Kohonen's Self Organizing Map: Reduction of Dimension

Akira Imada

1 Map from 2D to 2D

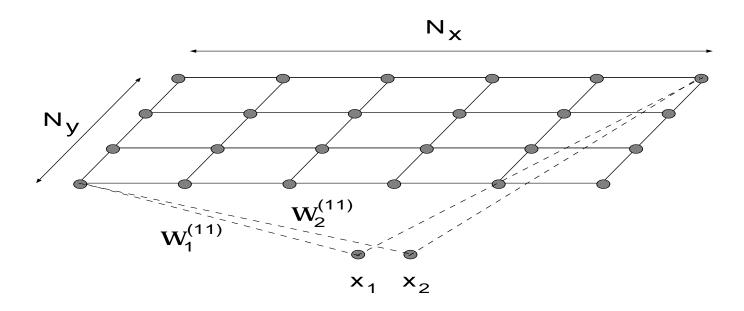
We now assume a Neural Network with two input neurons and $N_x \times N_y$ output neurons, no hidden layers.

The location of each of the utput neurons is denoted with

$$\mathbf{n} = (n_x, n_y)$$
 $n_x = 1, \dots N_x$, and $n_y = 1, \dots N_y$

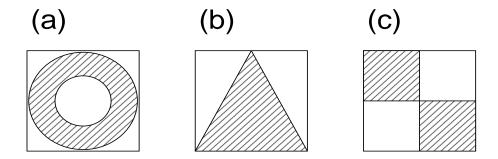
Each of the two input neurons connect to each of the output neurons via a synapse. The weight value of the synapse from the d-th input neuron (d = 1, 2) to the output neuron \mathbf{n} is denoted as $w_d^{\mathbf{n}}$ and we use a notation

$$\mathbf{w^n} = (w_1^\mathbf{n}, w_2^\mathbf{n})$$



Then the $\mathbf{w}^{\mathbf{n}}$ can be self-organized in the following way:

- 1. Determin $\mathbf{w}^{\mathbf{n}}$ at random
- 2. The input $\mathbf{x} = (x_1, x_2)$ is given by drawing the point (x_1, x_2) at random from a given domain, like



- 3. Select one output neuron \mathbf{n}_0 such that $||\mathbf{x} \mathbf{n}_0||$ is minimum of all $\mathbf{x} \mathbf{n}$.
- 4. Renew weight values as follows:

$$\mathbf{w}^{\mathbf{n}} = \mathbf{w}^{\mathbf{n}} + \epsilon \cdot g(\mathbf{n} - \mathbf{n}_0)(\mathbf{x} - \mathbf{w}^{\mathbf{n}}), \tag{1}$$

where η decreases gradually as the numer of repetition (see Step 5. bellow) increases,

$$g(\mathbf{n} - \mathbf{n}_0) = \exp(-\frac{||\mathbf{x} - \mathbf{n}_0||^2}{2\delta}),$$

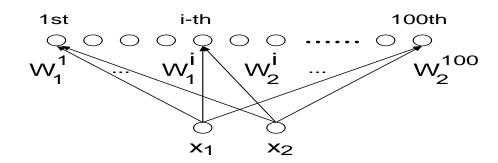
and δ is a constant to adjust to obtain an appropriate result.

Or,

$$g(\mathbf{n} - \mathbf{n}_0) \equiv 1.$$

5. Repeat 2. - 4. above.

Excersise 1 As an example of mapping from 2D to 1D, construct a SOM network with two input and 100 output with $N_x = 100$ and $N_y = 1$.



Then try the following algorithm.

- 1. Choose an input point by sampling it at randome from 2D triangle like (b) in the previous page,
- 2. Feed the coordinate of the point (x_1, x_2) to the input of the Kohonen SOM network, so that weight values are self-organized according to Eq.(1), that is,

$$w_d^i = w_d^i + \epsilon \cdot \exp\{-(x_d - w_d^{\text{max}})^2\} \cdot (x_d - w_d^i)$$

where w_d^{max} is the weight value from x_d to the output neuron of the winner, d = 1, 2 and $i = 1, 2, \dots, 100$. The value of ϵ is decreased gradually like, for example,

· Starting with $\epsilon=0.05$ for the 1st repetion 1 – 5000; $\epsilon=0.04$ for the 2nd repetion 5001 – 10000; $\epsilon=0.03$ for the 3rd repetion 10001 – 15000; $\epsilon=0.03$ for the 4th repetion 15001 – 20000; and $\epsilon=0.01$ for the last repetion 20001 – 25000

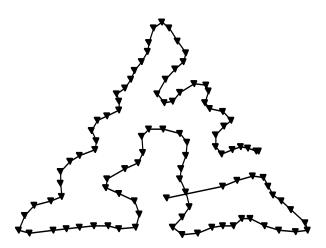
Or, simply by

$$w_d^i = w_d^i + \epsilon (x_d - w_d^i)$$

- 3. Repeat 1. and 2. above, say, 25000 times.
- 4. Plot 100 pairs of weights (w_1^i, w_2^i) $i = 1, 2, \dots, 100$

The bellow is an example of the result of plotting

$$(w_1^1, w_2^1), (w_1^2, w_2^2), \cdots, (w_1^{100}, w_2^{100})$$



A more general discription of the Network

In the more general form, we also assume a two layered Neural Network. It has also $N_x \times N_y$ output neurons but the number of input neurons is more generally d. It maps a point in d-dimensional space to a point in two-dimensional space. Hence we might use it for the purpose of dimension reduction.