such a version of Holland’'s system, which he named ZCS [Wilson1994]. This
was closely followed by XCS, a classifier system based on accuracy [Wilson1995]. In both
these systems the link to the methods created within the reinforcement learning community
was more clearly recognised and implemented. The work in this thesis applies both ZCS and
XCSto problems of learning optimal multiobjective robotic control, and detailed descriptions
of the operation of both algorithms will be given in later chapters. It isthe author’s belief that

there are a number of reasons for choosing a modern Michigan-style LCS for this task, rather

32

than a purely evolutionary method, artificial neural networks, or a pure reinforcement learning

method.

* Unlike a purely evolutionary approach, the addition of reinforcement learning allows
for online learning. Learning is incorporated into the system while the task is being
performed, not episodically after the assessment of al individuals' fitnesses.

* Unlike an artificial neural network in which the weights of the connections between
the neurons encode the learning of the system in a fashion which is difficult to
understand, the rules of the classifier system offer the benefit of interpretability.

» Unlike the implementations of reinforcement learning for robotics, in which the
necessity to render continuous space into a discretised Markov space involves either
apriori decisions about the problem which may be wrong, or the addition of function
approximation mechanisms such as neural networks, an LCS has the ability to

generalise built in.

These points are expanded upon and further explained in Chapter Three.

There now follows a brief description of some work in which the concept of multiple

obj ectives has been tackled within the LCS community.

33

1.4.3 Learning Classifier Systems and Multiple Objectives
The CS-1 agorithm described by Holland and Reitman [Holland1978] includes ‘resource

reservoirs which ‘... reflect simple biological needs...” and ‘... deplete regularly in time'.
The authors note that these internal states could easily be used to model cognitive goals. Note
that the resource reservoirs are not presented to the condition part of the classifiers as the
‘internal environment’, but instead influence the choice of which classifier's action is taken
by the learner. A classifier's chance of being chosen is proportional to the specificity of its
match to the environment, both internal and external, ‘ multiplied by the amount of the current
needs fulfilled by this classifier’s predicted payoff’. The authors outline a simple linear
environment where the system starts in the middle, and can receive at one end a reward that
partialy fills one internal resource reservoir, and at the other end areward satisfying the other
of these two internal needs. One reward is twice the size of the other, and the system is
shown to improve in performance to visit the rewards in the correct two-to-one proportion
while also minimising the number of steps taken to achieve this behaviour. They further

show how the system uses past learning to cope with changing environments.

Dorigo and Colombetti [Dorigo1998] used a novel LCS, Alecsys, to control a robot. The
main thrust of their work was to evolve simple behaviours, and then combine these to produce
more complicated behaviours through a hierarchical system of LCS. A hierarchy isimposed
on a problem and an 'LCS coordinator' isintroduced to select an action from the LCS lower in
the hierarchy. The lower level LCSs are trained or shaped on their task in isolation, and once
an acceptable level of performance is obtained for each lower-level module the rules that it
contains are fixed and no more learning takes place. When this happens the training of the
higher coordinating module is performed. Results were obtained for various

following/avoiding tasks in ssimple environments in which the coordinator switches between

34

different behavioural modules as appropriate. This work will be examined more closely in

Chapter Three.

Llora and Goldberg [L10ora2003] present an approach to Pittsburgh-style classifier systems
which is in itself multi-objective, since they consider at the same time the objectives of
accuracy of the classifiers, size of classifiers, and the generality of the solution. In contrast
with the work presented in this paper, their multiple objectives describe a balancing of
desirable characteristics of the learning system, and then maintaining the Pareto front of
solutions which balance these characters, rather than learning systems solving problems that
have multiple objectives. It is essentially the same as the multi-objective optimization work

mentioned above.

35

Chapter 2 ZCS

2.1 Introduction

The Learning Classifier System, introduced by Holland [Holland1976, Holland1986], was
complicated and difficult to realize. Therefore, Wilson [Wilson1994] introduced the ‘ Zeroth
Level Classifier System’, ZCS. In this he made a number of simplifications to make the
system easier to understand and to implement, ‘while retaining what we deemed to be the
essence of the classifier systemidea’ [ibid.]. The most notable of these simplifications was
the absence of an internal message list; therefore the system has no temporary memory. In
this way, the system cannot act upon information stored in response to previous interactions

with its external environment, nor can it internally generate ‘drives’ or ‘intentions’.

This chapter investigates ZCS, showing that although it was initially believed to be incapable
of optimal behaviour it has been shown to be capable of optimal performance in some
environments, and review some related work in which ZCS's performance has been
investigated. An examination of the use of ZCS in multi-objective problems of increasing

complexity is presented thereafter.
For ZCS to perform optimally, it must have its parameters carefully set [Bull2002a]. We

shall see one method by which such optimal parameter settings can be discovered, and

explore the space of ZCS's performance in relation to the most important of these parameters.

36

2.2 ZCS Algorithmic Description

oo11 Environment
3
vlertn
3 r
DIetectors Effeccors
match
[F]
01
Classifiers Match Set (Reward)
¥011:01 43 [M] Action Set
11X¥¥:00 32 [4]
KOXN:11 14 #011:01 43
001¥101 3% #ogH:11 14 oelon #011:01 43
¥OK1:11 16 jpesmmmm=| go1§:01 27 0018101 27
Gi 1¥01:10 24 #0fi1:11 28 selection
Cover ing —
. Internal
. Reinforcement
R — [&1_,

Previous
Aotion 8ec

Figure 2-1 Schematic Illustration of ZCS after [Wilson1994]

As described in [Wilson1994], ZCS is a Michigan-style Learning Classifier System, without
internal memory (Figure 2-1). It is presented with an encoded representation of its
environment, and may also be presented with a scalar reinforcement signal, or ‘reward’. The

reward is contingent upon the system’ s success.

ZCS contains a population [P] of N classifiers. In Wilson's original formulation, classifiers
have a condition and action part encoded using the ternary and binary alphabets as detailed in
Chapter 1, with the wildcard ‘# allowing generalization. Upon presentation of the binary

encoding of the environment, the subset of [P] which matches is termed the ‘ match set’ [M].

It may happen that no classifier in [P] matches the environmental input, and [M] isempty. In
this case, a process known as covering takes place. A classifier is created de novo. Its

condition matches the current environmental input, each character having a probability P of

37

being replaced by a wildcard character. An action is chosen at random from the set of
possible actions. The new classifier is assigned the average strength of the population, and
replaces a classifier chosen from the population. This choice takes place through roulette
selection on the inverse of the strengths, and therefore it is more likely that a weak classifier
will be replaced in thisway. Cover may also take place if the total strength of [M] islessthan

acertain pre-specified fraction gof the mean strength of [P].

The classifiers which form [M] may be considered as hypotheses on which action to take in
the current environmental state. One action must be chosen from the set of actions thus
advocated. Although a number of selection schemes could be used, roulette selection on the
strengths of the classifiers in [M] is used, such that classifiers of higher strength are more
likely to be selected. In contrast to Holland’s work, no measure of classifier specificity is
involved. All the classifiers in [M] which advocate the same action form the action set [A].

The chosen action is then taken.

Reinforcement in ZCS occurs through redistributing reward through the action sets that lead
to thisreward. A percentage Sof the strength of the classifiersin [A] is subtracted and placed
in an initially empty ‘bucket’. After the action has been taken, a fraction S of any external
reward received is divided amongst the classifiersin [A]. A record is kept of the previous
action set [A].1, and if thisis not empty, the ‘bucket’ is discounted by A and the then divided
equally between its members, . In this way a discounted reward flows back through the
‘implicit bucket brigade’. Additionally, the classifiers which were in [M] but not in [A] have
their strengths reduced by a fixed fraction 7, the tax rate. This causes classifiers which
advocated a different action from the one taken to be penalised. The interaction between the
flow of reinforcement signals from the environment and tax rate will affect the balance of

exploitation and exploration in the learning system, though it should be noted that the

38

likelihood of generation of new classifiers by cover and through genetic ‘churn” will also

interact with this balance.

The ‘implicit bucket brigade’ algorithm outlined above was noted by Wilson to be similar in
some respects to Q-learning [Watkins1989]. However, it is more similar to Sarsa, a TD
method for learning action-value functions rather than state-value functions, as noted in

[Sutton1998].

In addition to the adjustment of strengths through the process outlined above, there is a
panmictic® genetic algorithm that replaces weak classifiers with copies of stronger classifiers.
Parents and replaceable classifiers are once again chosen using roul ette wheel selection. The
new classifiers generated to replace the weak may undergo single point crossover with the
probability y and may mutate at any position in the condition or action part with the
probability of 1 per alele. The GA isinvoked after all reinforcement has taken place with the
fixed probability p. New classifiers generated by the GA are initialised at half their parent’s
strength, and the parent has its strength reduced by a half. Therefore reproduction (in the
absence of the genetic operators) does not in itself change the likelihood that an action will be

chosen.

In Wilson's origina presentation of ZCS, he presented graphs showing that ZCS failed to
achieve optimal performance on the Woodsl maze problem. He suggested that this was due
to failure in balancing exploration and exploitation; in short, the algorithm has found a sub-
optimal solution due to an incomplete exploration of the solution space, and fixated
prematurely upon a solution. He suggested a number of possible enhancements to this
classifier system, and thereafter presented his influential XCS accuracy-based classifier

system in which the simplicity of ZCSislost.

8 Panmictic. Referring to populations in which there are no constraints placed upon breeding.

39

2.3 Related ZCS Work

Since ZCS provides a simpler platform on which to experiment with classifier systems, it has
been used as the basis for work reported in the literature in a number of areas. ZCS has been
used to simulate multi-agent co-evolution [Bull1998, Bull1999]. Recently, Bull [Bull2002b]
has used ZCS as a platform on which to investigate lookahead and latent learning, drawing
inspiration from the sources which have aso driven the development of ACS, the
Anticipatory Classifier System [Stolzmann1998]. ‘Lookahead’ learning refers to systemsin
which the reinforcement is dependent on the ability to correctly predict the environmental
state resulting from taking an action, while ‘latent learning’ refers to the learning that occurs
in the absence of reinforcement and that is not apparent until a reinforcement is introduced.
Tomlinson and Bull [Tomlinson1998] extended ZCS to produce a ‘Corporate Classifier
System’, in which a macro-level evolutionary operator allowed the formation of
‘corporations’ of rules. The resulting corporations — linked classifiers — can take control of
the system for a number of time steps. This was compared against ZCS with a simple

implementation of internal state, as described by Cliff and Ross [Cliff1994].

In Wilson's original paper on ZCS, he mentions the potential to extend the expressiveness of
the classifiers' encoding. Using a simple ternary aphabet in a string, one can only express
logical ‘AND’ relationships between the values of the encoded environment. Wilson
mentions that Koza's Genetic Programming [Kozal991] evolves Lisp S-expressions, and
suggests that such representations might be used for the condition or action of a classifier. A
number of aternative classifier representations have been explored, including Fuzzy Logic

e.g. [Vaenzuela-Rendon1991] and Artificial Neural Networks [Bull2002c].

40

2.3.1 Self adaptation of parameters

ZCS has 10 parameters, the values of which control its performance. Some of these
parameter values are critical to the success of the algorithm, while ZCS is more robust with
respect to others. It would be advantageous if the algorithm could itself discover the settings
which are optimal for the problem at hand. One approach that has been used to automatically
set parameters in Evolutionary Programming [Fogel1992] and Evolutionary Strategies

[Rechenberg1973] isto evolve the mutation rate itself.

A similar method was used by Bull and Hurst [Bull2000b] to set the mutation rate for ZCS.
Each classifier has an associated mutation rate, stored as areal number, and which isinherited
by its offspring. The mutation rate is itself mutated using a Gaussian distribution, and the
resulting mutation rate is applied to the classifier's condition and action as normal. They
showed that mutation rates decreased as the population converges upon a stable solution, and
report that the mutation rates of classifiers close to the goal decreased faster and were fixed

sooner than those of classifiers further down the chain of reinforcement.

In [Hurst2001] they investigated self-adaptation of the parameters associated with the
reinforcement process itself; learning rate S, discount rate A and tax rate 7. Trying to use the
same mechanism as for the mutation rate showed unpredictable behaviour, since the
classifiers adapt their own parameters selfishly, for example by reducing their value of Sto
place less of their strength in the common bucket. To avoid this, the learning rate at timet is
determined by roulette wheel selection upon strength from the learning rates of the classifiers
inthe action set at t.;. Thereverse is true of the discount rate; it is obtained in the same way
from [A] and applied to [A.1]. They showed that self-adaptation of the reinforcement

parameters can be used successfully. Thisis of obvious significance since the optimal settings

41

of parameter values is not generally known a priori, and require considerable trial and error

on the part of the experimenter. However, the authors do not report optimal performance.

2.4 Parameter Sensitivity and Optimal Performance.

ZCS is capable of optimal performance in the Woodsl grid-world in which ZCS was reported
as sub-optima [Wilson1994]. Bull and Hurst showed that ZCS can achieve optimal
performance using a model of its performance based on simple difference equations, and
demonstrated this empirically [Bull2002a]. The crucia difference was in the parameters

which they used, see table 2.1 for a comparison with the parameters used in [Wilson1994].

Table2-1: ZCS Parametersfor optimal Woodsl performance

Wilson1994 | Bull2002a
400 -
0.33 -

20 -
0.2 0.8
0.71 0.02
0.1 -
0.5 -
0.002 -
0.25 -
0.5 -

VMOVRXIS™IPNTZ

It is important to note that the ‘online’ performance of ZCS using these parameters still falls
short of optimality. In order to make a clear comparison with XCS, in which of the alternate
‘explore’ and ‘exploit’ trials only the performance on deterministic ‘exploit’ trials is shown,
Bull and Hurst ran ZCSin a ‘deterministic mode’ at the end of training. During this period,
reinforcement continues, but the GA is switched off, and actions are chosen based

deterministically on their strengths rather than by the use of the roulette wheel.

Bull and Hurst note that it is the fitness sharing in ZCS which enables the algorithm to avoid

over-general classifiers from dominating the population. Consider the case of a classifier

42

which is the action set at the goal, and receives a high payoff, but which also matches an
environmental input far from the goal where general payoff levels after successive discounts
arelow. It might be expected to dominate its fellows in this latter niche in a simple strength-
based system like ZCS. However, when a classifier isin [A] it has its strength reduced by S
times its strength, and all classifiersin [A.1] are rewarded equally from the discounted bucket.

With time, as noted in [Wilson1987] all rule fitnesses tend towards the same value.

ZCS has many parameters. Unfortunately, there is a high degree of linkage between these
parameters, such that it is not necessarily possible to optimise one parameter in isolation from
the others. This makes it difficult to find a parameter set with which ZCS can solve a
particular problem. Bull and Hurst [Bull2002a] further note that, since the implicit bucket
brigade is aform of TD learning, there is a time delay in the operation of the fitness sharing
process, and ‘it is well known that sub-optimal solutions can arise if the lear ning rate and/or

discount rate areincorrect for agiven task’ (emphasis added).

2.5 Single Objective Problem : Woods1

The Woodsl environment shown in Fig. 2.2 isa‘grid world’ consisting of atoroidal array of
5x 5 cells. Each cell may be empty space into which the animat can move, and in one of
which it is placed at the start of each individual trial. A cell may also be filled by a ‘rock’,
which prohibits a move onto that cell, or may instead contain ‘food’. When the animat moves

into the ‘food’ cell, it receives an external reward, and a new trial starts.

Figure 2.2-2 The Woodsl1 grid-world

Each environmental state is encoded by a unique combination of two characters. The state of
the eight cells - starting at North and moving clockwise - surrounding the animat are
represented as the 16 position character string resulting from the concatenation of these two
character representations. In order to match this, the classifiers have a condition of length 16.
The animat can move in one of eight directions. Each of these is similarly encoded as eight
unique strings of three characters, and thus the action part of the classifier has three characters

since a classifier can advocate only one action.

As mentioned above, ZCS is capable of achieving the average optimum steps to goal in this
environment, given suitable values of learning rate 5 and discount rate A (Fig 2.4). All graphs
are the average of 10 runs. Thereisafina deterministic phase lasting 20% of the number of

‘on-line’ trials. The optimum average stepsto goal is about 1.7 steps.

steps to food
o
L

a 2aEa 4@a86a AABA aeaa 18668 126@A
trials

Figure 2-3 Woodsl with parameters from [Wilson1994]

steps to food

o 1 1 1 L 1
a 208 4886 806 2e6a 1806868 12688
trials

Figure 2-4 Woodsl with parametersfrom [Bull2002a]

Figure 2-3 and Figure 2-4 show the performance of ZCS in the Woodsl environment with
Wilson's original parameters and those of Bull and Hurst. The latter enable optimality to be

achieved, as mentioned above in Section 2.4.

45

2.6 Sequential Multi-objective problems.

Given that ZCS is capable of optimally solving the simple Woodsl environment with one
objective, let us now examine multi-objective problems in this environment. Each is of
increasing complexity. As mentioned in Chapter One, several sequential multi-objective

have been examined by the reinforcement learning community.

2.6.1 Woodsl ‘Key and Door’

In the first such extension, the animat must visit a state in the environment before it reaches
the goal. If it does not first visit this state, the trial will not terminate. This can be thought of
as getting the ‘key’ to open the ‘door’ to reward. In order to alow ZCS to ‘remember’
whether the animat has previoudly visited the ‘key’ state, an extra character is added to the
representation of the environment, this character being set from itsinitial state of zero to one
when the animat visits the ‘key’. This can be matched by a concomitant extra character in a
classifier's condition. In Fig. 2.5, the ‘key’ is shown as ‘K’, and the reward state remains

indicated as‘F .

Figure 2-5Woodsl ‘Key and Door’

Again, with suitably chosen parameters, ZCS is capable of solving this problem, as shown in
Figure 2.6. The average optimum number of steps from any position in the environment to

the goal state, going by way of the ‘key’, is approximately 3.7.

46

=
aptinum

El
6
4 W d e W oo By,
1 1 1 1 1 L 1
a S5a8A 18606 15866 EAREA 256aa elalals] 35860 4Aa6aa
trials

Figure 2-6 ZCS optimal for woodsl '‘Key and Door'

Here, the parameters chosen to run ZCS are as follows:

N=800, P,=0.33, $=20, 4=0.97, }=0.17, 7=0.2, y=0.5, 1=0.002, p=0.25, ¢=0.5

2.6.2 Woods1 ‘Carry the flag’

Of course, the above is a rather trivial problem. The animat can only achieve its reward and
terminate the trial if it has first visited the key state. A slightly more complicated variant is
provided by the same environment, in which the ‘door’ is always open. However, the reward
gained is dependent on whether the animat has previously visited the ‘key’ state, being 1000
if it has, and otherwise 1. Once again, an extra character in both environment and classifier
condition allows ZCS to ‘remember’ whether the animat has previously visited the ‘key’ state.

Note that this ‘ state character’ is not set by the classifier itself.

47

14 1468

12 -1 1288

1860

AP A

steps to goal

1 1 1 1 1 L 1
a Saaa 18606 15688 EAREA 25A6A elalals] 35886
trials

Figure 2-7 ZCSoptimal for Woodsl 'Carry the Flag'

Figure 2.7 shows that ZCS can successfully solve this slightly more complicated sequential
multi-objective problem. All parameters remain as for the ‘key and door’ task, except:
£=0.985,)=0.2. As can be seen, stepsto goal falls to the optimum average, and the average
reward gained (windowed over 50 trials) rises rapidly, eventually reaching the optimal 1000

in the deterministic phase.

48

2.7 Concurrent Multi-objective problems. Woodsle

2.7.1 Fixed Cost, Stepwise Reward (woodsle-typel)

It is more interesting to consider the problems faced by alearner which has to juggle multiple
simultaneous objectives. In order to do this, an alteration of the previous Woodsl
environment is presented which not only has a ‘food’ goal, but also has another goal which is
labelled ‘energy’. In a similar fashion to the second sequential multi-objective task, the
environment is presented to the classifiers with an additional character which is set to one if
the animat’s ‘energy level’ is higher than 0.5, and otherwise set to zero. The classifiers once
again have an additional character in the condition which allow them to match this extension

of the environment.

Figure 2-8 The Woodsle environment with two goals

At the start of the trial, the animat’s energy level is set randomly in the range [0,1], so that
alternate trials start with energy levels of less than, or more than, 0.5. The reward function is
step-wise, giving an external reward of 1000 in the case that the animat arrives at the energy
goal when its energy level islower than 0.5, and a reward of 1 if the internal energy level is
higher than 0.5. Conversely, the animat receives areward of 1000 if it arrives at the food goal

when its energy level is higher than 0.5, and is given areward of 1 if its energy level islower

49

than 0.5. This problem and the Woodsle environment were first reported by Bull and Studley

[Bull2002c].

There is no cost associated with movement. ZCS proves capable of optimally solving the

Woodsle environment with no cost of movement and a step-wise reward function.

14 14@@

=teps to goal
optimum steps e
- 1208 FEward -eooe-ee-
pptinum reward ---------

12 - - 1288

- 1188a

1886
L
2 = F - gag
= =
a “
£ - 7ae 2
n hy
L oef - e@o
w
- sa8
4} - 4m8

o) I I I 1 I 1 Ll
5] SEEa 1aBaG 15686 2ZaEaE 258686 ez palal] 250686

trials

Figure 2-9 ZCS achieves optimal stepsand reward in Woodsle

with stepwise reward function and no cost of movement

As can be seen from Figure 2.9, stepsto goal falls swiftly towards the optimum of 1.7, and the
average reward gained rises to approach the optimum of 1000. In the deterministic phase, the
off-line behaviour of ZCS shows that the optima have indeed been reached. All parameters

remain as for the ‘key and door’ task, except: S= 0.85, y= 0.05.

50

2.8 Achieving Optimality

As Bull and Hurst discussed, the most important parameters in determining the optimality of
ZCS's performance are the learning rate [3 and discount rate A. The other parameters are of
varying importance; clearly, too high a rate of genetic churn due to y, ¢ and o might be
deleterious to the stability of the system, while too low a rate might make the discovery of
solutions less likely due to incomplete exploration. However, it would appear from the
experiments described in this thesis that the other main parameter upon which optimality
depends is population size N. Cliff and Ross discuss the role of N in relation to their work on
ZCSM; ZCS having internal registers that may be set through an additional ‘internal’ action
part of the classifiers, and which are matched by an additional ‘internal’ condition. As the
number of possible combinations of state and action increases, so a larger number of
classifiers is needed in order to represent all combinations of state and action. Since ZCS
seeks only the highest reward combination of states and actions, it is not necessary for all
state-action combinations to be represented; instinctively however, it would seem that for a
given problem there must be a happy medium that allows exploration though genetic churn
and cover, yet smultaneously allows the maintenance of good candidate solutions in the
population. In summary, in the author’s experience, the main parameters which must be

adjusted from Wilson's original settings are primarily S and A, then N, and less importantly y,

Mand p.

Given that, for a sufficient value of N one can hope to find optimal performance through the
manipulation of Sand A, it must be hoped that finding the ‘sweet spots' in the space of ZCS
performance with respect to these parameters are not akin to finding a needle in the proverbial
haystack. If the performance landscape is rugged there is little hope of hitting upon optimal

parameter settings.

51

2.8.1 Exploring the Performance Landscape.

Given that ZCS can solve the single objective Woodsl task with a population of N = 400, a
population of 800 was used in the dual objective problems described above. Thisis because
the problem may be seen in crude terms as two over-lying Woodsl trials, where the goal isin
either one position or the other (see Figure 2-10 and Figure 2-11). Since the extra
environmental character representing the value of the internal energy level compared with the
threshold value of 0.5 effectively determines which goal is optimal at any time, it may be
impossible for a classifier to generalize with respect to this character in some environmental
states and ill lead to the optimally parsmonious solution. In fact, examination of the

environment shows that only three states’ can be optimally generalized in this way.

Figure 2-10 Optimal movesin Woodsle Figure 2-11 Optimal movesin Woodsle
‘energy tria’ ‘food trial’

Given the linkage between the parameters S and A, it is difficult to hit upon the combination

which will optimally solve a given problem, since one cannot adjust either in isolation.

One approach then is to explore the whole space of these parameters, iterating through the
various combinations of £ and A with large increments between successive settings of each.

This gives a coarse-grained view of how the performance of ZCS varies with respect to 8

° Numbering from the top left = 0, 0, the cell at 2,4 can be generalized to * South', 1,4 to ‘ Southeast’, and 3,4 to
‘ Southwest’

52

(learning rate) and A (discount rate), all other parameters being constant, and these views are
intended to illustrate general trends. Figures 2.12 and 2.13 show respectively how the
number of steps to goal, and reward gained, are influenced by these combinations of
parameters. All points are the average of ten runs. Coloured contour lines on the X, y plane
are b-spline interpolations of isometric values on the surface. All experiments have: N=800,

P,=0.33, =20, 7=0.2, x=0.5, 4=0.002, p=0.25, ¢=0.5.

steps to goal
varying learning and discount rates

steps ——
3

2.5 —
[—

steps

3.6
3.4
3.2

2.8
2.6
Z.4
2.2

1.5

dizcount
rate

learning
rate . 0.9 0.1

Figure 2-12 Coarse-grained exploration of stepsto goal w.r.t. learning-rate and discount-rate in Woodsle
with stepwise reward and no movement cost.

53

reward
varying learning and discount rates

reward —s—
950 ——
gy ——
850 ——

reward

1000
Qa0
960
L]
Q20
Q00
a0
60
o
gan
1]

dizcount
rate

0.5

learning 0.7
rate 0.8 0.9 0.1

0.6

Figure 2-13 Coar se-grained exploration of reward gained w.r.t. learning-rate and discount-ratein
Woodsle with stepwise reward and no movement cost.

These graphs reveal that, for all values of £, the average steps to goal in the deterministic
phase reduces towards the optimum with lower values of A. Lower values of A decrease the
amount of reward that flows back via the implicit bucket brigade to niches further away from

the goal states. This may encourage more parsimonious solutions.

In contrast to the ssimple gradient we see with respect to steps to goal, the landscape with
respect to average reward achieved in the deterministic phase is more complex. Here we see
there is a plateau of optimality, irrespective of A, for high values of 8 As £ drops, the
landscape becomes more rugged; there is a higher degree of epistasis between S and A with
respect to reward than to steps to goal, allowing some points to achieve optimality while their

near neighbours are distinctly sub-optimal.

In order to see where good candidate combinations of S and A might be found, we may
examine some measure of the overall performance of ZCS, taking into account both steps to

goal (S) and the reward achieved (R).

Performance = ((Rav / Ropt) + ((Sopt - | Sopt — Sav |)/ Sopt)) / 2

Where Ra is the experimental average reward, Roy i the theoretical optimum reward, Sy, iS
the experimental average stepsto goal, and Sy iS the theoretical optimum steps to goal.
Graphs of performance are presented with the axes of discount rate and learning rate swapped

for clarity.

Performance
varying learning and discount rates

performance —s—
0.

0.5 —
07—

0.5 —

k=3
o
N I I

W

0.4

dizcount . T learning
rate v il) rate

Figure 2-14 Performance of ZCSin Woodsl with stepwise reward and no cost of movement,

for varying learning rate and discount rate

55

Noting the change in orientation of the axes, Figure 2.14 provides a clearer picture. We see
that, for this problem and for N = 800, optimal combinations of Sand A are most likely to be
discovered where A is near to 0.1. It is reassuring that the landscape appears to be quite
smooth at this resolution, implying that it should be a relatively easy matter to discover

combinations of Sand A which give optimal performance.

The area which is suspected to hold optimal candidates for S and A is next searched at a
higher resolution, and the search is thus focused on a sub-set of the parameter space where

reward achieved was on the optimal plateau noticed above.

steps to goal
wvarying learning and discount rates

steps
2.3 —
2.2 —
21—

1.9 —

steps

24
2.3
2.2

21

19—
1.8 -

1.7

rate

learning
rate ¥ .5 o

Figure 2-15 Homing in on optimal settings of lear ning rate and discount ratein Woodsle

with stepwisereward and no cost of movement, w.r.t. average stepsto goal

Once again from Figure 2.15, the same decrease towards optimal steps to goal is seen as

discount rate is decreased. It would appear that the landscape is more rugged at this higher

56

resolution, though it should be noted that the scale of the z axis is reduced. Clearly, the best

solutions with respect to steps to goal are to be found where A islessthan 0.1.

reward
varying learning and discount rates

reward

a5 ———
g6 ———
Q4 ———

Qo ———

reward

1000

S50

S50

S0

20

00

o]

0.7

learning
rate

Figure 2-16 Average reward gained.

The same plateau is visible with respect to average reward gained (Figure 2.16). However, it
is noteworthy that, in this more detailed investigation, there appears to be a rapid fall-off in
reward as very low values of A are approached. Once again, high values of S would appear to

be advantageous.

57

Performance
varying learning and discount rates

performance

0.9 ——
0.9 —
0,85 ——

performnance

Ll s ool
[= = e - e R R o T
I Y Y

o _ocooo _ o000

dizcount learning
rate 0.35 . rate

Figure 2-17 Perfor mance.

The fall off inreward at the lowest values of A causes a decrease in the overall performance of
the system, as shown in Figure 2.17. From this graph it appears that a promising area for
further investigation lies where [varies between 0.5 and 0.95, and A is around 0.05. These

results are presented in Figures 2.18, 2.19, and 2.20.

58

steps ——
1.85 ——

1.8 —
1.79 —

o
k=3
k=3
I N A Y N B |

Figure 2-19 Reward.

Performance
varying learning and discount rates

performance
0.5

0.87 ——
0,96 ——

0,94 ——
0892 ——

0.9 ——
0.9 —

perfornance

0.99

k=3
w
£
T Y I

dizcount
rate

learning
rate

Figure 2-20 A ridge of near optimal performance, with peaks.

Using this method of successive refinement of the search of the parameter space, it is possible
to find the combinations of £ and A which produce the best performance for a problem, with
al other parameters fixed. As mentioned, it is reassuring that points in the parameter space
seem seem to resemble more closely their near neighbours than they do more distant points,

which underpins hope for success through this process of stepwise refinement.

As mentioned earlier, the other parameters that have found to be of importance for ZCS to
attain optimal performance are population size, and the rate of genetic churn. As a simple
exploration of how ZCS responds to these factors, we will briefly investigate the parameter
space of population size against mutation rate. With P,=0.33, $=20, =0.85,)=0.05, 7=0.2,
Xx=0.5, ¢=0.5 and p=1, so that the GA is triggered on every cycle, different values of N and

L,are explored (see Figures 2.21 and 2.22).

60

steps

perfornance

1

0.95

0.9

.85

0.8

0.75

-
200

steps to goal
varying population size and mutation rates

steps

e
=N

)
population size

Figure 2-21 Stepsto goal in Woodsle with stepwise reward and no movement cost,

with varying population size and mutation rate.

Performance
varying population size and mutation rates

performance
0.95

0.9

0.83

mutation rate 0.33 £ population size
i 800

Figure 2-22 Performance with varying mutation rate and population size

61

Once again, it is useful to note that the landscape is smooth. Predictably, a higher mutation
rate causes more del eterious effects with smaller populations than in larger ones. Differences
in performance due to changing population size are less pronounced with lower mutation

rates. Thisis presumably because there is a dilution effect with larger population sizes.

2.9 Moving towards real multi-objective problems.

The experiments above were carried out in the ‘Woodsle’ environment where the reward
received upon reaching either goal state is proportional to the animat’s ‘energy level’, and

when there is no cost associated with movement.

Clearly, such a scenario is unrealistic. We shall now examine the performance of ZCSin the
Woodsle environment where the animat’s energy level is affected by the movements it
makes, and where the reward it receives varies in direct proportion to its energy level. As
before, an additional 20% extra trials are performed at the end of an experiment in

‘deterministic mode’ to show the underlying best performance achieved by ZCS.

2.9.1 Dynamic Cost, Stepwise Reward (woodsle-type2).

A cost of 0.01 ‘energy points is now associated with each move made by the animat. This
cost is deducted from the animat’ s internal energy level after it has been assessed whether the
most recent action has brought an external reward, and if so, what size the reward should be.
Thisis important; if the animat is charged for moving before the potential reward is assessed,
the environment is rendered non—Markov in those trials where the internal energy level is
0.51. The animat movesto the ‘food’ state ‘expecting’ a high reward since the energy level is

above 0.5, but this decision causes it to receive alow reward (see Figure 2-23 and Figure 2-24

62

below for a comparison of these treatments). All other details remain the same as in the case

with no cost of movement.

As can be seen from Figure 2-23, ZCS proves itself to be capable of solving this problem

optimally, with N=800, P,=0.33, $=20, £ = 0.85, y= 0.05, 7=0.2, x=0.5, 1=0.002, 0=0.25,

1 1488
steps to goal
optimum steps e
q 1=ae reuward -
pptimum reward ---------
e - 1288
- 11@8a
1 % 1888
o e T it e LT
- @@
g ° - g@a
o o
s [
v - 7aa %
& <
£ T - e@@
in
- Saa
T - 4@@
k - 2@8
2 r s e TP L N A zon
- 1a8@
=] 1 1 1 1 1 | I
a Sean laooa 156008 capma coema jedelzlolc] jed=tz o]t
trials

Figure 2-23 ZCS achieves optimal steps and reward in Woodsle

with stepwise reward function and cost of movement

63

14 1488

steps to goal
optimum steps e
q 13ee reward ---------
pptimum reward ---------
Er - 1288
- 11@8a
1e L T ; & 1888
L W A e
- @@
5 - g@a
: o
¢ [
M HrFem 2
3 z
ier - e@@
in
- Saa
T - 4@@
- 2@8
2 [b, - -
- 1a8@
| I ! L 1 1 1 1

=]
@ j3c]c 1] 1aaaa 1588a cegaa £Seaa jegclclalz] 35088
trials

Figure 2-24 ZCSfailsto achieve optimal reward with identical parameterswhen the cost

of movement isimposed before assessing whether areward has been gained.

2.9.2 Dynamic Cost, Continuous Reward (woodsle-type3).

In afurther effort to make the simulation more like the problem faced by areal robot, ZCSis
now set the task of finding an optimal solution to the Woodsle problem when its energy level
is altered by its movements, and where the reward received upon arriving at one or other goal
state is directly proportiona to the energy level, rather than varying in a step-wise fashion
according to the energy level as has hitherto been the case.

At the ‘energy’ goal Reward = 1000.e

At the ‘food’ goal Reward = 1000(1-€)

Where e is the animat’s internal energy level which varies between zero and one. As before
thisinternal energy level is set randomly at the start of each trial, such that approximately half
the trials will start with e < 0.5. Asin the previous experiment, a cost of 0.01 ‘energy points

is deducted for each move made by the animat in the grid-world. The animat’s energy level

64

is not allowed to go below zero. As in the preceding experiments, the real value of the
internal energy level ishidden from ZCS, and is presented as an extra environmental character

set to one if the energy level is above 0.5, otherwise zero.

While the optimum steps to goal remains 1.7 as in the other parallel multi-objective tasks in
the Woodsle environment, the optimum average reward is no longer 1000 due to the dynamic
reward. If the energy level at the goal stateis above 0.5, achieving the correct ‘food’ goal will
gain a reward in the range [1000, 500]. The same is true when the animat correctly reaches
the ‘energy’ goal with its energy below 0.5. Assuming an equal random distribution of initial

energy levelsfor trials, the average reward for successis 750.

As will be seen from Figure 2-25 and Figure 2-26, ZCS is capable of producing performance
that approaches optimality, but a parameter set could not be found which produced both
perfect reward, and also a perfectly parsimonious solution. Thisis discussed in section 2.10.
The results presented in Figure 2-25 and Figure 2-26 were produced using the same settings

as reported in 2.9.1 above, with the exception that in Figure 2-25 =0.975, A=0.775, and in

Figure 2-26 3=0.98, 1=0.425.

65

14 T T T T T 1200
steps to goal
optimum steps
—{ 1100 A reuard
timun reward
12 —
—{ 1000
— SO0
10—
— 500
= Fo0
= 8
o
o =]
i
2 —eo0
a z
]
N — 500
=1 400
4 -
— 300
MWMWWMMWMWWW — 200
-
= 100
o 1 1 1 1 1 o
) L0000 20000 FO000 0000 SO el
trials
Figure 2-25 ZCS achieves optimal reward with sub-optimal steps.
14 T T T T T 1206
steps to goal
optimum steps
— 1100 A reuard
timum reward
12 —
— 100
—1 900
10 —
— 500
— 7o
= 8
o
o el
i
] — 600 T
a z
=z
w6 — 500
— 400
4 —
— 300
[N e i
A i e e, M s s SRR
— 100
o 1 1 1 1 1 o
) L0000 20000 FO000 0000 SO el

trials

Figure 2-26 ZCS achieves optimal stepsto goal with sub-optimal reward

It is important to underline the difference between this experiment and the preceding ones.

Here the reward is dynamic and dependent on the learner’s actions; the reward is not only

66

dependent on deciding which goal to go to, but aso upon achieving this goal in the minimum

possible steps.

2.10Exploration of the Parameter Space.
An exploration of the parameter space for the experiment with cost of movement and stepwise

reward showed this surface to be very similar to that with no cost of movement. For that
reason those results are not presented here. Thisisin contrast with the parameter space for
the experiment in which there is a cost of movement and the reward varies in proportion to

the internal energy level.

Finding a set of parameters which would allow ZCS to optimally solve this problem was a

time-consuming process. Figure 2-27 through to Figure 2-35 show some part of this process.

steps to goal
wvarying learning and discount rates

steps
2.6 —
2.5 —
24—

Y —

L)

()

o
I I O |

dizscount
rate

0.58

learning
rate 0.96 0.64

Figure 2-27 Search One: steps

67

reward
wvarying learning and discount rates

reward ———
T —
T ——
70—
ae) —
670 ——
reward B60 ———
T4 -
730 —
720 —
710 —
i —
690 —
G50 —
G710 —
6E
G50 —
0.5
0.78
=
0.8 dizcount
rate
(.88
learni 03 o5
earnin .
rate 03 % 0.64
0.95)
Figure 2-28 Search One: reward
Performance
varying learning and discount rates
performance ———
0.75 ——
0.7 ——
performnance
086 =
054
.82 —
0.8
0.75 —
076 —
0.7 —
0.7z —
0.7 —
[—
=
.64 0.8

dizscount
rate

learning
rate

Figure 2-29 Search One: performance

68

Figure 2-27, Figure 2-28 and Figure 2-29 present the results of an initial scan of a sub-set of

pointsin the space of fand A. Earlier searches which led to this area are not presented for the

sake of brevity, but had allowed the isolation of this region as a promising candidate for

further investigation.

There appears to be an isolated region of good candidate solutions at approximately 5= 0.9, A

= 0.7, and there is also an area where S is high where performance is good for a range of

values of A. The latter isinvestigated in the next search.

steps to goal
wvarying learning and discount rates

steps

2.8
2.4
2.3
2.2
21

1.9
1.5
1.7

-
0.364 dizcount

rate

learning 0.574 0.975 *

rate 0.978 o

Figure 2-30 Search Two: steps

steps
2.4 —
2.3 —
2.2 —

[p—

1.8 ——

69

reward
wvarying learning and discount rates

reward

o0 T
T —
T —
T
T
oo —
630 —
6a
a7
aal —

dizscount
rate

learning) el i
rate 0.978 0.4

Figure 2-31 Search Two: reward

Performance
varying learning and discount rates

performnance

0.94
052

0.9
0,55
0.86
0.54
0.82

0.5
0.78
0.76

I I I

0.4 o 0064

0.53 0.97
dizcount learning
rate rate

Figure 2-32 Search Two : performance

reward
T ——
Ti ——
Fa —

Fog ——

630 ——
[—

performance
0.85 ——
0.8 ——

70

Figure 2-30, Figure 2-31 and Figure 2-32 explore this ridge of good candidate solutions noted
in Figure 2-27, Figure 2-28 and Figure 2-29. It can be seen from these graphs that there is an
unfortunate relationship between varying discount rate A and steps to goal and performance.
As A decreases, steps to goal becomes more optimal, but the reverse is true for the average
reward achieved. This makesit very difficult to find a parameter set which is optimal for both

stepsto goal and reward.

Figure 2-32 shows that the best compromise solutions exist in the region where discount rate

islower than 0.5, and learning rate is above 0.97. The search process now concentrates upon

this region.
steps to goal
waruing learning and discount rates
steps
1.9 ——
1.85 ——
1.8 —
steps *
l‘lll.“'*’- . ’
1.9 — "‘ \ NI,
1.88 — s fi o
1.8 — ff “i“ ‘\
1.8¢ —) I/"f\
L ‘:-A\“‘ (» S
1.5 —
1,78 "\‘Y .“(X
1.76 — * .
1.74 —
1.7z —
0.4z
"
o dizscount
0.974 rate
0.975 . ot
learning 0.976 e e 0238
rate 0.977 .37

0.975

Figure 2-33 Search Three: steps

71

T
1o
Tl
690
B0
70
Ba0
[itale]
G

I O O B |

0.37 ME_.. £

Figure 2-35 Search Three: performance

72

The surfaces formed in the graphs of steps, reward and performance in Search Three (as
shown in Figure 2-33, Figure 2-34 and Figure 2-35) appears to be proportionally more rugged
than they do in less detailed explorations. However, it should be noted that appearances may
be deceptive — the scales on the Z axis are much reduced from those in the previous figures.

Search Three does not clearly present a single region for further investigation.

As previously noted, there is a clear trade-off between optimal reward and optimal steps.
Those points in the space of £ and A which gave high reward were poor in respect to the
optimality of the number of steps to goal, and vice versa. Reward is dependent on two
factors; going to the correct goal based upon the presented one or zero that shows whether
internal energy is greater or less than 0.5, and the number of steps taken to get there. 1t would
be possible to get the maximum reward by taking more and more steps until the internal
energy level is zero, and then going to the energy goal. In other words, it is possible to
deceptively get a better reward than could be achieved by finding the parsimonious and

‘correct’ solution. Solutions which take extra steps on their way to the energy goa will

prosper.

Higher values of the discount factor A give higher reward, but more steps to goal. Lower
values of A will mean that less reward flows down the implicit bucket brigade to states earlier
in the chain. This explains the link between lowering the discount rate and decreasing the
number of steps to goal. It may be that the link between higher discount rates and higher
reward is explained by the fact that, with less pressure to reduce the number of steps taken,

the possibility arisesto ‘cheat’ in the way outlined above, taking more steps on ‘energy trials'.

It is possible that a parameter set does exist which would allow ZCS to solve thisproblemin a

fashion which is both optimally parsimonious and which gains an optimal reward. Having

73

examined approximately 1250 unique sets of parameter settings, it must be stated that such a
set is very difficult to find and at best solutions have been found which are nearly optimal for

one or the other measure, but not for both.

2.11More objectives.

Having explored the ssmple case of two objectives in the Woodsl environment, complexity is

increased with three objectives. A third objective is introduced, termed ‘ maintenance’.

Figure 2-36 The 'Woodslem' 3 objective environment

Asin the simplest 2-objective experiment, there is no cost of movement for the animat. The

reward function changes dightly to accommodate the third objective.

maintenance
=
L

0 0.5 !}

energy
Figure 2-37 Graphical representation of correct goal
in 3 obj ective Woods problem

74

If the animat reaches the ‘maintenance’ goal and its need for maintenance is higher than or
equal to 0.5, it is rewarded 1000, otherwise 1, irrespective of the internal energy level. If the
animat reaches the ‘food’ goal when the need for maintenance is lower than 0.5 and the
energy level is higher than 0.5 it receives a high reward (1000), otherwise low (1).
Conversely, if the animat reaches the ‘energy’ goal when the need for maintenance is lower
than 0.5 and the energy level is lower than or equal to 0.5 it receives a high reward (1000),

otherwise low (1).

All other experimental details remain as before, except that the condition part of the classifier
is extended by one character which is set to zero if the animat’s maintenance level is lower
than 0.5, and otherwise set to one. The optimum steps to goal*° is approximately 1.8, and the

optimum average reward that can be achieved is 1000.

All parameters are the same as in previous experiments, with the exception of the varying

valuesof A and S.

2.11.1 Results

Figure 2-38, Figure 2-39 and Figure 2-40 show steps to goal, reward gained and overall

performance for an initial search of points across the space of discount rate and learning rate.

19 steps to goal is approximately 1.7 for the two previous goal states, but increases to about 2.1 for the new goal
state, making the overall average approximately 1.8.

75

steps to goal
varying learning and discount rates

discount

rate
0.4

learning
rate)) 0.1

Figure 2-38 Stepsto goal in 3-abjective problem. Search One.

reward
wvarying learning and discount rates

reuar
100 -
S50 —
200 —
850
go0 — 4
750 —
0.9
0.8
>
01) dizcount
- rate
0.4
0.5
learning 0.6 0.7
rate) 0.8
0.8 0.l

Figure 2-39 Reward in 3-objective problem. Search One.

steps
3.5 —
[p—
reward
950 ——
Q00 ———
880 ——

76

Figure 2-40 Performance in 3-objective problem. Search One.

As will be seen, once again there appears to be a large plateau in the space of 3 and A values
which produces solutions having optimal, or near optimal reward. Again, as expected the
steps to goal fall as discount rate is lowered, imposing a greater pressure on parsimony in the
solution. Even though the lowest value of A used in search one was 0.1, it would appear from

these figures that it is unlikely that optimal stepsto goal can be achieved.

77

steps to goal
varying learning and discount rates

2.15

discount

0.5 rate

0.6

learning
rate - o

Figure 2-41 Stepsin 3-abjective problem. Search Two

reward
varying learning and discount rates

reward

Lexiy
850
=)
iy
20
Q00
S50
60
S0
G20

0.15 dizcount

0.5 rate

0.6
0.7

learning
rate . o

Figure 2-42 Reward in 3-objective problem. Search Two

steps
2.4 —
2.3 —
2.2 —

reward
950 ——
Q00 ———
850 ——

78

Performance
varying learning and discount rates

performance

0.8 ——
0.5 —
0.75 ——

perfornance

0.58
0.66
0,54

0.15 T 0.7

dizcount
rate

learning
rate

Figure 2-43 Perfor mance in 3-objective problem. Search Two

Figure 2-41, Figure 2-42 and Figure 2-43 show a finer-grained exploration of ZCS's
performance on the three objective problem in the region that appeared promising in search
one. However, there are no good candidate parameter settings that suggest that further
exploration would achieve an optimal solution. Stepsto goal isstill far from optimal. Further

searches for an optimal solution by adjusting A and S aso failed.

It would appear that ZCS is unable to discover an optimal solution using a population of 800.
It may be possible that it will achieve an optimal solution using more classifiers. Since there
are few opportunities for generalization as discussed in Section 2, adding a second objective
effectively doubles the space of condition-action pairs that must be explored by the classifier
system, adding a third objective triples the size of the single objective problem, etc, so it is

expected that the population required to achieve optimality to be approximately o.N where o

79

is the number of objectives, and N is the size of population required to achieve optimality for

one objective.

Some investigations of the parameter space for larger population sizes are reported below in

Figure 2-44...Figure 2-49

steps

3.8
3.6
3.4
3.2

2.8
2.6
2.4
2.2

steps to goal
varying learning and discount rates

steps
3.5 —

[p—

2.5 ——

0.9
0.8
-
01 discount
rate

learning
rate) 0.8 0.1

Figure 2-44 Stepsto goal, N=1600

80

1600

Figure 2-45 Reward, N

1600

Figure 2-46 Performance, N

81

Figure 2-44, Figure 2-45 and Figure 2-46 show results for N=1600. There is a slight
improvement over the results achieved with N=800 (Figure 2-38, Figure 2-39 and Figure
2-40). It is interesting to note the similarity of these two sets of figures; increasing the
population size effects small changes in the performance landscape, but the general topology
remains the same. Thus areas which appear to hold the promise of good solutions with a
small population may be expected to be equally promising with larger populations. This
implies that the degree of epistatic linkage between population size and the reinforcement
learning parameters is not as strong as the linkage between the reinforcement parameters

themselves. Good settings of S and A for small populations are likely to be good for larger

populations.
varuing learming and discount rates

3"3‘?% —
2.5 ——

steps X

3.8 “

z4 e ‘

2.z - o

dizscount
rate

learning
rate) . o

Figure 2-47 Stepsto goal, N=3200

82

rrrrrr

550

eeeeeeeeeee

Figure 2-49 Perfor mance, N=3200

eeeeeeeeeee

83

Figure 2-47...Figure 2-49 show results for N=3200. Again, there is a dlight improvement
with the increase in population size. Again, the landscapes have a broadly similar topology,
reinforcing the belief that an initial hunt for ‘sweet spots in the parameter space can be
carried out using small populations, and these promising areas then explored more fully using

larger populations.

It may be that optimal solutions could be discovered with these, or larger, populations.
However, to find parameter settings which allow optimality is a time-consuming process. In
order to use classifier systems in multi-objective problems with more than two objectives, the
experimenter may be advised to ignore the simpler ZCS. In Chapter 4 further three-objective
problems are examined using XCS, an accuracy-based classifier system which proves much

more successful at approaching optimality with less tuning.

2.12Conclusions

We have seen that ZCS can achieve an optimal solution in a simple multi-objective problem
in which the actions of the learner change its environment; imposing a cost of movement may
cause the ‘correct’ goal to switch during a trial as the animat’s energy level drops below a

critical threshold.

The surfaces formed from measures of ZCS performance with different settings of discount
rate and learning rate arein all cases quite smooth, and seem to tend towards being uni-modal.
This suggests that in simple problems it should be fairly straightforward to converge upon a

set of parameters which will allow an optimal solution.

We have also seen that an extension to this problem in which the reward is a function of the
internal energy level is much more difficult to solve. The problem appears deceptive,

84

allowing the learner to gain extra reward at the expense of taking further steps to goal.
Although a great number of parameter settings were examined, a solution could not be found

that was optimal both in respect of steps to goal and reward.

The complexity of the simplest task, with no cost of movement and a step-wise reward
function, was increased by adding a further goal. This proved impossible to solve with the
same population size that was successful for the two objective task. Thisis unsurprising. It
appears that using ZCS to tackle these problems is unrealistic, since with the harder problems
tens of thousands of experiments had to be performed to find performance that was near to

optimal.

Although ZCS can therefore produce optimal behaviour in some simple multi-objective
problems, the process of refinement of parameter settings is hardly the basis for a useful on-
line learner, since it requires the assessment of many sub-optimal solutions before the
parameter settings can be adjusted. While some parameters can be self-adapted effectively in
ZCS [Bull2000b], they could not demonstrate optimal performance through the self-

adaptation of Sand A.

85

Chapter 3 TCS : Multi-objective robot control

3.1 Introduction

In the previous chapter, ZCS was shown to be capable of performing some simple multi-
objective tasks. These tasks took the form of various grid-worlds, which provided a scalar
reinforcement signal when an animat, the movements of which were controlled by ZCS in
response to a binary representation of its environment, arrived at one of the various goals. In
this chapter, an adaptation of ZCS is used to address similar multi-objective problems on an

autonomous robot.

The task of controlling a physical agent in the real world presents more complicated
challenges. Unlike a grid-world, the real world is a continuous environment. At each
iteration of ZCS's cycle of sense, decision, action, and reinforcement, the environment is
presented to the population of classifiers, and an action must be chosen. In a continuous
environment, by analogy, the controlling classifier system must be presented with an
encoding of the environment, and the robot moved accordingly. How far should the robot
move? With no ‘grid’ in the world, how often should the world be presented to the

classifiers, thus driving the reinforcement process?

One approach would be to alow the robot to move in fixed increments. The controlling
classifier system waits for the movement to be completed, and the cycle continues. This has
the advantage of simplicity; the continuous environment has been reduced to a grid-world.
However, it raises its own problems. If the fixed-sized increments are too big, it may be that
a problem cannot be solved optimally, or at all. For example, consider a robot moving in one

metre increments in an environment in which parts are less than a metre in size, or in a

86

situation where it isonly half ametre from the goal. Conversely, if the fixed-sized increments
are too small, the solution may be inefficient. For example, consider a robot moving in one
centimetre steps in an environment where it is 10 metres from its goal; a single 10 metre
move cannot be made, and the robot is forced to take 1000 small steps to get to the goal.
Clearly, in order that a learner can solve a problem in the real world in a fashion that is both
efficient and optimal, the size of the incremental moves - and therefore the resolution at
which the environment is experienced - must be adjusted to the characteristics of the

environment in question.

Since the resolution of the actions must be adjusted to the environment in which the learner
finds itself, it would be advantageous if an appropriate resolution could be discovered and if
this discovery could be a function of the learner itself. Furthermore, the learner should be
able to take big or small actions in the same environment, as appropriate. For example, in the
task of driving from home to a friend’s house in a city on the other side of the country, alarge
scale map of the motorways may serve for most of the journey, but towards the end one

requires a smaller scale map of the destination city and its minor roads.

Interlinked with the problem of determining the appropriate scale of movement is the problem
of how fast the cycle of sense, decision, action, reinforcement should be performed. If the
cycle is paused while an action is taken, then the learner is oblivious to any important events
that occur during this time. This would clearly be a handicap in any but the most trivial
autonomous application. Any real robot must maintain the ability to interrupt the movement
it has attempted — it must respond to unforeseen events resulting from an incomplete
understanding of the world, or changes in the world in order that it can avoid potholes and

bumping into experimenters’ legs.

87

This chapter presents an overview of some related work in which learning algorithms are
applied to robotic control problems. It shall be shown that in many cases learning is a slow
process requiring significant a priori decisions to be taken by the experimenter. An
adaptation of the ZCS classifier system is then described in which the scale of movement
appropriate to the environment is automatically determined. This algorithm is implemented

on arobot platform, and is tested in both single and dual objective real-world problems.

3.2 Related Work

3.2.1 Evolutionary Robotics.

There have been many attempts to apply evolutionary algorithms such as Holland's Genetic
Algorithms, Rechenberg's Evolution Strategies, Koza's Genetic Programming, and
Evolutionary Programming to the problems of generating control programs for robots. Most

often, the approach used is that of Genetic Algorithms [Walker2003].

As described in Chapter 1, the approach to developing robotic controllers using simulated
evolution by GAs is to create a population of solutions, which each either directly or
indirectly encode a controller for a robot. Each of these controllers is then tested to evaluate
its utility, or fitness. Since the assessment of fitness is the most time-consuming step,
requiring a physical robot to interact with its environment in what may at first be a quite
random fashion, the evolutionary robotics approach is hampered by the fact that all members
of a population must have their fitness assessed for each generational cycle of the algorithm,
and a number of such cycles may be required in order to converge upon even the simplest
controller. For this reason, much work that purports to describe the evolution of controllers

for robots is done only in simulation.

88

However, there have been some noteworthy examples of the use of evolution on real robots.
In most, simulation is used as a short-cut; after training in simulation, the controller is moved
to areal robot to test the evolved system. For example, Jakobi et al. [Jakobi1995] devel oped
a simulation of the popular ‘Khepera robot. The Khepera has eight IR sensors that also
receive some signals in the visible light spectrum. The simulation was based upon an
idealized mathematical model of the sensors, environment, and kinematics of the Khepera. A
GA was used to evolve neural network controllers in simulation, and these were validated on
the physical robot. Controllers were evolved for some simple problems including light-

seeking and obstacle avoidance.

Jakobi [ibid.] also experimented with the introduction of noise into simulations. Perhaps
unsurprisingly, he showed that when the level of noise in the simulation is similar to that of
the real system, evolution in simulation can produce controllers that work well on the physical
robot. The controller experiences problems when the amount of noise in simulation istoo low
or too high; when the simulation is inaccurate the evolved controllers will not transfer easily

to the real robot.

Nolfi et a. [Nolfi1994] built a ssmulator of a Khepera, though theirs was based on actual
recorded sensor data. They too used this simulation to evolve neura network controllers, and
then transferred to the physical robot to affirm the validity of the evolved solution. They
found that the controller evolved in simulation performed less well on the real robot, but
interestingly noticed that a few iterations of evolution on the real platform adjusted for this,

showing that the simulation had been quite close to reality.

89

There are obvious problems with this approach. As Brooks famously noted; ‘ The world is its
own best model’ [Brooks1986], thereby issuing the rallying cry for behaviour-based robotics
in which behaviour is orchestrated by the interaction of independent but interlinked modules,
with no concept of a symbolic internal model of the world. Evolutionary robotics, perhaps
developing artificial neural control systems, is clearly allied to the sub-symbolic behaviourist
school. However, to build a model of the world in which to develop a controller seems self-
defeating. Rather than have the learner build a model, we have built the model ourselves.
The simulation will most likely only be applicable to a small set of the problem domainsin
which we might like to evolve controllers, and therefore the costly process of building a

sufficiently accurate model must be undertaken again and again.

Also, it may be that there are some classes of robot task we can envisage in which a robot has
to perform a task in an environment which we cannot accurately model or predict. For
example, consider a space-exploration mission. We may define the purpose of the mission —
perhaps to collect rock samples — but we cannot know how the environment will be perceived
before the robot arrives. If our simulation of the unknown istoo inaccurate, we cannot expect

the evolved controller to function as we hope.

Thirdly, there are two goals in the automatic production of robot controllers by adaptive
means. One goal is the production of a controller for a robot without the need to write this
control program ourselves. This goal could be addressed by evolution in a suitable
simulation. The second goal isthat of generating a controller that isitself adaptive —it hasthe
capacity to learn during its lifetime. In order to address this second goal of ‘lifetime
learning’, adaptation must take place on the physical platform even though it is possible that

an earlier training phase could usefully have been in simulation.

90

While it may seem merely a pragmatic approach to shorten the lengthy training process, the
use of simulation in evolutionary robotics is therefore a contentious issue. There are some
examples of work in which evolution of robot controllers has been carried out solely on robot

platforms. Some notable examples are described below.

Cliff et a. [Cliff1993] report the evolution of vision systems. Initial experiments were done
in simulation, and latterly on a gantry robot in which a suspended camera could be moved in
two dimensions. An angled mirror below the camera reflects the image of what is ahead of
the robot. This visual input is pre-processed on a workstation before being presented to the
recurrent artificial neural networks that are the phenotypic realisation of the evolved
genotypes. Each individual in the population consisted of two chromosomes, one specifying
the position and size of three receptive fields within the image, and the other the architecture
of aneural network. Values averaged from pixelsin the receptive fields are then presented to
the input nodes of the neural network, as are bumper information. Artificial evolution was
carried out in three stages of increasing behavioural complexity, with a modified environment
and fitness function being used for each stage. Using this methodology they demonstrate the
evolution of a controller that will approach a white triangle attached to the arena wall, and

avoid a white rectangle.

Floreano and Mondada [Floreano1996] also used a GA to evolve a population of strings of
floating-point numbers representing weights and threshold values of a discrete time recurrent
neural network topology. These controllers were tested on a Khepera, where the inputs to the
network were the values of the IR sensors, and the outputs were velocity commands sent to
the two motors of the Khepera' s wheels. The authors describe two sets of experiments, in
both of which the environment was carefully controlled (for example, there was a single

constant source of light in the room containing the experimental set-up). In the first the robot

91

learnt to walk along a winding corridor without hitting the walls. The evolution process took
at least 50 generations until the best individuals were approaching optimality, and each
generation took about 40 minutes to complete, a total of about 33 hours until good behaviour
had been discovered. In their second experiments, in which evolution continued for 10 days,
the fitness function depended on the distance travelled by the robot — in order to travel far, the
simulated battery which discharged in 20 seconds would have to be topped up by recharging,
which the robot could do by driving over an area of the arena which had a different floor

colour (the floor colour could be detected using a downwards-pointing sensor).

Matellan et al. evolved fuzzy controllers for a Khepera, again to perform the navigation and
obstacle avoidance tasks [Matellan1998]. Similarly to the work of Floreano and Mondada,
the genomes that coded for the fuzzy controllers were evolved on a workstation, and each
individual controller was embodied on the Kheperain order to assess its fitness. There was a
clear improvement as the evolutionary process continued. With a population of 100
individuals being tested for 20 seconds each on the Khepera, over 100 generations, the total

time spent in evolving the controllers was 55 hours, excluding failures and accidents.

Hornby et al. describe a series of experiments to evolve gaits for the Sony AIBO ‘robot dog’
[Hornby1999, Hornby 2000]. In their earlier experiments they evolved gaits for the AIBO,
but found that these were not necessarily robust enough, experiencing difficulties when the
AIBO was on a different surface to the one on which the gait was evolved, or when a
controller evolved on one AIBO was installed on another. The locomotion of the AIBO is
controlled by a central locomotion module, that produces different gaits through the setting of
61 parameters. For the evolutionary experiments, all except 20 were set to constants.
Experiments were performed on two types of surface, one smooth and the other ridged. The

parameters of the locomotion module are set to each of the evolved sets, and the AIBO then

92

measures how far it travelsin seven seconds. The authors suggest that the technique worked
well in that it both developed robust controllers, developed novel, interesting gaits, and
automated a tedious manual process. Each run of 500 generations took around 25 hours to

complete.

Marocco and Floreano used an evolutionary approach to evolve an active vision system for a
Koala robot [Marocco2002]. Active vision is the use of movement to shift objects in the
visual field, making it possible to recognise or disambiguate them. A GA was used to evolve
a population of genomes encoding weights and thresholds in a fixed-topology recurrent neural
network. The fitness of the evolved controllers was assessed on the task of driving around an
arena without bumping into the walls, based on the input of a pan-and tilt camera that
returned a 240 x 240 grid of black and white image information. Each of 25 input nodes
encodes a value from a non-overlapping 48x48 tile of the image. Two additional input nodes
encode camera pan and tilt information. Output to effectors was by two nodes which
delivered real-valued motor commands for forward or backwards velocity, and by two nodes
that similarly set the pan and tilt motors of the camera. Each generation took 1.5 hours, and
after eight generations (12 hours) the best and average performance had been reached,
although evolution was continued until the 15" generation (22.5 hours). The reader is
referred to the book by Nolfi and Floreano for an overview of evolutionary robotics, and

further details [Nolfi2000].

In summary, evolution has been shown to be an effective way of developing simple robotic
controllers. For example, when the genotype is used to specify the weights for a neural
architecture, the direct input from sensors can be used without mandatory pre-processing.
However, evolution requires the assessment of the fitness of many phenotypes. If this

requires the phenotypes to be embodied, the process is slow. Speed-up can be achieved by

93

the use of simulation, but this runs counter to the philosophical and pragmatic reasons for

evolving the controllers.

3.2.2 Reinforcement Learning on Robots.

Reinforcement learning consists of iteratively learning better estimations of the optimal value
function that predicts the best reward that can be achieved in a particular state by taking a
particular action, and that the optimal policy is followed thereafter. In environments with
continuous state or action spaces, the value of an infinite number of state/action combinations
must be stored. This would make learning very difficult, since the learner is unlikely to
encounter any particular situation again. The learner must therefore generalise in some way.
This presents a mgor challenge to the use of reinforcement learning in continuous

environments.

A number of researchers have used reinforcement learning on robotic platforms and a few of
the more noteworthy are mentioned below. Mahadevan and Connell [Mahadevan1991] used
Q-learning to control a robot named ‘Obelix’. The robot’s task was to push boxes across a
room. Obelix was based on a Pioneer robot with a sensory system consisting of eight sonar
units, each with afield of view of 20 degrees, of which four look forward, two point to the left
and two to the right. Each of these sensors can return one of two values, ‘NEAR’ and ‘FAR'.
An Infra-Red (IR) sensor on the front of the robot is switched on when an obstacle is pressed
againgt the front of the robot, allowing the recognition of the state termed ‘BUMP. The
electric current supplying the motors used for forward motion is also monitored. If this
exceeds a threshold value, the robot is determined to be ‘STUCK’. The environment is thus
presented in 18 state bits, comprising two possible value for each of the sonar sensors, and
one each for ‘BUMP and ‘STUCK’. These 18 bits provide 2'® perceptua states;

approximately 250, 000.

94

Motor control outputs for the robot were limited to five choices; moving forwards, turning left

or right by 22 degrees, and turning left or right by 45 degrees.

The robot’s task was to learn the mapping between perceptual states and the five motor

actions such that it could best push boxes around the room.

In initial experiments they attempted to use Q-Learning to develop a monolithic controller
that would encode the state-action mapping. However, this was abandoned in favour of a
modular approach. It was discovered that when reinforcement was based upon ‘a simple
reward function’, reward was obtained too infrequently, but when a more complicated reward
schedule was devised the robot became trapped in local minima, for example, trying to avoid
everything in the room, or to push everything. Also, perceptual aliasing was a problem —
even with its quarter of a million distinguishable states, the robot was unable to tell the
difference between some areas of the environment, ‘boxes often looked like walls in sonar

images'.

Mahadevan and Connell then split the architecture of the robot into three behavioural
modules, applying a ‘divide and conquer’ methodology. The behavioural modules which
would be linked together in the fashion of Connell’s ‘colony-style’ architecture™
[Connell1990] were;
 ‘Finder’. Rewarded when the input contained ‘NEAR’ bits, and punished when
‘NEAR’ bits previously on are turned off. This behaviour was intended to move the

robot towards boxes, and was the lowest level behaviour in the subsumption stack.

1 Also termed ‘winner takes all’ subsumption, i.e. the actions of the robot are those suggested by asingle
module.

95

e ‘Pusher’. This module was intended to learn how to push boxes. A reward was given
when ‘BUMP was on and the robot continued to move forward, with a negative
reinforcement applied when this became no longer true (the robot had been pushing a
box but had then lost it). This behaviour was switched on by the ‘BUMP' bit.

* ‘Unwedger'. At the top of the subsumption stack, this module would start if the
‘STUCK’ hit is switched on. The robot would receive a reward if the *STUCK’ bit
was switched off, and a negative reinforcement should it remain switched on. This
modul e was intended to remove the robot once it had pushed a box into an immovable

object, or if the robot became stuck.

Mahadevan and Connell state that the robot was ‘fairly successful’ in learning these
behavioural modules. The overall behaviour after learning was said to be close to that

achieved by the hand-coded agent.

It is important to note the role of a priori knowledge of the problem in this work. Without a
hierarchical decomposition of the problem into separate modules, Q-learning was unable to
find an adequate solution. Also, the environment was pre-processed and sonar signals were
classified into the categories ‘NEAR’ and ‘FAR’. Since the authors report some perceptual
aliasing, this imposed ‘discretisation’ clearly hides potentially important environmental
information from the learner. However, it is the discretisation which provides the

generalisations that enable Q-learning to be practical in this example.

A similar approach of generalising through the a priori discretisation of continuous data is
used by Asada et a., who have published many works in the field of robot soccer. In
[Asadad6] they tackle what seems to be a much more complex task than the one approached

by Mahadevan and Connell, namely, to use Q-learning to solve the problem of shooting a ball

96

into agoal using video camera input. Once again, the environment is smplified into discrete
categories before being presented to the learner. The ball’s position is classified in terms of
its position as right, centre, or left, and in terms of its size and hence distance as large/near,
middle, small/far, i.e. 9 states. The goal’s position is also quantified in terms of distance and
relative position, and in addition in terms of relative angle (angled away to the left, to the
right, or straight-on), i.e. 27 states. Finally, two states exist for when the ball has left the
visual field to left or right, and likewise when the robot loses sight of the goal. The

environment can therefore be described in atotal of 9* 27*2* 2 states = 972.

The authors do not impose a predetermined hierarchy on the method of solution, and also do
not present complex pre-programmed actions in the action set. The actions available to the
robot are three commands, forward, back, and stop, that can be sent to each of the two motors,

making atotal of 9 actions.

The authors used a sparse reward function, giving a positive reinforcement of ‘1 when the ball
is kicked into the goal and O otherwise’. Once an action has been chosen, the robot continues
to take that action until the environmental state changes, at which point another action is
chosen and the action value function is updated. In this way an action always causes the
transition from one state to another, even though the real distance travelled in order to achieve
this transition might be different in different parts of the environment — for example, in order
to cause the perceived angle of the goa to change, the robot need move less far when it is

near to the goal than when it is further away.

Mahadevan and Connell experienced problems with developing their ‘monolithic’ version of
Obelix when using a sparse reward function (the delayed reinforcement problem), and thus

tried complex reward schedules which resulted in convergence on local minima. It was for

97

this reason that they adopted an a priori decomposition of the task into learnable modules. In
contrast, Asada et al. [Asadal996] increase the frequency of reinforcement by using a
methodology they term ‘Learning from Easy Missions (LEM). Put simply, the robot is
initially started in states from which it might be expected easily to achieve reinforcement, and
thereafter placed into successively more difficult conditions. By using this methodol ogy they
demonstrate impressive results on this difficult problem. They note that in comparison with a
hand-coded fuzzy logic system, the robot learner is less efficient. They suggest that this
might be due to the learner having achieved reward in some cases after taking the wrong
actions, such that ‘the optimal path obtained by the learning method might include detours
[Asadal996]. It might be the case that optimality would have been achieved had the

experiment continued for longer.

In both the work reported by Mahadevan and Connell, and Asada et al, the world has been
discretised according to an arbitrary scheme invented by the experimenters. This approach,
while effective in alowing the learner to build a table of values mapping discrete states to
actions, limits the learner’s ability to deal with different environments. The discretisation
may need to be changed (by the experimenter according to his specialist understanding of the
new environment and learner) to learn the same task in a bigger room. If the discretisation is
too coarse-grained then optimality cannot be achieved, but since Q-values must be established
for every combination of state and action a fine-grained discretisation will result in having to
build a huge map of state-action values, thus impeding learning. The memory requirements
grow, and inefficient use is made of experience — since each state-action value must be
estimated in isolation, no use is made of the fact that states near to each other are likely to

have similar values and similarly optimal actions [Kaelbling1996].

98

In order to address the problem of the combinatorial explosion of state-action values that must
be learned, function approximators [Sutton1998] are widely used to generalize over the state-
action space. Many techniques have been applied, including neural networks, fuzzy logic,

and CMAC [Santamarial998].

Santamaria et al. demonstrate the use of CMAC, or Cerebellar Model Articulation Controller,
in which each input activates some subset of overlapping tiles of the state-action space. The
predicted Q-value is the sum of the values represented by these ‘features’. Clearly, the size of
the ‘tiles controls the generalising abilities, and resource consumption, of the function
approximator. They suggest that there are few problems in which some knowledge is not
available to the designer, and that this knowledge might be used to skew the function
approximator’s resource allocation across the state-action space in order to achieve different
degrees of resolution. They demonstrate good results using CMAC and other methods
coupled with reinforcement learning in some simulated problems. However, as they mention,
the skewing function they used was chosen by hand for each problem; should this skewing
function be incorrect the resolution of the state-action space will not be correctly represented,

impeding or even prohibiting learning.

Thrun and Schwartz [Thrun1993] make the point that since a function approximator
introduces some noise due to over-generalization, when combined with a recursive value
estimation scheme this may preclude the learner from achieving optimality for certain values
of the discount rate . Smart and Kaelbling [Smart2000] show one solution to this problemin
their HEDGER learning algorithm. HEDGER uses locally weighted regression (LWR) in
which training points close to the query point have more weight than those further away. The
function relating weight to distance is typically a Gaussian. When a new environmental

condition is experienced, a prediction of Q-values can be generated based upon similar past

99

experience. They present results in simulation and in a corridor-following robot-based task,
in which they first ‘boot-strap’ the learner by allowing it to passively observe the decisions
made by a training program or human operator, thereby updating its value function. In a
second stage of learning they allow the learner to continue learning while in control of action
selection. They report rapid learning which approaches the best results achieved under
human control. In [Smart2002a] they expand upon this algorithm. Noting from
[Gordon1999] that ‘a function approximator can be safely used to replace the tabular value
function representation if it never extrapolates from its training data’, they check that new
observations are within the training data already seen, and that the predicted value is within
some accurate limits. Should these checksfail, a prediction is returned based upon the locally
weighted average (LWA) instead of LWR. LWA is a function approximator that fits
Gordon’'scriteria. Smart [Smart2002b] shows that the algorithm learns faster when optionally

employing LWR than one that relies upon LWA alone.

3.2.3 Learning Classifier Systems for Robots.

Cliff and Ross discuss results [Cliff1994] using ZCS in a simulated environment with
continuous space and discrete actions of fixed size and Stolzmann presented results using a
simulated Khepera to explore latent learning with the Anticipatory Classifier System (ACS)
[Stolzmann1999] in which the environment was rendered into discrete states before
presentation to the classifier system, but comparatively few accounts have been published on

the application of LCSto the control of physical robots in the real world.

The most widely cited example of robot-based LCS learning is that of Dorigo and Colombetti
[Dorigo1998]. In this work they present a novel LCS, based upon Holland's origina
formulation. They make two classes of enhancement. Firstly, they address some of the

problems in their original implementation of Holland’s system. Secondly, they demonstrate a

100

parallel implementation of this agorithm which increases performance and lends itself to

hierarchical decomposition of the learner to aid learning.

In LCS,, their original implementation of Holland's LCS, they noted the following problems.

Rules oscillated in strength, there was difficulty in regulating the interaction between the

reinforcement system and the GA-based rule discovery system, chains of rules were unstable,

and the system was slow to converge. They addressed these in their ‘Improved Classifier

System’ (ICS) in the following ways;

Overgeneral rules may advocate an action which is good in one state, but bad in
another. In LCS, this resulted in such rules oscillating in strength, which would be
used too often when they predict the wrong action, and not often enough when they
areright. To solve this problem, they introduced the * mutespec’ operator. The system
monitors the variance in rewards that a classifier receives. If aclassifier is judged to
be oscillating (its variance exceeds some user-defined percentage of the population
average), the mutespec operator is invoked. Unlike normal mutation, this changes
‘don’t care’ # symbolsin the ternary condition representation to the specific ‘1’ or ‘0’;
i.e. there is a chance of point mutation to a more specific representation.

In most LCS, the genetic algorithm is called with some pre-defined, fixed frequency.
As Dorigo and Colombetti point out, this frequency must not only be problem-
specific, but also must vary according to the progress of the learning system in
ascertaining the correct classifier strengths. As such, it should be adaptively
controlled. They chose to implement this control on a systemic basis—it is difficult to
see how it could be self-evolving as each individual would selfishly try to increase its
own frequency of reproduction. In ICS the genetic agorithm operates when the

‘energy’ of the system has reached a steady state. Therefore the GA does not operate

101

when the sum of al classifier strengths is either increasing or decreasing over a
sample period, nor when there are many oscillating classifiers.

* InICSto speed convergence and reduce computational overheads very weak rules are
deleted from the population. The rationale for thisisthat such rules are unlikely to be
chosen by fitness-proportionate selection mechanisms, and if chosen would very likely
advocate a less useful action. The authors claim that this speeds convergence since
the population shrinks, and there are fewer rules to iterate through in set-based
operations, thereby allowing faster iteration of the learning algorithm. While this may
be very evident in simulation it seems unlikely to make a great difference in
experiments on real robots where the amount of time to, for example, check whether a
low strength rule matches the environment, is wholly insignificant compared with the

amount of time that the robot takes to physically move from one state to the next.

Having addressed these shortfallsin LCS,, the authors then present a parallel implementation
of the ICS called ALECSYS. They implement parallelism at two levels. At the lower level,
the basic LCSis parallelised. At the higher level, the control system for the robotic tasks is
itself composed of multiple LCS which co-operate in a hierarchical arrangement in which

sub-problems are addressed by separate LCS.

At the lower level, the population within a classifier system is split into sub-populations
which are each handled on a separate processor. Many processes can be carried out without
reference to global properties or lists, such as the composition of match sets. However, some

activities such as the choice of action to be taken are carried out by a single process.

More interesting paralelism is evident at the higher level. Here the authors follow the

familiar ‘divide and conquer’ approach to problem complexity by implementing a number of

102

separate learning modules, each with the task of learning a different behaviour. These can be
trained in ‘modular’ fashion whereby they each have a separate reinforcement function, or
‘holistically’ where the same reinforcement scheme is applied to al modules. In order to
choose an action from the possibly conflicting recommendations of these behaviours, one or
more further ICS are used as ‘switches' which decide which of two modules should have its
recommended action passed onwards towards the effectors, the other being suppressed. In
this way, the architecture produced by Dorigo and Colombetti closely resembles that of
Connéll’s colony-style subsumption architecture [Connell1990] as used in Mahadevan and

Connéll’ s paper above.

Dorigo and Colombetti apply this parallelised, hierarchical system to a number of real robot
control problems of varying complexity. They use two training policies, either to reward the
result (i.e. give reward when some goal is achieved), or to reward ‘the intention’. In the latter,
small rewards are given when an action is taken that is consistent with a predefined model of
the ‘correct’ state-action map. They tested both reward schemes in the generation of a simple
light-following behaviour, and found that on this task performance was better with the reward

the result policy.

In experiments with their ‘AutonoMouse’ robot, the environment was presented in discrete
binary format, for example, a bit can be set to show that alight isin front of one of the eyes.
Four discrete movement commands can be issued to each of the two motors; step backward,
stay still, step forward, two steps forward. There are thus 16 composite actions which can be

suggested by a behaviour module.

While the work presented in [Dorigo1998] isimpressive, a number of points should be made;

103

» Thereis considerable reliance on a priori knowledge of the problem. Thisinformsthe
hierarchical decomposition into behavioural modules, and the training policy used to
reward the intention.

» Discrete inputs and actions are used. In effect, the robot is operating in a noisy grid-
world. Once again, a priori knowledge must be used to establish the size of a‘square’
inthe ‘grid’ in which the robot is operating — how big is a step forward?

* The use of a‘reward the intention’ policy which aids learning by providing continual
reinforcement requires the experimenter to provide a training program that can assess
the quality of each action taken by the learner. For some problems this could be easy
to specify; the authors give the example of a ‘follow the light' behaviour, where
partial rewards are based upon a measure of the light intensity. They state;

‘... that the distance between the robot’ s sensor and the goal should decreaseis simply
a formal statement of the specification of the light-following behaviour.’ [ibid., p. 177]
However, this relies on much more knowledge than a scheme based upon delayed
reinforcements. As the task becomes more complex, the reinforcement program will
become more difficult to write, prone to error and therefore could result in the learning
of behaviours which, rather than solving the overall task, profit from exploiting
unforeseen local minima. Indeed they note that in some comparisons between ‘reward
theintention’ and ‘reward the result’, performance was reduced with the partial reward
strategy, stating that;

‘...atrainer, in order to be a good trainer, needs very accurate low-level knowledge
of the input-output mapping ... in order to give the correct reinforcements.’ [ibid., p.

104]

The reader isreferred to [Dorigo1998] for more details of this work.

104

Bonarini et al. detail a novel system called ELF, a controller based upon the evolution of
fuzzy rules [Bonarini1994, Bonarini1996]. They note that in cases of delayed reinforcement,
rules must co-operate together to solve a problem, but this is at odds with the fact that rules
are competing for reward, may be over-general, and commonly in Fuzzy Logic Controllers
(FLC) contribute to taking actions which are the combination of the recommendations of
many rules matching at the same time (in fuzzy logic terminology these rules are said to have

the same antecedent but different consequents).

Since rules that are triggered at the same time have the same antecedent, they compete with
each other. Rules with different antecedents are triggered at different times, and therefore
may co-operate together. Rather than evolving many complete FLCs — an approach they
liken to Pittsburgh classifier systems, and which they ignore as unfeasible for evolving real
robots — or evolving individual rules in a GA as used in Michigan classifier systems, they
instead partition rules with the same antecedents together considering them to belong to the
same sub-population, and run their evolutionary algorithm on each of these subsets in
isolation. This is similar to the niche GA [Booker1985] as used in XCS [Wilson1995]. |If
there exists too many rules in an ELF sub-population, the worst are deleted, providing a

fitness-proportionate selective pressure.

ELF uses a cover operator, and reinforcement with discounting in a similar fashion to Q-
learning. Thereis dynamic resizing of the population according to measures of whether there
are too many or too few rules. The GA uses only mutation of the consequents (actions) as an
operator, and arule is only considered for mutation if it has sufficient experience and has low

fitness.

105

Reinforcement is carried out at the end of an ‘episode’ — a number of control cycles. The
number of control cyclesin an episode can be predefined, or can be triggered upon reaching a
certain state. During an episode, only one rule in each sub-population can fire, and thisruleis
chosen randomly. Reinforcement is proportional ‘...to a rule’s contribution to the obtained

result’. It also reinforces with discounting the rules that triggered in past episodes.

ELF continues in this way for a number of episodes. When the performance is satisfactory
and the rule base has been steady for some period, the rule-base is stored and a random

mutation is forced.

The ELF algorithm is an interesting approach that attempts to solve a number of specific
challenges. It uses rea-valued input, and in the animat experiments described in
[Bonarini1996] using the ‘FAMOUSE’ agent, discrete actions (the consequents are limited to
seven angles evenly distributed in the range —180° to +180° for steering). The authors
describe good resultsin atask to follow alight. Later extensionsto the algorithm included S
ELF [Bonarini1997], intended to co-ordinate predefined basic behaviours, and were tested on

aphysical robot called ‘CAT'.

The following points should be noted in relation to ELF;

» With random action selection, this may not be suitable for online control, though the
final rule base may indeed produce excellent results. There can be few tasks we
would want a robot to undertake where it could safely learn in such a way.

» Thisalgorithm is not suited to lifetime learning. Each time a rule base is saved, there
are random perturbations and performance drops. It seems well suited to training,
followed by the cessation of learning. In contrast, and as outlined in the Introduction,

the work in this thesis is motivated by the desire that a autonomous learner should not

106

distinguish between a ‘training’ phase in which learning occurs and a ‘ performance
phase’ where no further adaptation is possible. While such adistinction may allow for
the automatic discovery of solutions, it may become rigid and fragile when training

ends since the system cannot adapt to changes in its environment.

Katagami and Y amada report work in which they attempt to speed learning by bootstrapping
an LCS through interactive human training [Katagami2000, Katagami2001]. The
environment is presented to the classifier system as 16 binary characters where the first 8
correspond to the robot’s eight IR proximity sensors, and the second eight represent the
robot’s eight light detectors, these being set to 1 if some predetermined threshold value is
exceeded. The environment as perceived by the robot is presented to the operator who can
guide the actions of the robot using a joystick. If the state-action pair thus generated is not
represented by a classifier in the rule-base, a new matching classifier is created. If thereisa
classifier which matches, its numerosity is increased by one. Their LCS is based upon
Wilson's XCS [Wilson1995]. The learner performs alternating taught and autonomous trials.
They present results which show an improvement in the speed of learning with teaching,

compared with the LCS aone.

One problem with this approach may be that the environment as presented to the classifier
system is represented as, for example, an array of real numbers, which may not be readily
comprehensible by a human operator. In Katagami and Yamada's work, they allow the
human operator to see both video from the robot’s perspective and the sensory data which is
fed to the classifier system. A human trainer using rich video data may be able to discern
environmental cues which are not available to the classifier system which is presented with
much simpler input; this problem will not be apparent in simulation since a visual

representation of a grid world contains no more data than the description of the environment

107

which is presented to the classifier system. However, they show better performance if the

robot is trained with an operator using the easily-understood video, rather than the robot’s

sensory data.

We have seen that evolutionary methods generally take many hours to produce robotic

controllers, unless partially or totally trained in simulation (or trained in real-time by a human

operator). We have seen that reinforcement learning techniques commonly require the

discretisation of the input space, which may compound the problem of perceptual aliasing.

Ideally, a mechanism for producing robot controllers should show the following desirable

characteristics;

Life-time learning to enable the controller to adapt to changes in its environment,
rather than separate ‘train’ and ‘ perform’ phases.

Simulation should not be necessary.

The system should be able to deal with delayed reinforcement. Complex problems
that must be solved by the composition of behaviours may not be easily represented by
a‘reward the intention’ system of continual assessment.

It should not take excessive time to produce optimal, or near optimal, behaviour.

It should not be necessary for the experimenter to decide a priori schemes for
reducing the environment’s complexity, since such schemes may be inaccurate, hide
vital environmental cues, and may stop the controller from adapting to changes in its
environment. Therefore neither the input or output space should be manually
discretised.

The system should be robust in the presence of noise, both externally and internally

generated.

108

TCS — A Temporal Classifier System

3.2.4 Introduction

Hurst et al. presented work in which they applied two classifier systems to problems of
robotic control [Hurst2002a, Hurst2002b, Hurst2003]. They first demonstrate that ZCS can
be used successfully to learn an obstacle avoidance behaviour on a LinuxBot (see section
3.4.1). The robot has three IR collision detectors, one facing forward, one facing slightly to
the left, and to the right. These can be on or off, providing a simple three-character
representation of the environment. Actions are encoded as a single integer — this represents
the continuous actions turn left, go forward, or turn right. The classifier system chooses an
action in response to environmental input, and the robot initiates this action. The ZCS
algorithm then pauses until a change in state is observed; i.e. the environmental input has
changed, and a new cycle starts with the production of the match set. Thisis similar to the
application of ZCS in a simulated continuous environment by Cliff and Ross [Cliff1994]. A
reward of 1000 is given when the robot is in clear space, and to encourage the robot to
continue in clear space for as long as possible, ‘if the last reward was the maximal reward the
reward given to the robot is increased by 100’ [Hurst2003]. This occurs when the robot has
continued to move in free space for more than some time-out value. A diagrammatic

representation of ZCS as used here is presented in Figure 3-1.

109

@t ffnsee Lapub

Foepm Betch and
hibion daba

Take ReCian

ECTET T

ehaigad?

Reinfocce ReEian
Sxba

Figure 3-1 'Event'-based extension of ZCS, after Hurst et al, 2003

Concentrating on the concept of ‘events allows ZCS to use continuous actions, rather than
actions which move the robot a predetermined distance. Once an action has been selected it is
performed until environmental change is perceived, or the time-out value is reached. As the
sensory input is composed of discrete binary values, it is easy to determine when an event has

occurred.

However, consider the case where the environment is represented by continuous values. It
would be possible to impose a discretisation upon it, rendering the problem similar to the
familiar grid worlds. As discussed above, this is undesirable; incorrect a priori assumptions
may make optimality unachievable. Hurst et al. addressed this problem with TCS — a

Tempora Classifier System — which incorporates an approach that tackles Semi-Markov

110

Decision Problems within the Reinforcement Learning framework. This addresses a second
problem; how to choose between actions that move the learner from one state to the next, but

take different amounts of time to complete.

3.2.5 Reinforcement learning in a Semi-Markov Decision Problem

Consider the case where more than one action can move the robot from one state to another.
In the algorithm as presented above, reinforcement occurs when a new environmental state
has been achieved, or when the desired state of having the bumpers clear has been maintained
for more than the timeout value. If the robot could move from having a bumper triggered to
having no bumpers on in two ways, one only taking seconds, but the other taking hours, both

actions would receive the same reinforcement and would thus appear equally good.

In such circumstances, where in effect a continuous environment must be rendered into
discrete states in order to use a reinforcement learning algorithm, the value of a state-action
pair should be related to temporal considerations. This sort of problem is known as a Semi-
Markov Decision Problem; an excellent overview can be found in the work of Sutton et al.
[Sutton1999]. As stated by Parr [Parr1998], *...an SVIDP is just like an ordinary MDP, with

the difference that transitions may have a stochastic time duration’.

As noted in section Chapter Two, the reinforcement mechanism implemented in ZCS closely
resembl es the Sarsa algorithm, a development of the TD(0) algorithm which derives the value

of state-action pairsin place of states. In Sarsa, the update equation is as follows;

Qs a) 90 Qlst.a)+afrer +4Q(Sst+18+1) ~ Qlst &)| @)

111

The external reward r is discounted by a and the reward from the next state, if any, is
discounted by y*a. Neither of these rates is influenced by time. Parr [Parr1998] presents a
modification of the Q-learning algorithm in which both the external reward and the operation
of the ‘bucket brigade’ are effected by time.

‘On a transition from state sto s under action a that has taken time t and received reward r

(which is assumed to be the appropriately weighted sum of rewards received during t):’

Q(sa) 0 Q*(s,a)+a'(s, a)(r +BVIT(s)-Q' (s, a)) @
where Sis adiscount rate that varies both with state and action.
Hurst et al. incorporated these changes to the bucket-brigade into ZCS in the following ways.
Firstly, the external reward is discounted according to the amount of time taken to reach the

goal, t'. Thiswill favour efficient over-all solutions.

-ot' (©)
Secondly, the discount factor y also factorsin time, but in this case the time taken to make the
transition between events, t. Thiswill favour actions that transition between states effici ently.

y= e “)

In effect, o and are different learning rates that change the emphasis placed upon the overall

time to achieve external reinforcement, and the time taken performing individual actions.

The original ZCS update algorithm [Wilson1994] was;

112

A Nskn limm + V5 A ®)

inwhich §4 is the current action set, rimm isthe immediate reward, § 4 is the next action set,

and 0 is the Widrow Hoff gradient descent procedure with the learning rate S.

Incorporating (3) and (4) into (5) gives the update procedure that Hurst et al. used in TCS;

%A] «EFD e_atl limm +e_’7ti S[A]' (6)

In summary then, there are now two forms of discounting; external reward is dependent on
the total time taken to achieve the goal, and the amount of reinforcement flowing to previous

action setsis proportional to time, favouring longer actions over short ones.

3.2.6 Algorithmic description

By incorporating Parr’s equations relating to SMDPs into the ZCS reinforcement algorithm,
Hurst et a. addressed the second of the problems outlined at the close of section 3.2.4; real
time is now considered in the reinforcement scheme. They also addressed the first problem,

namely, how to define events in a continuous space with real-valued inputs.

It will be recalled that in applying ZCS to the problem of robotic control, the binary nature of
the sensor array rendered the environment as an aliased discrete space. Events were simply
determined as changes in this discrete representation; this discretisation being imposed by the
hardware that was used to generate the environmental representation. Thisled to asmall state
space, which promotes ease of learning as even without the generalizing abilities of a
classifier system, the state-action space is small (in this case, 2° input bits describe state, and

there are three possible actions, so the Q-table comprises 24 values).

113

With an environment that is represented with real numbers, the problem becomes much
trickier. We have seen that one common approach to a complex environment is to impose a
hand-crafted discretisation upon the input, declaring in effect that the continuous world can be
reduced in complexity to ‘blocks of a predetermined and fixed size. The onus is upon the
experimenter to decide what resolution of discretisation is appropriate for a problem, but the
abstraction suited to one environment may not suit another, and robot hardware may differ
significantly, one platform from another. This approach is thus inflexible, and requires the
experimenter to attempt to ‘view the world through a robot’s eyes'; the values returned by

physical sensors may not be as expected.

Alternate approaches within the reinforcement learning literature such as that described by
Uchibe et al. [Uchibel997] rely upon pre-processing the complex environmental
representation to build a model, and then applying reinforcement learning to this model.
Sutton and Barto suggest two approaches to the problem of non-Markov environments
[Sutton]. Thefirst isto use pre-processing of the environmental input to render it Markov; for
example, Bayesian methods can be used to compute at each time step the probability that the
environment is reducible to an underlying Markov Decision Problem. The second approachis
to use some sort of aggregation technique, for example, a function approximator such as a
neural network, to treat a set of observable states as a single state to present to the

reinforcement learning system. They make the point;

‘... the overall problem divides into two parts: constructing an improved representation, and

making do with the current representation. In both cases, the ‘making do’ part is relatively

well understood, whereas the constructive part is unclear and wide open.’

114

This then is the context in which TCS was developed. In order to define automatically what
constitutes an ‘event’, the action-selection sub-system of ZCS was extended. Initially, a
match set isformed in the same way asin ZCS, and thence an action set. The action is taken.
Inanew ‘drop decision’ cycle, the environmental representation is repeatedly presented to the
members of the action set [A]. If atime-out value has been reached, or an external reward has
been received, the drop decision cycle terminates. In the case that the timeout value has been
reached, the members of [A] are not assigned to the previous action set [A.1] so they receive
no update in the next cycle. If an external reward is achieved, the members of [A] are

rewarded, and the next cycle of sense, match set [M] formation, etc. starts.

If neither external reward nor time-out has terminated the algorithmic cycle then a decision is
made on whether the classifiersin [A] continue to match the current environment. Two sets
are formed, the ‘drop set’ of classifiersin [A] which no longer match, and the ‘ continue set’
of classifiers which do. The drop decision cycle is illustrated in Figure 3-2, and occurs as
follows;

* If no classifier matches the current input, i.e. [continue] is empty, then the drop
decision cycle ends, and the familiar stages of reinforcement (and optionally the GA)
are performed, [A.1] being set to [A].

« If dl classifiers match the current input, i.e. [drop] is the null set, the cycle continues,
and thus the original action carries on.

» If some classifiers are in [drop], and some are in [continue], a decision must be made
on whether to continue or terminate the current action. This decision is made on the
strengths of the classifiers, and may be done stochastically using e.g. roulette-wheel
selection on [A] to pick a classifier, or deterministically by picking the strongest. |f
the classifier thus chosen is in [continue], [A] is set equal to [continueg]. The

classifiers in [drop] will not receive an update via the bucket brigade. If the picked

115

classifier isin [drop], [A] is set equal to [drop], the classifiers in [continue] will be
excluded from the bucket brigade updates, the current action is terminated and the

processes of reinforcement etc. take place.

It should be noted that TCS achieves operation in continuous time and space by two different
methods. It operatesin continuous time as reflected through the two discounting methods, but
deals with continuous space by the automated disovery of useful interval representations; the

discovery and refinement of hypercubes.

116

[a] -> [a]eld

Figure 3-2 The TCS action-selection mechanism. The shaded arearepresentsthe
'drop decision' cycle.

117

3.3 Experimental set-up.

3.3.1 Hardware : The LinuxBot.

The hardware platform used for the experiments reported in this chapter is the same type as
that used by Hurst et al., that is, a‘LinuxBot’. The LinuxBot [Winfield2000, 2003] consists
of a wheeled platform with a driven wheel on each side and a trailing tail wheel. On this
platform sits a miniaturised PC running a distribution of the Linux operating system, in this
case Slackware 7.1. The PC is networked using a Wireless Ethernet card that allows remote
operation via Telnet, etc. A combination of battery and electrical pickups that contact the

floor surface provide power for hours of continuous autonomous operation.

The LinuxBot may be equipped with a variety of different sensors, including IR receivers, IR
proximity detectors, physical bumpers operating switches, and light sensors. In the
experiments presented here, the robot was equipped with three IR proximity detectors, or ‘IR
bumpers', one facing forward, one forward and slightly to the left, and the third slightly to the
right. Two physical bumpers are mounted at the front of the robot, one wrapping around to
the left side, and one to the right. The robot is equipped with an elevated mast on which three
light-dependent resistors (LDRs) are mounted. Again, one faces forward, one is angled 45° to
the left, and one 45° to the right. This arrangement is shown in Figure 3-3, in which the IR
bumpers are pink, the LDRs are blue, and the physica bumpers are red. The LDRs and

various bumpers can be clearly seen in Figure 3-4.

118

@-

Figure 3-3 TheLinuxBot (plan and side elevations) showing bumpers and light sensors
(seetext).

Figure 3-4 The LinuxBot on powered floor.

The LinuxBot is approximately 30 cm in diameter, and 40 cm in height from the floor to the

top of the LDR stack.

119

3.3.2 Environment.
The environment in which the LinuxBot performed the learning experiments to be described

in Section 3.4 consists of a square enclosure, measuring approximately 270 cm on each side.
The walls of the enclosure are approximately 25 cm in height, and are painted matte black.
The floor of the enclosure is composed of tiles that have alternating positive and negative DC
current; this power isintermittently available as the robot moves around the arena, and is used
to extend the operating time by recharging the battery via the downwards-pointing electrical

pickups.

There is a light source (halogen lamps) at one end of the enclosure, approximately half way

between the two sides.

The tiles of the powered floor are supplied with electricity using computer-controllable power
supplies. All tiles are powered, but three of the tiles are powered by their own power supply,
which supplies no other tile. By monitoring the current drain on these three power supplies
using an RS232 serial communication link, a PC can signal to the LinuxBot when it is on one
of these tiles via the wireless LAN. Thisis illustrated in Figure 3-5, in which the lamps are
shown as yellow circles, and the three monitored power supplies are shown as black, white

and grey, supplying their corresponding sguare.

120

R e

wirelesas
Ethernet

Figure 3-5 The arena, showing lights and power.

The black and white tiles to either side of the lamps provide two possible goal states. The
grey tile is “home’, i.e. the tile to which the robot must return before starting a new learning

trial.

Due to some peculiar inadequacy of the communications system on the power supplies, the
monitoring PC is unable to poll them too quickly. Due to this, there may be a delay of up to
one second between successive readings being reported from a power supply. Thisintroduces

noise into the reward signal.

No special measures were taken to insulate the environment. The arena is open to natural
diffuse light, and is situated next to a busy corridor with passing staff and students. The
laboratory in which the experiments took place is large, and there may be other experiments

involving halogen lamps switching on and off outside our control. Any learning must

121

therefore cope with quite a high potential of noise, in addition to the noise introduced by the

LDR sensors themselves.

Although the environment has tiles which represent reward states, it should not be considered
to be a ‘real grid world’. There is no grid-like discretisation of the input to the system, the

actions perfromed by the robot are not of fixed size, and as stated above, the reward signal is

noisy.

3.3.3 Software.

TCS is presented with an environmental input consisting of three real numbers representing
the resistance of the LDR sensors, scaled between 0.2 and 0.8. The condition part of the
classifiersis encoded as un-ordered pairs of real numbersin the range [0, 1], one pair for each
environmental input. A pair is considered to match the corresponding input value if one of
the pair is smaller or equal to the target, and the other is larger or equal. The action of the
classifier is an integer, representing the actions move forward, turn continuously to the left,

and to theright.

An unordered representation was chosen for the condition pairs based upon the work reported
by Stone and Bull [Stone2003]. In extending XCS for use in real valued environments,
Wilson has suggested two representations; ‘ Centre-spread’ [Wilson2000] and ‘Lower-Upper
Bound' [Wilson2001]. In the ‘centre spread representation’ the condition has a pair of
numbers for each environmental input. The two numbers encode respectively a real number
(the ‘centre’), and the ‘spread’ on either side of this number within which the corresponding
environmental input is said to match, i.e. the environmental reading e is said to match the
tuple (cy, ¢o) if ¢ - ¢, <= e<=c; + ¢, In the ‘Lower-Upper Bound' representation, the
numbers in the condition pair (c1, ¢;) match a single environmental input e if ¢;<=e<= ¢,

Stone and Bull show that the ‘Centre-spread’ representation introduces significant bias, and

122

point out that the ‘ Lower-Upper Bound’ representation demands that any operation that could
result in c; > ¢, must result in a reordering of the alleles. To simplify this, they introduced
the *Unordered Bound Representation’ as used here, which they show has the same desirable

properties as the ‘ Lower-Upper Bound' scheme.

One problem with the ‘Unordered Bound Representation’ is that values at the extremes of the
solution space are much less likely to be covered. Consider the case where input is scaled
between 0 and 1, as are the numbers of the condition representation. An environmental input
of 1.0 can only be matched by a classifier having a 1 as one of the two unordered pair. Values
in the centre of the range are more likely to be matched. To address this, the environmental

input was scaled in the range [0.2, 0.8].

The crossover and mutation operators are altered from those in ZCS to deal with the new
condition. In crossover, there is an equal chance of crossing over at any point in the
condition. Mutation can occur at any point in the classifier with probability 4. The real
numbers of a classifier’s condition are mutated by a fixed small change of + 0.005. Action
mutation is by picking an integer from the set {0,1,2} at random, such that the chosen action

is different from the current one.

In the initial population, classifier conditions are created randomly in the range [0,1]. During
cover, the current environmental input e is used as a centre and two values are created in the

range [€-Crax, €+ Crax], Where Craxis 0.2

To speed convergence, the classifier from [A] which determines whether the drop decision
terminates is selected deterministically on the basis of fitness, rather than by using roulette-

wheel selection.

123

In addition to the conditions of the drop decision described by Hurst et al. and detailed herein
Section 3.2.6, the drop-decision cycle is aso terminated if the bumpers are on. In this case
the last drop-set is returned as the set which will receive reinforcement to discourage the

robot from walking into obstacles. If thereisno ‘last drop-set’, the null set is returned.

3.3.4 A'Trial’

In the experiments described here, the system is first calibrated on the light readings
immediately next to the light source, and pointing in the opposite direction. To reduce the
impact of noise from the LDR sensors, these readings are the average of 100. The robot is
then placed on the ‘home’ tile, and the first learning trial begins. TCS is stopped when the
robot reaches an appropriate ‘goal’ tile. The learning algorithm is then stopped, and the robot
is placed under the control of a ‘Braitenberg Vehicle-style’ algorithm [Braitenberg1984] that
performs obstacle avoidance, ‘bouncing’ around the experimental pen until the robot is
informed that it is on the ‘home’ tile. Once there, the robot orientates itself approximately
towards the light, and the next trial begins. In order to save time, any trial that lasts for longer
than 30 seconds is considered to have ‘timed out’ — there is no reinforcement, and the robot

return to start anew trial as above.

124

3.4 Results

3.4.1 One Objective

The performance of the TCS algorithm is first demonstrated on the robotic platform in a
single objective task. Only one of the ‘goal’ tiles causes an external reinforcement to be

applied, thereby ending atrial. The external reward is 1000.

The robot may start at any point on the “homettile’, and so the distance to the goal may vary
between trials by approximately 80 cm. Also, as mentioned above, delays in polling the
power supplies may mean that the robot is on the goal tile for up to a second before thisfact is
signalled to TCS. These two factors mean that the ‘optimal’ time to complete a trial should
be considered as a range of values; in the best case, approximately six seconds, and at the

other extreme about nine seconds.

The following parameter settings were used on this single objective task.

N 600
S 10
B 0.2
o 0.1
n 0.7
T 0.1
X 0.5
U 0.05

Table 3-1 Parameter settingsfor single objective TCStask

TCS was found to easily achieve good results on this single objective task, comparable to
those reported in [Hurst2003]. In the Figure 3-6 and the accompanying Figure 3-7 the
average results of five runs are presented, each run lasting for 200 trials. In Figure 3-6 it can

be seen that TCS is soon capable of performing nearly optimally, finding the goal each time

125

with only an occasional failure. Figure 3-7 shows the windowed average of the percentage
success, ™ windowed over 50 trials, and the average time taken to reach the goal. After a short
initial period in which performance fluctuates, the algorithm quickly shows that it is capable
of nearly optimal performance. Thereisastrong trend for the time taken in each trial to reach

the goal to be within the range considered optimal.

In order to complete a run of 200 trials, the experiment must run for approximately three and

aquarter hours.

Failures per =uccess

2.3 T T T - T
Aw fail per success —+—

Failuressuccess

LIl L

a 58 166 15a zae 256
Trials

Figure 3-6 Failureto Successratio

12 The step in the graphs of percentage successis an artefact of the graphing package. Since awindowed average
is used, thereis no data for the first n trials, where n is the window size; thisis shown asaline at 0, followed by
a sudden jump when n is reached.

126

T T T T)
tine @
4180 optinum tine
q7s
4 s8
qas
el
S u
1e
o o
£ H
H
n 3
: i
H o
H
H
3B [
25 B
B
LT . ® + e s
e -
s * et @ “ * * e, 0 ® * * + e
e e b LTI - - B B .
[P A P e”e @ Pesst e fTes a [toe N ® s’ o A
ey 5w L e + *, o @
e - e, BTN e dwe e e W C et T Lt e e
ik B B >
a
a zn 4 &8] 188 128 148 168 180 ELE
trials

Figure 3-7 Per centage Success and time to goal

In Figure 3-8 and Figure 3-9 we see graphs of individual trials. Once again we see that TCS
is capable of achieving the goal nearly all the time. It is also apparent that the time taken to

reach the goal is falling towards the optimal band. Figure 3-9 shows a longer run which

demonstrates that TCSis capable of maintaining successful behaviour.

seconds to goal

* &

25 - @

L . a0 o B
20 F o N . .

& N . wbe ° R

L osad L oe® Ed Te%e o p @ * @ e *

15 p o e R R feloa e
& ® r3 &

o F L.t ¢ %% B F o L e 0 wdwatatneteh og Jo @ L %
o - B = e e -
s 1 1 1 1

a 58 184 154 288 258

trisls

Figur e 3-8 Per centage Success and time to goal.

time
% sucoess
188 optimum time

75

ge

25

8

% success

+

127

T T T T .
tine o
% suscess
4 18s optinun tine
4 7S
4 sa
4 25
K
%]
e
2 L
* o
o
5 3
H @
a B
a
H
H
L . . e N
23 N e& & o #
- e v FF had - . N
20 - - o ae o, ® s B
= L # pA e ¢ [&
@ s * e P, P T by ot s £
Ble gl S memade e to AT e e e T 4
B B B + e B ae ot
18- = . o BAEgRE, e g A P
s L & #)) @ & " @ ¢ Y
5 . I . . I .
8 56 100 158 208 258 300 358
trisls

Figure 3-9 Per centage Success and time to goal.

It should be noted that the settings of the reinforcement parameters were based upon those
reported by Hurst et a. in their ‘towards the light' experiment. The system may have

achieved better or worse results with different settings.

128

3.4.2 Two Objectives

The experiment was then expanded to include two goal states, which shall be referred to as
‘back’ and ‘white’ as shown in Figure 3-5. The classifier condition is extended by an
additional unordered pair of real numbers, which are tested to see if they match the robot’s
‘internal energy level’. Thislevel is set at the beginning of each trial so that 50% of the trials
have an ‘energy level’ of more than 0.5, and the rest are lower than 0.5. The reward scheme
resembles that in the simplest of the three concurrent dual-objective tasks presented in
Chapter 2, i.e. a high reward (here 10000) is discounted according to the time taken to
complete the trial and given when the robot has been guided to the correct goal (see section
2.7.1). A low reward (10) is similarly discounted according to the time taken to reach the
incorrect goal, should the trial end there. No reward is given if the trial times out without

either goal being reached. The energy level of the robot is static.

The results TCS achieved are not optimal. There is considerable variation between different
runs. In Figure 3-10 we again see time to goal, broken down by the goal state achieved.
These figures also show a windowed average of the percentage of trials that are successful. A
trial is considered successful if the robot reached the goal which was appropriate for the

‘internal energy level’.

All parameter settings remain the same as in the single objective trial, except the population
size was increased. If 600 classifiers were used to correctly encode the relationships of states
and actions for a single objective task, it seemed realistic to expect that double this number
would be required for the dual objective task (of course, generalization over the ‘energy level’
might allow this number to be reduced in the early stages of navigation when the robot is far

from the goal states).

129

In Figure 3-10 we see that there is little sign that the time to goal is decreasing towards the

optimum. The percentage of trials in which the robot achieved the correct trial increases

slowly.
T T T
white time @
- 168a % success
- 73
- 58
- 25
©
e "
o 17 &
£ o
W =8 ® e E
T om.g L & in
5) # “ e
o 25 = * ®
& & &
"ez.s | ¥ * v %
* a
28 = " N PR & - L ~:
JPR PR ATt £ @ SARE S
. E Bor ey B * P
B o F *
e P Ea
15 -@i@ e . ®$:.s®¢ wty T PR
12.5 [+ = e - LA " PN
" 5, e %@ o : a + ®$¢® #
18 15, + b + oy W bcd
7.5 :
- . L e‘& &
5 =
2.9
8 1 L 1
5] 58 188 15a@ =35)]

Figure 3-10 Per centage Success and Timeto Goal.

Two objectives. Average of 10trials

We have seen in the previous chapter that optimal behaviour with ZCS is very dependent on
the settings of the reinforcement learning parameters, in addition to the population size.
Figure 3-11 and Figure 3-12 present results from two runs in which the experiment was
allowed to continue for longer, and in which the population size was increased to 2000. The
values of the temporal discounting parameters were also changed, in order to try to force TCS

towards optimality in the time taken to reach the goals, setting ¢ to 0.05 and 7 to 0.1.

130

Although in Figure 3-11 we see a slow increase in percentage success, there is little sign that
optimal time to goal will be achieved. Figure 3-12 is even more disappointing, since on

average the robot reaches the wrong goal more often than the right one!

white time =
black time +
% success
optimum time upper bound

H 1em

75

5@

25

@ a
S w
I
o H
£ 3
o
n 5
T W
£
5 o
3
H
H
3@ |- .
- e * o et +
27.5 - . + + o+ B o,
A ¥ . + 4 PR .
es + * + + EIS +
+ ® + * . -
22.5 + % +t + ® + Wt
zo + t * + ° -
. . r + .
17.5 | - s+
+ o+ + + * *
15 | . PR S 1 N toew,* 1
- +
> +q + + + 4 +
8.5, 4 4 P S G EE e b Ta
18 b oo + rn ® R P S Y £
-, “’"*ﬁ, fre b+ + P . & : +4 wb . T A
L P - . B P FX v g% Te e DR T
s |k + + + 0 PR
2.5 [
a
o 58 180 150 208 2s5m 308 350 488
trials

Figure 3-11 Percentage Success and Timeto Goal. Two objectives.

131

seconds to goal

T T T T T T
4 1mm
4 7s
4 sa
4 es
4 e
w
H
H
2
o
5
H
2
_ @
%
L + ¥ s + * o+
- + o+
- - + * + +*
:’ -+ & + + v
- - +
. o a +
e S + @ N * o ® P R
B LS Fe e N
* & + & +
- PR O A R .t
® ® + CRa bl e b hd +eoa Tt .
s + o+ e E+ 3 e + e e T “
d - 4 st ey - R S s S R
[W At e T e e M ey T el U R L)
RS S U b L R
b+ Ther i S e +
.
a 58 188 158 28a 25a 388 358 488 458 588
trisls

Figure 3-12 Per centage Successand Timeto Goal. Two objectives.

white time
black time
% susccess

optimum time upper bound

Keeping the same parameter settings, the system was then run for 1000 trials.

+
+

Due to

restrictions beyond my control, it was not possible to run the robot continually overnight, and

so these experiments had to be done in stages. The population was stored, the robot stopped,

and then the system started again the next day. In order to complete 1000 trials in a single

run, the robot had to operate for approximately 20 hours, spread over 4 days.

132

white time S

- laa ¥ success

e
27.3
25
22.3
e
17.5
15
12.5
1@

secohds to goal
¥ Success

g 4] 4808 11 seg 1

Figure 3-13 Dual objective, 1000trials. Averageof 5runs.

Figure 3-13 shows the average of five runs, each run lasting for 1000 trials. With moretrials,
there is more evidence that TCS is able to choose the correct goal dependent on the internal
energy level, and there is clearly a trend towards faster solutions. Even with a much longer
experimental run, it was not possible to achieve near-optimal performance with TCS on this
simple dua objective problem. The behaviour of the robot seemed consistently to
‘concentrate’ on one goal, and then switch to the other. This can be seen in the figures below.
While some experiments (e.g., Figure 3-14) showed progress towards successfully reaching
the correct goal each time, others were much less good, e.g., Figure 3-17. In no case can we

see a convincing case for an approach to optimal time.

133

% susccess

black time
optimum time upper bound

white time

1aa

-
+

¥ success

white time
black time
optinmum time upper bound

sssaans x ss800ns %

1648
5
@
5

134

a8 1888 1288 1488
trials

4@a

Figure 3-14 Longer run of TCS on the dual objective problem.

LA XY

28a

480 &aa 266 laaa 1z0a 1468
triszls

Figure 3-15 Longer run of TCS on the dual objective problem.

2ge

2.5
a

120f o3 spucass [=0B 03 spucass

seconds to goal

seconds to geoal

white time
black time
% success
optimum time upper bound

white time
black time

% success

optinmum time upper bound

T T T
4 1ea
4 7S
4 se
4 &5
4 @
w
"
@
3
8
E
H
A
o, s t e, e ot s
27 5, K e e e e .+, . + . . ¥
+
a 28a 488 688 88a 1888 1288
trisls
T T T T T T
4 1es
4 75
4 se
4 a5
4 a
w
W
o
o
H
E
@
.
3 [B
.o e . - N . +
27.5 |- “ + «
B ¥ . . + B
es | w o & . R Lt @
zas | ° 4 st w e + +
P e ey a . +
ep Lot # P PP + + o+ .
s e LT LI P @ o
17.5 + 0 ot B ® +++_s+;e° - ., o + o+ soat*
+ + +
15w L tan Pes wwa FARE AR S S T N A AR
ot phe e ST T +‘f+ Cn . PRSI
12.5 o # N B + .
o FrE i Fal ey s Sl Ve 0 gt 00
$ s o
T aha, o B % B e w.\«f“ﬂ&? R VO ’%;*; f 4 iy
7-: Fe, 7 © °§§'§+*W?+ S ﬂ‘e: = T K ST e e
L +
2.5
a 1 1 1 1 1 ! ! ! 1
a 108 208 200 400 sea s 7ao z00 308 ELE]
trisls

Figure 3-17 Longer run of TCS on the dual objective problem.

-

135

This was very frustrating. 1t may be that TCS is capable of optimally solving the dual-
objective robot problem. However, as we have seen in Section 2.8.1 for a comparable
problem in simulation, the high degree of epistatic linkage between the reinforcement
parameters in ZCS makes it very difficult to find a set of parameters which will allow optimal
behaviour. In simulation, it was easy to perform iterative searches of the parameter space to
discover areas in which good parameter sets might be found. Even this painstaking approach
proved unable to allow the optimal solution of the harder multi-objective problems. To carry
out asimilar search of the parameter space with the robot would have taken along time; even
if the robot had been run continuously, night and day, it would have taken approximately 25
years to examine the parameter space in the same detail as in simulation for a single problem,

even if the runs were limited to only 200 trials!

136

3.5 Conclusions

Some characteristics of a useful robotic learning system have been suggested. It should not
require the experimenter to decide on a priori discretisations of the problem space. 1t should
be capable of determining these for itself, in order that it might be flexibly used on different
hardware platforms, and in different environments. It should not require many days of
training. Hurst's TCS was presented as a candidate system, which integrates a reinforcement-
learning framework dealing with Semi-Markov Decision Problems into Wilson's ZCS.
However, the optimal solution of a simple two objective task using TCS on areal robot could

not be demonstrated.

It seems likely that TCS shares the parameter sensitivity of its parent, and it may be that

optimality could be reliably achieved given much time, or luck. Therefore it would seem

from these results that TCSis not suited to solving multi-objective problems of robot control.

137

Chapter 4 XCS

4.1 Introduction

Although results indicate that ZCS can tackle multi-objective problems if its parameters are
set correctly, it is difficult to discover these settings. Indeed, in some casesit was not possible
to find parameter sets that would allow the optimal solution of simple multi-step, multi-
objective tasks. The majority of current LCS research uses XCS [Wilson1995], an accuracy-
based classifier system, which has been shown to require less careful tuning to solve many

problems optimally.

This chapter describes XCS, investigates some related work, and applies XCS to the same
problems we set for ZCSin Chapter 2. The complexity of the problemsis then increased, and

XCS s performance is examined.

Since the aim of the work presented in this thesis is to use classifier systems to solve multi-
objective control problems on a physical robot, some simple aterations to XCS are
investigated that will provide a platform for thiswork. These bring their own problems which
are examined. We will find that the performance of XCS depends on, among other factors,
the chosen exploration policy, and these observations are related to current XCS theory and

research.

138

4.2 XCS Described

XCS was first introduced in Stewart Wilson's seminal work, ‘Classifier Fitness Based on
Accuracy’ [Wilson1995]. In the paper, he states that this work ‘ stemmed from dissatisfaction
with the behaviour of traditional classifier systems, and the hypothesis that the short-comings

were due in part to the definition of fitness'.

XCSdiffers from Wilson’s ZCS [Wilson1994] in many ways, most importantly;
» fitnessis proportionate to the accuracy of the classifier’s prediction
» the GA does not choose parents from the population as a whole, but instead from
members of action sets.
The intention behind XCS is that the system should form a set of rules that provide a

complete and accurate, maximally general map of the space of state-action pairs.

XCS performs cycles of interaction and response to environmental stimulus, and unlike the
‘traditional’ LCS as formulated by Holland, XCS has no internal message list. In the classic
implementation®®, as here [Butz2001], the environment is presented as a binary string, and
this is matched to a greater or lesser extent — or not a all — by classifiers which have a
‘condition’ encoded as a ternary string. Covering takes place if the ‘match set’ thus formed,
[M], is empty or the number of actionsin [M] is smaller than 6a. Covering generates new
classifiers with random actions, their conditions matching the current environment with
characters changes to the ‘don’t care’ symbol ‘# with the probability p#. System parameters

such as e and p# are explained in Table 4-1.

13 All experiments here use Martin Butz's XCS classifier system implementation in C, version 1.1, available
from ftp://ftp-illigal .ge.uiuc.edu/pub/src/XCS/XCS-Cl.1.tar.Z

139

N Maximum size of the population (sum of classifiers numerosities — see
text)

B Learning Rate

y Discount Rate

a, &,and v | Usedin classifier fitness updates. See text

G GA threshold. The GA is applied to a set when the average time since
the GA last operated is greater than this value

X probability of crossover

u probability per allele of mutation

Bl deletion threshold. If aclassifier’svalue of exp is greater than Gy it's
fitnessisincluded in assessing its likelihood of deletion

o if aclassifier’ sfitnessisless than this fraction of the mean fitness of [P]
then itsfitnessisincluded in assessing its likelihood of deletion

[aclassifier may subsume (see text) another classifier if its value of exp
is greater than the subsumption threshold.

p1, &, and F1 | initia valuesfor p, & and F in new classifiers

Onna specifies the minimal number of actions that must be present in [A] or

covering will occur.

Table 4-1 XCS System Parameters

In addition to its condition and an associated action, each XCS classifier also records;

* p, the predicted value of taking this action

* ¢, the prediction error

* exp, which records the number of times the classifier has been in the *action set’, [A]

e ts, a time-stamp that records when the classifier was last in [A] when the GA

operated.

* as, which keeps an estimate of the average size of [A] containing this classifier.

* n, the ‘numerosity’, records the number of individuals in the population represented by

this ‘macroclassifier’. Macroclassifiers are treated as if they are n copies of identical

classifiers, providing a computational advantage.

¢ F, the classifier'sfitness.

Once [M] has been formed, XCS then forms a prediction P(a) of the payoff expected from

each possible action. These values are stored in the Prediction Array PA. Some of these

140

values will be null if no member of [M] advocates this action. The system prediction for an
action is afitness-weighted average of the predictions of all classifiersin [M] which advocate

that action.

An action is chosen from the set of actions suggested by the classifiers in [M]. Wilson
suggests that ‘Many action-selection methods are possible’. Actions may be chosen
probabilistically with the probability of selection proportional to the value of P(a), for
example via roulette selection, randomly without reference to the values of P(a), or
deterministically by picking the action with the highest value of P(a). In typical
implementations, a balance between ‘exploration’ and ‘exploitation’ is represented by
performing half the trials with a random action selection policy, and the other half with a

deterministic policy. Thisisequivalent to e-greedy learning [Sutton1998] with € set at 0.5.

However it is chosen, one action is selected and an action set [A] is formed. The chosen

action is performed, and any external reward is returned by the environment.

The reinforcement component in XCS consists of modifying the following parameters
associated with each classifier, in the following order; exp, p, ¢ and F. exp is incremented to
record the number of times this classifier has appeared in an [A]. p and ¢ are adjusted using
the Widrow-Hoff procedure with the learning rate parameter 3 (0 < B < 1) only after a
classifier has been adjusted at least 1/3 times, otherwise the new value is simply the average
of the previous value and the current one. This technique is known as MAM (‘moyenne
adaptive modifée’). That is, for classifier j if exp, >= 1/

p=p+B(P-p)

ej=¢ej+ B(IP- pl-¢j)

and otherwise;

141

p=p+ (P-p)/exp

ej=ejt (IP- pl-g;)/ exp
where P is the maximum value of the Prediction Array, discounted by multiplying by y (0 <y
< 1), and with the addition of any external reward from the previous time-step. This closely

resembl es the Q-learning technique [Watkins1989];

Qs &) = Q(s, &) + B(R+ ymax Q(St+1, atr1) - Qs &))

where Q(s, &) is the payoff predicted under the hypothesis that the agent performs action a
in state s, and thereafter always selects the action predicting the highest payoff, y is the
discount rate, and R is the reward received for performing action a; in state &, In contrast to
Tabular Q-learning, where a Q value is derived for every state-action pair in the environment,
an LCS allows the generation of rules that generalize over many states. In Reinforcement
Learning, function approximation techniques such as artificial neural networks are used for

similar reasons, see [Sutton1998] for an overview.

In the final step of the reinforcement process, each classifier in the set has its fitness F
adjusted. Thisis performed in three stages;
* Eachrule hasits accuracy K; determined:
Ki=a(gjreo0)” forgj>e0, otherwise Kj 1.
* A relative accuracy K’j is determined for each classifier by dividing by the sum of
accuracies of classifiersin the set. Numerosity must be accounted for here.

» The Widrow-Hoff deltaruleis applied with the learning rate £

Fi= F+ B (K- F)

142

As noted above, the second main areain which XCS differs from ZCSisin the application of
the GA. Wilson was motivated to develop XCS by the belief that ZCS failed to achieve
optimality due to the emergence of over-general rules; rules which are good in one niche and
achieve a high fitness value are chosen over more optimal rules in a different niche where
they also match, but in which they are of lower utility. Wilson attempted to address this
problem by the use of accuracy as a basis for fitness, and also through restricting the GA to

choose parents from within [M].

In the version of XCS used in this chapter, the GA is restricted in its choice of parentsto [A]
rather than [M], as first detailed in [Wilson1998]. By restricting the GA to [A], there is
exploration of the space of possible generalizations containing a specific state-action pair.
Since classifiers that participate in more niches (and are accurate) are rewarded more often
and have more opportunities to replicate and search the space of generalizations through the
genetic operators, this introduces a pressure towards the generation of general classifiers for

each state-action pair explored by the system.

The ‘triggered-niche’ GA used by XCS in this implementation works in the following way.
Each classifier has an associated measure of the number of time steps since it was last
involved in an application of the GA. The GA isinvoked if the average time period since the
classifiers currently in [A] were last subject to the GA is greater than a threshold value 6ca.
Two parents are selected by a fitness-proportionate method (roulette selection) and after

possible two-point crossover and mutation, are inserted into the popul ation.

Classifiers are selected for deletion from the population as a whole [P], while parents are
selected from [A]. If the sum of the numerosities is less than the preset maximum N, no

deletion takes place. Otherwise, a classifier is chosen to be deleted (if it is a macroclassifier,

143

its numerosity is decreased by 1) by roulette selection with increasing probability on the
strength of its ‘deletion vote’. The latter is calculated based upon numerosity and the
classifier's action set size estimate. Additionally, if the classifier is sufficiently experienced
i.e. exp > Oy, and itsfitness is less than 6 multiplied by the average fitnessin [P], its deletion

vote isincreased in inverse proportion to its fitness.

There are two forms of ‘subsumption’ in XCS that contribute to computational efficiency at
the expense of a decrease in diversity in the population. In ‘GA subsumption’ an offspring
that has a condition aready represented by a more general and experienced parent is not
added to the system, but the parent’s numerosity is incremented. In ‘Action Set
subsumption’, the most general classifier in [A] is found, and all other classifiersin [A] are
tested against it to see whether it subsumes their condition. If it does, they are discarded and

the most general classifier has its numerosity increased by one as before.

Other work using XCS includes that of Butz et al. [Butz2003b] in which they examine the
pressures that influence generality in XCS. They recognise;

» Set Pressure: since classifiers are more likely to be reproduced the more often they are
in [A], but classifiers are deleted from [P] as a whole, there is an intrinsic pressure
towards generality.

* Mutation Pressure: mutation changes alleles, either at random (‘free mutation’), or
while maintaining a match to the current input (‘niche mutation’). This provides a
pressure depending on the frequency of the GA and the mutation rate towards a
specificity of 0.66 or 0.5 for the two types of mutation, respectively.

» Deletion Pressure: deletion depends upon as and fitness. In the absence of other
pressures, the average specificity of deleted classifiers will approximate to the average

specificity of [P].

144

* Subsumption Pressure: subsumption provides an explicit pressure towards generality.
» Fitness Pressure. In general, since fitness is dependent on accuracy, the effect of
fitness will be to inhibit over-general rules that are inaccurate in some niches, thereby

producing a pressure towards the specific.

They also note two ‘challenges’ that XCS must overcome in order to learn a problem. Firstly,
if cover isinvoked too often, classifiers may be deleted before their true value can be assessed
The parameter 644 Was introduced to minimise this problem, first noted in [Kovacs1999].
Whether this happens will also depend on the complexity of the problem, the setting of p#,

and the value of N. They term this the ‘covering challenge'.

Secondly, since XCS uses accuracy-based fitness, [P] must contain enough specificity —
building blocks with matching characters that are not wildcards - to alow the production of
accurate classifiers. The impact of this ‘schema challenge’ will clearly depend on the extent
to which the problem space can be solved by general rules - how rugged is the problem

landscape - and also upon the settings of p# and N as before.

In [Butz2003a], Butz et al. extend this examination of the pressures on XCS to include time,
and also examine the effect of population size N. They suggest that ‘the necessary specificity
actually decreases with increasing population sizes', although their main finding is the reverse
of this. They derive equations for the ‘Reproductive Opportunity Bound’ (ROP) in XCS,
based on the probability that a suitably specific classifier will be generated by mutation, and
subsequently maintained in the population by reproduction, and not deleted. It should be
noted that their theoretical treatment assumes that all states in the environment are sampled

with equal frequency.

145

The results presented in the following sections of this chapter show that it is not always the
case that the necessary specificity of the population decreases with increasing values of N,
suggesting that the ROP is influenced by the action selection scheme. It appears that there is

another challenge to XCS's success, which could be termed the ‘niche resource challenge’.

Many methods could be used to select an action suggested by the classifiers forming [M]. In
most multi-step experiments that have been described in the literature, a balance has been
enforced between ‘exploration’ and ‘exploitation’ by simply performing half the trialsusing a
random action selection policy, and half using a deterministic policy. Results are presented

based purely upon the performance of the deterministic trials [e.g. Wilson1995].

Since it is the intention in these investigations to aim always at the use of LCS for multi-
objective problems performed by physical agents in the real world, this presents some minor
problems. Although in simulated problems this simple distinction between random
exploration and deterministic exploitation is a valid approach, one must doubt the utility of

any agent that performs randomly 50% of the time.

Thus the experiments that are presented below first demonstrate the performance of XCS
using the traditional 50/50 random exploration, and then investigate XCS' performance using
roulette-wheel selection in the prediction array during the exploration trials. To enable easy
comparison with results in the literature, results are still presented based upon only the

deterministic trials.

An adaptive e-greedy parameter could be used, adjusting € according to some measure of
error in [P] or more likely [A]. Wilson [Wilson1994] mentions some possible methods of
self-adapting the balance of exploration and exploitation. However, as the values of fitness

are updated, roulette-wheel selection can be said to self-anneal so that the system gradually

146

converges upon a mainly exploitative policy while still allowing some exploration to take

place.

147

4.3 Sequential Multi-objective problems

The performance of XCS is first examined in two sequential multi-objective tasks. These
take place in adaptations of the familiar Woodsl grid-world [Wilson1994]. In these, and all
following experiments with XCS, all results are the average of 10 experiments, presented as

the running average of the last 50 deterministic exploit trials asin [Wilson1995].

Figure 4-1 The Woodsl Environment.

Woodsl is a toroid comprised of 25 squares. A virtual agent, or ‘animat’ (Wilson, ibid.),
moves between the squares under the control of the learning algorithm. Movement is possible
from a sguare to any of the eight adjoining squares, except where this contains a ‘rock’
(shown in Figure 4-1 as a grey square). A trial startsin an empty square chosen at random,
and finishes when the animat reaches the goa state, here marked with ‘F for ‘food’. In the
experiments described here, three'* characters are used to describe each state in the
environment, and the environment is presented to the classifier system as a binary string
representing the state of the eight cells that surround the animat’s current position, from
‘North’ clockwise to ‘North-West’. The condition of a classifier has an equal number of
characters to the environmental representation. Three characters, allowing the eight possible

directions to be represented, again encode the action. In the Woodsl environment, the reward

14 Although only two characters are required in to encode the states in the Woods1 environment, three are
necessary as the number of different statesincreases in the further multiobjective problems reported here. We
have used the same encoding throughout.

148

given upon reaching the goal is 1000, and the optimum average path from start to finishis 1.7

steps.

4.3.1.1 Key and Door

In the first extension of the Woodsl environment, the animat must visit a state in the
environment before it reaches the goal. If it does not first visit this state, the trial will not
terminate. This can be thought of as getting a ‘key’ to open a‘door’ to gain reward. In order
to allow XCS to ‘remember’ whether the animat has previously visited the ‘key’ state, an
extra character is added to the representation of the environment, this character being set from
its initial state of zero to one when the animat visits the ‘key’. This can be matched by a
concomitant extra character in a classifier’s condition. In Figure 4-2, the ‘key’ is shown as

‘K’, and the reward state isindicated as ‘F (food).

Figure 4-2 Woodsl ‘K ey and Door’

The average optimum number of steps from any position in the environment to the goal state,
going by way of the ‘key’, is 3.7. The results presented below in

Figure 4-3 and Figure 4-4 show the performance of XCS with a population size (N) 1600 and
3200, and random exploration. Figure 4-5 and Figure 4-6 show the same treatments using

roul ette-wheel selection.

149

Other parameters are;

Table 4-2 Common parameter sused in all XCS experiments

(unless other wise stated)

)4 0.2 Learning Rate

y 0.71 Discount Rate

Oca 25 GA Threshold

£0 0.01 used in fitness calculations

o 0.1

Y 0.1

x 0.8 probability of crossover in GA

u 0.01 probability of mutation per character
in GA

Ougel 20 if exp > fqe AND fitness < 0 * (mean

0 0.1 fitness in[P]), deletion vote increases
in inverse proportion to fitness.

p# 0.33 likelihood that a classifier created by
cover will havea'# at a character.

of 10 initialisation values for new classifier

&) 0

F 10

Osub 20 a classifier can subsume another if
exp > Hsub

Orma 8 if number of actions in [M] is less
than fmna, cover will take place

Only GA subsumption is performed.

150

steps fo goal

Sa

45

4@

jo3=]

2d

23

e

=1

43

48

33

el]

teps to goal
ptimum =steps

= -
(=]
o™ o
[
£ es 4|
" ¢
L1
K
=T -
15 =
1@ -
5 -
a 1 1 1 | 1 | |
Sag 1888 15848 cHEd =351] jepelclc] 2568 4868
trial=s
Figure 4-3 Key and Door: N=1600, random exploration
T T T T T T T
teps to goal
phtimum steps
=
e
— - m
=
L1}
“
1 | | | | | |
5] 566 18868 1588 el] 2568 2888 3588 4EEE

trials

Figure 4-4 Key and Door: N=3200, random exploration

151

As can be seen, in al treatments XCS achieves optimal performance. However, it would
appear as though it takes longer to converge to an optimal solution with the roulette action
selection mechanism; with N=1600 and using random exploration, XCS achieves optimality
after about 500 exploit trials, whereas using roulette exploration requires ailmost double this
number of trials with the same value of N. Increasing N isrequired to allow roul ette selection

to perform as well; here a doubling of N.

S8 T T T T T T T

tep=s to goal
ptimum =steps

45 [-

4@ -

25 H =

=i =

steps to goal
reward

28 =

@ 1 1 1 1 1 1 1
g Sag lgaa 1588 2eea 2588 2eea 3588 4a8a8

trials

Figure 4-5 Key and Door: N=1600, roulette exploration

152

58 T T T T T T T

teps to goal
phtimum steps

45 | -

40 F 4

25 H =

28 =

steps fo goal
o
o
T
1
reward

18 g
S—L B
o] 1 | | | | | |

5] 586 1gaa 1588 Za@a 2568 Z8aa 3588 4888
trials

Figure 4-6 Key and Door: N=3200, roulette exploration

43.1.2 CarrytheFlag

Of course, the above is a rather trivial problem. The animat can only achieve its reward and
terminate the trial if it has first visited the key state. A slightly more complicated variant is
provided by the same environment, in which the ‘door’ is always open. However, the reward
gained is dependent on whether the animat has previously visited the ‘key’ state, being 1000
if it has, and otherwise 1. Once again, an extra character in both environment and classifier
condition allows XCS to ‘remember’ whether the animat has previously visited the ‘key’

state.

153

steps fo goal

steps to goal

T T T T T T T
steps to goal
optimum steps
reward
pptimal reward
T
]
L
- m
=
o
L
1]] 1]]]
5] 1688 Za@a ZaEa 4888 Saaa [Yalslz] Faaa 2888
trials
Figure 4-7 'Carry the Flag', N=1600, random exploration
T T T T T T T
step=s to goal
aptimum steps
reward
pptinal reward
o
i
L { m
=
o
i
1]] 1]]]
5] 1688 Za@a ZaEa 4888 Saaa [Yalslz] Faaa 2888

trials

Figure 4-8'Carry the Flag', N=3200, random exploration

154

steps fo goal

steps to goal
optimum steps

reward
pptimal reward

1
reward

steps to goal

12

1a

16686 2EEA ZEEA 4@8E SEBEAE SEEE Saaa 2EEA

trials

Figure4-9'Carry the Flag', N=1600, roulette exploration

steps o goal
aptimum steps

reward
pptinal reward

T

1
reward

a

1a@E

ZaEa 3868 4888 5868 AE6EE Faaa =galalz]
trials

Figure 4-10'Carry the Flag', N=3200, roulette exploration

155

Figure 4-7 -Figure 4-10 show the performance of XCS on this second sequential multi-
objective task. With both roul ette-wheel and random exploration, thereis aslight reduction in
the time needed to achieve optimal steps to goa as the population size is increased from 1600
to 3200. Once again, we also see that random exploration achieves optimal performance
faster than with roulette-wheel exploration. Note also that where N=1600, the treatment with
random exploration clearly achieves a better average reward (1000 £ 0.00 (mean + std. dev.))
than the treatment using roulette-wheel exploration (986 + 9.51 (mean + std. dev.)), implying

that the map of predicted payoffsisless accurate in the latter.

4.4 Concurrent Multi-objective problems

4.4.1 Two objective problems

We have seen that XCS is capable of optima performance on the simple sequential two-
objective problems using both random and roulette-wheel exploration policies. It is more
interesting to consider the problems faced by a learner that has to juggle multiple
simultaneous objectives. In order to do this, an alteration of the previous Woodsl
environment is used that not only has a ‘food’ goal, but also has another goal labelled
‘energy’. In a similar fashion to the second sequential multi-objective task, the environment
is presented to the classifiers with an additional character, which is set to one if the animat’s
internal ‘energy level’ is higher than 0.5, and otherwise set to zero. The internal energy level
can vary between 0 and 1. The classifiers once again have an additional character in the
condition that allows them to match this extension of the environment. A trial is terminated

and reward is given when the animat reaches either of the goal states.

156

Figure 4-11 The Woodsle environment with two goals

4411 Stepwisereward, no cost of movement(Woodsle-typel)

In the first version of the Woodsle problem there is no cost of movement. Each trial starts
with the animat’s internal energy level initialised at random in the range [0, 1]. The reward
function is step-wise, giving an external reward of 1000 in the case that the animat arrives at
the energy goal when its energy level islower than or equal to 0.5, the reward being otherwise
1. Conversely, the animat receives a reward of 1000 if it arrives at the food goa when its
energy level is higher than 0.5, the reward being otherwise 1. This problem and the Woodsle
environment were first reported in [Bull2002b]. The optimal average reward that can be

attained is 1000, and the optimal average stepsto either goal stateis1.7.

157

steps to goal
optimum steps

aw reward
pptinum reward

steps fo goal
o
1
reward

o] I 1 1 I 1 1 1
5] 2EEA 4EEE SEEE Saea 1a@EE 12686 14666 166686

trials

Figure 4-12 Woodsle-typel. N=1600, random exploration

Figure 4-12 shows XCS achieving optima performance with N=1600 using random
exploration. In Figure 4-13 it will be seen that using roulette exploration, performance is
dightly worse in terms of the average reward achieved (random 1000 + 0O, roulette 993 + 3.69
(mean * std. dev)). Increasing the population size allows XCS to address this problem using

roulette exploration (see Figure 4-14), again indicating the significance of N as seen in the

sequential problems above.

158

steps fo goal

steps to goal

steps to goal
optimum steps

aw reward
pptinum reward

1
reward

step=s to goal
aptimum steps

auv reward
pptinum reward

1
reward

1 | | 1 | | |
5] zaEE 4EEE [=1505)] SBaa 18666 12666 146686 16666
trials
Figure 4-13 Woodsle-typel. N=1600, roulette exploration
T T T T T T T
1 | | 1 | | |
5] zaEE 4EEE [=1505)] SBaa 18666 12666 146686 16666

trials

Figure 4-14 Woodsle-typel.

N=3200, roulette exploration

159

In Figure 4-15 - Figure 4-17 we see how average steps to goal, average reward achieved, and
average performance vary in response to changing values of learning rate and discount rate,

using the random exploration policy. Performance is measured as before (Section 2.8.1).

It is apparent that XCS is largely insensitive to the setting of learning rate and discount rate,
apart from at extreme settings of y and 3. Indeed, optimal (or very nearly optimal) behaviour

appears to be the norm rather than the exception.

steps to goal
varging learning and discount rates

steps

]

1.73
1.7

steps

1.84 1
1.82 4
1.8 -
1.78
1.76 -
1.74 -
1.72 4
1.7 -
1.68

=y

learninga'
rate - @.4

Figure 4-15 Exploration of stepsto goal with varying lear ning- and discount- rate.

160

reward
varging learning and discount rates

reward

laaa
999
398
997
9946
995
994
9932
9z
991

1 1 1 1 1 1 1 4 1 1

M

L]

iszount
rate

learninga' Pl
rate - @.4

Figure 4-16 Exploration of reward gained with varying lear ning- and discount-

Ferformance
varying learning and discount rates

aerformance

1
@.995
B.39
8,985
8.9%
a.97°3
8.37
8,965
B.96
8.333

L -

5]
a.2
|.7
. B

¥l

a discount
4' rate

reward
le+az
999
293

28
LS

993
992

T

rate.

perfarmance
6,99
8,98
8,97

1

Figure 4-17 Exploration of performance with varying lear ning- and discount- rate.

161

44.1.2 Stepwisereward, dynamic cost(Woodsle-type2)

Once again, a cost of 0.01 ‘energy points as introduced for each move made by the animat.
This cost is deducted from the animat’s internal energy level after it has been assessed
whether the most recent action has brought an external reward, and if so, what size the reward
should be. (Thisisimportant; if the animat is charged for moving before the potential reward
is assessed, the environment is made ambiguous in those trials where the internal energy level
is 0.51. The animat moves to the ‘food’ state ‘expecting’ a high reward of since the energy
level is above 0.5, but this decision causes it to receive a low reward.) All other details

remain the same as in the case with no cost of movement.

Figure 4-18 and Figure 4-19 show two treatments with random exploration, while Figure 4-20
and Figure 4-21 show the same treatments using roulette exploration. Once again we see that
it is necessary to increase the population size with roulette exploration to achieve similar

performance as that attained with random exploration.

steps to goal
optimum steps

aw reward
pptinum reward

steps fo goal
o
1
reward

o] I 1 1 I 1 1 1
5] 2EEA 4EEE SEEE Saea 1a@EE 12686 14666 166686

trials

Figure 4-18 Woodsle-type2. N=1600, random exploration.

162

steps fo goal

steps to goal

steps to goal
optimum steps

aw reward
pptinum reward

1
reward

step=s to goal
aptimum steps

auv reward
pptinum reward

1
reward

MWWWMWWWMWMW T

1 | | 1 | | |

5] zaEE 4EEE [=1505)] SBaa 18666 12666 146686 16666
trials
Figure 4-19 Woodsle-type2. N=3200, random exploration.

T T T T T T T

1 | | 1 | | |
5] zaEE 4EEE [=1505)] SBaa 18666 12666 146686 16666

trials

Figure 4-20 Woodsle-type2. N=1600, roulette exploration.

163

steps to goal

12

i@

steps to goal
optimum steps

aw reward
pptinum reward

e e

1
reward

2a8a

4868 AEEE 2888 18686 12086 146688 16688
trials

Figure 4-21 Woodsle-type2. N=3200, roulette exploration.

164

t Stat t Critical two-tail
Steps to Goal 0.191 0.850
Reward 0.125 0.902

Table4-3 Two-Tailed Student t-test, Roulette N=3200, Random N=1600

As shown in Table 4-3, the difference between the treatments is not significant at the 95%

confidence level either in terms of the steps to goal or the reward achieved.

165

4.4.1.3 Continuousreward, dynamic cost(\Woodsle-type3)

In afurther effort to make the ssimulation more like the problem faced by areal robot, XCSis
now set the task of finding an optimal solution to the Woodsle problem when its energy level
is altered by its movements, and where the reward received upon arriving at one or other goal
state is directly proportiona to the energy level, rather than varying in a step-wise fashion
according to the energy level as has hitherto been the case.

At the ‘energy’ goal Reward = 1000.e

At the ‘food’ goal Reward = 1000(1-€)

Where e isthe animat’ s internal energy level that varies between zero and one. As before this
internal energy level is set randomly at the start of each trial, such that half the trials will start
with e < 0.5. As in the previous experiment, a cost of 0.01 ‘energy points' is deducted for
each move made by the animat in the grid-world. The animat’s energy level is not allowed to
go below zero. Asin the preceding experiments, the real value of the internal energy level is
hidden from XCS, and is presented as an extra environmental character set to one if the

energy level is above 0.5, otherwise zero.

While the optimum steps to goal remains 1.7 as in the other parallel multi-objective tasks in
the Woodsle environment, the optimum average reward is no longer 1000 due to the dynamic
reward. If the energy level at the goal stateis above 0.5, achieving the correct ‘food’ goal will
gain a reward in the range [1000, 500]. The same is true when the animat correctly reaches
the ‘energy’ goal with its energy below 0.5. Assuming an equal random distribution of initial

energy levelsfor trials, the average reward for successis 750.

166

Figure 4-22 and Figure 4-23 show results using random exploration, while Figure 4-24 and
Figure 4-25 show the same population sizes with roulette-wheel exploration. Using both
methods of exploration, XCS was able to solve this problem with a minimum of adjustment,

achieving simultaneously optimal performance both in terms of reward achieved and steps

taken.
reward = flg)
iz T T T T T T T
steps to goal ——
aoptimum steps ———
au reward ———
pptinum reward ——
ia | -
8 -
-
m
o
- i
F 12
" L
w
+
n
4 u
2 —WWWWMW -
a 1 1 1 1 1 1 1

a e 4868 c8B8 Seea 18088 legeg 14088 1088

trials

Figure 4-22 Woodsle-type3. N=1600, random exploration

167

steps to goal

steps fo goal

reward = flel

=teps to goal
aptimum steps

auv reward
pptinum reward

1
reward

step= to goal
aptimum steps

auv reward
pptinum reward

reward

1 | | 1 | | |

5] =1s1=)c) 4888 =150=]c) 2Ban 18668 12668 14888 16868
trials
Figure 4-23 Woodsle-type3. N=3200, random exploration
reward = flel

T T T T T T T

1 | | 1 | | |
5] =1s1=)c) 4888 =150=]c) 2Ban 18668 12668 14888 16868

trials

Figure 4-24 Woodsle-type3. N=1600, roulette exploration

168

reward = flel
1z T T T T T

=teps to goal
aptimum steps

auv reward
pptinum reward

steps to goal
o
1
reward

@ 1 1 1 1 1 1 1
g 2eea 4888 ceBa Saaa 1ag8a 120688 14080 150688

trials

Figure 4-25 Woodsle-type3. N=3200, roulette exploration

We have so far observed that XCS is generally less able to achieve such good results with
smaller populations when using roulette wheel exploration, compared with random
exploration. As can be seen from Figs 5-19 — 5-22, this is not the case with this problem.
Interestingly, with N=1600, the treatment using roulette exploration out-performs the
equivalent treatment using random exploration both in terms of reducing to an optimum the
average steps taken to the goal state (roulette 1.76 £0.03, random 1.98 £0.04), and also with
respect to the average reward gained (roulette 743 £7.34, random 714 £9.97). This result is

returned to in section 4.7.

t Stat t Critical two-tail
Steps to Goal 1.850 2131
Reward 0.780 2.101

Table4-4 Two Tailed Student t-test, Roulette & Random N=3200.

No significant difference at 95% confidence level.

169

4.5 Increasing Complexity

4.5.1 More objectives

The complexity of the Woodsle task is again increased by adding athird goal state. The new
goal, ‘maintenance’, takes priority over the other two goals. The ‘Woodslem' environment is

show in Figure 4-26.

Figure 4-26 The '"Woodslem' 3 objective environment

The reward function changes dightly to accommodate the third objective, as represented in

Figure 4-27.

maintenance
=D
L

0 0.5 1

energy
Figure 4-27 Graphical representation of correct goal
in 3 obj ective Woods problem

If the animat reaches the ‘maintenance’ goal and its need for maintenance is higher than or

equal to 0.5, it is rewarded 1000, otherwise 1, irrespective of the internal energy level. If the

170

animat reaches the ‘food’ goal when the need for maintenance is lower than 0.5 and the
energy level is higher than 0.5 it receives a high reward (1000), otherwise low (1).
Conversely, if the animat reaches the ‘energy’ goal when the need for maintenance is lower
than 0.5 and the energy level is lower than or equal to 0.5 it receives a high reward (1000),

otherwise low (1).

All other experimental details remain as before, except that the condition part of the classifier
is extended by a further character which is set to zero if the animat’s maintenance level is
lower than 0.5, and otherwise set to one. As is the case with the internal energy level, the
animat’s ‘need’ for maintenance is set randomly between 0 and 1 at the start of each tria,
such that all combinations of high and low maintenance need, and high and low energy need
are represented in equal numbers of trials. The optimum steps to goal is 1.8, and the optimum

average reward that can be achieved is once again 1000.

4.5.1.1.1 Stepwise reward, no cost of movement(Woodslem-typel)

As shown in Figure 4-28, XCS easily achieves an optimal average reward and steps to goal
using N=3200 and random exploration. With an equivalent population size (Figure 4-29),
roulette-wheel exploration takes longer to achieve similar performance, and the system shows
more variability in the average reward achieved. Increasing the population size allowed XCS
with roulette-wheel exploration to achieve results that match those with random exploration,

as shown in Figure 4-30.

171

steps to goal

steps to goal

iz

i@

iz

i@

=teps to goal
optimum steps

au reward
pptimum reward

1
reward

=teps to goal
optimum steps

au reward
pptimum reward

1
reward

- 4
Skl s, P T
| 1 | | 1 1 1
cHEa 4888 =3s]s]s] Seaa 1@@aa 12668 14688 16668
trials
Figure 4-28 Woodslem-typel. N=3200, random exploration.
T T T T T T T
e T T R T 7]
s, e s, an e e e, 5 T
| 1 | | 1 1 1
cHEa 4888 =3s]s]s] Seaa 1@@aa 12668 14688 16668
trials

Figure 4-29 Woodslem-typel.

N=3200, roulette exploration.

172

iz T T T

i@

=teps to goal
optimum steps

au reward
pptimum reward

steps to goal
o

1
reward

o} | 1 |

a] fd) 4888 aEaa

saea

trials

laaaa 1286868

14@88 168688

Figure 4-30 Woodslem-typel. N=6400, roulette exploration.

t Stat

t Critical two-tail

Steps to Goal

0.240

2131

Reward

Table 4-5 Two Tailed Student t-test, Roulette N=6400, Random N=3200
As can be seen from Table 4-5, there is no significant difference in steps to goal at p=0.05.

Figures for reward are not included as both treatments were identically perfect with no

variance.

4.5.1.1.2 Stepwise reward, dynamic cost (Woodslem-type2)

Having shown that XCS is easily capable of optimal performance in the three objective

Woodslem environment with no change in the parameters that were used in the simpler two

objective environment, once again a cost of movement of 0.01 ‘energy points' is introduced

for each move taken by the animat.

173

Figure 4-31 and Figure 4-32 show that, athough XCS was unable to achieve optimal
performance with N=1600 and random exploration, increasing N to 3200 allowed optimal

performance.

Figure 4-33, Figure 4-34 and Table 4-6 show that equivalent performance can be achieved
using roulette-wheel exploration, but only by increasing N once more.

ig T T T T

T T T
steps to goal ——
optimum steps ———
auw reward ——
Pptimum reward ——
18 1
8 -
£l
o
= L]
L
2 e 4=
n :
i
+
n
4 u
E_ -
@] 1]] 1 1
5] caaa 4808 LEEA j==1a]] 188688 12868 146688 16868

trials

Figure 4-31 Woodslem-type2. N=1600, random exploration.

174

steps to goal

steps to goal

iz

i@

=teps to goal
optimum steps

au reward
pptimum reward

et o) fmkm b L

1
reward

iz

fd)

4888 aEaa saea laaaa

trials

Figure 4-32 Woodslem-type2

1286868 14@88 168688

. N=3200, random explor ation.

i@

=teps to goal
optimum steps

au reward
pptimum reward

1
reward

fd)

4888 aEaa saea laaaa

trials

Figure 4-33 Woodslem-type2.

1286868 14@88 168688

N=3200, roulette exploration.

175

steps to goal

iz

i@

=teps to goal
optimum steps

au reward

pptimum reward

1
reward

fd) 4888 aEaa saea

trials

laaaa

1286868

14@88 168688

Figure 4-34 Woodslem-type2. N=6400, roulette exploration.

t Stat

t Critical two-tail

Steps to Goal

0.303

2.145

Reward

Table4-6 Two Tailed Student t-test, Roulette N=6400, Random N=3200. No significant
difference at 95% confidence level.

176

4.5.2 Bigger Environment

The complexity of the task is now further increased by enlarging the environment. An
adapted version of the well-known Maze5 grid-world is used [Lanzi1999], termed Maze5em.
Figure 4-35 shows Maze5em — a bounded environment containing obstacles (‘O’) and three
goal states; Food (‘F'), Energy, (‘E’) and Maintenance (‘M’). As before, all environmental

states are encoded in three characters, and eight actions are possible.

Figure 4-35 The M azeSem 3-obj ective grid-world

The payoff matrix remains the same as for the three objective Woodslem problem, as

outlined above (Figure 4-27).

177

steps to goal

steps to goal

1208

18g

=1

&

406

2e

WES MazeSem (3 objectiwvel

12a 1 1] 1 1 1] 1260
steps fo goal
optimum steps
- 1168 lFverage reward
pptinum reward
188 } Lk - 1@aa
I
‘,J
| | L
28 - 286
- Fag
o
i
1 X:] - eas 2
o
L
- Saa
48 - 488
- Z8a
=4t} - 2a8
- 186
a T T T T T T T a
5] a8 4888 [Yalslz] 2868 18868 12086 146868 16086
trials
Figure 4-36 M aze5em, random exploration, N=6400, p# =0.33
HCES MazeSem (3 ochjectiuvel
1 1 1 1 1 1 1 1080
step=s to goal ——
aptimum steps ————
F 11@m |average reward ———
pptinum reward ——
— - r; - 18@a
F @8
B - @86
L
o
L
s L I
i
i
- Seg
E - ama
- 386
- - 286
- 186
T T T T T T T a
a Za@a 4868 =1=15]x] 2868 166868 126086 1468608 160686
trials

Figure 4-37 M azeSem, random exploration, N=6400, p#=0.1

178

Figure 4-36 and Figure 4-37 show the performance of XCS with N=6400 and p#= 0.33, and
0.1 respectively. XCS achieve both optimal stepsto goal (4.8) and an optimal average reward
(1000) in the Maze5em environment using a random action selection policy in the 50% of
trials that are intended for ‘exploration’ when p# = 0.1. When p#=0.33, some runs are

optimal, but some are not.

However, it was less easy to achieve similar performance using a roulette-wheel exploration
policy. Once again, it was found that increasing the value of N was helpful, as was reducing
the value of p#, as shown in Figure 4-38 - Figure 4-40. (Table 4-7 shows that the results
gained with roulette wheel selection at N=8000 and p#=0.1 are significantly different from
those gained with random selection at N=6400, p#=0.1. However, the improvements with

increasing N and decreasing p# are obvious.)

HCES MazeSem (3 ochjectiuvel

128 : L L ! ! L ! 1288
steps to goal ———
aptimum steps ———
F 1188 Euerage reward ———
pptinum reward ——
186 - 18@a
- 286
97 L za0
g - FE8
. -
; L
N - cae T
i ¢
§ - 586
1
07 L am8
- 288
0] L zae
- 188
5} T T T T T T ; n
a 2ZeBa 4888 =1=1E 1] 2EEE 10668 12088 14608 16068

trials

Figure 4-38 M azebem, roulette exploration, N=6400, p#=0.33

179

steps to goal

steps to goal

126

166

2a

=15

44

=35

1208

18g

=1

&

406

2e

#CE MazeSem (3 objectiuvel

| | | 1 | 1208

steps to goal
optimum steps
F 1188 fverage reward
pptinum reward

- 1888

- 9eg

- 286

- 7ag

- eaa

reward

- Seo

- 488

- 280

- 2aa

L

T
2EEA

T T T T T a

4EEE E@EE 2EER 1666 12686 1466068 16066

trials

Figure 4-39 M azebSem, roulette exploration, N=6400, p#=0.1

HCES MazeSem (3 ochjectiuvel

1 1 1 1 1 1268

step=s to goal
aptimum steps
L 11i@R |pverage reward
pptinum reward

- 1@ga

- 2aa

- &80

- 7ag

L

reward

- oag

- 488

- 280

- 286

L

a

T
2EEA

T T T T T a

4EEE E@EE 2EER 1666 12686 1466068 16066

trials

Figure 4-40 M azeSem, roulette exploration, N=8000, p#=0.1

180

t Stat t Critical two-tail
Steps to Goal 4.304 2.110
Reward 4.304 2.110

Table4-7 Two Tailed Student t-test, Roulette N=8000, Random N=6400, p#=0.1

This behaviour is interesting. In the majority of cases, we have found that roulette-wheel
exploration can produce comparable results to that achieved using a random action selection
policy at the expense of increasing N. We now see that in this latter case it is not enough to

increase N, we also need to decrease p#.

P# is the probability that an alele in the condition of a classifier will have the ‘don’t care’
symbol, ‘#. It would therefore appear that XCS is suffering from a tendency to produce
over-general classifiers in MazeSem. This tendency may be exacerbated when using the

roulette-wheel action selection policy in the explore phase.

Lanzi makes the following observations in his investigations of generalization in XCS
[Lanzi1999].

* Inthe Maze5 environment with N=1600, Lanzi reports that ‘biased exploration’ gives
better results than standard XCS. ‘Biased exploration chooses an action randomly
with a probability Ps=0.3'. In the normal 50:50 balance between random exploration
and deterministic exploitation, this value would be 0.5. Biased exploration therefore
resultsin less exploration.

* Over-generalization stops XCS from reaching optimal performance. When p#=0,
XCS is an approximation of a ‘tabular Q-learner’ and achieves optimality in Mazeb.
Decreasing p# may help XCS in problems where there are fewer generalizations - this
is the ‘schema challenge’ [Butz2003b] in operation.

» Lanzi suggests that over-generals arise because some states are visited less often than

others, so classifiers which are accurate in a frequently-visited niche but less accurate

181

in aniche which is less often visited — for example, one further from the goal — have a
high fitness and are more likely to be reproduced. The GA chooses parents from [A],
so there will be fewer chances to discover optimal rulesin infrequently visited states.
He introduces a new operator ‘tele-transportation’, which restarts an exploration trial
at anew randomly selected position if the animat takes more than a maximum number
of steps before reaching the goal. This in effect addresses the issues of the ‘class
imbalance problem’. It is known that datasets in which one class is represented by
more instances than other classes present difficulties to machine learning techniques
[Japkowicz2002]. Techniques that attempt to discover generalizations are likely to be
more susceptible to this problem than those that do not, such as k-Nearest Neighbour.
Recent work on an accuracy-based classifier system, UCS, shows that the class-
imbalance problem affects LCSs [Orriols2005a, Orriols2005b]. In essence, Lanzi’s
tel etransportation implements a naive form of oversampling.

* Insummary, Lanzi states; ‘ XCSfailsto learn an optimal policy in environments where
the system is not very likely to explore all the environmental niches frequently’. This

is contradicted by the results he presents using biased exploration.

We have observed that lowering p# improves XCS performance in the three objective
Maze5em problem in the same way it does in Maze5. |If roulette-wheel selection isin effect
‘annealing too fast’, then there will be insufficient exploration. There may be greater
variation between experiments; in some, the best actionsin any particular environmental state
are not explored sufficiently and over-general classifiers are alowed to direct the system into

sub-optimal actions.

182

4.6 Roulette-wheel Exploration - Discussion

The hypothesis next tested is that increasing N with roulette selection improves performance
by decreasing the tendency towards excessive generalization. For each experimental
treatment of increasing values of N, with p#=0.33 and roul ette-wheel exploration, the average
specificity is shown for al classifiers which match in each environmental state. These figures

are the end result after 15000 exploit trials, and are the average of ten runs.

As can be seen from Table 4-8, with increasing values of N there is a tendency for the amount
of generalization to drop. Shaded values indicate that optimal performance was not achieved.
Considered over al states in the environment, the average percentage specificity (i.e., the

average percentage of non-'# alelesin the classifiers' conditions) is;

Random Exploration Roul ette Exploration

N p# 0.33 p# 0.1 pt 0.33 p# 0.1
1600 82 80 10 75
6400 87 87 18 88
8000 90 90

Table 4-8 Per centage specificity in all matching classifiers

183

* We have seen that as N increases, performance improves.

» [tisinteresting to note that although the two treatments that used random exploration
at N=6400 had the same overall specificity, it was only by using alow value of p# that
consistently optimal performance was produced.

» Thereisagenera tendency for specificity to increase with N.

* There is a dramatic difference between the results with roulette selection and p# =

0.33, and those of all other treatments.

It seems safe to assume that increasing N reduces the speed at which the roul ette-wheel action
selection anneals. A larger population size allows more diversity to be maintained, giving the

GA more time to weed out the over-general rules.

In [Butz2003a], the reproductive opportunity bound (ROP-bound) upon N is derived. Given
that there are no effects of action set size or fitness influences in the deletion process, they

show that,

N > nokd+(—kd)d pl+1

where §p] isthe value to which the specificity of the population would converge if no fitness
influence was present, and n is the number of actions. Ky isthe ‘difficulty’ of the problem —
determined by the length of the minimum order schema that provides guidance on whether
one solution is better than another (they illustrate this with the extreme case of the parity
problem in which all bits must be specified to correctly predict the outcome; in such a case

any partial solution is aslittle use as a completely general classifier).

It can be seen from the above equation that N must grow with bigger values of both the order

of difficulty kq, and also the necessary specificity §p] in the population. Thisis based upon

184

the assumption that ‘binary input strings are encountered which are uniformly distributed over

the whole problem instance space {0, 1}

The Maze5 environment is one in which little generalization is possible, and thus is difficult
for XCS. To achieve optimal performance with either action selection mechanism required
more specificity (i.e. a lower value of p#). Thisis as predicted by the ROP-bound, above.
The assumption that ‘binary input strings are encountered ... uniformly...” will be true neither
in multi-step problems (states further from the goal are less frequently visited), nor when the
action selection scheme is other than random. The necessity to increase N when using
roulette wheel exploration must be due to the effects of bias in sampling frequency on the
ROP-bound. In further support of the predictions of Butz et al, we would expect that given a
sufficient value of N and §p] to satisfy the ROP-bound, and for a given value of x (assumed
to be sub-optimal), as we further increase N we will achieve optimal performance sooner.

Thisisindeed the case, asis shown in Figure 4-41 and Figure 4-42.

185

steps to goal

steps fo goal

1208

18g

=15

=15

4@

24e

126

188

24

&d

48

24e

HCES MazeSem (3 ochjectiuvel

1284

- 1i@@

- 1@ga

- 986

- sag

- Faa

- &8@

- Saa

- 4aa

- 2@

- 288

- 188

o]

T T
2eea 4888

T
caag

T
ceea

trials

T
1agea

T
legag

T
14680

a
1e0e8g

reward

step=s to goal
aptimum steps
lEverage reward
pptinum reward

Figure 4-41 N=6400, p#=0.1 Optimal performance achieved after approx 4500 trials.

#CE MazeSem (3 objectiuvel

1z@E

F 1184

- 1@g4a

- 9eg

- saa

L

- eag

- Saa

- 480

- 2@

- 288

- 188

o]

T T
2eea 4888

T
caag

T
ceea

trials

T
1agea

T
legag

T
14680

a
1e0e8g

steps to goal
optimum steps
lEverage reward

pptinum reward

reward

Figure 4-42 N=8000, p#=0.1 Optimal performance achieved by approx 2500 trials.

186

Generally then, we have seen that random exploration gives better results for a given value of
N than roulette wheel exploration. However, it will be recalled that when we examined the
behaviour of XCS using random and roul ette action selection on the Woodsle problem with a
continuous reward function and associated cost of movement (Woodsle-type3), we noticed
that with lower values of N, roulette selection outperformed random selection. This

contradicts all other results, and requires explanation.

Figure 4-43 and Figure 4-44 show a map of all state-action pairs in the Woodsle
environment. For each state-action pair the action encoding is shown, with the values of
prediction (p), error/1000 (e), and fitness* 1000 (f) for the classifier in [M] with the highest P
value for this action — the highest of these then indicates which action would be taken in the
deterministic phase. Figure 4-43 shows values when the internal energy level is below 0.5;
i.e. the learner should seek the energy goal. Figure 4-44 shows the opposite case, the ‘food
goa’. In both figures, state-action pairs for which the representative classifier has a p value
over 500 are shaded proportionally to the p value. A state-action cell with a p-value over 500
indicates ‘a step in the right direction’. The darker the shading, the more likely an action will

be chosen by roulette selection.

It will be seen that there are more shaded boxes in Figure 4-43 than in Figure 4-44. This
indicates that using random selection with N=1600, X CS has concentrated its resources on the
‘Energy Trials' where e<0.5, in which it seems to point towards the shortest path to goal from
each state space. In the ‘Food Trials', few values are over 500, indicating that there is little
knowledge of where the best reward may be found. Using random exploration with N=1600,

XCS has nearly solved ‘half the problem’.

187

i1 am a0l i1 and aai i1 am a0l i1 an [0} i1 0o a0l
p=85 | p=23 | p=a71 p=85 | p=27 | p=23 | p=373 | p=208 | p=aN1 p=#5 | p=077 | p=208 | p=w8 | p=27 | p=221
s=012 ==001 s=007 a=012 a=001 a=001 s=003 a=008 s=007 =010 s=003 =003 s=002 =003 s=003
=0 =18 =13 =0 =10 =348 =032 LT =13 =12 =09 =16 += il =10 =H
a1 X=0 110 a1 =1 110 010 X=2 110 010 x=13 110 a1 ¥=1

p= 41 ¥=1) ¥=1 p=30 | p=33 | v=0 p=30 | p=41 ¥=10

a=008 E0 E0 =002 a=008 E0 =002 a=017 E0

=112 =3 =450 =3B =3

101 100 100 (] 10 100 af 101 100

p=123 p=34 p=533 p=334 p=378 p=23 p=314 p=331 p=303

a=004 a=008 ==008 s=002 =001 s=007 =002 s=002 =001

=17 o] =44 =3B =2 =50 =3 =1 =@

m am m 0o a1
p=H5 | p=413 p=T8 | p=31 p=433
=012 a=003 =002 =003 a=0.10
=0 3 = dl =10 =17
(0] ¥=0 a1 ¥=4 110
p= 451 ¥=1 FOOd p= 451 ¥=1 p= 1453
s=017 E=d s=017 E=d =s=008
=13 =13 =0
101 100 101 100

p=HE | p=820 p=H5 | p=371

a=004 e=004 =002 =002

=8 =150 =1 = 6l

i1 1] i1 0o

p=30 p=578 p=133 p=405

a=001 ==008 s=003 =003

=107 =135 =8 LT

a1 X=0 110 a1 ¥=1

p=41 V=2 p=37 p=41 ¥=2

=017 E0 =003 a=017 E0

3 =03 3

101 100 35 101 100

p=330 | p=32 | p=i2s p=335 | p=371

3=004 =002 3=008 a=002 a=002

=3 B2 =10 =233 = 6l

m a0 a1 m 0o a1
p=33 p=801 p=43 p=32 p=31 p=48
=012 2=003 =002 =008 =003 a=0.10
=0 k] =3 =2 =10 17
[30] *=0 110 [30] ¥=1

p=124 ¥=3 p=43 p=41 ¥=3

3=0135 E0 3=008 =017 E0

=3B =0 =13

101 100 a1 101 100

p=343 p=34 p=64 p=43 p=T70

=003 a=001 a=014 =002 =002

=1 L8] =1 =1 =3

11 [1) [1]] 1 [17] oa 11 [1) [Z]] 1 [{107) [{1] 11 [T [Z]]
p=85 | p=31 p= 421 p=23 =31 p=204 | p=m3 | p=am1 p=24 | p=m3 | p=m1 p=204 | p=382 | p=31 p=405
a=012 =003 3=003 =012 =003 =002 a=002 =003 a=002 a=002 =003 a=002 =008 =003 a=002
=0 10 =H =0 =10 B H =7 =10 =H =7 =10 =H =M =10 =3
a1 X=0 110 a1 =1 110 a1 X=2 110 a1 =13 110 a1 ¥=1 110
p=44 =4 p=433 p=44 =14 p=433 p=44 =4 p=433 p=451 =14 p=453 p=41 =4 p=433
a=013 E0 =008 a=0.15 E0 a=008 a=013 E0 =008 =017 E0 =008 a=017 E0 =008
L] =0 L] =0 L] =0 3 0 3 =0
101 100 ol 10 100 (3]} 101 100 (35 10 100 101 100

p=1 p=23 | p=841 p=82 | p=87 | p=641 p=36 | p=27 | p=379 | p=3a | p=2a p=H5 | p=38

3=007 =001 a=014 =002 2=003 ==014 a=003 =003 a=012 ==003 a=002 a=002 a=002

=10 =@ =1 =105 =208 =1 = ® 26 LT =3 =4 =1 =

Figure 4-43 Random exploration. '"Energy Trial'

188

K 000 001 KD 000] K 000 001 T 000 001 1 000 001
p=39 | p=m2 | p=mo | p=25 | p=239 | p=me | p=wa | p=m4 |p=m3 | p=#5 | p=t13 | p=ma | p=3ma | p=m9 | p=my

a=001 | =004 | s=005 | s=003 | s=001 | s=001 | s=003 | s=000 | s=002 | s=010 | s=001 | =003 | s=008 | s=002 | s=007
=435 =102 =10 = 18 =217 =305 =02 =1 =410 =12 =53 =16 =110 =70 =2
010 =0 W=2 110 010 K] 110 010 %=1 110
p= 33 — 0 Y= p=28 | p=53 ~ 0 p=28 | p=598 — 0 p=414
a=002 | E=1 E=1 a=004 | =008 | E=1 s=001 | ==028 | E=1 a=001
=108 =123 =a30 =183 =180 =18
101 100 100 ol 101 100 ot 101 100 ol

=018 s=013 ==001 a=018 =018 a=010 =014 a=007

(0] ¥=0 ¥=4 110
p=12 | =1 FOOd ¥=1 p=414
s=003 E=1 E=1 a=001
=315 =13
101 100 101 100 [
p=45 | p=371 p=#8 | p=27 | p=350
a=003 a=002 =007 =017 =002
=@ 38 =55 =3 =45
i1 am i1 0o a0l
p= %7 p=3316 p=354 p=0 p= 138
=008 a=002 s=009 =003 s=002
=723 =102 =110 =203 =285
a1 X=0 110 110
p=451 =2 p=372 p=1337
=017 E1 =008 =002
3 =3 =85
101 100 [35} [35}
p=268 p=331 p=342 p=24
a=002 =007 a=001 =008
=5 1 =13 =3
m am a1 a1
p=314 p=H1 p=239 p=1328
=007 a=002 a=003 =002
=1 L] =10 =33
[30] *=0 110 110
p=124 ¥=3 p=372 p=HM5
3=0135 E1 3=008 3=004
=3B =3 =17
101 100 a1 [}
p=39 p=206 p=3558 p=233
=007 a=003 a=015 a=004
=200 =24 =1 E 12
11 [1) [1g] [17] oa 111 [1) [1]] 1 [{107) [{1] 11 [T [1]]
p=114 | p=22 | p=289 p=20 | p=31 p=22 | p=m20 | p=21 p=22 | p=220 | p=31 p=22 | p=202 | p=224
=007 =004 =003 a=001 =004 =003 =001 =004 =003 a=001 =004 =003 =004 =001
=1 =102 =10 =43 =1 =N =482 =1 =% =43 =1 =N =102 =80
a1 X=0 110 =1 110 X=2 110 a1 =13 110 ¥=1 110
p=44 =4 p=J72 =4 p=238 =4 p=38 p=451 =4 p= 38 =4 p=38
a=013 E1 =008 E1 a=009 E1 a=009 =017 E1 =009 E1 a=009
L] =3 =9 =9 3] =9
101 100 (35 10 100 (3]} 101 100 [35] 10 100 [3]] 101 100 [35}
p=20 | p=336 | p=350 | p=77a | p=331 p=50 | p=85 | p=#%65 | p=202 | p=85 | p=25 | p=2%5 | p=85 | p=26 | p=223
3=007 =003 a=015 =010 a=001 =015 3=004 =003 =003 =004 =003 =003 =004 =007 a=002
=200 =13 =1 =4 =23 =) =3 =118 =11 =3 =7 =23 =3 =162 =130

Figure 4-44 Random exploration. '"Food Trial'

Figure 4-45 and Figure 4-46 show the same diagrams generated using roul ette selection in the
exploration phase. There appears to be a much more even distribution of shaded boxes,
indicating that the two halves of the problem; what to do when energy is low, and what to do

when it is high, have both been solved equally well.

189

i1 am a0l i1 and aai i1 am a0l i1 an [0} i1 0o a0l
p=%5 | p=T3 | p=383 | p=%5 | p=373 | p=23 | p=20 | p=216 | p=23 | p=369 | p=363 | p=33 | p=23 | p=21 p=33
s=002 a=002 =008 a=002 s=002 a=008 s=002 s=007 =s=008 =002 s=002 =008 s=002 =003 =s=008
=13 4 =1 48 =4 1 =3 1 =1 =3 =18 =1 =13 =2 =1
a1 X=0 X=2 110 a1a x=13 110 a1 ¥=1

p=$3 | ¥=0 ¥=1 p=ia | p=302 | v=0 p=d13 | p=ma | v=u

a=003 E0 E0 =017 =005 E0 a=008 a=023 E0

=3 =5 =3 =& E2

101 100 100 a1 10 100 af 101 100

p= 125 p=30 p=321 p=574 p= %4 p=242 p=31 p=%4 p=387

s=009 2=000 ==003 =a=003 s=011 s=012 =002 a=0.11 =008

=14 B2 =17 =4 =3 =6l =76 = =2

m am m 0o a1
p=3%2 | p=#1 p=3%2 | p=31 p=508
a=0M a=004 a=0M =003 a=005
=45 & =45 =2 =@
(0] ¥=0 a1 ¥=4

p=38 | ¥=1 FOOd p=3%68 | v=1

s=001 E=d ==023 E=d

=1 E 2

101 100 101 100

p=44 | p=228 p=85 | p=457

a=011 e=003 a=009 =008

= 712 =14 = a8

i1 am i1 0o

p= 32 p=20 p=31 p= 36

s=001 ==003 a=001 =002

=4 =15 =8 =1

a1 X=0 110 a1 ¥=1

p=354 V=2 p=1008 p=368 ¥=2

=002 E0 a=010 a=023 E0

=02 =214 =2

101 100 [35] 101 100

p=¥1 | p=39 | p=31 p=224 | p=37

a=0.11 =008 a=002 =004 =003

= 7 =485 =M =2

m am ao1 m 0o a1
p=382 p=40 p=357 p=332 p=T3 p=308
a=0M a=003 =002 a=0M =002 a=005
L] =13 =83 L]] =@
[30] *=0 110 [30] ¥=1

p=358 ¥=3 p=3 p=175 ¥=3

a=001 E0 3=0035 a=002 E0

=1 =4 =3

101 100 a1 101 100

p=44 p=46 p=3533 p=423 p=2%7

a=011 a=005 a=004 a=009 =008

@] 2] k2

11 [1) [1g] 1 [17] oa 11 [1) [1]] 1 [{107) [{1] 11 [T [1]]
p=%5 | p=T3 | p=383 | p=%5 | p=73 | p=23 | p=25 | p=a3 | p=33 | p=365 | p=373 | p=333 | p=23 | p=73 | p=m3
a=002 =002 a=008 =002 a=002 =008 a=002 =002 =008 a=002 a=002 =008 a=002 a=002 =008
=13 4 =1 48 =4 1 =13 4 =1 =3 =4 =1 =13 =19 =1
a1 X=0 110 a1 =1 110 a1 X=2 110 a1 =13 a1 ¥=1

p=T1 =4 p=%8 p=T1 =14 p=43 p=332 =4 p=352 p=30 =14 p=332 =4

a=004 E0 =003 a=004 E0 a=003 a=003 E0 =008 =003 E0 =003 E0

=0 =9 0 =9 LR 4 =T LR

101 100 (i35} 10 100 (3]} 101 100 (35 10 100 101 100

p=%4 | p=228 | p=o00 | p=53 | p=a71 p=@00 | p=518 | p=537 | p=905 | p=53 | p=2:3 p=%4 | p=46

a=0.11 =004 3=013 =004 a=005 ==013 a=004 =005 a=0.11 a=004 =007 a=0.11 =003

= =123 =1) =N =1 =32 =16 =T =3 =4 = =6

Figure 4-45 Roulette exploration. 'Energy Trial'

190

111 am a0l i1 and aai i1 am a0l i1 an [0} 111 0o a0l
p=01 p=3#3 p=352 p=Hb p=3H3 p=1352 p=3H@ p=3H3 p=1352 p=#7 p=3H3 p=332 p=780 p=H3 p=1352

a=017 | ==001 | s=ao1 [s=001 | s=001 | s=001 | s=001 | s=001 | s=001 | =001 | s=001 | s=001 | ==008 | ==001 | s=001
=3 =902 =gy =050 =@ =907 =050 =002 =gy =2 =@ =007 =154 =02 =gy
010 =0 W=2 110 010 K]

p=42 | ¥=0 ¥=10 p=w5 | p=227 | v=0

a=005 | E=1 E=1 a=002 | e=a02 | 1

=14 =38 =221

101 o0 o0 ol 101 100

p=514 | p=gs7 | p=33 | p=m@5
==014 | e=014 | =010 | s=013

| @ =13 43
I [T

p=TE | p=33

s=003 | =001

14 om

[=0

p=47 | ¥=1 FOOd
s=002 | E=1

=10

2 =0

111 am 111 00 a0l
p=3505 p=33 p= 765 p=517 p=411
a=003 a=001 s=013 =002 s=009
=8 =002 =17 =131 =13
010 X=0 110 a1 ¥=1 110
p=3528 =2 p=354 p=728 =2 p=34
a=003 E1 a=004 =019 E1 =002
= =3 =7 =1
101 100 [35] 101 100 [35]
p=34 p=3316 p=40 p=320 p=76 p=452
a=002 =002 3=008 a=004 =004 a=0.11
=4 =01 =M =183 = & =N
111 am ao1 1 0o a1
p=001 p=3H3 p=1352 p=001 p=3520 p=411
a=017 a=001 a=00 a=017 =003 =009
E 3 =90 =097 E 3 =38 L]
[30] *=0 110 [30] ¥=1 110
p=49 ¥=3 p=3H3 p=49 ¥=13 p=34
3=010 E1 a=001 a=010 E1 a=002
=X =18 =X =10
101 100 (0] 101 100 [
p=3501 p=333 p=432 p=3501 p=T7d p=432
=009 a=002 a=011 =009 =004 a=011
=127 =10 =X =127 =& =X
111 [1) [1g] 111 [17] oa 111 [1) [1]] 111 [{107) [{1] 111 [T [1]]
p=01 p=3#3 p=352 p=801 p=3H3 p=372 p=01 p=3H3 p=372 p=601 p=3H3 p=372 p=01 p=H3 p=1352
3=017 =001 a=001 =017 a=001 =004 a=017 =001 =004 a=017 a=001 =004 =017 ==001 a=001
=3 =002 =097 =g =@ 3 =3 =002 =13 = =09 =3 =3 =002 =997
a1 X=0 110 a1 =1 110 a1 X=2 110 a1 =13 110 a1 ¥=1 110
p=42 =4 p=338 p=H12 =4 p=33 p=42 =4 p=338 p=Ha =4 p=34 p=342 =4 p=34
=010 E1 a=001 a=0.10 E1 a=001 =010 E1 a=001 =010 E1 =002 =010 E1 =002
LE:] E=an L] =472 LE:] a7 k] =102 LE:] =1
101 100 [35] 10 100 (3]} 101 100 [35] 10 100 [i3]] 101 100 [35]
p=512 | p=514 | p=452 | p=512 | p=514 | p=%2 | p=512 | p=514 | p=262 | p=536 | p=514 | p=262 | p=338 | p=H14 | p=42
a=012 ==014 a=0.11 =012 a=014 =004 a=012 ==014 =004 a=010 a=014 =004 a=010 a=0.14 a=0.11
+= 5 =302 =N + 5 =3 12 += 5 =302 =12 =131 =3 =12 =131 =302 =N

Figure 4-46 Roulette exploration. 'Food Trial'

It appears then that XCS may be able to concentrate resources better using roulette action
selection in the exploration phase when these resources are a limiting factor in its

performance; i.e. N istoo small.

This problem (Woodsle-type3) in which the seemingly anomalous results occur is a difficult
one for XCSto solve. The reward varies in direct proportion to the animat’s internal ‘ energy
level’ when it is at a goal state. There will thus be a high degree of error in all predictions.
Perhaps the results observed in this continuous reward problem reveal an effect of low values

of N that have been masked in the other, less challenging problems?

191

Increasing M in the Hoodsle maze
roulette and random exploratiaon

5 1]]]] 1 1260
- liga

5 - la@a
- SEE

4 - S@d

- -ag

- ea@

step=s to goal
w
]
reward

- Saa

- 4EE

- zaa

14 - 2an
- lao
a T T T T T T a
=} Sea lgaa 15a8a coee =41z 2eag 25a8g
H
steps (random) —— reward (randoms —8—
steps (roulettel —+—— reward (roulettel ——

Figure 4-47 Woodsle-type3. Effect of increasing N with roulette and random explor ation (continuous
reward, cost of movement).

In Figure 4-47 we see the effect of N on the performance of XCS in the Woodsle-type3
problem, using the two exploration action-selection strategies. It will be seen that at low

values of N, roulette selection strongly out-performs random exploration.

N tSat |tCrit N tSat | tCrit
200 | -0.107 | 2.110 1800 | 0.890 | 2.110
400 | 0.090 | 2.145 2000 | 0.780 | 2.131
600 | 12.650 | 2.101 2200 | 0.444 | 2.101
800 | 16.579 | 2.101 2400 | 0.260 | 2.101
1000 | 16.216 | 2.131 2600 | 0.470| 2.101
1200 | 9.420 | 2.101 2800 | 0.160 | 2.101
1400 | 7.050 | 2.101 3000 | 0.370| 2.101
1600 | 0.854 | 2.101

Table 4-9 Two-tailed Student t-Test for hypothesised zero difference between reward gained using
roulette and random action selection, for increasing values of N. Significantly different region shaded.

192

13

16

14

1z

i@

Figure 4-48 Graph of Table 4-8, showing area of significant difference (abovethet Critical line).

J

T
t Stat

\’\/—'\/

oag

laaag

1584

zZa8g

2oea

sgaaa

The same is true in the simpler Woodsle-typel problem, as shown in Figure 4-49. Note that

the advantages of roulette action selection are reduced as N rises, until a random exploration

policy is better. This eventual benefit of random exploration is explained by the tendency of

XCS with roulette selection to over-generalise, as shown earlier with MazeSem.

196

Increasing M in the Hoodsle maze
roulette and random exploration

G 1 1 1 1 1 1266

- 11@a

7 = o = = laga

steps fo goal
w
1
T
o
@
@
reward

5] =15 1s] 1668 1568 =3cals] f=a=151c] 2HEEG

steps (random) —+— reward Crandom) —8—
steps (roulette) —+— reward Crouletted —e—

Figure 4-49 Woodsle-typel. Effect of increasing N with roulette and random exploration (stepwise
reward, free movement).

How then can we explain the advantages shown by roulette selection at low values of N? It
was suggested above that using roulette selection, XCS was able to concentrate scarce
resources on the high value areas of the problem space, thus maximising its overall returns. If
resources are scarce, roulette selection can only give this performance advantage if classifiers

that predict alower payoff can be deleted.

197

Increasing M in the WHoodsle maze
roulette and random exploration

1 1 L 1286

L

= = = - 1eea

- 988

- 288

L

- eEB@

reward

- SEa

steps to goal
[A]
1

- 488

- 288

14 - 2688
- 168
a T T T T T T a
a Saa 1666 1584 ceaa 2508 g =11 5] 25a8a
H
steps Crandom) —— reward (random) —8—
steps (rouletted —+—— rewatrd (roulettel —w—

Figure 4-50 Without fitnessreduction in offspring, roulette's advantage at lower
N isreduced.

In XCS there is typically a reduction in fitness levied on the offspring of classifiers newly
produced by the GA. Figure 4-50 shows that when this fitness reduction does not occur,
roulette wheel exploration ceases to give such a marked advantage at lower values of N for
the Woodsle-typel problem. This supports the hypothesis that roulette wheel exploration
provides a performance advantage by allowing the system to grab resources from lower
payoff niches. In less visited niches, offspring would normally have their fithess reduced (as
indeed would offspring in all niches). Because the niche is less often visited, they have little
chance to boost their fitness by participationin [A] (in any case, fitness increases slowly since
MAM does not operate on fitness updates.). These lower fitness classifiers then become
candidates for deletion when the GA is triggered in a more frequently visited state. In this
way resources are ‘stolen’ from low payoff state-action niches, since the roulette-wheel

exploration strategy increases the bias towards visiting the higher payoff niches.

198

We can relate these findings to the pressures and challenges recognised by Butz at al in
[Butz2003, Butz2003b]. Figure 4-51 shows two areas where different challenges face XCS.
In Area 1, it is suggested that a new challenge is operating, which will be termed the ‘niche
resource challenge’. At values of N insufficient to satisfy the ROP-bound, the roul ette wheel

exploration strategy benefits performance through ‘ resource theft’, as indicated above.

Increasing M in the Hoodsle maze
roulette and random exploration

e I 1 L I L Lzae
F liaa
1]
S - ur e i e & - LEa6
- a0
. I gea
g - 7oa
- =
& L
¢ 5 Feea 3
2 g <
& ' - Sea
W
& L apa
+ + ——— 1
F 369
1 - - 2ea
- lea
L T T T T T @
3] Sae 18ae 158a Zoae 2368 el 2w 1)

Figure 4-51 At different values of N, XCS faces different challenges

Figure 4-52 indicates that the sub-optimal performance of XCS is not due to the ‘cover
challenge’, since for all values of N, cover occurs infrequently and has stopped after trial

2000 of the total 15000 exploit trials in each experiment.

199

23 T T T

28 - H=1&88

=
[
w
=
=
O+ & %k XE+ & #0 XE+ &

cumulative cover events

#* E + @ =% +

B w0 O EX TN -

O # BsE X [[

B W OE N SOW R0 e O COHES R W wEa @ 2

E D OEH B ¥

BB e N DRI B A R R I RO

+ B B %

® # @ B AEC TR R O R

o] I I I I
1 i@ 188 1686 186088

trials

Figure 4-52 Frequency of covering against trial for different valuesof N - random
action selection, Woodsle-typel.

In Area 2, it is suggested that the sub-optimal behaviour using roulette-wheel exploration is
evidence of the effect of the bias on the ‘reproductive opportunity bound of Butz et a.
[Butz2003a]. As previously stated, the ROP-bound is derived on the assumption that all
possible states in the space {0, 1}' will be uniformly presented to the system. All other things

being equal, this will be true if the exploration policy does not introduce any bias"™.

There is abiasin exploration when using roulette-wheel action selection; fitter classifiers will
be picked more often than less fit ones, and this bias will increase as more trias are
performed. Therefore new candidate solutions in lower-payoff niches will be more likely to
be deleted when using roulette exploration. It seems that this might explain the necessity to
increase N in order to get equivalent optimality to that achieved with random exploration —
the dilution effect reduces the probability of deletion. The ROP-bound is dependent upon the

exploration policy.

'3 This theoretical work by Butz et al considers only single step environments. Clearly, in multi-step
environments a further bias is created as states nearer the goal will be sampled more frequently than states
further away.

200

4.7 Conclusions

In this chapter we have seen that XCS can optimally solve a variety of simple multi-objective

tasks. It can do these using a variety of action-selection policies in the exploration phase. In

the results presented here, we have seen that;

Although XCS has many parameters, these seem to need little adjustment to function
(nearly) optimally. This is unlike eg. ZCS [Wilson1994] in which optimal
performance has been shown [Bull2002a] to be strongly dependent on the values of
the reinforcement learning parameters. In XCS, optimality is the norm rather than the
exception with respect to the settings of 3 and vy.

XCS can be used successfully with roulette-wheel exploration replacing random
action selection, suggesting that it may be used for on-line learning where random
actions would be inappropriate.

When population sizes are too small for random action selection to perform optimally,
roulette-wheel action selection may give a performance benefit. This appears to be
due to the advantages of concentrating resources on high payoff niches where there are
insufficient resources to form a complete and accurate map of state-action pairs. This
may be of value in a robotic environment; smaller populations are less
computationally expensive. Within this thesis, this has been termed the ‘niche
resource challenge'.

Roulette-wheel action selection functions less well than a random action-selection
policy at population sizes sufficient for optimal performance using random action
selection. This appears to be due to over-generality resulting from a lack of
exploration, and adds weight to the observations of Lanzi [Lanzi1999] and the

theoretical work of Butz et al. [Butz2003a]

201

» Thereis evidence for the ROP-bound of Butz et al. in multi-step environments, but it

is dependent on the action-selection policy.

202

Chapter 5 X-TCS

5.1 Introduction
We have seen that ZCS, a strength-based LCS, is capable of optima performance in

simulated problems with multiple goals. However, optimal performance can only be achieved
after much careful adjustment of the reinforcement learning parameters. TCS, an adapted
version of ZCS which automatically determines the change in environmental state that can be
considered significant and which applies reinforcement according to the time taken both to
achieve reward and for individual actions was used to control a real robot. Although TCS
was able to approach optimal behaviour on a single objective task, it was not possible to

demonstrate reliably optimal behaviour with two objectives.

In contrast to the parameter sensitivity of ZCS, the accuracy-based XCS requires little
adjustment of its reinforcement learning parameters in order to achieve optimality in the same
simulated tasks. It was suggested that XCS could be made suitable for online control of a
robot by substituting a probabilistic action selection policy for the random action selection
policy typicaly used in ‘explore’ trials, and noted that there is some evidence that using such
a policy may enable better performance with smaller population sizes as might be necessary

in a resource-limited environment such as a physical robot.

This chapter describes an extension of XCS that incorporates the changes that Hurst et al.
made to ZCS in order to produce TCS [Hurst2002a, Hurst2002b, Hurst 2003]. The new
algorithm, X-TCS, is set the same tasks of controlling a physical robot as described in
Chapter 3. Experimental results are presented which show convincing performance

improvements over TCS.

203

To the best of the author’s knowledge, this is the first application of an accuracy-based LCS

to controlling a physical agent in the real world without a priori discr etisation.

5.2 Algorithmic Description

The changes made to XCS to produce X-TCS are a parallel of those described in Section
3.3.3. XCS forms a match set, and thence an action set using either a deterministic exploit
policy or aroulette-wheel explore policy. The action isthen initiated and the algorithm enters
the drop decision cycle, in which it is determined whether to carry on with the current action
or stop and create a new match set. The process continues until externa reinforcement is
attained or some time-out value for the trial is reached. This is pictorially represented in
Figure 3-2. Rather than basing the drop decision on the fitness of the classifiers in drop and
continue sets, X-TCS uses the values in the prediction array. In this way the drop decision is

reward-based as is the fithess-based decision in TCS.

In addition to the use of the drop decision cycle to discover what scale of environmental
change may optimally be regarded as ‘significant’ in different parts of the environment, the
update procedures of reinforcement learning are also modified. As in Section 3.3.3, the
external reward is discounted according to the amount of time taken to reach the goal, and the
reinforcement that flows from the classifiers that advocate an action to their predecessors is
similarly discounted. As before, these alterations should favour efficiency of the solution asa
whole, and the use of a smaller number of long actions rather than a large number of small

actions.

204

5.3 Experimental set-up

To enable a useful comparison with the performance of TCS, the physical environment and
robot platform are unchanged. Attainment of external goal states is through the monitoring of
power supplies as before. The alterations to X CS additional to those outlined in the previous

section are asin Section 3.4.3, and are listed briefly below, viz;

Unordered pairs of real numbers are used to match the environmental input of the
three LDRs. The condition of the classifiers is composed of three such pairs, one for
each LDR.

» Classifiers have an action from the set {0, 1, 2} corresponding to drive left, forward or

right.

* The genetic operators of crossover and mutation are altered such that crossover occurs
with uniform probability within the condition of the classifier, and to alow mutation
of areal number within the bounds [0, 1]

» Cover isaltered to account for real-valued environmental input.

Although GA subsumption is used to compact the rule base and promote generalization,
action set subsumption is not used since this would remove the variability in the action set

upon which the drop decision cycle relies.

Apart from the addition of the drop decision cycle, the changes to the reinforcement regime to

account for the time taken to perform actions, and the implementation details outlined above,

X-TCSisidentical to the description of XCS outlined in Section 4.2.

205

5.4 Results

Asin the work using TCS presented in Chapter 3, a single objective problem was first used to
demonstrate the ability of the system to learn. Thereafter, a two objective problem was used.
Since the XCS policy of alternating explore and exploit trials was used all metrics are
presented in three forms, these being only exploit trials, only explore trials, and the average of

both on a per-trial basis.

All results are the average of five experiments, unless otherwise stated. The total number of
trials performed is comparable to that presented for TCS, i.e. where 200 TCS trials were
performed, 100 explore and 100 exploit trials were performed with X-TCS. Where a
windowed average is shown, the window size is therefore reduced to 20 trials rather than 50

as used for the TCS results.

5.4.1 One Objective
The single objective task is identical to that reported in Section 3.5.1. As before, external

reinforcement upon reaching the goal state is 1000 before time-proportionate discounting is

applied. Trial time-out occurs after 30 seconds.

Figure 5-1, Figure 5-2 and Figure 5-3 show the number of actions taken by X-TCS to reach
the goal state and gain external reinforcement. It can be seen that in each case thereisatrend
for the number of actions taken to diminish with time, showing that the system is finding

more efficient paths to the goal.

206

Actions

Actions

58

45

48

a5

28

25

28

58

45

48

3s

28

25

28

®-TCS EXPLORE AND EXFLOIT (AYERAGEX

e

.
.
A k3
* L3
- * @ L3
. .
- AL N
& - ’ N ‘
s, * “ - . PR e CR L7 .
® & Fy * * * © *
® ® "
.
26 a9 & 2o 160
trials
zctions &
Figure5-1 Actions Taken. Explore and Exploit
H-TCS EXPLOIT TRIALS ONLY
.
.
.
.
.
.
.
.
. .
.
& * M @
.
L ®
* # * L3
L3 * & L3 N
® N @ +* @ ® + e“ . s @
3 +* *
v e * & +* & ks
. w " & *® by
- @ A k3 . &
@ * g
2e 4@ &a 2@ 188
trisls
actions &

Figure5-2 Actions Taken. Exploit only.

207

H-TCS EXPLORE TRIALS ONLY
58

4s -

48 -

35

36 -

25 -

ctions

28

trials
zctions ®

Figure5-3 Actions Taken. Exploreonly

Figure 5-4, Figure 5-5 and Figure 5-6 show the ratio of failure to success. As with TCS, a
trial is counted as a failure in the single objective task if the time-out value of 30 seconds is
reached without the robot arriving at the goal. It can be seen that thereisa strong tendency
for the system to fail less often as learning continues to take place. As learning continues, the

explore trials fail dightly more than the exploit trials, as would be expected.

208

Au Failures per Success

Au Failures per Success

o

®-TCS EXPLORE AND EXPLOIT (AYERAGEX

. — EAVA! POV
] 2a 48 68 26 160
trizls
failure to success
Figure 5-4 Failureto Success Ratio. Explore and Exploit
H-TCS EXPLOIT TRIALS ONLY
@ é@ ;G é@ EIDB 188

trisls

failure o success

Figure 5-5 Failureto Success Ratio. Exploit only

209

H-TCS EXPLORE TRIALS ONLY

MAL

68 26 160

trizls

failure to success ——

Figure 5-6 Failure to Success Ratio. Explore only

Figure 5-7, Figure 5-8, and Figure 5-9 show the total time taken to reach the goal in
successful trials. It can be seen that there is a tendency for the time taken to decrease as
learning takes place, falling towards the optimal case of between six and nine seconds. Again
there is a visible difference between the performance in the explore and exploit trials — as
expected, the exploit trials are both more nearly optimal with a mean of 10.8 compared with
11.7 for the explore trials, and are more consistently optimal with lower variance of 18.4

compared with 19.9.

Importantly, the average of the explore and exploit behaviour shows strong evidence of

learning for all these metrics. Thus it would appear that X-TCS with a non-random explore

policy istruly suited to online control.

210

Time

Time

48

35

28

25

28

48

35

20

25

28

®-TCS EXPLORE AND EXFLOIT (AYERAGEX

trials

time £

Figure5-7 Timeto Goal. Exploreand Exploit

&

®=TCS EXPLOIT TRIALS ONLY

2o

T

trials

time =

Figure5-8 Timeto Goal

. Exploit only

211

H-TCS EXPLORE TRIALS ONLY
48 T T T T

35 -

38 -

25

28 -

Time

a 26 a9 & 2o 160
trials

time £

Figure5-9 Timeto Goal. Exploreonly

Figure 5-10, Figure 5-11 and Figure 5-12 show the windowed average of percentage success.
As previoudly stated, the window size is 20 trials. Overal, the average performance of both
exploit and explore trials shows a strong tendency towards the optimum, although neither

exploit or explore trials on average were 100% successful.

212

Success

Success

2e

=1}

48

EL

2@

L

a8

2e

®-TCS EXPLORE AND EXFLOIT (AYERAGEX

26 48 &
trials

% guccess

Figure5-10 Windowed average % success. Explore and Exploit

®-TCS EXPLOIT TRIALS OHLY

28 48 &a

trials

% success

Figure 5-11 Windowed aver age % success. Exploit only

213

®-TCS EXPLORE TRIALS OHLY

88 -

68 -

48 -

2@ -

trials

Figure 5-12 Windowed average % success. Exploreonly

Figure 5-13 and Figure 5-14 show windowed average time to goal and windowed average
percentage success for the exploit and explore trials of a single run, as do Figure 5-15 and
Figure 5-16 for a different run. In the first of these pairs of graphs, X-TCS shows itself to be
capable of almost perfect performance. In the exploit trials, the robot consistently achieves an
average time to goal which is within the optimal bounds, while in the explore trials average
time to goal is only slightly worse. In both cases, percentage success rises rapidly to the
optimum, deviating only occasionally. In Figure 5-15 and Figure 5-16 a second individual
run is shown. In this case performance was dightly more variable. Apart from the
differences in the initial population which might account for variation, each tria starts with
the robot at only approximately the same position and orientation in the environment, and
there may be delays in response from the power supplies thereby introducing variation into

the signalling of reward.

214

seconds to goal

seconds to goal

KTC Exploit Trials

T T T T T T
1o
4 75
- s8
4 a5
4 8
w
I
o
o
a
5
w
.
@@ -
27.5 |
es -
22.5 |
2@ -
17.5
15
12.5
18
e %suceess ——
s Time to goal ——
2.5 F optimum lower bound ——
- optinum upper kound ——
B L L L L L L L L
18 EL) 26 48 Sa) 7a 26 98 1o@
trials

Figure5-13 Individual Trial 1. Windowed average % successand timeto goal. Exploit only

KTC Explore Trials

% success

%success

s F Time to goal

aptinum lowsr bound

2.5 optimum upper bound
a

1 1 L L 1 1 1
28 3@ 48 548 68 78 aa 948 1aa

trials

Figure5-14 Individual Trial 1. Windowed average % success and timeto goal. Exploreonly

215

seconds to goal

seconds to goal

KTC Exploit Trials

trials

% success

%susoess

Time to goal
optinum lower bound
optinum upper bound

Figure 5-15 Individual Trial 2. Windowed average % success and timeto goal. Exploit only

KTC Explore Trials

48 548 68 78 aa 948 1aa
trials

% success

%sucoess

Time to goal
aptinum lower bound
optinum upper bound

Figure 5-16 Individual Trial 2. Windowed average % success and timeto goal. Exploreonly

In comparison with TCS, the behaviour of the robot seemed strikingly better. After a short
initial phase the robot quickly learned to home in on the goal, and having learned this
deviated seldom from the desired behaviour. This subjective impression is validated by the
statisticsin Table 5-1. When the overall average of the failure to success ratios of X-TCS and
TCS are compared, we see that X-TCS has a lower mean. Thus X-TCS more reliably
achieves success in this single objective task than TCS (statistically significant at the 95%

confidence level).

X-TCS 0.155+ 0.033

(average of both explore and exploit) (Mean + SE. n=100)
TCS 0.294 + 0.038

(Mean = SE. n=200)

t Stat 2.737, t Critical two-tail 1.968

Table 5-1 Overall average failure to success

Before embarking on these experiments with X-TCS, it was uncertain how XCS would fare.
XCS depends for its success upon building a complete map of the payoffs of taking all
possible actions. It seemed possible that the robot would take many small actions as it
explored the space, resulting in inefficient locomotion. Subjectively, it appeared that X-TCS
did take more small actions than TCS, although the trajectories the robot followed were much
less snakelike than the winding paths of alternating left and right turns that TCS seemed often
to adopt. Under the control of X-TCS, the robot appeared to turn to orientate itself and then
drive forwards giving the subjective impression of more purposeful behaviour than the

waggling progression achieved with TCS.

Figure 5-17 shows the average number of actions taken by TCS in the one-objective task
reported in Section 3.5.1, compared with the number of actions taken in the experiment
described above. With atwo-tailed t-test, there seems no reason to reject the null hypothesis

that there is no difference between the means, as shown in Table 5-2.

217

Actions=s

=1c}

45

4m

35

ol

25

ca

13

1a

t-Test: Two-Sample Assuming Unequal Variances
Number of actions taken to reach the goal.

TCS

X-TCS

Mean

Variance

Observations

Hypothesized Mean Difference
df

t Stat

P(T<=t) two-tail

t Critical two-tail

11.27723 12.35402
35.06738 44.72051

100

0

197
-1.2115
0.227156
1.97208

100

Table5-2 Two-Tailed t-test. 100 trialsTCS, 100 X-TCS

Actions taken to reach goal

L
e
%
® N : ® ®
- @
a@ 3 -
* S
% L 4+ 4+ oF
* - & & LA
#
g
@
w ¥y o # & &
£ kS 5 #)
kS
P e
@ %
@ . %
- N
1 1 1 1
za 4@ &@ j=1]
Trials
[Tce =

Figure 5-17 Comparison of X-TCSand TCSactions per trial

1aa

218

5.4.2 Two Objectives

Having shown that X-TCS is capable of achieving near-optimal behaviour in the simple one
objective task, results in the two objective task are now presented. The experimental set-up

remains as detailed in Section 3.5.2.

X-TCS here performs an explore and an exploit trial with an internal energy level of less than
0.5, and then both an explore and exploit trial with aninternal energy level of greater than 0.5.
The figures that follow show both the explore and exploit trials, only exploit, and only
explore, and show metrics for both goal states. All graphs are the average of five
experiments. An experiment lasted 100 trials, taking around three and a quarter hours to
complete. N=2000, ¢ is 0.05 and 7 is0.1. These results are therefore directly comparable to
those shown in Section 3.5.2, in which TCS was not shown to be capable of achieving

optimal performance, even when the learning process was allowed to continue for 1200 trials.

In Figure 5-18, Figure 5-19 and Figure 5-20 the number of actions taken to reach the goal is

shown. Again, it can be seen that there is a tendency for the number of actions taken to

reduce as |earning continues.

219

Actions

Actions

EL)

7e

1=

58

48

28

28

28

78

68

58

48

28

28

¥-TCE EXPLORE ANMD EXPLOLT

o
.
«
<
.
. .
«
. .
.
a
® ® “ 2
« .
* =] a =] o ®
[L F X o ®
* ® @ ® @
o + B ‘x “ + a8 B
oo . @ +8 o
kY] ta * ¥ * + u*’ w ®o4
L @ xR ® [:] o
* H + o & x * + .
® + o - ® & @ S
® ® e-i' + + £ 8 = & s *
@ B+ @ = ¢ ke X + @ ¥
+ - a “ a
r # + . o+ i *e * +
<a
N + + ot . .y %
a 2e 4@ &a 2@ 188
trials
explore goal 1 # explore goal 2+ exploit goal 1 a exploit goal 2 x
Figure 5-18 Two Objectives. Actionstaken. Average of Explore and Exploit trials.
H-TCS EXPLOIT TRIALS ONLY
.
.
.
.
. .
.
. .
.
L .
.
+ + N #
.
- @ S * +
.
& ¢ + - . k3
+ +
[* + o+ + * - * * +
- ® + +
+ + + + & *
o # - * * - . + &+ &+ . &
k3 A +
L * + + * k3
. .
.
.
a 26 a9 & 2o 160
trials
gosl 1 “ goal 2+

Figure 5-19 Two Objectives. Actionstaken. Exploit only

220

Actions

EL)

7e

1=

58

48

28

28

¥-TCE EXPLORE TRIALES OMLY

Figure 5-20 Two Objectives. Actionstaken. Exploreonly

Figure 5-21, Figure 5-22 and Figure 5-23 show the ratio of failure to success. Aswasthe case

with TCS, atrial is counted as afailure if the goal reached is not the correct one or if the trial

continues for more than 30 seconds. As in the single objective task, the ratio of failures to

success decreases with successive trials. In both explore and exploit trials the problem is

guickly learned and thereafter there is a small and decreasing tendency to occasionally fail.

221

Failure to success ratio

Failure to success ratio

¥-TCES EXPLORE ANMD EXPLOIT

68 28

explore goal 1 —+— explore goal 2 —— explait goal 1 —&— exploit goal 2 —#—

Figure 5-21 Two Objectives. Failureto Success Ratio. Average of Explore and Exploit.

H-TCS EXPLOIT TRIALS ONLY

AP e

trizls

gasl 1 —+— goal @ —+—

Figure 5-22 Two Objectives. Failureto Success Ratio. Exploit only

160

222

¥-TCES EXPLORE TRIALE OMLY

/oS, oY WA

&

. . TR/ ;l AN
4
trials

gosl 1 —s— gosl 2 —+—

Figure 5-23 Two Objectives. Failureto Success Ratio. Exploreonly

Figure 5-24, Figure 5-25 and Figure 5-26 show the amount of time taken for the robot to
reach its goal. The amount of time taken decreases as learning continues, approaching the
upper limit of the optimal band. However, the robot generally takes longer to achieve its goal
in the two objective problem than in the single objective case. The spread of the results also

decreases as |earning continues, showing that the system is becoming more consistent.

223

Time

Time

¥-TCE EXPLORE ANMD EXPLOLT

48 T T T T

35 -

BsF o a

28

&a 2@

trials

explore goal 1+ explore goal 2+ explait goal 1 @

Figure 5-24 Two Objectives. Timeto Goal. Average Explore and Exploit

H-TCS EXPLOIT TRIALS ONLY

exploit goal 2

48 T T T T

35 -

38 -

EE N .

28 -

& 2o

trials

gasl 1 goal 2+

Figure 5-25 Two Objectives. Timeto Goal. Exploit only

224

¥-TCE EXPLORE TRIALES OMLY

48

35 -

38 -

25

28

Figure 5-26 Two Objectives. Timeto Goal. Exploreonly

Figure 5-27, Figure 5-28 and Figure 5-29 show the windowed average of the percentage
successful trials. In contrast to the results presented for TCS in the comparable Figures 3-11
and 3-12, we see a much improved picture. Where TCS varied considerably between
individual runs and showed little sign of approaching 100% success, the performance of X-

TCS swiftly improves and approaches the optimum after only 100 explore and exploit trials.

This shows a marked improvement over TCS for the dual objective problem (see Figure

3-10). Figure 5-27 which shows the average performance of both explore and exploit trials

shows that X-TCS learns quicker than TCS, and achieves better results.

225

®-TCE EXPLORE AND EXPLOIT (AYERAGE?

85 -

S8 -

85 -

8@ -

75 -

ERS

&5

&8

Success

55 -

56 -

a5 -

a8 -

35

38 -

25

28 -

L L L
a 28 48 &a 28 188

trials

% success

Figure 5-27 Two Objectives. Windowed aver age per centage success. Average Explore and Exploit

®-TCS EXPLOIT TRIALS OHLY

S8 -

85

88 -

75 -

7o -

65

68 -

Success

55 -

Se -

45 -

48 -

35 -

28 -

25

2@ -

L L L
a 26 48 & 26 160
trials

168

% success

Figure 5-28 Two Objectives. Windowed aver age per centage success. Exploit only

226

B-TCE EXPLORE TRIALS OMLY

Figure 5-29 Two Objectives. Windowed aver age per centage success. Explore only

Figure 5-30 and Figure 5-31 show results for the best of the five trials which produced the
average results presented above. Figure 5-32 and Figure 5-33 show the worst of the trials. In
Figure 5-30 and Figure 5-31 we see that percentage success rises swiftly until it attains 100%.
After achieving this, the learner does not deviate, consistently staying perfect in respect to
attaining the correct goal as determined by its internal energy level. Perfection is attained
quicker in the exploit trials than in the explore trials. Since there is no deviation from
perfection in the explore trials it is clear that accurate rules have been discovered and have
come to dominate such that roulette wheel selection has in effect self-annealed, and become
deterministic. Time taken to achieve the goal state is less optimal. In Figure 5-30 it can be
seen that time to goal is suboptimal until approximately trial 80, after which it attains the
upper limit of optimality. In contrast the explore trials are less good with respect to time
taken, and deviate away from optimality slightly after achieving it. This suggests that

exploration is continuing after all.

227

time

ru

BTC Exploit Trials

18 2a a8 48 58 & e 26
trials

208

75

5@

25

[Fzuccess Time to goal optimun Touer Bound

optinum upper Bound

Figure5-30 Two Objectives. Run 1. Exploit only

% sucocess

228

®TC Explore Trials

4 75

-1 sSe@

-1 25

28 28 48 Se &a 7a 28 a8 188

cptimum upper bound

Figure5-31 Two Objectives. Run 1. Exploreonly

Figure 5-32 and Figure 5-33 in contrast show the worst of the individual runs. In the first of
these we see that in the exploit trials learning is much slower, but again, eventually converges
upon 100% success. Time taken is worse, showing little sign of converging to the optimal
band. In the explore trials there is a slow increase in percentage success, finally approaching
100%. Time taken is worse till, although it seems to be improving towards the end of the

experiment.

229

time

time

®TC Exploit Trials

% suooess

2a 3@ 4a 5@ &a 7e 28 k=l 188

trials

MEuccess

Time %o gosl cptimum lower bound cptimum upper bound

28
27.5
25
22.5
ze
17.5
15
12.5

Figure5-32 Two Objectives. Run 2. Exploit only

RTC Explore Trials

% sucocess

28 Ll =L & 7a 26 28 160
trials

Fzuccess Time to goal optimun Touer Bound optinum upper Bound

Figure5-33 Two Objectives. Run 2. Explore only

230

5.5 Conclusions

In this chapter have been described the alterations to XCS which are necessary to incorporate
the changes Hurst made to ZCS, thereby producing TCS. The new system has been named
X-TCS. In simulation we have seen that XCS requires far less parameter adjustment than
ZCS in order to achieve optimal performance. We saw previously that TCS was unable to

solve optimally the two objective robot task, even when run for very long periods of time.

In contrast, X-TCS has shown the same ability to optimally solve the two objective problem
on the robot that XCS showed in simulation. X-TCS seems good when assessed against the
desirable characteristics for a robot learning system outlined in Section 3.2.3 . The online
behaviour (i.e. the average of both explore and exploit trials) of the robot approaches 100%
performance, which would certainly not have been the case had a random exploration policy
been used. Optimality was achieved after arelatively short period of time; X-TCSis quick to
learn. In comparison to the purely evolutionary robotics approaches discussed in eg.
[Floreano1996] where a controller for a single objective navigation task was evolved after ten
days, X-TCS achieved optimal behaviour on the similar single objective task detailed here
after an average of about two and a half hours, which included the time taken to restore the
robot to its starting state by a random walk around the arena. Even the worst individual
experiment presented for the dual objective task eventually approaches 100% success, and the
average behaviour of the learner is very nearly perfect. In contrast to ZCS and — it seems
likely — TCS, there was no necessity for careful adjustment of the reinforcement learning
parameters in order to achieve these results, and the parameters were indeed set the same as
used in the TCS experiments. Although X-TCS takes more actions to attain its goals than
TCS, this difference is small. Even though X-TCS takes more actions, its performance is
more nearly optimal than that of TCS; the larger number of actions indicates a more specific

solution, suggesting that TCS may have suffered from over-generalization.

231

In conclusion, X-TCS seems to satisfy the criteria for a good learning algorithm for simple
robot control problems in which the robot’s behaviour must alter according to the internal
state of the learning system. Learning is fast and attains near optimal results with no
necessity for manua intervention. There was no a priori discretisation imposed, no
assumptions made about how the problem would be solved, and no need for parameter

adjustment.

232

Chapter 6 Conclusions and Future Work

This chapter briefly reviews the work presented in this thesis, and then suggest some avenues

of investigation which might be profitable for future research.

6.1 Conclusions

The focus in this thesis has been upon the practicalities of learning on a robotic platform. It
was asserted that, in any but the most trivial applications, a robot will need to switch between
the satisfaction of different goals depending on itsinternal state. The use of various LCS was
examined for problems of robot control with multiple goals in both simulated and physical

environments.

We saw that ZCS was capable of optimal performance in simple dual objective tasks in
simulation. However, this was only true when its parameters were set correctly; a difficult
task since some parameters cannot be tuned in isolation. In order to set the reinforcement
learning parameters of ZCS the performance of the system was examined — measured in terms
of both the steps taken in atrial, and the percentage of trials in which the goal state achieved
was the optimum one given the animat’s internal state — as it varied with different settings of
the RL parameters. To the author’s knowledge, these parameters have otherwise been set by
trial and error by the experimenter, as in [Bull2002a] in which ZCS was first reported to be
capabl e of optimal behaviour. Using a process of refinement it was possible to find parameter
sets that allowed ZCS to perform optimally in the simple dual objective tasks. However, it

was not possible to find a parameter set that would allow ZCS to solve optimally the dightly

233

more complicated tasks such as ‘woodsle-type3'. Similarly, it was not possible to find

parameter sets allowing the optimal solution of a simple three objective problem.

Given the need to carefully select the parameter set in order to enable ZCS to solve even these
simple problems, it seemed an unlikely candidate as a practical means of enabling a robotic
learner to solve problems with multiple goals. Although Bull et al. showed the successful
self-adaptation of some parameters [Bull2000a, Bull2000b], they were unable to achieve this
with the RL parameters without modifying the algorithm to enforce co-operation between
rules in successive action sets, and even so were unable to achieve optimality. Using a meta-
heuristic such as an evolutionary agorithm to search the space of parameter combinations

automatically would be possible, but likely to take an unacceptable amount of time.

Tthe Tempora Classifier System TCS was implemented on a robotic platform, and achieved
results in a single objective task similar to those reported by Hurst et al. However, it was
unable to achieve reliably optimal performance with TCS in the dual objective task. To
gather enough results to draw dtatistically valid conclusions took many hours; days with
experiments comprising a thousand trials. Since ZCS is so dependent on the settings of its
parameters, it seemed likely that TCSis equally sensitive. This suggested that TCS was not a
suitable candidate to solve the problem of a practical robotic learner for problems with

multiple goals.

In the same simulated problems solved by ZCS, XCS showed itself equally able to achieve
optimal performance. However, XCS required much less tuning of its parameters, making it a
more practical choice. XCS was able to solve problems that had proved intractable to optimal
solution with ZCS. Typically, XCS is implemented with alternating deterministic action

selection ‘exploit’ trials, and random action selection in the ‘explore’ trials. Any robot that

234

acts randomly half the time is likely to be of little use. This motivated an exploration of the
use of a roulette-wheel action selection policy in the explore trials. This was shown to be
capable of achieving optimal results. Interestingly, it was found that roulette-wheel selection
required a larger population than random action selection to achieve fully optimal
performance, but that at population sizes where random exploration was itself sub-optimal,
could offer a performance advantage. We noted that this might be advantageous on a robotic
platform where resources may be limited and explored ways in which the action selection
policy was linked to performance at different population sizes, thus linking this work to the

emerging theories of Butz et al.

X-TCS was then implemented and experiments on the robotic platform were described. This
algorithm implements the features of TCS — the automatic determination of what constitutes
an environmental event, and a temporally-adjusted reinforcement schedule — within the
framework of XCS. X-TCS showed itself to be capable of achieving optimal results on the
single objective problem. In the dual objective problem, with the same settings of population
size, and reinforcement parameters as TCS, X-TCS quickly demonstrated nearly optimal

behaviour.

X-TCSrequired little a priori knowledge or problem-specific adjustment in order to achieve
these results. There was no necessity to discover elusive settings of the many parameters,
neither manually nor by employing a heuristic. There was no need to impose an a priori
scheme in which the world is rendered into a grid of states of predetermined size. Learning
was reliable and rapid. In most experiments lasting just over three hours for 100 trials, the
robot was reliably achieving 100% accurate performance after around 20 trials; around 40
minutes. Of this, an average of 22.6 minutes was actually spent in learning — the rest of the

time was spent returning the robot to its starting position by a random walk around its arena.

235

With no need to tune the algorithm, rapid rea-time learning, reliably near-optimal
performance, and without the need for the experimenter to tailor the algorithm to the problem
or to build models, X-TCS seems to satisfy the criteria listed on page 110 of being a truly
practical mechanism for learning to solve these ssmple problems with multiple goals on a

robotic platform.

6.2 Future Work

The problems presented in this thesis have been simple, in order to prove the utility of
different approaches. Future work should improve utility, and explore more complicated

problems.

6.2.1 Self Adaptation of Parameters

Hurst explored the use of self-adaptation of mutation rate and learning rate in XCS
[Hurst2003]. He demonstrated that the use of a self-adaptive mutation rate improved the
ability of XCS to solve multi-step problemsin which long chains of actions are needed before
reward is given. This could clearly be of benefit in X-TCS. In particular, he shows that in
replicating experiments performed by Lanzi [Lanzi1999] the use of self-adaptive mutation
greatly improves the otherwise disappointing performance he observed while using roul ette-

wheel selection in Woods 12-14.

Hurst (ibid.) suggests that ‘it is difficult to adapt the learning rate in XCS, and that ‘self-
adaptation of Slearning rate within ZCSwas a failure’, citing alack of selective pressure for
the latter. In the work of Butz et al. incorporating gradient descent into XCS, they suggest

that since they adjust the update procedure for a classifiers prediction according to the ratio of

236

its fitness to the sum of fitnesses of others in the same action set, this represents an adaptive
learning rate [Butz2004]. They show an increase in performance in long multi-step
environments such as Woods14 which XCS is generally believed to be unable to solve

without the use of specify or teletransportation [Lanzi1999] .

Since these adaptive techniques allow XCS to solve problems with longer chains of actions,
they could be useful avenues for investigation in order to apply X-TCS to more complex real-
world problems. There may aso be great benefit in further investigating the use of self-
adaptive parameters in TCS, since parameterisation was believed to be the cause of its sub-

optimal behaviour in the dual objective robot task.

The self-adaptation of parameters might also hold the key for the successful and general

application of TCS.

6.2.2 Action Selection Policies

XCS, as used here in its original form and as the basis for X-TCS, uses fitness proportionate
selection in its GA. Butz et al. [Butz2003c] suggest that the use of tournament selection
offers a number of advantages. Firstly, it may aid the production of accurate classifiers that
more quickly replace overgeneral rules. Secondly, it may make the system more resilient in
noisy environments. Thirdly, it may promote good performance with less dependence on
parameter settings. They show an improvement in performance in the Woods6 multi-step

environment which proves insoluble in the absence of tournament selection.

Butz et a. find no problem where performance suffers from the inclusion of tournament
selection, and many that benefit. Since there may be a benefit in noisy environments such as

experienced with a physical robot in the real world, and aso since there may be further

237

benefits in terms of stability in respect to parameter settings, tournament selection would
seem an interesting technique to include in X-TCS. We might expect it to speed up learning,
allow the use in more noisy environments, and reduce still further the necessity to tune
parameters to the problem at hand. However, recent work by Kharbat et al. [Kharbat2005]
suggests that tournament and roulette-wheel selection are both equally dependent upon
parameter settings and may be equivalent in terms of performance. They also find that rule
compaction is more efficient with roulette selection due to its inherent bias towards the fitter

individuals in a population.

6.2.3 Noise

Although no special precautions were taken to insulate the robot experiments from the
variations in light occasioned by diurnal variation, the British climate and passing students
and visitors, we saw good performance. We must assume that the levels of noise present in

the environment did not prove a significant challenge to X-TCS in this setting.

Christopher Stone of the UWE reports™ that in single-step problems in simulation in which
varying amounts of Gaussian noise are introduced, XCS performs less well than ZCS as noise

levels are increased, until it isfinally unableto learn at all.

The noise in these experiments may be quite different from that experienced in Stone's
experiments. Firstly, Stone is applying constant noise by smoothly altering the reward signal.
It may be that in the experiments described in this thesis noise may be more sporadic in

nature, when for example, clouds momentarily occlude sunlight from entering the lab.

18 Personal Communication, to appear initially as UWE Learning Classifier System Group technical Report
UWEL CSG05-002

238

Secondly, Stone's problems are single step while the ones described in this thesis are multi-

step.

It would be interesting to attempt to characterise how robust X-TCS is with respect to noise.
It would be a simple matter to shield the arena from varying background light, and then
provide a ‘noise generator’ by varying the light levels. If X-TCS proves to be sensitive to
noise this might suggest further investigation of TCS, perhaps adding weight to the need to

investigate the automatic setting of parameters through self-adaptation.

6.2.4 Increasing Complexity

The problems to which X-TCS has been applied are very simple ones. In order for a robot to
perform in complex problem domains, it will need to switch between many different
competencies. In its current form, X-TCS has a ‘flat’ structure; al the classifiers are in the
same population, and can all participate in every match set depending on their level on
generality. The system learns not only the optimal behaviours, but also the optimal strategy
for switching between them. For this reason it may be that X-TCS will not scale well as more
goals need to be satisfied, demanding more complicated behaviours to be learned, perhaps

with longer delay before external reward.

A number of approaches have been tried, as exemplified by the continual research interest in
Robot Soccer, where, e.g., Bonarini et al. use their ‘BRIAN’ architecture to control the
interaction of predefined behaviours through the use of a fuzzy control system
[Bonarini2003]. Dorigo and Colombetti used a hierarchy of LCS to co-ordinate between
learners that had been trained and then fixed [Dorigo1998]. Hierarchies of LCS—in this case
XCS - were also used by Barry, and found suitable to solve the difficult Mazel4 problem

through the use of sub-goals to effectively increase the frequency of reward [Barry2001].

239

Again, Barry used a predefined hierarchical structure. Recent work by Gadanho
[Gadano2002, Gadanho2003] uses predefined behaviours in a RL framework. A model of
homeostatic variables based upon emotional statesis presented to the neural networks that act
as function approximators for a Q-Learner, which therefore has information about both
external and internal environments. A value representing the ‘well-being’ of the system is
derived from the differentially weighted sum of these internal variables, and thisis fed to the
learner as a reinforcement signal. They demonstrate the controller on a smulated Khepera
robot. One problem with this approach is the sensitivity to the weighting of the homeostatic

variables, which must be tuned by hand.

A most interesting direction for further research would be to investigate the ability to
automatically generate hierarchies. Barry [ibid.] enumerates the benefits of a hierarchical
approach as summarised below:
* Abstraction — solve simple problems first, and then build solutions to complex
problems from these building blocks.
» Decomposition — divide complex problems into smaller problems that can be solved in
isolation. Divide and Conquer.
* Reuse— once a behaviour has been learned, it need not be learned again.
By automatically generating hierarchies, X-TCS could become more widely applicable and
generally adaptable. One possible approach for determining when to construct another layer
in the hierarchy could be based upon the concept of Entropy as defined in Shannon’s work on
Information Theory [Shannon1948], and used in the work of Waldock et al. [Waldock2003]
to construct a hierarchical fuzzy rule-base which the authors intend to apply to robotic
learning, and as also used in the ID3 and C4.5 machine learning algorithms for decision tree

construction [Quinlan1993].

240

6.2.5 Grounding —routes to semantic content

It will be recalled from the Introduction that ‘ungrounded’ intelligences operate purely
syntactically. Semantic meaning can only be attributed from outside the system. Grounded
systems, in which semantic content is intrinsic, are necessary for truly general applicability.
In the multi-goal problems presented to the learners in this thesis the ‘ energy character’ of the
environmental input is linked to the internal state (i.e. energy level) of the learner through the
action of the designer — semantic content has been assigned extrinsically. For X-TCSto be a
more generally applicable solution to problems of robot control, this should not be necessary.
Meaning should arise within the system itself, although of course at some level it must be
necessary for ‘meaning’ to be externally assigned; a sensor must be supplied by the designer
that measures some quantity, and this sensory reading must be made visible to the learner as a

part of its environment.

There are a number of approaches which might be used to ground X-TCS. Hurst and Bull
presented an extension of TCS in which the classifiers have a genotype encoding an artificial
neural network and associated parameters for self-adaptation [Hurst2005]. Of these
parameters, two encode the probability of adding or removing a node from the ANN encoded
by the classifier. Classifiers can therefore grow or shrink in complexity to meet the demands
of the problem, thereby having the potential to generalise over any subset of the
environmental space. The ability to automatically adjust to problem complexity might further
increase the generality of applicability of X-TCS. Some initia work using neural classifiers

for multi-goal problemsin simulation has aready been undertaken by the author [Bull2002c].

An additional benefit may also be realised from a more complex classifier representation. In
the current model used in this thesis, the condition of the classifier matches with some degree

of generality the logical conjunction of the input variables. A hypothetical classifier might

241

advocate the action ‘go ahead’ if the left sensor value is in the range [c1, c2] AND the
forward sensor value is in the range [c3, c4] AND the right sensor value is in the range [c5,
c6]. Unfortunately this representation allows for no comparison between the sensor values
(e.g. go ahead if forward sensor value is bigger than both other sensors). The learner may be
able to solve a problem at noon, but if faced with the same problem at dusk has to relearn the
task! More complex condition semantics through the use of GP trees or artificial neural

networks could solve this problem, once again increasing system utility.

An alternative approach to grounding the classifiers system might be to give it ‘memory’ in
the fashion suggested by Wilson [Wilson1994]. Lanzi extended XCS in the same fashion that
Cliff and Ross had used in ZCS [CIiff1994] to produce XCSM [Lanzi1998], in which a pre-
specified number of characters could be used as internal memory. These were matched by an
internal condition and might have their value changed by an internal action, both of which
were extensions to the normal classifier representation. Lanzi used XCSM to show an
increase in performance on simulated non-Markov mazes such as Woods101 where some
states cannot be disambiguated from the environmental input, and in which therefore optimal
performance is impossible without the ability to store information based upon previously
encountered unambiguous states. This is similar to the use of ‘tags in Holland’s classifier
systems [Holland1986] in which semantic networks could arise through rule-chaining and
classifiers posted messages for matching on the internal message board along with the
externa environmental representation. In a multi-goal problem, an LCS might be able to
evolve an optimum solution by using its ability to update an internal blackboard or change the
value of memory characters, thereby recording information about past states in order to
inform its decisions at a future time. Such an approach would be more grounded — the
meanings of the symbols that predicate behaviour-switching are endogenous and hence the

syntax-semantics barrier has been breached to some extent.

242

6.2.6 Accelerating Learning — Dyna and Eligibility Traces

One approach to increasing the speed of learning is to learn a model of the environment and
make updates to the policy being followed on the basis of this model aswell as on the basis of
direct external RL updates, asin, e.g., Dyna-Q, presented in [Sutton1991, Sutton1998] which
is an application of the general ‘Dyna architecture using Q-Learning. The indirect RL
updates originating from the model may be viewed as a sort of simulated experience. Lanzi
implemented the Dyna architecture with XCS as the learner and used it in some simple
simulated mazes, reporting little improvement in such trivial problems [Lanzi1999]. In his
implementation the model was ssmply composed of tuples storing information about state-
action pairs, the subsequent state, and the reward received. Such a model is possible due to

the discrete nature of the grid-world state-action space.

Lanzi notes that the size of the model would grow prohibitively as learning continued since a
complete map of the environment would be produced, and therefore suggests the use of some
form of generalization in the model. Thiswould obvioudy be necessary to produce ‘Dyna-X-
TCS, asthe state space is continuous. An additional instance of XCS could be used to learn

the model with appropriate generalizations.

In the classifier systems used in this thesis, the process of reinforcement learning takes place
through adapted versions of the implicit bucket brigade. Classifiers participating in an action
set pass some reinforcement to their immediate predecessors, and will receive an update
themselves from either their successors, or from an external reward. If we picture a chain of
action sets leading from a start position to a goal state in a corridor, then we can see that after
the first trial only the classifiers that caused the final action to be taken will be strengthened
by the external reward. The second time the state two steps from the goal is reached some

portion of this reward signal will flow back to the classifiers at that state. The flow of

243

external reward, indicating true utility, is slow and step-wise. In a more complicated
environment the flow will be slower till as many actions are possible at each state and many

more state-action pairs must be assessed.

Given this delay in the flow of reinforcement in single-step temporal difference learning, the
TD(A) method is used in the RL community to improve the speed of prediction updates. A
decaying log is kept of the states which can be updated and this has been shown to provide
faster distribution of the reward to earlier states and faster convergence to optimal values.
Drugowitsch and Barry have experimented with integrating eligibility traces into XCS, using
a smple 7-step Finite State grid-world [Drugowitsch2005]. They find a reduction in
performance in the resulting XCS(A), which they suggest is due to overgeneral rules causing a
propagation of errors resulting from incomplete exploration through the chain of rules to be
updated. They show that a reduction in generality by lowering P# addresses this loss in
performance. Since one of the major attractions of LCS over RL is the ability to generalize,
this is unfortunate. However, they suggest that the problem may be less significant if the
encoding allows for smooth changes in the degree of generalization. For this reason it might
be expected that eligibility traces could add benefit and speed convergence in X-TCSor TCS,
where the unordered-pair real number encoding does indeed allow such gradual adjustment.

ANN classifier representations would be equally well-suited.

6.2.7 Whither TCS?

Given the poor performance of TCS on the dual objective task when compared to X-TCS, it
might be tempting to ignore the former in favour of the latter in future work. However, as
noted above, Stone has found that a strength-based LCS fared better than an accuracy-based

LCSin very noisy environments, and that self-adaptation of parameters has been used to good

244

effect which may help to solve the parameterisation problems. Finaly Bull [Bull2005]
suggests that the fundamental difference between accuracy-based and strength-based LCS
may be in the level of fitness pressure such that there is a greater pressure in accuracy-based
systems. It may be that further theoretical insight following from this work will enable
simpler strength-based systems such as ZCS and its progeny TCS to perform as optimally and

reliably as XCS and X-TCS.

245

References

[Apollonius] Apollonius of Rhodes, trans. Hunter, R. L., Jason and the Golden Fleece: (The
Argonautica) (Oxford World's Classics) Oxford University Press; Reprint edition (August 1,
1998)

[Asadal996] Asada, M., Noda, S., Tawaratumida, S., and Hosoda, K. (1996) ‘ Purposive
behavior acquisition for areal robot by vision-based reinforcement learning.” Machine
Learning, 23:279-303.

[Barry2001] Barry, A.M. (2001), ‘A Hierarchical XCS for Long Path Environments’, in
Spector, L. et al.(eds.), Intl. Conference on Genetic and Evolutionary Computing (GECCO-
2001).

[Bonarini1994] Bonarini, A. (1994) ‘Evolutionary learning of general fuzzy rules with biased
evaluation functions: competition and cooperation.” Proceedings of the IEEE WCCI -

Evolutionary Computation.

[Bonarini1996] Bonarini, A. (1996) ‘ Evolutionary learning of fuzzy rules. competition and
cooperation’, in: W. Pedrycz, Ed., Fuzzy Modelling: Paradigms and Practice, publ. Kluwer
Academic Press, 265-283.

[Bonarini1997] Bonarini, A. , Basso F.(1997) ‘ Learning to compose fuzzy behaviors for

autonomous agents . International Journal on Approximate Reasoning, vol. 17, no. 4

[Bonarini2003] Bonarini A., Invernizzi G., LabellaT. H., Matteucci M. (2003), ‘An
architecture to coordinate fuzzy behaviors to control an autonomous robot.” Fuzzy sets and
systems. 134(1), pp. 101-115.

[Booker1985] Booker, L. (1985) ‘Improving the Performance of Genetic Algorithmsin
Classifier Systems.’ In J.J. Grefenstette (ed.) Proceedings of the First International
Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum Assoc., pp80-
92

[Braitenberg1984] Braitenberg, V. (1984) Vehicles: Experiments in Synthetic Psychology
Bradford Books; Reprint edition (February 7, 1986)

246

[Brooks1986] Brooks, R. A. (1986). ‘A robust layered control system for a mobile robot.’
IEEE Journal of Robotics and Automation, 2:14-23.

[Bull1998] Bull, L.(1998) ‘On ZCSin Multi-agent Environments.” In A. E. Eiben, T. Baeck,
M. Schoenauer, and H.-P. Schwefel, editors, Proceedings Parallel Problem Solving From
Nature (PPSN-V), volume 1498 of Lecture Notes in Computer Science, pages 471-480.
Springer-Verlag, 1998.

[Bull1999] Bull, L. (1999) ‘On using ZCSin a Simulated Continuous Double-Auction
Market.” In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela& R.E.
Smith (eds) GECCO-99: Proceedings of the Genetic and Evolutionary Computation

Conference. Morgan Kaufmann, pp83-90.

[Bull2000a] Bull, L., Hurst, J. & Tomlinson, A. (2000) ‘ Self-Adaptive Mutation in Classifier
System Controllers.” In JA. Meyer, A. Berthoz, D.Floreano, H. Roitblatt & S.W. Wilson
(eds) From Animals to Animats 6 - The Sxth International Conference on the Smulation of
Adaptive Behaviour, MIT Press.

[Bull2000b] Bull, L. & Hurst, J. (2000) ‘ Self-Adaptive Mutation in ZCS Controllers.” In
Cagnoni, S,, Poli, R., Smith, G., Corne, D., Oates, M., Hart, E., Lanzi, P-L., Willem, E., Li,
Y., Paecther, B. & Fogarty, T.C. (eds) Real-World Applications of Evolutionary Computing:
Proceedings of the EvoNet Workshops - EvoRob 2000. Springer, pp339-346.

[Bull2002a] Bull, L. & Hurst, J. (2002) ‘ZCS Redux.” Evolutionary Computation 10(2): 185-
205.

[Bull2002b] Bull, L. (2002) ‘Lookahead and latent learning in ZCS' In W. B. Langdon,
E. Cantt-Paz, K. Mathias, R. Roy, D. Davis, R. Pali, K. Balakrishnan, V. Honavar,

G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and
N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 897-904, New Y ork, 9-13 July 2002. Morgan Kaufmann
Publishers.

[Bull2002c] Bull, L. & Studley, M. (2002) ‘ Consideration of Multiple Objectivesin Neural
Learning Classifier Systems.” In J.J. Merelo, P. Adamidis, H-G. Beyer, J-L. Fernandez-
Villacanas & H-P. Schwefel (eds) Parallel Problem Solving from Nature - PPSN VII.
Springer Verlag, pp549-557.

247

[Bull2005] Bull, L. (2005) ‘ Two Simple Learning Classifier Systems'. In Applications of
Learning Classifier Systems Series: Studies in Fuzziness and Soft Computing, Vol. 150 Eds.
Bull, L & Kovacs, T. 2005, VI

[Butz2001] Butz, M. & Wilson, SW. (2001) ‘An Algorithmic Description of XCS'. Lecture

Notes in Computer Science

[Butz2003a] Butz, M. V. & Goldberg, D. E. ‘Bounding the Population Size in XCS to ensure
Reproductive Opportunities.” 1HliGAL report No. 2003009, February 2003.

[Butz2003b] Butz, M.V., Kovacs, T., Lanzi, P. L., & Wilson, S. W. (2003) ‘ Toward a Theory
of Generalization and Learning in XCS' |EEE Transaction on Evolutionary Computation,
Vol. 7, No. 6.

[Butz2003c] Butz, M. V., Sastry, K., Goldberg, D. E., (2003) ‘ Strong, Stable, and Reliable
Fitness Pressure in XCS due to Tournament Selection’, Illigal Technical Report 2003027

[Butz2004] Butz, M.V., Goldberg, D.E., & Lanzi, P.L. (in press) ‘ Gradient descent methods
in learning classifier systems: Improving XCS performance in multistep problems.’” |IEEE

Transactions on Evolutionary Computation.
[Capek1923] Capek, K., RU.R. (first English publ. 1923) Dover Publications 2001

[Cliff1993] Cliff, D. T., Harvey, |., and Husbands, P. (1993). ‘ Explorations in Evolutionary
Robotics.” Adaptive Behaviour, 2:73--110.

[Cliff1994] Cliff, D. and Ross, S. (1994) ‘ Adding Temporary Memory to ZCS.” Adaptive
Behaviour, 3(2):101--150,

[Coell01999] Coello, C. A. (1999) ‘An Updated Survey of Evolutionary Multiobjective
Optimization Techniques : State of the Art and Future Trends'. 1999 Congress on
Evolutionary Computation, pages 3--13

[Coello2000] Coello, C. A., (2001) ‘A Short Tutorial on Evolutionary Multiobjective
Optimization’, In Zitzler, Deb, Thiele, Coello and Corne (editors), First International
Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag, Lecture Notes in
Computer Science No. 1993, pp. 21-40

248

[Connell1990] Connell, J. H. (1990)Minimalist Mobile Robotics: A Colony Architecture for
an Artificial Creature. Academic Press

[Crabbe2001] Crabbe, F.L. (2001) Multiple Goal Q-Learning: Issues and Functions.
Proceedings of the International Conference on Computational Intelligence for Modelling
Control and Automation (CIMCA)

[Deb2000] Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T. (2000). A fast and elitist
multiobjective genetic algorithm: NSGA-I1. Technical Report No. 2000001. Kanpur: Indian

Ingtitute of Technology Kanpur, India.

[Deb2001] Deb, K. (2001) Multi-Objective Optimization using Evolutionary Algorithms
public Wiley, ISBN: 0-471-87339-X, May

[Dorigo1998] Dorigo, M. and Colombetti, M. (1998) Robot Shaping An Experiment in
Behavior Engineering, Intelligent Robotics and Autonomous Agents series, vol. 2. MIT

Press,

[Drugowitsch2005] Drugowitsch, J., Barry, A.M. (2005), ‘ XCS with Eligibility Traces,
University of Bath technical report ISSN 1740-9497

[Fikes1972] Fikes, R.E., Hart, P.E. , and Nilsson, N.J. (1972) ‘Learning and Executing
Generalized Robot Plans.” Artificia Intelligence, 3 251-288.

[Floreano1996] Floreano, D. and Mondada, F. (1996). ‘ Evolution of homing navigation in a
real mobile robot.” IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26:396-407.

[Fogel1966] Fogel, L. J., Owens, A. J. and Walsh, M.J. (1966) Artificial Intelligence
Thorough Smulated Evolution. John Wiley & Sons, Ltd, Chichester, U.K.

[Fogel1992] Fogel, D. B. (1992) Evolving Artificial Intelligence, Doctoral Dissertation,
University of California, San Diego

[Fonsecal993] Fonseca C.M., Fleming P.J. (1993). ‘ Genetic algorithms for multi-objective
optimization: Formulation, discussion and generalization.” In: S. Forrest (ed.), Genetic
algorithms: Proceedings of the Fifth International Conference, Morgan Kaufmann, San
Mateo, CA, 141-153.

249

[Fonsecal995] Fonseca, C. M. & Fleming, P. J. (1995) ‘An overview of evolutionary

algorithms in multiobjective optimization.’, Evolutionary Computation, 3(1):1--16

[Gabor1998] Gabor, Z., Kalmar, Z., Szepesvari, C. (1998) ‘ Multi-criteria reinforcement

learning,” , Proceedings of the International Conference on Machine Learning, Madison, WI

[Gadanho2002] Gadanho, S. C. and Custodio, L. (2002) ‘Learning behavior-selection in a
multi-goal robot task.” In NAISO ICAIS proceedings

[Gadanho2003] Gadanho, S. C. (2003) ‘ Learning Behavior-Selection by Emotions and
Cognition in a Multi-Goal Robot Task’ in Journal of Machine Learning Research , 4 (Jul):
385-412. The MIT Press

[Gambardella1995] Gambardella, L. M. & Dorigo, M. (1995) ‘ Ant-Q: areinforcement
learning approach to the travelling salesman problem,’ In Prieditis, A. and Russell, S. (Eds.),
Proceedings of ML-95, Twelfth International Conference on Machine Learning, pp. 252—
260, Morgan Kaufmann.

[Goldberg1989] Goldberg D, (1989) Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley

[Gordon1999] G. J. Gordon. (1999) ‘ Approximate Solutions to Markov Decision Processes.’
PhD thesis, Carnegie Mellon University.

[Harnad1990] Harnad, S. (1990) ‘ The Symbol Grounding Problem.” Physica D 42:pp. 335-
346.

[Holland1975] Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. University
of Michigan Press.

[Holland1976] Holland, J.H. (1976) ‘Adaptation.” In R. Rosen and F. M. Snell, editors,
Progressin Theoretical Biology. New Y ork: Plenum, 1976.

[Holland1978] Holland, J.H. and Reitman, J. S. (1978) ‘ Cognitive Systems Based on
Adaptive Algorithms’, in D.A. Waterman and F. Hayes-Roth (eds.), Pattern-Directed
Inference Systems, Academic Press, NY.

250

[Holland1986] Holland, J. H. (1986) ‘ Escaping Brittleness: The possibilities of General-
purpose Learning Algorithms Applied to Parallel Rule-Based Systems', in Mitchell, T.M.,
Michalski, R. S., and Carbonell, J.G. (eds.), Machine Learning, An Artificial Intelligence
Approach, Vol. I, ch. 20, 593-623, Morgan Kaufmann.

[Holland1997] Holland, O. E. (1997) ‘Grey Walter: The Pioneer of Real Artificial Life,
Proceedings of the 5th International Workshop on Artificial Life, C. Langton Editor, MIT
Press, Cambridge, p34-44.

[Hornby1999] Hornby, G. S., Fujita, M., Takamura, S., Yamamoto, T., & Hanagata, O.
(1999). ‘ Autonomous evolution of gaits with the Sony quadruped robot.” In Proceedings of
the Genetic and Evol utionary Computation Conference. Morgan Kaufmann.

[Hornby2000] Hornby, G. S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O. and
Fujita, M. (2000) ‘ Evolving robust gaits with Aibo.” In Proceedings of | CRA-2000.

[Hubel1988] Hubel, D. H. (1988) Eye, brain, and vision. Scientific American Library

[Hurst2001] Hurst, J. & Bull, L. (2001) ‘A Self-Adaptive Classifier System.” In P-L. Lanzi,
W. Stolzmann & S.W. Wilson (eds) Advancesin Learning Classifier Systems: Proceedings of
the Third International Workshop, Springer, pp70-79.

[Hurst2002a] Hurst, J., Bull, L. & Melhuish, C. (2002) ‘ TCS Learning Classifier System
Controller on a Real Robot.” In J.J. Merelo, P. Adamidis, H-G. Beyer, J-L. Fernandez-
Villacanas & H-P. Schwefel (eds) Parallel Problem Solving from Nature - PPSN VII.
Springer Verlag, pp588-600.

[Hurst2002b] Hurst, J., Bull, L. & Melhuish, C. (2002) ‘ZCS and TCS Learning Classifier
System Controllers on Real Robots.” UWELCSG02-002. (University of the West of England

Technical report, available for download from http://www.cems.uwe.ac.uk/lcsg/)

[Hurst2003] Hurst, J. (2003) Learning Classifier Systems in Robotic Environments PhD
Thesis, Faculty of Computing, Engineering, and the Mathematical Sciences, University of the
West of England

[Hurst2005] Hurst, J. & Bull, L. (2005) ‘A Neura Learning Classifier System with Self-
Adaptive Constructivism for Mobile Robot Control.” Artificial Life (in press).

251

[Jakobi1995] Jakobi, N, Husbands, P. and Harvey, I. (1995) ‘Noise and the reality gap: The
use of simulation in evolutionary robotics.” In F. Moran, A. Moreno, J. Merelo, and P.
Chacon, editors, Advancesin Artificial Life: Proc. 3rd European Conf. on Artificial Life,
704--720. Lecture Notes in Artificial Intelligence 929.

[Japkowicz2002] Japkowicz, N. and Stephen, S. ‘ The Class Imbalance Problem : A
Systematic Study’ Intelligent Data Analysis, 6(5): 429-450, November 2002.

[Kaelbling1996] Kaelbling, L.P., Littman, L.M. and Moore, A.W. (1996) ‘ Reinforcement

learning: asurvey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237--285.

[Katagami2000] D. Katagami and S. Yamada: ‘ Interactive Classifier System for Real Robot
Learning’, IEEE International Workshop on Robot-Human Interaction (ROMAN-2000),
pp.258-263, Osaka, Japan (September, 2000)

[Katagami2001] Katagami, D. and Yamada, S. (2001) ‘Real Robot Learning with Human
Teaching’, The 4™ Japan-Australia Joint Workshop on Intelligent and Evolutionary Systems,
pp.263-270

[Katagami2003] Katagami, D. and Yamada, S. (2003) ‘ Teacher’s Load and Timing of
Teaching based on Interactive Evolutionary Robotics', |IEEE International Conferencein
Robotics and Automation (CIRA2003), pp.1096-1101

[Kharbat2005] Kharbat, F, Bull, L. & Odeh, M. (2005) ‘ Tournament and Roul ette Wheel
Selection in XCS', UWELCSGO05-003. (University of the West of England Technical report,

available for download from http://www.cems.uwe.ac.uk/lcsg/)

[Kleenel967] Kleene, S.C. 1967. Mathematical Logic. New Y ork: Wiley.

[Kovacs1999] Kovacs, T. (1999) ‘ Deletion Schemes for Classifier Systems.” Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 99), ed. Banzhaf et al.

Morgan Kaufmann, July.

[Kozal992] Koza J.R. (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

[Langdon2002] Langdon, W. and Poli, R. (2002) ‘ Tutorial on Foundations of Genetic
Programming.” In GECCO 2002 Tutorials.

252

[Lanzi1997] Lanzi P.L. (1997) ‘A Modéd of the Environment to Avoid Local Learning (An
Analysis of the Generalization Mechanism of XCS).” Technical Report 97.46, Politecnico di

Milano. Department of Electronic Engineering and Information Sciences.

[Lanzi1998] Lanzi, P. L. (1998) ‘Adding Memory to XCS.” in Proceedings of the IEEE
World Congress on Computational Intelligence., The 1998 | EEE International Conference on

Evolutionary Computation, May 4-9 Anchorage (AL), pages 609-614. |EEE Press.

[Lanzi1999] Lanzi, P. L. (1999). ‘An analysis of generalization in the XCS classifier system.’
Evolutionary Computation, 7 (2), 125--149.

[Llora2003] Llora, X., Goldberg, D. E. (2003) ‘Bounding the effect of noise in Multiobjective
Learning Classifier Systems.” Evolutionary Computation 11(3): 278-297

[Mahadevan1991] S. Mahadevan and J. H. Connell, (1991) ‘ Automatic Programming of
Behaviour-based Robots Using Reinforcement Learning’, Artificial Intelligence, Vol. 55,
pages 311-365.

[Mannor2004] Mannor, S. and Shimkin, N. (2004), A Geometric Approach to Multi-

Criterion Reinforcement Learning. Journal of Machine Learning Research 5: 325-360

[Mariano1999] Mariano C.E., Morales E. (1999), ‘MOAQ and ant-Q algorithm for multiple
objective optimization problems’, Proceeding of the Genetic and Evolutionary Computation
Conference, Orlando, Florida, USA, 13-17 July, vol. 1, 894-901.

[Marocco2002] Marocco, D., and Floreano, D. (2002), ‘ Active Vision and Feature Selection
in Evolutionary Behavioral Systems', In B. Hallam, D. Floreano, J. Hallam, G. Hayes and J.-
A. Meyer (Eds.), From animals to animats 7 - The Seventh International Conference on the
Smulation of Adaptive Behavior, The MIT Press

[Matellan1998] Matellan, V., Fernandez, C., & Molina, J. (1998). ‘ Genetic learning of fuzzy

reactive controllers.” Robotics and Autonomous Systems, 25, 33-41

[Minsky1961] Minsky, M. (1961) ‘ Steps toward artificial intelligence.’” Proc. IRE 49

[Newell1957] Newell, A., Shaw, J.C., and Simon, H. A. (1957) ‘Empirical Explorations of
the Logic Theory Machine', Proceedings of the Western Joint Computer Conference, pp. 218-
239.

253

[Newell1976] Newell, A. and Simon, H. A. (1976) ‘ Computer science as empirical enquiry:
symbols and search’, Communications of the ACM, 19(3), 113--126

[Nilsson1984] Nilsson, N., (1984) (ed.), ‘ Shakey the Robot’, Technical Note 323, SRI
International, Menlo Park, CA

[Nolfi1994] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. (1994) ‘How to evolve
autonomous robots: Different approaches in evolutionary robotics'. In R. Brooks and P. Maes,
editors, Artificial Life IV, pages 190--197. MIT Press/Bradford Books

[Nolfi2000] Nolfi, S. and Floreano, D. (2000) Evolutionary Robotics The Biology,
Intelligence, and Technology of Self-Organizing Machines MIT Press/Bradford Books

[Orriols2005a] Orriols, A. and Bernado-Mansilla, E. 'The Class Imbalance Problem in UCS
Classifier System: Fitness Adaptation.' In Proceedings of the 2005 Congress on Evolutionary
Computation, 2005, |EEE, (in press).

[Orriols2005b] Orriols, A. and Bernadé-Mansilla, E. 'The Class Imbalance Problem in
Learning Classifier Systems: A Preliminary Study.' In Proceedings of the 8th International
Workshop on Learning Classifier Systems, 2005, Springer, (in press)

[Parr1998] Parr, R. E. (1998) Hierarchical Control and Learning for Markov Decision
Processes. PhD thesis, University of California, Berkeley, CA

[Quinlan1993] Quinlan, J. R.(1993) C4.5: Programs for Machine Learning, publ. Morgan
Kauffman

[Rechenberg1965] Rechenberg. (1965) Cybernetic Solution Path of an Experimental
Problem. Ministry of Aviation, Royal Aircraft Establishment, U.K.

[Rechenberg1973] Rechenberg, 1. (1973). Evolutionsstrategie: Optimierung Technischer

Systeme nach Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog.

[Rodriguez-Vazquez1993] Rodriguez-Vazquez, K., Fonseca, C., & Fleming, P. (1997)
‘Multiobjective Genetic Programming : A Nonlinear System Identification Application, Late
Breaking Papers at the Genetic Programming 1997 Conference, pages 207--212, Stanford
University, California, July

254

[Rosenblatt1958] Rosenblatt, F. (1958), ‘ The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain’, Cornell Aeronautical Laboratory,
Psychological Review, v65, No. 6, pp. 386-408.

[Rummery1995] Rummery, G. A. (1995) Problem Solving With Reinforcement Learning.
PhD thesis, University of Cambridge

[Santamarial998] Santamaria, J. C., Sutton, R. C., and Ram, A. (1998) ‘ Experiments with
reinforcement learning in problems with continuous state and action spaces.” in Adaptive
Behaviour, 6(2)

[Schaffer1985] Schaffer, J.D. (1985) ‘M ulti-objective optimization with vector evaluated
genetic algorithms.” In Proceedings of an International Conference on Genetic Algorithms
and Their Applications, J.J. Grefenstette, Ed., Pittsburg, PA, July 24-26, pp. 93-100

[Searle1980] Searle, J. (1980). ‘Minds, Brains, and Programs.” Behavioral and Brain Sciences
3, 417-424.

[Shannon1948] Shannon C. E. (1948) ‘A mathematical theory of communication’, Bell
System Technical Journal, vol. 27, pp.379-423 and 623-656, July and October

[Shelley1818] Shelley, M. W. (1818) , Frankenstein: Or the Modern Prometheus (Penguin
Classics) publ. Penguin Books; Reissue edition (April 1, 2003)

[Shortliffe1973] Shortliffe, E. H., Axline, S.G., Buchanan, B.G., Merigan, T.C., & Cohen, S.
N. (1973) ‘An artificial intelligence program to advise physicians regarding antimicrobial
therapy.” Computers and Biomedical Research 6:544-560

[Skinner1953] Skinner, B. F. (1953) Science and Human Behavior. New Y ork: Macmillan.

[Smart2000] W.D. Smart and L.P. Kaelbling (2000.) ‘ Practical Reinforcement Learning in
Continuous Spaces' In Proceedings of the Seventeenth International Conference on Machine
Learning, pp. 903-910

[Smart2002a) W. D. Smart and L. P. Kaelbling, (2002) ‘ Effective Reinforcement Learning for

Mobile Robots,” International Conference on Robotics and Automation, May 11-15

[Smart2002b] W. D. Smart. (2002) Making Reinforcement Learning Work on Real Robots

PhD Thesis, Department of Computer Science, Brown University

255

[Smith1980] Smith, S. F. (1980) A Learning System Based on Genetic Adaptive Algorithms.
PhD thesis, Computer Science Department, University of Pittsburgh.

[Srinivas1994] Srinivas, N. and Deb, K. (1994) ‘ Multiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms', in Evolutionary Computation, vol. 2, no 3,
pps. 221-248

[Stephens1999] Stephens, C. and Waelbroeck, H. (1999) ‘ Schemata Evolution and Building

Blocks.” In Evolutionary Computation 7(2)

[Stolzmann1998] Stolzmann, W. (1998) ‘ Anticipatory Classifier Systems', in Genetic
Programming 1998: Proceedings of the Third Annual Conference, editors, Koza, Banzhaf et
a. , pps. 6568—664, Publisher Morgan Kaufmann

[Stolzmann1999] Stolzmann, W. (1999) ‘Latent Learning in Khepera Robots with
Anticipatory Classifier Systems.’ In A.S. Wu (Ed.), Proceedings of the 1999 Genetic and
Evolutionary Computation Conference Workshop Programme, pp. 290-297.

[Stone2003] Stone, C. & Bull, L. (2003) ‘For Real! XCS with Continuous-Valued Inputs.’
Evolutionary Computation 11(3) 299-336.

[Sutton1991] Sutton, R. (1991) ‘Dyna, an integrated architecture for learning, planning, and
reacting.” SIGART Bulletin, 2:160-163

[Sutton1998] Sutton R.A., Barto A.G. (1998) Reinforcement Learning: An Introduction Publ.
MIT Press, Cambridge, MA

[Sutton1999] Sutton, R., Precup, D., and Singh, S. (1999) ‘Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning.” In Artificial Intelligence
Journal, vol. 112, pp. 181-211.

[Syswerdal989] Syswerda, G. (1989) ‘Uniform Crossover in Genetic Algorithms', in
Proceedings of the Third International Conference on Genetic Algorithms, pages 2-9, Morgan
Kaufmann Publishers.

[Thieberger1955] Thieberger, F. (1955). The great Rabbi Loew of Prague: His life and work
and the legend of the golem. London: Horovitz Publishing Co.

256

[Thrun1993] Thrun, S. and Schwartz, A. (1993) ‘Issues in Using Function Approximation for
Reinforcement Learning’ In M. Mozer, P. Smolensky, D. Touretzky, J. ElIman, and A.
Weigend, editors, Proceedings of the Connectionist Models Summer School, pp. 255-263,
Hillsdale, NJ

[Tomlinson1998] Tomlinson A. and Bull, L. (1998) ‘A Corporate Classifier System.” InA. E.
Eiben, T. Back, M. Shoenauer, and H.-P. Schwefel, editors, Proceedings of the Fifth
International Conference on Parallel Problem Solving From Nature -- PPSN V, number 1498
in LNCS, pages 550-559. Springer Verlag

[Uchibe1997] Uchibe, E., Asada, M., Hosoda, K. (1997) ‘Vision Based State Space
Construction for Learning Mobile Robots in Multi Agent Environments.” Proc. of Sxth
European Workshop on Learning Robots (EWLR-6) 33-41

[Valenzuela-Rendon1991] Valenzuela-Rendon, M. (1991) ‘ The Fuzzy Classifier System: a
Classifier System for Continuoudly Varying Variables.” In L. Booker & R. Belew (eds)
Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan
Kaufmann, pp346-353.

[Waldock2003] Waldock, A., Carse, B. and Melhuish, C. (2003) ‘A Hierarchical Fuzzy
Rule-based Learning System based on an Information Theoretic Approach’ European
Society For Fuzzy Logic and Technology International Conference in Fuzzy Logic and
Technology pp534-539, September 10 - 12, 2003 Zittau, Germany.

[Walker2003] Walker J, Garrett S and Wilson W (2003). ‘Evolution for Real Robots: A
Structured Survey of the Literature’. Adaptive Behavior Vol 11(3): 179-203.

[Watkins1989] Watkins, C. (1989). Learning from Delayed Rewards, Thesis, University of
Cambridge, England.

[Wilson1987] Wilson, S. W. (1987)’ Classifier Systems and the Animat Problem’, Machine
Learning, 2, 199-228

[Wilson1994] Wilson, S. W. (1994) ‘ZCS: A zeroth level classifier system.’” In Evolutionary
Computation, 2(1):1-18

[Wilson1995] Wilson, S. (1995) ‘Classifier Fitness based on Accuracy.” Evolutionary
Computation, 3(2):149--175.

257

[Wilson1998] Wilson, S. W. (1998). ‘ Generalization in the XCS classifier system.” In
Proceedings of the Third Annual Genetic Programming Conference, J. Koza et al.(eds.), San
Francisco, CA: Morgan Kaufmann, 665-6

[Wilson2000] Wilson, SW. (2000) ‘Get real! XCS with continuous-valued inputs' in Lanzi,
P. L., Stolzmann, W., and Wilson, S. W., eds. Learning Classifier Systems. From
Foundations to Applications Lecture Notesin Artificial Intelligence (LNAI-1813) Berlin:

Springer-Verlag

[Wilson2001] Wilson, S. W. (2001) * Mining oblique datawith XCS' InLanzi, P. L.,
Stolzmann, W., and S. W. Wilson (Eds.), Advancesin Learning Classifier Systems. Third
International Workshop (IWLCS-2000), Lecture Notes in Artificial Intelligence (LNAI-1996).
Berlin: Springer-Verlag

[Winfield2000] Winfield AFT and Holland OE, (2000) ‘ The application of wirelesslocal area
network technology to the control of mobile robots', Journal of Microprocessors and
Microsystems (Elsevier), Vol 23/10, pp 597-607

[Winfield2003] Winfield AFT, (2003) ‘Linux: an Embedded Operating System for Mobile
Robots', invited paper in IEE Embedded and Real -time Systems Professional Network
colloquium on Developing Embedded Real-Time Systems, London, May 2003.

[Zitzler1999] Zitzler. E., Deb, K., & Thiele, L. (1999) ‘ Comparison of multiobjective
evolutionary algorithms: Empirical results,” Tech. Rep. 70, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, Switzerland

258

Glossary”

Agent A system that is embedded in an environment, and takes actions to change the state of
the environment. Examples include mobile robots, software agents, or industrial controllers.
Average-Reward Methods A framework where the agent's goal is to maximize the expected
payoff per step. Average-reward methods are appropriate in problems where the goal is
maximize the long-term performance. They are usualy much more difficult to analyze than
discounted algorithms.

Building Block A pattern of genes in a contiguous section of a chromosome which, if
present, confers a high fitness to the individual. According to the building block hypothesis, a
complete solution can be constructed by crossover joining together in a single individual
many building blocks which where originally spread throughout the population.
Chromosome Normally, in genetic algorithms the bit string which represents the individual.
In genetic programming the individual and its representation are usually the same, both being
the program parse tree. In nature many species store their genetic information on more than
one chromosome.

Coevolution Two or more populations are evolved at the same time. Often the separate
populations compete against each other.

Conver gence Tendency of members of the population to be the same. May be used to mean
either their representation or behaviour are identical. Loosely a genetic algorithm solution has
been reached.

Crossover Creating a new individual's representation from parts of its parents

representations.

Y The definitionsin this glossary have been drawn from the following sources:
http://en.wikipedia.org/
http://www-all.cs.umass.edu/rlr/terms.html

http://www.cs.bham.ac.uk/~wbl/thesis.glossary.html

259

Discount Factor A scalar value between 0 and 1 which determines the present value of
future rewards. If the discount factor is O, the agent is concerned with maximizing immediate
rewards. As the discount factor approaches 1, the agent takes more future rewards into
account. Algorithms which discount future rewards include Q-learning and TD(lambda).
Dynamic Programming (DP) is a class of solution methods for solving sequential decision
problems with a compositional cost structure.

Elitist An €litist genetic algorithm is one that always retains in the population the best
individual found so far. Tournament selection is naturally elitist.

Environment The externa system in which an agent is ‘embedded’, and which it can
perceive and act upon.

Epistasis A term from biology used to denote that the fitness of an individual depends upon
the interaction of a number of their genes. In genetic algorithms this would be indicated by
the fitness containing a non-linear combination of components of the string.

Evolution Strategy Each point in the search space is represented by a vector of real values.
In the original Evolution Strategy, (1+1)-ES, the next point to search is given by adding
gaussian random noise to the current search point. The new point is evaluated and if better the
search continues from it. If not the search continues from the original point. The level of noise
is automatically adjusted as the search proceeds.

Evolutionary Programming like Evolution Strategy produces new children by mutating at
random from a single parent solution. The analogue components (e.g. the connection weights
when applied to artificial neural networks) are changed by a gaussian function whose standard
deviation is given by a function of the parent's error called its temperature. Digital
components (e.g. presence of a hidden node) are created and destroyed at random.

Fitness Function A process which evaluates amember of a population and givesit a score or
fitness. In most cases the goal is to find an individual with the maximum (or minimum)

fitness.

260

Genetic Algorithm (GA) A population containing a number of trial solutions each of which
is evaluated (to yield a fitness) and a new generation is created from the better of them. The
process is continued through a number of generations with the aim that the population should
evolve to contain an acceptable solution. GAs are characterised by representing the solution
as an (often fixed length) string of digital symbols, selecting parents from the current
population in proportion to their fithess (or some approximation of this) and the use of
crossover as the dominate means of creating new members of the population. The initial
population may be created at random or from some known starting point.

Genetic Operator An operator in a genetic algorithm or genetic programming, which acts
upon the chromosome to produce a new individual. Example operators are mutation and
Crossover.

Genetic Programming A subset of genetic algorithms. The members of the populations are
the parse trees of computer programs whose fitness is evaluated by running them. The
reproduction operators (e.g. crossover) are refined to ensure that the child is syntactically
correct (some protection may be given against semantic errors too).

Learning Classifier System An extension of genetic algorithms in which the population
consists of a co-operating set of rules (i.e. a rulebase) which are to learn to solve a problem
given a number of test cases. Between each generation the population as awhole is evaluated
and a fitness is assigned to each rule using the bucket-brigade algorithm or other credit
sharing scheme (e.g. the Pitt scheme). These schemes aims to reward or punish rules which
contribute to a test case according to how good the total solution is by adjusting the individual
rules fitness.

Markov Decision Process (MDP) A probabilistic model of a sequential decision problem,
where states can be perceived exactly, and the current state and action selected determine a
probability distribution on future states. Essentially, the outcome of applying an action to a

state depends only on the current action and state (and not on preceding actions or states).

261

Model The agent's view of the environment, which maps state-action pairs to probability
distributions over states. Note that not every reinforcement learning agent uses a model of its
environment.

Model-Free Algorithms These directly learn a value function without requiring knowledge
of the consequences of doing actions. Q-learning is the best known example of a model-free
algorithm.

Monte Carlo Methods A class of methods for learning of value functions, which estimates
the value of a state by running many trials starting at that state, then averages the total rewards
received on those trials.

Mutation Arbitrary change to representation, often at random. GP subtrees or nodes of trees
are replaced at random, real numbers are increased or decreased, letters in an aphabet are
replaced with other members of the set of letters.

Panmictic Descriptive of an evolutionary system in which no constraints are placed on
mating. Such restrictions might be due to analogues of spatial distribution or mate choice.
Policy The decision-making function (control strategy) of the agent, which represents a
mapping from situations to actions.

Reproduction Production of new member of population from existing members. May be
used to mean an exact copy of the original member.

Reinforcement Learning (RL) is learning from interaction with an environment, from the
conseguences of action, rather than from explicit teaching. RL become popular in the 1990s
within machine learning and artificial intelligence, but also within operations research and
with offshoots in psychology and neuroscience.

Reward A scalar value which represents the degree to which a state or action is desirable.
Reward functions can be used to specify a wide range of planning goals (e.g. by penalizing
every non-goa state, an agent can be guided towards learning the fastest route to the final

state).

262

Roulette Wheel Selection The simplest selection scheme is roulette-wheel selection, also
caled stochastic sampling with replacement. This is a stochastic algorithm in which
individuals are mapped to contiguous segments of aline, such that each individual's segment
isegual in sizetoitsfitness. A random number is generated and the individual whose segment
spans the random number is selected. This technique is analogous to a roulette wheel with
each slice proportional in size to the fitness of the individuals.

Sensor Agents perceive the state of their environment using sensors, which can refer to
physical transducers, such as ultrasound, or simulated feature-detectors.

Simulated Annealing Search technique where a single trial solution is modified at random.
An energy is defined which represents how good the solution is. The goal is to find the best
solution by minimising the energy. Changes which lead to a lower energy are aways
accepted; an increase is probabilistically accepted. The probability is given by exp(-Delta
E/kT). Where Delta E is the change in energy, k is a constant and T is the Temperature.
Initially the temperature is high corresponding to aliquid or molten state where large changes
are possible and it is progressively reduced using a cooling schedule so allowing smaller
changes until the system solidifies at alow energy solution.

State This can be viewed as a summary of the past history of the system, that determines its
future evolution.

Stochastic Random or probabilistic but with some direction. For example the arrival of
people at a post office might be random but average properties (such as the queue length) can
be predicted.

Supervised Learning is a machine learning technique for creating a function from training
data. The training data consist of pairs of input objects (typicaly vectors), and desired
outputs. The output of the function can be a continuous value (called regression), or can
predict a class label of the input object (called classification). The task of the supervised

learner is to predict the value of the function for any valid input object after having seen a

263

number of training examples (i.e. pairs of input and target output). To achieve this, the learner
has to generalize from the presented data to unseen situationsin a‘reasonable’ way

TD (Temporal Difference) Algorithms A class of learning methods, based on the idea of
comparing temporally successive predictions. Possibly the single most fundamental ideain all
of reinforcement learning.

Tournament Selection A mechanism for choosing individuals from a population. A group
(typically between 2 and 7 individuals) are selected at random from the population and the
best (normally only one, but possibly more) is chosen.

Unsupervised Learning The area of machine learning in which an agent learns from
interaction with its environment, rather than from a knowledgeable teacher that specifies the
action the agent should take in any given state.

Value Function A mapping from states to real numbers, where the value of a state represents
the long-term reward achieved starting from that state, and executing a particular policy. The
key distinguishing feature of RL methods is that they learn policies indirectly, by instead
learning value functions. RL methods can be constrasted with direct optimization methods,

such as genetic algorithms (GA), which attempt to search the policy space directly.

264

