

Spike timing dependent plasticity (STDP)

to make robot navigation intelligent

Akira Imada

Brest State Technical University (Belarus)

This is not a success report
but
a guideline of our ongoing project
or
a report of what we are currently planning.

To start with
a benchmark to know
if what we are planning will work or not.

Benchmark will be

Path Planning

or

Robot Navigation

↓ where

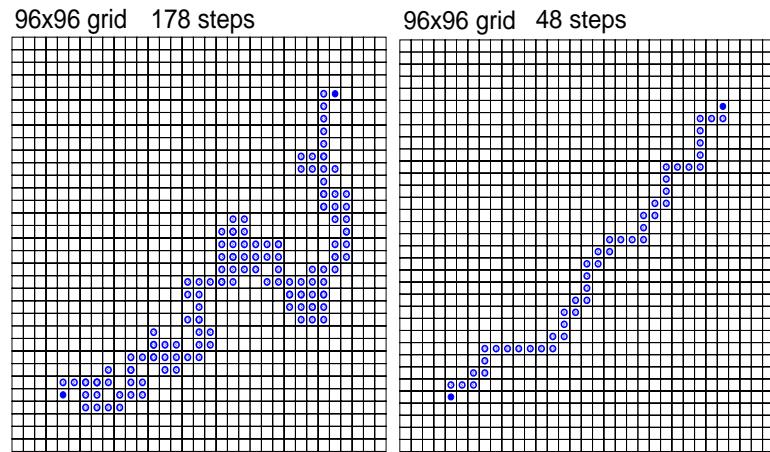
the aim is usually to **minimize** the route from start to goal, but...

Task of minimizing navigation on its own is not so difficult

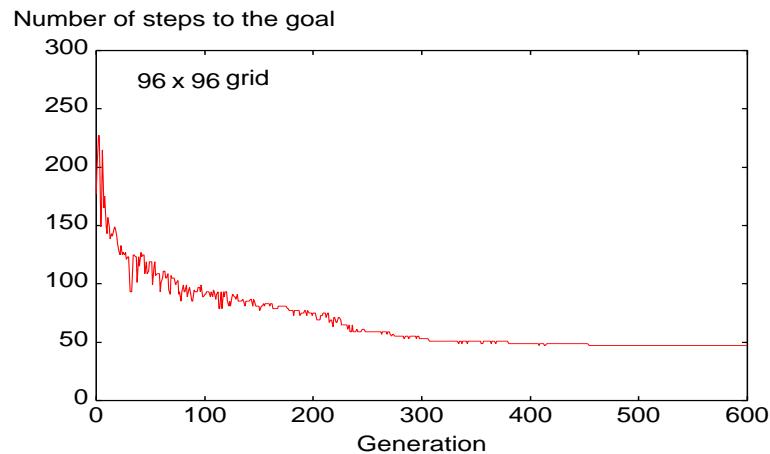
A-star, Genetic Algorithm, Reinforcement Learning, Neural Network,
Ant Colony Optimization, etc...

Genetic Algorithm (GA)

Agent decides actions following its **chromosome**


e.g.

with chromosomes like


(4 1 1 2 1 3 2 3 3 4 2 1 3 4 3 2 3 3 2 1 1 3 2 1 3 ...)

indicates the agent a route to be followed

Random walk evolved to be minimized

Task was easy

Let's extend it

From Minimization to Maximization

↓ i.e.

We don't care goal points but to maximize an exploration

A Camel in a Desert

The 52nd problem

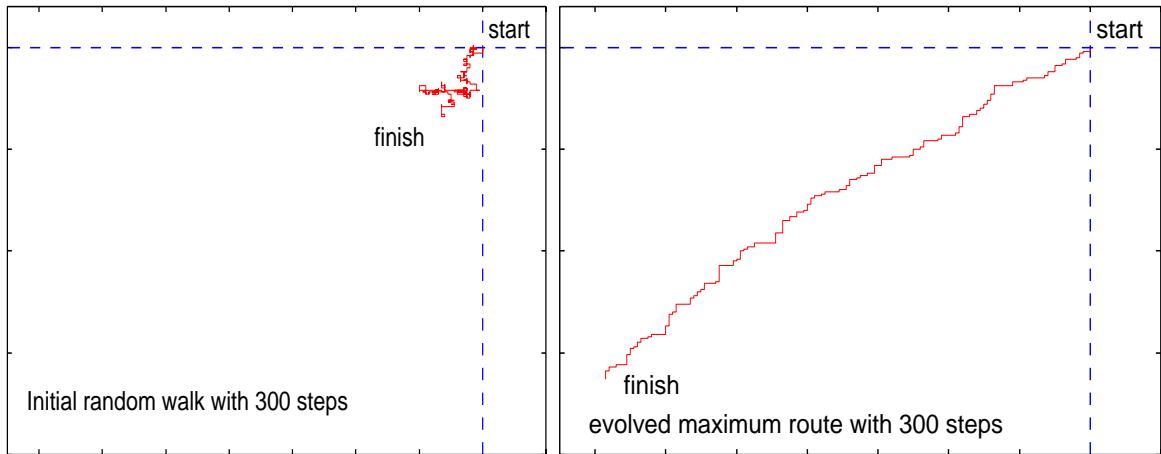
in the

“*Propositiones ad acuendos inventes*” (in Latin)

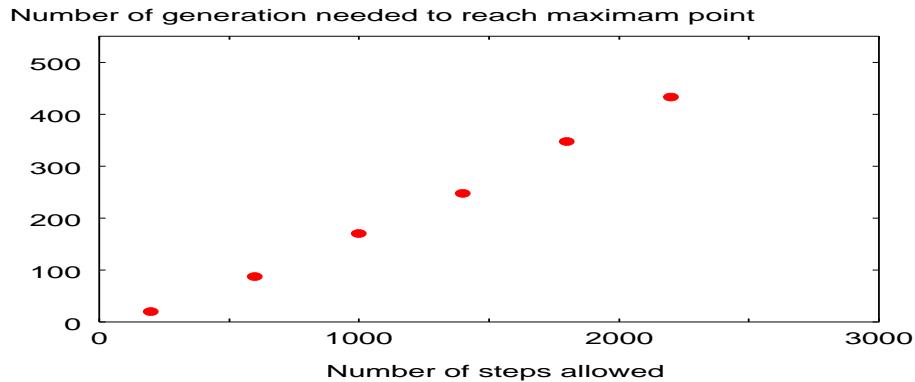
by

Alcuin of York (732–804)

Can a camel maximize its exploration in a desert
surviving with grains on his back?



**Modern version:
From Camel to Jeep in a Desert**


Can a jeep maximize its exploration
in a desert with a tank of fuel?

Still it's not so difficult by GA for example

Task was rather easier

The complexity is $O(N)$

Why not extend it further

**Let's make it return to the point
it started**

while also maximizing an exploration

Planet Land-rover Problem

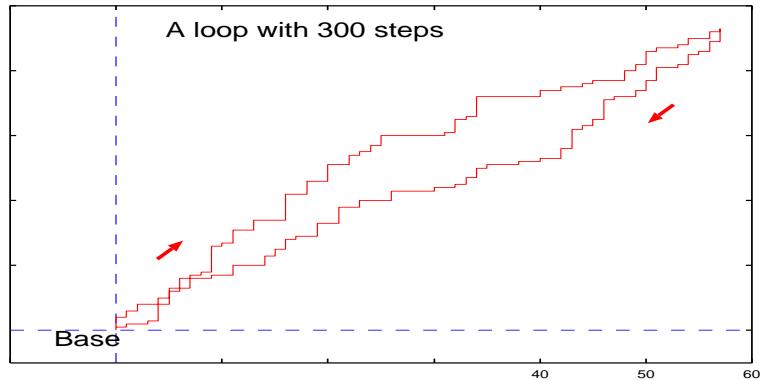
From A (start) to B (goal) minimizing its route

From A to A maximizing its route

(This is our proposal here as a benchmark)

Can the rover return to the base
with its exploration being maximum
spending a limited energy given when it started?

Much more demanding


Taking GA as an example, what might be a fitness?

e.g.

$\{total\ length\} \ \& \ \{how\ often\ it\ has\ crossed\ previous\ route?\}$
with

Multi Objective GA (MOGA)

A Heuristic create such a route

What heuristic do you guess?

Topic of today's talk:

What is intelligence?

Intelligence should be spontaneous, flexible, or unpredictable more or less

Stolle et al. (2002)

“... every day we might be cooking a *different* breakfast, but the kitchen layout is the *same* from day to day.”

“I beg your pardon?”

Intelligent people try a different explanation for an easier understanding

while

others repeat the expression, maybe with a bigger voice

What if your canary stop singing?

Legendary three strategies in Japan.

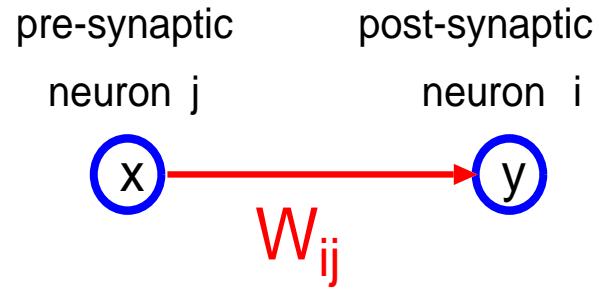
- (1) Just wait until she sings again.
- (2) Try something so that she sings again.
- (3) Kill her if she doesn't sing any more?

**To be intelligent,
action should be different more or less
even in an exactly identical situation**

Performance is not intelligent

if we use

deterministic A-star, GA, NN with **fixed** weights?


Let's make a learning occur during behaviors

Evolution of Learning

A notation

Hebbian Learning of NN

$$w_{ij}(t+1) = w_{ij}(t) + \eta x_j(t)y_i(t) \quad (x_j, y_i \in [0, 1])$$

Floreano's approach (2000)

Modification of w_{ij} during exploration

with either one of four Hebbian and Hebbian-like rules

Hebbian learning

$$(1) \quad \Delta w = (1 - w)xy$$

Hebbian type learning

Weaken if the post-synaptic is active, while the pre-synaptic is not

$$(2) \quad \Delta w = w(-1 + x)y + (1 - w)xy$$

Weaken if the pre-synaptic is active, while the post-synaptic is not

$$(3) \quad \Delta w = wx(-1 + y) + (1 - w)xy$$

And

Strengthen if the two have similar activity and weaken otherwise.

$$(4) \quad \Delta w = \begin{cases} (1-w)F(x, y) & \text{if } F(x, y) > 0 \\ wF(x, y) & \text{otherwise} \end{cases}$$

where

$$F(x, y) = \tanh(4(1 - |x - y|) - 2)$$

Evolution of leaning

Which rule and what parameter's value should be assigned to each of the synapses?

Evolution leads the combination to the optimum.

Stanley's implementation (2003)

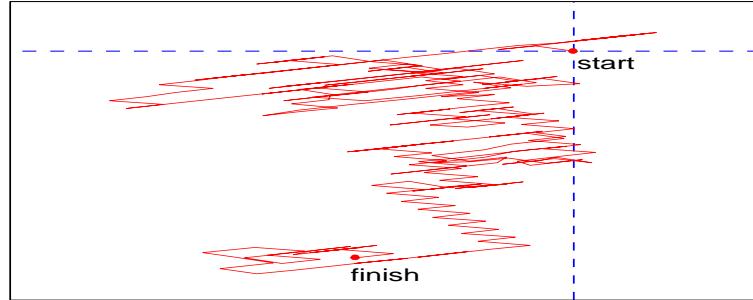
$$\Delta w = \begin{cases} \eta_1(1-w)xy + \eta_2wx(y-1) & \text{for excitatory neuron} \\ -\eta_1(1-w)xy + \eta_2(1-w)x(1-y) & \text{for inhibitory neuron} \end{cases}$$

↓

Evolution is on (η_1, η_2) of each synaptic weight

Their result

Starting with random weights every time anew
the weights are modified step by step **by the rule it learned**



Every run is different depending on the initial random weights

More general learning (Durr et al. 2008)

$$\Delta w = \eta(Axy + Bx + Cy + D)$$

An example of exploration by a recurrent NN with random weights

Can it learn so that path will finish at the start point?

Our Aim

Learning should occur during a random exploration

with a spiking neural network to seek its biological plausibility

Learning by STDP

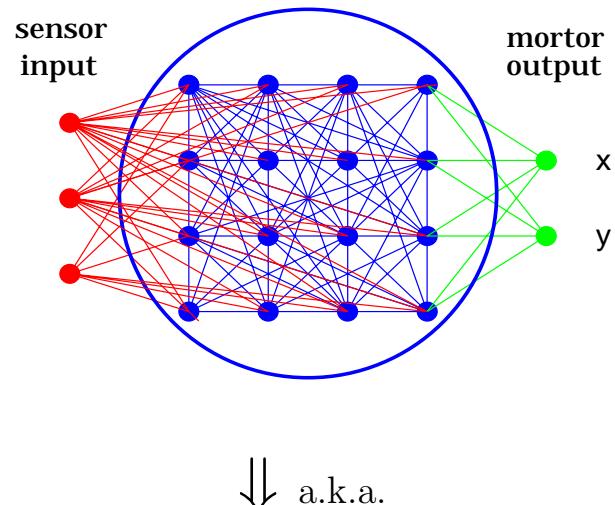
(Spiking neuron's version of Hebbian Learning)

The topic is still open!

Meunier et al. (2005)

“Up to now, nobody has been able to show how it is possible to learn with STDP...”

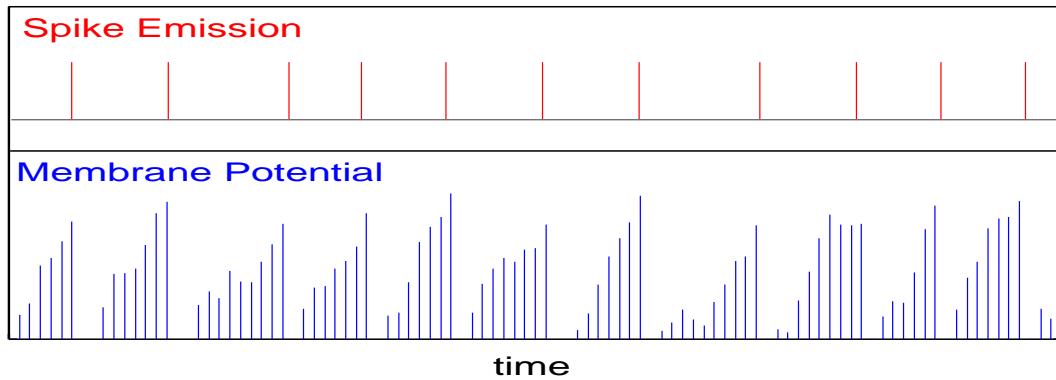
Farries et al. (2007)


“Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning.”

Still the method is not so fruitful

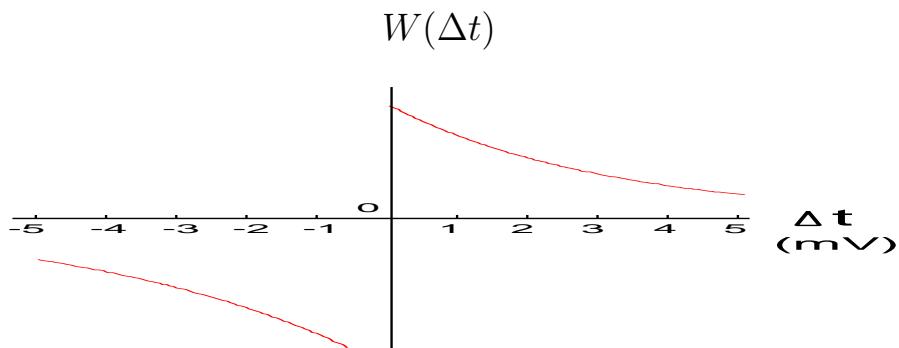
but

Why not challenge?


Architecture we are planning

Echo State Network, Liquid State Network or Reservoir Computing

Integrate-and-Fire Model


$$u_i(t) = u_r + (u_i(t - \delta t) - u_r) \exp(-\delta t / \tau) + \sum_j w_{ij} f_j(t - \delta t)$$

What is STDP?

$$W(\Delta t) = \begin{cases} A_+ \exp(-\Delta t/\tau_+) & \text{if } \Delta t \geq 0 \\ -A_- \exp(-\Delta t/\tau_-) & \text{if } \Delta t < 0 \end{cases}$$

where $\Delta t = t_{post} - t_{pre}$

In short

potentiation occurs when a pre-synaptic neuron fires shortly before a post-synaptic neuron

and

depression occurs when the post-synaptic neuron fires shortly after.

**It's too basic to be applied
to a real simulation**

Reward-modulated STDP Learning

(Florian 2007)

$$w_{ij}(t + \delta t) = w_{ij}(t) + \gamma r(t + \delta t) \zeta_{ij}(t)$$

where

$$\zeta_{ij}(t) = P_{ij}^+(t) f_i(t) + P_{ij}^-(t) f_j(t)$$

$$P_{ij}^+(t) = P_{ij}^+(t - \delta t) \exp(-\delta t / \tau_+) + A_+ f_j(t)$$

$$P_{ij}^-(t) = P_{ij}^-(t - \delta t) \exp(-\delta t / \tau_-) + A_- f_j(t)$$

Reinforcement Learning (RL)

What an agent learns is a *policy*

and

policy is how to select an *action* in a given *situation (state)*

maximizing

total *rewards* the agent occasionary will receive from the environment

Policy indicates agent which action should be chosen in any possible situation

While in GA

Agent decides actions following its **chromosome**

in RL

Agent decides actions following its **policy** it has already learned

However

our world is with **no obstacle, no wall, no corridor**, only one goal

Everywhere no reward except for one point (goal)

A needle in a Haystack

(Rewards are not likely to be encountered by a random exploration)

We have not succeeded yet

Nevertheless

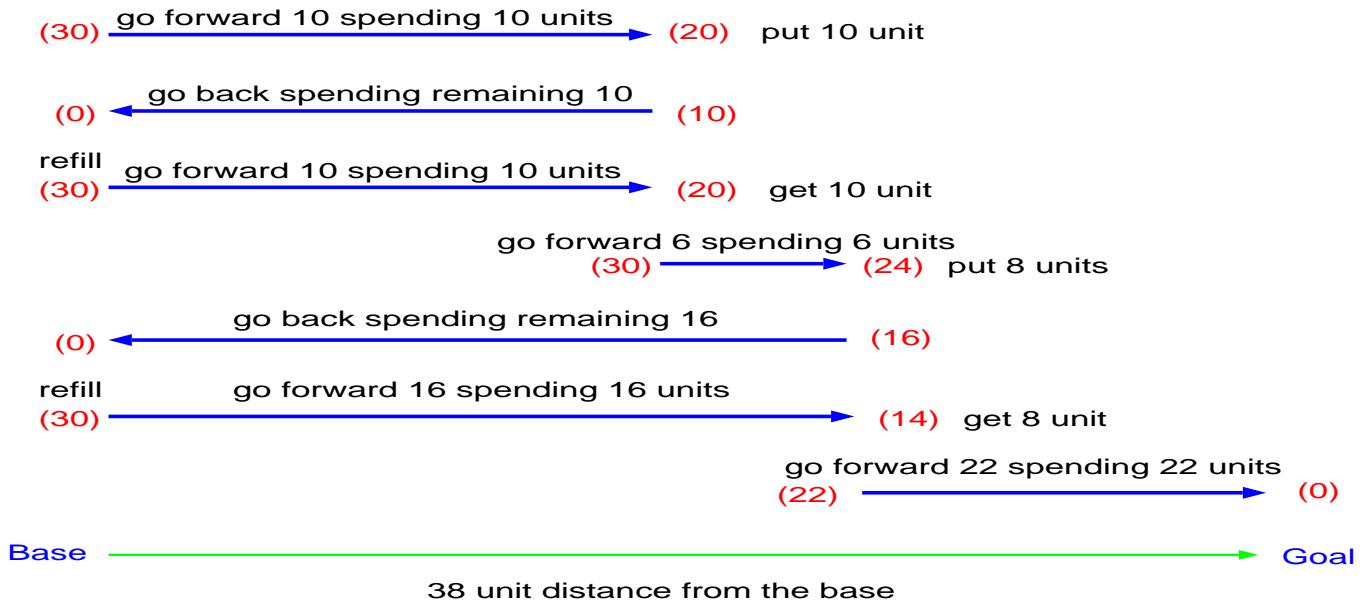
we think of
a further extension of the benchmark
as a bigger challenge

What if the rover carries containers for fuel?

Jeep Problem

Where jeep explore is 1-D desert

Jeep can unload its fuels anywhere in the desert


Fuels can be filled only at the base

Jeep can go back to the base n times to re-fill its tank

⇓ thus

The jeep should maximize its penetration

An example of a success

Let's give the rover the same condition

A very tough benchmark, and
an infinitely large number of solutions (when it's in 2-D)

Good as a benchmark to check **our** intelligence of
a different action in a same environment

Let me conclude

To claim artificial NN to be intelligent
a different action more or less should be made under identical situation.

We want to, or we are going to realize it
by
Spiking NN with learning by STDP
also
to be more biologically plausible.

SONY's AIBO

can excellently learn but still repeats **same action** in the same situation

**Hoping collaborations
to design
an agent like real human intelligence**

Thank You!