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A-needle-in-a-haystack problems

The problem of looking for only one or only a few objects hidden in a huge search space is sometimes called a-
needle-in-a-haystack problem. It has long attracted and still is attracting many of us in computer science/technology
communities. Let’s name a few.

e Crammer & Chechik (2004) proposed such a technique defining the problem as “The problem of finding a
small and coherent subset of points in a given data which sometimes referred to as one-class or set covering,...”

e Joshi et al. (2001) pointed out yet another but a similar situation, writing, “The traditional evaluation metric
of accuracy is not adequate when the target-class is rare. If the class is very rare, say 0.5 %, then predicting
everything to be of non-target-class can also achieve very high accuracy level of 99.5%.”

The technique proposed exploits two phases called positive & negative. Hence they call it PN-rule. Weiss
(2004) summarized this method as, “This approach identifies regions likely to contain needles in the first
phase and then learns to discard the strands of hay within these regions in the second phase.”

e Weiss (2004) also discusses, “The role that rare classes and rare cases play in data mining,” citing an inter-
esting example of a “machine learning technique to detect oil spills from satellite images (Kubat et al. 1998).”

e Sabhnani et al. (2003) applied nine different machine learning techniques to the KDD-cup-1999 dataset
(Stolfo et al. 1999) to know how these techniques detect network intrusions. In the dataset, data for four
categories of intrusions are given, together with data for normal transactions. It was shown that the two out
of four categories were all immune to all the nine methods while the other two are easy to be detected. We
hypothesized that this is due to these two categories of attacks are like a needle in a haystack of a normal
and other categories of attacks (Imada, 2006).

e Among others, the most popular issue on this topic these days is probably a searching for needles in a huge
hay of world-wide-web resources, and designing such search-engines. See, for example, (Makris et al. 2006).

e In software engineering community, this issue is also explored. See, for example, (Whitaker et al. 2004).

Hinnton & Nowlan’s model — Computational Baldwin Effect

In their seminal paper, Hinton & Nowlan (1987) showed us an elegant experiment which they called “ an evolution
with the Baldwin effect in computers.” The purpose was to show a new method to search for a unique object located
in a huge search space, and thus called a-needle-in-a-haystack problem. The method is by evolving a population of
candidates of the solution like a usual evolutionary search, but what was proposed was to exploiting individual’s
lifetime-learning in addition to the standard operation for reproduction. Hence, the proposal is said to be the first
suggestion of a computational Baldwin Effect. Since then we have had a fair amount of application proposals of
this technique. Even these days. See, for example, (Mills & Watson, 2006). The topic still includes open issues



and some of them are explored in this paper.

Hinton & Nowlan’s model is quite simple. That is, with a needle being a unique configuration of 20-bit binary
string, all other 20-bit configurations constitute a haystack. If we’d just imagine a 20 bit binary PIN code instead
of usual 4 digit decimal one, it would be easy to understand what is the needle here.

Note that if we apply a standard genetic algorithm starting with a population of chromosomes with their genes
being either 0 or 1 at random, then the fitness of each individual is always zero unless the individual is ultra lucky
to be coincidentally identical to the needle. So the fitness landscape is everywhere flat island of altitude zero except
for the only one point. Impossible to evolve.

Following Hinton & Nowlan’s experiment and a more clear specification of the experimental condition suggested
by Mills & Watson (2005), we examined the experiment. We create a population of 1024 chromosomes of 20-bit
whose genes are either 0, 1, or 9. Genes are determined at random with a probability of 0.25 for 0’s and 1’s and
0.5 for 9’s. A needle here is the all 1 chromosome, without a loss of generality. Each chromosome is given a chance
of 1000 trials each time with its 9 being randomly replaced either with 0 or 1, and check if it matches the needle or
not, which is called lifetime-learning. If it matches the needle at n-th trial, the fitness is given as (1000 — n). Then
we evolve this population from one generation to the next by fitness-proportionate-selection, one-point-crossover
and mutation with the probability of 1/20.

Can we observe such an elegant result? See Fig. 1 in which two results: (i) simple random search and (ii)
search with lifetime learning are shown. Although in both cases, the number of steps until one of the individuals
finds the needle is O(N), what a tremendously dramatic enhancement in efficiency it looks like!
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Figure 1: Number of individuals necessary for the needle to be reached for the first time vs. the number of total
search points. A result of random walks (blank circles) and search by 1000 learnings during individual’s lifetime
(filled circles). The data are averaged after 100 runs. Complexity is both linear, but what a dramatic difference!

But, alas, a reality is that the number of evaluations of whether phenotype matches needle or not is similar in
both cases. Anyway, by exploiting this method, it is still realistically impossible to reach the needle of, say, 30-bit
binary string even with a currently available fastest personal computer.

Watson & Pollack (1999) wrote in their paper “”Hinton and Nowlan choose the population size, number of lifetime
trials, and number of variables in the problem carefully so as to make it most unlikely that genetic variation alone
will find the solution but very likely that lifetime variation will,” our observation, however, was not so optimistic,
as we will see later.!

1This is omitted in this extended abstract.



Why should we continue when the lifetime learning already find the needle? This is what we wondered
when we read the original experiment. A possible answer was given by Mills & Watson (2005) in which they
argued: “This model is not intended to show any engineering advantage [but a biological viewpoint.]” Then they
went on, ”To remove the assumption of learning phenotypes, we evaluate fitness as the mean fitness of the lifetime
phenotypes, rather than the number of trials remaining after the phenotypic solution is first found. This means
that the organisms do not have to recognize their own success (as is implicit in Hinton € Nolan’s model.)” 2

We are wondering how their “taking an average of all zero fitness indiviuals,” is meaningful, but anyway, why
don’t we expect more to other biological evolution model such as Lamarckian inheritance rather than sticking to
the Baldwin Effect.

Is the Lamarckian inheritance computationally plausible? Turney (1996) wrote, “Lamarckism requires an
inverse mapping from phenotype and environment to genotype. This inverse mapping is biologically implausible.”
And further assumed by describing, “Perhaps Lamarckian evolution is superior to the Baldwin effect, when we are
attempting to solve problems by evolutionary computation.”

Then, why not trying this in our Hinton & Nowlan’s model. Though Turney strangely wrote the above statement
once more as one of the conclusions, “Lamarckian evolution requires an inverse mapping from phenotype and
environment to genotype ... We believe that computing this mapping is intractable in general,” we cannot agree
this, at least in our Hinton & Nowlan’s model. All we need is remap some of the successful 0’s and 1’s in the
phenotype to the corresponding genes of 9 in the genotype with a certain probability, though we don’t know if this
is computationally or biologically meaningful or not.

Can a learning enhance a Robot random navigation?

What about a different scenario? We now take a rook at a problem of robot navigation in a two-dimensional grid.
The task of the robot is to look for an object hidden somewhere in the grid. The robot has no idea of where. This
is a two-dimensional version of a-needle-in-a-haystack problem. With random walk, the robot can eventually find
the needle after an average of O(N?) steps, assuming N x N grid. Then question is, “A learning scheme can reduce
the number of steps via a series of trial-and-errors afterwards?”

Quantum computation can search a needle with more efficiently?

Since Grover’s (1997) assertion that quantum mechanics helps in searching for a needle in a haystack with O(v/N)
steps while classical computer requires O(N) steps,® lots of approaches exploiting a quantum random search have
been proposed. See, for example, (Shenvi et al. 2003). As for searching a space by a mobile robot, Beninof (2002)
proposed a quantum robot. It might be interesting to see what Beninof wrote:

”For this initial memory state all 2V searches are carried out coherently. Since the path lengths range
from 0 to 2N, the quantum robot can search all sites of R and return to the origin in O(N log N) steps.
Since this is less than the number of steps, O(N?log N), required by a classical robot, the question arises
if Grover’s algorithm can be used to process the final memory state to determine the location of S. If
this is possible, the overall search and processing should require O(N log N) steps which is less than that
required by a classical robot.”

At the same time, however, we must notice that search for a point in d-dimensional hypercube by a quantum

random walk is O(y/n) for d > 3 and O(y/nlog’n) for d = 2 (Aaronson et al. 2003). It would be more effective
only in a dimension higher than 3.

2The key to understand this issue is while genotype in the Hinton & Nowlan’s model includes flexible genes 9’s — such as
(10090011001909100199), its phenotypes are the ones whose 9’s are all replaced with either 0 or 1 for a lifetime learning — like
(10010011001100100111). Hence one genotype has a maximum of 1000 different phenotypes.

3As N is the number of points in search space in his equation, it is O(Nz) in our context.



Concluding remarks

We have shown a kind of survey of the topic on a-needle-in-a-haystack problem. In a meanwhile, we had an
interesting discussion between two papers Yu & Miller’s (2002) “Finding needles in haystacks is not hard with
neutrality.” vs. Collins’ (2005) “Finding needles in haystacks is harder with neutrality.” As we mentioned at the
very beginning of this paper, we have lots of proposals of innovative techniques to find a needle efficiently. What
we have to be careful about, however, will be to avoid an effect of like-to-hear-what-we-would-like-to-hear. Most
techniques are still vulnerable when they are applied to a more scaled-up circumstance than when it was designed.
A success in a small scale experiment is not necessarily a royal road to a success in a large scale situation in the
real world. This is what we wanted to emphasize in this paper, hoping this article would be a good prelude to the
researches on this issue.
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