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Abstract Our experiences with a range of evolutionary robotic experiments
have resulted in major changes to our set-up of artificial life experiments
and our interpretation of observed phenomena. Initially, we investigated
simulation-reality relationships in order to transfer our artificial life sim-
ulation work with evolution of neural network agents to real robots. This is
a difficult task, but can, in a lot of cases, be solved with a carefully built
simulator. By being able to evolve control mechanisms for physical robots,
we were able to study biological hypotheses about animal behaviours by
using exactly the same experimental set-ups as were used in the animal
behavioural experiments. Evolutionary robotic experiments with rats open
field box experiments and chick detours show how evolutionary robotics can
be a powerful biological tool, and they also suggest that incremental learning
might be fruitful for achieving complex robot behaviour in an evolutionary
context. However, it is not enough to evolve controllers alone, and we ar-
gue that robot body plans and controllers should co-evolve, which leads to
an alternative form of evolvable hardware. By combining all these experi-
ences, we reach breeding robotics. Here, children can, as breeders, evolve e.g.
LEGO robots through an interactive genetic algorithm in order to achieve
desired behaviours, and then download the evolved behaviours to the phys-
ical (LEGO) robots.

1 Introduction

In the field of evolutionary robotics, many researchers have tried to transfer a cor-
pus of knowledge from previous experiences in evolving simulated artificial agents
(e.g. controlled by neural networks [18,24]) to model psychobiological phenomena.
However, there are some difficulties that one has to consider. The first problem that
researchers in this field had to face was how to avoid the extremely time consuming
cost of genetic algorithms directly applied to real robots. Consider the following ex-
ample, taken from some of our earlier experiments. In order to test a single mobile
robot, it is allowed to run for 500 actions in an environment. In order to account for
initial starting position biases, the mobile robot is run for 3 epochs with different
starting positions. Since each action takes 100 m sec. to perform, the testing of the
single robot’s 1500 actions will take 150 sec. The evolution process of a population of
100 control systems for 100 generations will therefore take a minimum of 1,500,000
sec. or approximately 17 days (not accounting for the time spent on reproduction
and movement of the robot to new initial positions). To report scientifically valid
results, we would like to do the single test 5-10 times with different initial random
seeds. This means that the robot has to run for half a year for us to obtain valid



results of just one experiment! Such a time consumption makes the approach in-
feasible, so researchers have tried to reduce it. We [16,22] proposed to make part
of evolutionary process in a simulated environment and a part in the physical en-
vironment. This approach required to: (a) specify a methodology for building an
efficient simulator of the physical characteristics of robot and environment; (b) de-
velop genotypes and techniques that produce plastic phenotypes that absorb the
change of environments (e.g. from simulated to real environment). In section 2, we
report our experiences with these problems.

However, after having built a robust setting to produce evolutionary robotic exper-
iments, we had to confront the efficiency of the techniques to develop more complex
behaviours, processes and architectures. In particular, section 3 reports some of our
experiences (a) when simulating the behaviour of rats in a classical experimental
setting, (b) simulating chicken detour behaviour, (c) evolving the hardware body
structure. Thanks to a LEGO research and development contract, we recently ex-
plored the possibility of using evolutionary robotics in order to build an adaptive
artificial pet as a toy for children. This experience (described briefly in section 4)
represents the ultimate edge of our common work and convinces us that evolution-
ary robotics is rapidly becoming a sort of “Breeding Robotics”. Our attempts to
produce complex and adaptive behaviours made us orient the evolutionary process
so that the pre-designing of environments, neural architectures, and fitness functions
prompted the emergence of more sophisticated behavioural strategies. In substance,
we coupled the power of an evolutionary process with the informality of a “breeder
of robots”.

2 Evolutionary Robotics Set-up

2.1 Evolving On-line or in Simulators?

As reported above, the on-line approach to evolutionary robotics means that the
robot has to run for at least half a year for us to obtain valid results of just one
experiment. Such a time consumption makes the approach infeasible, so researchers
have tried to reduce it. One way to do so is to use a shorter time slice than 100 m
sec. per action. This requires that the control system is not too complex, so that the
appropriate motor responses can be calculated within this time slice. Another way
is to test the robot for fewer actions — for example, testing the robot for only 200
actions for only 1 epoch will reduce the time consumption of a single evolutionary
process in the example given above from 17 days to less than 2.5 days. This is the
approach taken by researchers who do the evolution process entirely on the real
robots (e.g. [4]). The approach has the disadvantage of not allowing many testings
of each single control system (few actions and only 1 epoch), so the performance of
a single control system will be heavily biased by the initial starting position of the
robot.

Because of the problems with on-line evolution mentioned above, we have advocated
a scheme to build simulators for robots, and then evolve the control systems in
simulation before transferring the evolved control systems to the real robots in
the real environments. Other researchers [10] have suggested using a mathematical
description of motor and sensor responses of the specific robot. Their simulator is
based on a set of equations, that should model the real world physics, which are
used by the simulator to calculate specific values for the IR sensors and/or ambient
light sensors and wheel speeds for each action of a specific robot. It is assumed
that the responses of all sensors of a robot have the same characteristics, which is
unfortunately not so! The individual sensors vary quite a lot from each other in
identical conditions, so an accurate simulator must take the idiosyncrasies of each
sensor into account. Despite the inaccuracy of a mathematical model, it can be used



effectively for experiments where high accuracy of transition of control systems from
simulation to reality plays a minor role in the first instance. We have used such a
mathematical model, where motor responses are decided by differential equations,
in our studies of the evolution of robot body plans. In that study, the immediate
goal is not to be able to transfer each single control system and robot body plan to
a real robot, but in the end simply that of choosing the best controller plus body
plan to be transferred to a robot built according to the evolved parameters.
Another methodology to build the simulator for a robot and its environment, is to
build look-up tables of the robot’s sensor and motor responses environments, as we
proposed. By sampling the real world through the sensors and the actuators of the
robot itself, one can build a quite accurate model of a particular robot-environment
dynamics, and by using look-up tables constructed by this sampling instead of
mathematical models of the sensor and motor responses, one obtains both very
high performance when transferring the evolved control systems from simulation to
the real robot, and a huge reduction in time consumption. The on-line approach
takes 625 times as long, and the mathematical model simulator approach takes 3
times as long as the run with our look-up table approach.

The disadvantage of using a simulator based on the robot’s own samplings of sensor
and motor responses is that these responses have to be recorded. This can be done
almost automatically with some robots in some simple environments, but it still has
to be solved how to do this in more complex environments, where the construction
of the look-up tables might prove more time expensive. It is simple to measure
responses from sensors such as bumpers and black/white detectors, while it is more
tricky for sensors such as infra-red sensors and cameras. Since each sensor is not
placed in a pre-defined position on e.g. a LEGO robot, we have to run sampling
procedures for each single sensor consecutively. When the positions of the sensors
on the robot are pre-defined, e.g. on the Khepera robot and most other robots, the
sampling can be done in parallel by taking samples from all sensors at the same
time, but the sampling procedure has to be sequential when this is not the case.
After taking samples from specific angles and distances with each of the robot’s
sensors, we can combine the look-up table with a kind of mathematical approach
in which a mathematical description is used to calculate the entry in the look-up
table for a specific position of the robot and a specific placement of the sensors on
the robot. Further, to allow for non-symmetrical objects in an environment, samples
must be taken with different angles of the different object-types towards each sensor.
Therefore, the sampling procedure can be time-consuming in such cases.

The advantage of using this approach to build the simulator is that the sensor
and motor responses are recorded by the robot itself. The look-up tables represent
how the robot itself senses and moves in the environment, and not how we, as
external observers, believe that the robot interacts with the real world. There is
no need for symbolic or mathematical descriptions of objects or robot responses
in this methodology. Therefore, the simulator becomes a very precise model of the
real world situation, and the evolved control systems can be transferred successfully
from the simulator to the real robot that interacts in the real world.

2.2 Evolving Neurocontrollers

In our first evolutionary robotics experiments [16,22, 23], we were interested in in-
vestigating how to construct neural network control systems and how to develop
these. We found that the most simple solution often turned out to be the best,
namely in order to construct a neural network control system for a robot, one can
simply use the robot’s sensory activation as input stimuli for the neural network,
and allow the output activation of the neural network to control the motors of
the robot. To generate a simple feed-forward neural network control system for the



Khepera robot, one can connect the sensors with the motors, eventually with an
intermediate layer of hidden units.

To simulate the evolution process that should develop the neural network con-
trol system for the Khepera robot, here, our version of the evolutionary robotics
technique used a genetic algorithm (in other experiments, we used genetic program-
ming). In our first experiments, we looked at the task of having the Khepera robot
to perform an obstacle avoidance behaviour by moving forward as fast as possible,
moving in as straight a line as possible and keeping as far away from objects as
possible — a task that has now become a standard task in the field. In order to
evaluate individual performance we used equation 1
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where V; is the average rotation speed of the two wheels, DV; is the algebraic dif-
ference between signed speed values of the wheels, and I; is the activation values
of the proximity sensor with the highest activity at time 4.

Since we wanted to address the problem of developing controllers within a reason-
able time, we found it infeasible to run the whole evolution process on-line, and
adopted a simulated/physical approach, where most of the evolution process ran in
simulation.

For the obstacle avoidance task, we constructed the real, physical environment as a
60*35 cm rectangular arena surrounded by walls with 3 round obstacles of 5.5 cm
placed in the centre. Walls and obstacles were covered with white paper. In order
to construct a model of this environment, the Khepera robot empirically sampled
the different classes of objects in the environment (wall and obstacles) through its
own real sensors. The Khepera robot turned 360 degrees at different distances with
respect to a wall and to an obstacle, while, in the meantime, recording the activa-
tion level of the sensors. The resulting matrices were then used by the simulator to
set the activation levels of the simulated robot depending on its current position
in the simulated environment. In the same way, to model the robot’s motors, the
effect of the different motors settings in the real world was sampled. For all possible
states of the motors, it was modelled how the robot moved and turned. The ob-
tained measures were used by the simulator to set the activation level of the neural
network input units, and to compute the displacement of the robot in the simulated
environment.

The procedure of letting the robot itself construct the model to be used by the
simulator has several advantages: it is simple and it accounts for the idiosyncrasies
of each individual sensor. It allows one to build a model of an individual robot
taking into account the specificities of that robot that makes it different from other
apparently identical exemplars. It also accounts for the idiosyncrasies of the en-
vironment by empirically modelling the environment itself, instead of building a
mathematical model of it. We may however encounter problems such as objects
of the same types may be perceived differently because of variation in the ambi-
ent light or because of slight differences in the objects themselves, actuators may
produce unpredictable, uncertain effects, and the ground may present irregulari-
ties. Consequently, one would expect a decrease in performance when transferring
a robot control system developed in a simulator to the real robot in the real world.
Indeed, under “normal” conditions, a decrease in performance takes place when the
control systems evolved in the simulator are transferred to the real robots in the
real environment [22]. This is because of difficulties in constructing a simulator that
is accurate enough to capture all the features of the real world that is important
to the robot. To avoid this problem, noise can be applied in the simulated envi-
ronment both to the simulated robots perception of objects and to the movement



of the simulated robot. The experiments with noise added to the simulator show a
perfect mapping in performance from the simulated to the real environment (Fig.
2(a)). If, for instance, the evolutionary development of the neural network control
system for the Khepera robot takes place for 200 generations in the simulator, and
the neural network control system is transferred to the real Khepera robot in the
real environment, then there will be no decrease in fitness score (performance) when
the control system is transferred. Further, if the evolution continues for 20 genera-
tions in the real Khepera robot in the real environment, then there will be a slight
increment in fitness score.

A two factor ANOVA (Fig. 1) applied to performances obtained by individuals at
the transferring moment in the simulated and the real environment shows: (a) a
statistical significance of transferring the control systems from the simulator with
no noise to the real environment, and (b) no statistical significant effect of trans-
ferring the control systems from the simulator with noise to the real environment.
This result supports the claim that the decrease in performance can be avoided
by adding noise to the simulator. In metaphoric terms, adding noise permits the
emergence of artificial “genotypes” that adapt to different environments.

It is remarkable, that at the level of behaviours, the simulated and the real robots

Degrees Ratio Interval

of freedom | of Fisher | of confidence | Remarks
No noise 1/998 164.14 0.001 Significant
Conservative noise 1/998 0.74 0.001 Not significant

Figurel. Results of two factors analysis of variance between performance of individuals
at generation 200 in the simulated and in the real environment.

perform identically (Fig. 2(b)). The trajectories of the paths for the simulated
and the real robots match almost perfectly. In this way, the evolutionary robotic
technique suggests improvement of solutions to some old, well-known problems of
robotics: how to construct an accurate model of the real environment, and how
to develop control systems without explicitly designing submodules of the control
system.
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Figure2. (a) Peak and Average performance as an average result of 5 simulations. The first
200 generations are evolved in the simulated environment, the last 20 generations in the
real environment. (b) Trajectory of the best individuals of generation 200 of a simulation
in the simulated (dashed line) and real (full line) environment. © Miglino, Lund and Nolfi,
1995.



3 Complex Behaviours

Following our initial evolutionary robotics experiments that showed that it was
indeed possible to evolve neural network controllers in simulation and then transfer
them to the real robot in the real environment with no loss in performance, we
naturally wanted to try to evolve more complex robot behaviours. First, we wanted
to show how evolutionary robotics can be used as a tool in behavioural biology in
order to verify /falsify hypotheses about animal control mechanisms. The examples
that we used were the open field box experiments with rats and detour experiments
with chicks.

3.1 Using Evolutionary Robotics to Test Conclusions of Experiments
with Rats

During the last decade, researchers have used open field box experiments with rats in
order to scientifically show that rats form cognitive maps to be used behaviourally
in navigation tasks [1,5,20]. In open field box experiments, rats that have been
shown the location of hidden food in a rectangular box are able to navigate towards
and dig at that location (or at the rotational equivalent location) in a second iden-
tical box. Results like this lead researchers to state that rats use a cognitive map
of the environmental shape. We studied a mobile robot in a similar experimental
settings. Our “artificial organism” (i.e. robot) had no capability of constructing in-
ternal maps of the surrounding environment’s geometrical shape. The robot, despite
its sensory-motor limitations, performed the open field box experiments as well as
rats. Our results show that the open field box experiments are not sufficient to con-
clude a construction of cognitive maps by the rats. Other task solutions based on no
explicit knowledge of the environment are theoretically possible. In fact the geomet-
rical properties of the environment can be assimilated in the sensory-motor schema
of the robot behaviour without any explicit representation. In general, our work,
in contrast with traditional cognitive models, shows how environmental knowledge
can be reached withthout any form of direct representation (cognitive maps).

More precisely, what we did in these experiments, was to accurately replicate the
animal behavioural experiments. A rectangular box was made out of wood and cov-
ered with white paper. As in the Gallistel experiments [5,20], it measured 120*60
cm and was divided into 100 12*6 c¢m rectangles with lines on the floor (nine lines
parallel to the box’s short walls and nine lines parallel to the box’s long walls). Like-
wise, the target area was a circular zone with a radius of 15 cm. A simple perceptron
control system was constructed for the Khepera robot. By connecting the input of
the 8 sensors to the 2 motors with traditional neural network connection weights,
we obtain a simple perceptron (with linear output units). This simple control sys-
tem does not have the capability of building an internal map of the surrounding
environment, but it can simply make some sensory-motor responses. Again, we used
a genetic algorithm to develop the controllers, as described above. The best per-
forming neural network of the last generation (generation 30) was considered the
final control system for the robot and, as in Gallistel’s experiments, it was tested
from 8 different starting positions: either at the middle of a wall, facing the box’s
centre or at the centre, facing the middle of a wall. The learning/testing process
was repeated for each possible position of the target among the 80 intersections of
the lines dividing the floor when excluding the centre intersection (point 5,5).

Even with as simple a control system as the perceptron for the Khepera, the robot is
able to navigate to the target in the rectangular box. The table in figure 3 shows that
as is the case with rats, the robot will however navigate to the rotational equivalent
area as many times as to the correct target area. In 82% of the trials, the robots
navigated to locations with the correct geometric relationship to the space defined



by the shape of the box, but half of the times it was at the rotational equivalent of
the target area. The number of successes are comparable to the ones obtained with
rats, and the robots perform less misses.

In the experiment with rats, the authors reported only the results on behavioural

% Correct | % Rotational Errors| % Misses

Rats 35 31 33

Robots 41 41 18

Figure3. Percent of navigation to Correct Area, Rotationally Equivalent Area, and In-
correct Locations. Data on rats taken from [20].
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Figure4. The trajectory of the evolved Khepera robot in the open field box when started
in the 8 starting positions. © Miglino and Lund , 1997.

indexes (percentage of correct loaclization, rotational error, and misses). Perhaps,
a careful analysis of behavioural trajectories could give more information about
cognitive processes involved in the task solution. Figure 4 presents typical Khepera
trajectories for a target area located in a corner. In general, for all starting positions,
the robot touches a long side of the box. If we did not know the strong sensorial
limitations of Khepera we could hypothesise that Khepera discriminates long vs.



short sides. But, if we analyse figure 4 carefully, we can describe this strategy by a
set of rules : 1) initially, when no sensors are active, Khepera produces a curvilinear
trajectory on its left side; 2) when the robot touches the wall (the right-side sensors
are active), then it turns left; and 3) Khepera goes on following the wall until it
reaches a corner. Although the shape of the box (its geometrical characteristics)
cannot be seen and represented by Khepera, it is assimilated in the behavioural se-
quences of the robot. For example, in order to touch a long side from every starting
position, the radius of the initially curvilinear trajectory must be correlated with
the size of the box.

These evolutionary robotics experiments contradict hypotheses based on animal be-
havioural experiments alone, and therefore the robotics experiments can be a pow-
erful tool in biology. It suggests that animal psychologists should not only report
behavioural indexes but also analyse, with attention, the behavioural trajectories of
the animals or to provide neurophysiological evidence that account for hypothesised
activation of cerebral modules in such experiments.

3.2 Towards Complex Behaviours: Incremental Learning

Another example of the use of evolutionary robotics to test animal behavioural
hypotheses is found in detour behaviour experiments. We will here look at this
example, but put emphasis on how the robot detour experiments might help us
achieving more complex behaviours with the evolutionary technique.

Animal psychology literature has intensively investigated detour behaviour in sev-
eral species of mammals [12,32]. In substance, a detour task consists in reaching a
target following trajectories that, for specific environmental constraints (obstacles,
different light conditions, etc.), deviate from an optimal approaching path.

One of the most used settings to observe detour behaviour is represented by a sit-
uation where the target is placed behind a U-shaped barrier (see figure 5b). In this
case, in order to reach the target, an organism must make a detour around the
obstacle and therefore in some input-output cycles it loses sight of the target. An
organism which is able to make a detour around an obstacle is said to posses a
representation of the spatial environment [28]. In fact, if the organism is able to
negotiate the obstacle and reach the target, this implies that the organism is in
possession of a spatial representation of the environment that tells the organism
where the target is even if the target is currently not visually accessible.
Two-day-old chicks perform quite well on a detour task with a U-shaped barrier
[28, 34]. Unfortunately, the complexity of natural experimental settings obliges re-
searchers to deduce neural mechanisms and cognitive processes underlying detour
abilities by just monitoring behavioural indexes (time spent in a particular area,
time spent to reach a target, etc.). In fact, the question about how chicks solve
the detour task is still open: “... Chicks could have used a motor algorithm with
instruction such as if you turned right (left) before the goal disappeared, then turn
right (left) to find it again. Dead reckoning could be a possibility: chicks may be
able to continuously update their position with respect to the goal in a represented
space moment by moment...” [28] pp. 4. Given this state of the art in animal spatial
behaviour, we think that evolutionary robotics could be useful to give insights and
computational models. In fact, by designing robotics experiments that reproduce
exactly the animal experimental setting it is possible study “a posteriori” the com-
putational structures that emerged through the learning/evolutionary process and
confront them with the strategies of real organisms.

According to that perspective, we evolved different neural controllers (i.e. differ-
ent neural architectures: perceptron, with hidden layer, with Elman memory units,
etc.) for the Khepera robot equipped with a linear camera (for details see [21]). The
environment where Khepera acted was a rectangular walled arena of 55x40 cm. It



(a) by

Figure5. The environments used in detour experiments: (a) in the first 200 generations;
(b) after 200 generations. The dotted areas identify alternative target positions.

contained a low obstacle that had a U-shaped obstacle and a cylindrical target (see
figure 5b). The proximity sensors of the robot can sense the obstacle or the target
or the peripheral wall provided the robot is sufficiently close to them. The camera
can see the target (but not the obstacle or the wall) at any distance (provided the
target falls within its restricted visual field) even when the target is on the other
side of the low obstacle. At the beginning of each trial, Khepera was positioned
in the environment behind the obstacle facing North. The target was positioned
beyond the obstacle. The fitness function was based on two components. The first
component was how much time Khepera spent in each trial near the target, where
nearness to the target means to be located 12 cm or less from the target. The second
component is calculated according to formula (1) mentioned in section 2.2, however
where only three IR sensors where used. In other words, the second component of
fitness rewards the individual, in each step, if the individual moves fast and straight
(without turning) and it punishes the individual for being too close to the obstacle
or wall (i.e., when the infrared sensors are activated; notice that the second fitness
component is ignored when the robot is near the target).

The situation described above reflects the characteristics of the detour task used in
animal experiments. In fact, the only solution for the robot is to turn right or left
and make a detour around the wall in order to reach the target. But this creates a
serious problem for our robot. By turning to its right or left, the robot is turning
away from the target and therefore the target is likely to leave the robot’s visual
field. The problem is particularly serious if the obstacle has the shape shown in
figure 5. In order to negotiate the obstacle, the robot may be forced to go in the
opposite direction with respect to the target and therefore to loose sight of the
target.

After many experiments, we reached a corpus of data that helped analysing the
power and limitations of different emerged structures (i.e. neural architectures).
Feed-forward networks were able to make detour behaviour, but only recurrent net-
works (with Elman memory units) produced optimal solutions (for details see [21]).
Because of space limitations, here we only want to stress how we “obliged” Khepera
to learn the task. In a first series of experiments, we put Khepera directly in an
environment containing a U-shaped barrier (such as in figure 5b). In this condition
and with different neural architectures, Khepera was not able to “learn” the task.
Then, we adopted a strategy to make a form of incremental learning.

For the first 200 generations, Khepera “lived” in an environment that contained a
rectangular obstacle (a bar of 20 cm of length and 3 cm of height) and a target
(a cylinder of 2 cm of diameter, see figure 5a). Each trial lasted a total of 240 in-
put/output cycles divided into two epochs of 120 cycles each. At the beginning of
each epoch, the Khepera was positioned in the environment behind the obstacle
facing North. The target was positioned beyond the obstacle once on the left side
and once on the right side of the upper portion of the environment in such a way
that the target fell outside the organism’s restricted visual field and therefore it
could not be perceived by the robot. Khepera had 120 cycles available to make a



detour around the obstacle and reach the target.

After 200 generations, the environment changed. The obstacle now had an inverted
U-shape and was moved slightly toward North (see figure 5b). The robot was placed
behind the obstacle facing North at the beginning of each epoch as in the preceding
environment. Each trial lasted 6 epochs (of 120 cycles each). In 3 of the 6 epochs
there was no obstacle. In the other 3 epochs, the target was located once on the
left side, once in the right side, and once in the middle of the upper portion of the
environment. This environment management (notice that we only changed the en-
vironmental characteristics and not the fitness formula) drove Khepera to perform
the detour task in a similar way to the chicks.

In short, it seems possible to reach complex behaviours with a careful design of the
evolutionary environmental conditions. However, this practise needs more theoret-
ical investigations. A first step in that direction is represented in [2].

3.3 Evolving Robot Morphology

Recently, there has been an increasing interest in evolvable hardware (EHW), but
the concept does not seem yet to be well-defined. There is a lot of discussion within
the EHW community on whether to evolve at gate-level or function-level, use genetic
programming or cellular programming, do online evolution or off-line evolution. In
our view, the best definition of EHW that includes all of the above, is the one
by Yao and Higuchi [36], who defines EHW to be hardware that can change its
architecture and behaviour dynamically and autonomously with its environment,
and they advocate that “EHW should be regarded as an evolutionary approach to
behaviour design rather than hardware design” [36].

A great number of experiments have been performed in EHW, in which the em-
phasis has been to show the validity of evolving electronic circuits [6-9,31]. A quite
different approach to EHW, namely an evolvable electro-biochemical system, has
been suggested by Kitano [11]. There has been some initial approaches using EHW
in robotics tasks, most notably by Thompson [33], and if one looks at the definitions
of autonomous robots and of EHW, they appear indistinguishable: hardware that
can change its architecture and behaviour dynamically and autonomously with its
environment.

The traditional applications of EHW in robotics only evolved the control circuit ar-
chitecture of the robots. However, the circuit architecture is only a part of the hard-
ware system, and ideally we would like to evolve the whole system. The hardware
of a robot consists of both the circuit, on which the control system is implemented,
and the sensors, motors, and physical structure of the robot.

We [15] have previously argued that True EHW should evolve the whole hardware
system, since the evolution and performance of the electronic hardware is largely
dependent on the other parts of the hardware that constitute the system. The latter
part is what we called the robot body plan. A robot body plan is a specification of
the body parameters. For a mobile robot, it might be types, number and position
of sensors, body size, wheel radius, wheel base, and motor time constant. With one
specific motor time constant, the ideal control circuit should evolve to a different
control than with another motor time constant; different sensors demand different
control mechanisms; and so forth. Further, the robot body plan should adapt to
the task that we want the evolved robot to solve. An obstacle avoidance behaviour
might be obtained with a small body size, while a large body size might be advan-
tageous in a box-pushing experiment; a small wheel base might be desirable for a
fast-turning robot, while a large wheel base is preferable when we want to evolve a
robot that turns slowly; and so forth. Hence, the performance of an evolved hard-
ware circuit is decided by the other hardware parameters. When these parameters
are fixed, the circuit is evolved to adapt to those fixed parameters that, however,



might be inappropriate for the given task. Therefore, in true EHW, all hardware
parameters should co-evolve.

The definition of true FEHW is in accordance with the above mentioned defini-
tions of EHW and autonomous robots that classify such systems as being able
to change their architectures and behaviours dynamically and autonomously with
their environment. Indeed, the design of a complete autonomous system must in-
clude self-organisation, and self-organisation means adaptation of both morphology
and control architecture.

Together with Lee and Hallam, we [13,15] therefore investigated the possibility of
co-evolution between robot controllers and robot body plans in simulation, and we
are currently building a LEGO robot system that allows evolution of robot body
plans for real robots. The experiments showed that controllers and robot body plans
are tightly coupled and that the robot body plan is determining for the performance
of a controller.

We also went a step further and constructed specific hardware pieces, that would al-
low us to study the evolution of the morphology on a physical robot. We built a set of
ears with hardware programmable pre-amplifiers, delays and mixers for the Khep-
era robot [19]. The hardware allows us to approximate the auditory morphology
of various crickets by adjusting the programmable delays and the summing gains.
With the reconfigurable hardware, we can investigate the relationship between the
auditory morphology, the con-specific song, and the internal control system that
generates the phonotaxis behaviour shown by the female cricket in response to the
call of a mate. One possible investigation is then to co-evolve controller and au-
ditory morphology to give good phonotaxis to a specific song while giving good
discrimination between different kinds of songs.

4 Towards Breeding Robots

In most evolutionary robotics studies, there is the underlying assumption that it
is in some sense trivial to design the mathematical fitness functions that can be
used by the evolutionary algorithm to guide the development of robot controllers
for task achieving behaviours. Yet, in some cases it might be difficult to think of the
right fitness function before doing empirical testing. Recent experiments (see above
section 3.2 and [25,27]) do indeed suggest that some kind of shaping is necessary in
the process of evolving task achieving robot behaviours, and other important results
regarding shaping is found in other robotic directions (see e.g. [3]). The difficulties
in describing adequate fitness functions (based on extensive studies of the problem
domain), are seen by us as one of the main reasons why practically no researchers
in the evolutionary robotics field have yet achieved truly complex robot behaviours.
Thanks a LEGO research and development contract, we explored the possibility to
allow children to develop robot controllers for their individual “needs” or “taste”.
Obviously, we could not use the traditional evolutionary robotics approach, since
it would require the children to have knowledge about how to design mathematical
fitness functions.

We also wanted an approach different from the traditional *LOGO programming
of LEGO-robots [29, 30]. Between these two constraints (traditional programming
vs. evolutionary robotics), we chose a third way. The general idea is an Interactive
Evolutionary Robotics approach by which children can develop (or evolve) robot
controllers in the simulator by choosing among different robot behaviours that are
shown on the screen, and then, when they are satisfied with the simulated robot’s
behaviour, download the developed control system to the real LEGO robot and
further play with it in the real environment.

The interactive evolutionary robotics approach is inspired by our previous work



using interactive genetic algorithms to evolve simulated robot controllers, facial ex-
pressions and artistic images (see e.g. [26,35]). In this approach, there is no need of
programming knowledge, since all the end-user has to do is to choose between the
solutions suggested graphically on the screen. Hence, there is no description of a
fitness function, but the selection in the genetic algorithm is performed by the user.
Surprisingly, we observed that children, using our tool, have been able to produce
most of the simple robot behaviours that have been developed by researchers in the
evolutionary robotics field.

We started to build a couple of LEGO robots for testing purposes, one of which
is shown in Figure 6 (for details see [17]). As mentioned above and extensively re-

Mechanical switches Reflection sensors

Light sensors

Powered wheels Trolley wheel

Figure6. Left: Schematic (upper) view of the jeep-like LEGO robot. The robot had three
wheels: two powered wheels for locomotion and steering and one passive trolley wheel.
The robot received sensory information from 4 mechanical switches mounted within two
bumpers, 2 ambient light sensors at its front, and 2 reflection detectors under the chassis.
Right: Photo of the LEGO robot. (© Lund et al. 1997.

ported in [14, 16, 22], it is possible to build an accurate simulator that allows one to
go from simulation to reality by basing the simulator on the robot’s own samplings
of sensor and motor responses. The LEGO simulator was built by this technique
(described in section 2).

The architecture of the control system that calculates the motor output given a
sensory input in the simulated and real LEGO robots was a feed-forward neural
network that connected sensory input to motor output. The jeep-like LEGO robot
had 8 input neurons (4 bumpers and 4 light sensors), and the output was coded
in 6 output neurons. In order to obtain a controller that guides the LEGO robot
to perform a desired task, one will have to choose the right values for the (in this
case) 42 connection weights in the feed-forward neural network control system. In
a sense, this corresponds to finding a specific point (or region) in a 42 dimensional
space. This is, of course, impossible for children (and most adults). Therefore, we
used an interactive genetic algorithm to develop these connection weights. This al-
gorithm allowed children to develop the connection weights (i.e. the control system)
by choosing among robot behaviours shown on the computer screen. The interactive
genetic algorithm in the simulator works as follows.

The simulator allows different population sizes, but let us here look at a population
of 9 robots. These 9 robots are placed in each their copy of the environment. The
9 similar environments are shown on the screen at the same time. Initially, the 9
robots in the population (generation 1), may have connections weights generated at
random or loaded from a set of previously saved connection weights. The first of the
9 robots is put into the first environment. The robot will produce reactions based on
the connection weights of the neural network control system and the sensory inputs.



These reactions (movements) of the robot are shown in the first environment on the
screen. After this robot has run around for a given time, the second robot is put
into the (similar) second environment, and the produced movements are shown on
the screen. This is done for all 9 individual robots. Hence, at this moment, the child
has seen the 9 robots moving around in each their environment one after another.
Let us look at the example where the robots’ neural network control systems are
generated at random. Some of the robots will differ in their behaviour, since the
connection weights in the neural networks differ. The child might like some of these
behaviours and dislike others. Based on such an evaluation where the child show
preferences, the preferred robots in the population can be chosen to reproduce. The
child can, for instance, choose 3 different ones, or choose the same robot 3 times.
In the reproduction phase, the 3 selected robots will be copied 3 times each in order
to produce the next generation (generation 2) of 9 robots. However, as the neural
network control systems are copied, mutation will be applied to 10% of the connec-
tion weights chosen at random. If a weight is selected, it will have added a value
chosen at random in the interval [-10,10]. Hence, the new generation of robots will
be similar to their parents because they are copies, but they will also differ to some
degree because of the mutation.

The new generation of 9 robots is shown on the screen, one robot after another,
as was the case with the previous generation. The child can then again select the
3 preferred robots and they will reproduce through copying and mutation to make
the next generation (generation 3). This loop can continue until the child is satis-
fied with the behaviour of the LEGO robot. It is important to note, that the way
the LEGO robots change is based on the child selecting which ones to reproduce
according to the child’s individual preferences.

Another way to change a LEGO robot’s behaviour is to develop a single LEGO
robot’s behaviour rather than develop on a whole population. If this option is cho-
sen, an enlarged image with the environment and robot will appear on the screen
(see Figure 7 (right)). The robot will start moving around in this environment,
just as it did when the whole population was presented. Now, if the child dislikes
a movement of the robot (e.g., the robot gets stuck when hitting into a wall), the
child can press a “Bad” button. This will immediately change the underlying neural
network control system of that robot. But, in this case, the change does not happen
at random. The system keeps a record of the last input to the robot, and it is the
connections weights going out from the input neurons that were activated that are
changed (with random portions). In the case where the robot hit into the wall with
the front left bumper, it will be the connection weights going out from the input
unit for front left bumper that are changed. Hence, the reaction upon a bump with
the front left bumper is changed. Each time the “Bad” button is pressed, there is
also a slight chance of the bias connections being changed, resulting in a change in
the default behaviour.

When the child is satisfied with the behaviour obtained in the teaching process,
the child can return to the whole population. The trained robot keeps the trained
network, and can then, eventually, be selected to reproduce or to download on the
real LEGO robot. In this way, we allow a Lamarckian evolution that consists of
characteristics being learnt during life-time being inherited over evolution. We by
no means support such a theory for natural evolution, but as a means for fast de-
velopment of LEGO robots, it has proved to be a very powerful tool.

In a sense, what this type of reinforcement learning does is to make a guided search
in specific regions. In the case with the bump with the front left bumpers, the al-
gorithm performs a search on the weights connecting that input unit to the output
units, and the search is made only on these weights. It seems to quickly find a so-
lution, because the dimension of the search space has been limited. This is not a
traditional reinforcement learning algorithm, but for the simple tasks of the LEGO



robots we found that it works very well. We performed a series of experiments with
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Figure7. Left: The population of 9 robots placed in each their (similar) environment.
Here, the environment contains a couple of lines on the floor (the cross) and three round
obstacles. In each environment, one can see the trajectory of the robot that has moved
around in this environment. Right: The enlarged environment in which the child can train a
single Toybot through reinforcement learning. The control system of the Toybot is changed
every time the “Bad” button is pressed. © Lund et al. 1997.

the interactive evolutionary robotics approach described above, and had a lot of
children playing with the LEGO robots. As expected, it turns out to be very simple
to evolve exploratory behaviours, different kinds of obstacle avoidance, line & wall
following, etc. and combinations between such simple behaviours. Hence, within
minutes, children can develop a wide range of the robot behaviours that have tradi-
tionally been evolved in the field of evolutionary robotics. This is due to the use of
the interactive evolutionary robotics approach combined with reinforcement learn-
ing. Indeed, with this approach children do not need to have any programming skills
whatsoever! All that is demanded is that the child specify individual preferences in
order to develop robots according to the individual taste.

5 Conclusions

In this paper, we have outlined part of our joint work in evolutionary robotics dur-
ing the past years. We have moved from artificial life simulation work to real robot
experiments and showed how this is possible with a carefully designed robot simula-
tor. This allowed us to test animal behavioural hypotheses directly by evolving real,
physical agents to perform in identical experimental set-ups. These experiments in-
dicated that some kind of shaping would be necessary when evolving complex robot
behaviours, and indeed we are now introducing breeding robotics that combines
shaping and evolutionary robotics by using interactive genetic algorithms and re-
inforcement learning. Our future efforts will aim at showing how truly complex
behaviours can emerge from breeding robots.
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