

APPROACH TO PARALLEL TRAINING OF INTEGRATION HISTORICAL
DATA NEURAL NETWORKS

V. TURCHENKO1, C. TRIKI2, A. SACHENKO1

1Laboratory of Automated System and Networks, Institute of Computer Information Technologies,

Ternopil Academy of National Economy, 3 Peremoga Square, 46004, Ternopil, UKRAINE,
Phone: +380 (352) 33-0830, Fax: +380 (352) 33-0024, E-Mail: vtu@tanet.edu.te.ua

2 Department of Electronics, Informatics and Systems, Parallel Computing Laboratory,

87036 Rende - Cosenza, ITALY, Fax: +39 984 494713, E-mail: chefi@parcolab.unical.it

ABSTRACT

There is considered the application of neural networks
for accuracy improvement of sensor signal processing by
sensor drift prediction. The two methods of sensor drift
prediction are described. The main characteristics and
training time of integrating historical data neural network
are presented on the uniprocessor computer Pentium-III-
600-128 Mb RAM. The two paralleling schemes of
training of integrating historical data neural network are
proposed. The fulfilled experimental researches of parallel
programs on the high-performance computer Origin2000
are shown high efficiency of second paralleling scheme.

KEYWORDS

Neural network, parallel training, historical data, high-

performance computing.

1. INTRODUCTION

It is shown in [1, 2], that error of the modern sensor
data processing systems is much less than initial sensor
error in majority of cases. Besides the sensor drift is much
higher than drift of the other components of measuring
channel. It is possible to improve the accuracy of physical
quantities measurement by sensor calibration using
special calibrator or sensor’s periodic testing with
reference sensor on the exploitation place [3]. But the
operations implementing these methods are rather
laborious. The low laborious is provided by sensor drift
prediction during interesting interval [1]. The most
effective is using artificial intelligence methods, in
particularly neural networks (NN) for this purpose [4, 5].
Thus the calibration and testing results serves as input
data for training of predicting neural network (PNN) and
making of the prediction. But the laborious of calibration
and testing provides small quantity of the data (3-5
values) in training sample of PNN. The two methods of
artificial increasing of PNN’s training sample are
proposed in [6]: (i) method of additional approximating
neural network (ANN) and (ii) method of historical data

integrating. The modern systems of sensor signals
processing have multi-level structure as a rule [7-9].
Therefore execution of proposed methods fulfills on the
higher computing component of such network, i.e. on the
personal computer [10]. The uniprocessor personal
computer (in majority of industrial solutions) cannot
provide training of a several kinds of neural networks per
channel in multi-channel systems [11]. The conducted
experimental researches have shown, that the time of NN
training can be hundreds minutes [12], that is not
acceptable in real-time systems. Therefore the approach to
parallel NN training on the higher level of sensor data
processing systems is considered below.

2. METHOD OF ADDITIONAL NEURAL
NETWORK

The main goal of additional ANN using is the
increasing of training set of PNN in order to provide high-
quality training. Let us consider the set of sensor
calibration points)(tx on the interval nt ,1= (Fig. 1).
The sensor drift curve, which penetrates these points, is
divided on 1−n subintervals according to number of
calibrations. The ANN task is to approximate q points
into each 1−n subinterval. The total points for PNN
training is equal qnm ⋅−=)1(after approximation
procedure. The PNN task is the high-quality prediction for
necessary steps in future using results of ANN
approximation.

3. NEURAL BASED METHOD OF
HISTORICAL DATA INTEGRATION

The disadvantage of considered above ANN method is
the necessity of executing of sufficient calibration/testing
procedures in order to obtain the enough (for example, 3-
5) sensor drift data for ANN training. But these data are
not available at the beginning of sensor exploitation.
Therefore it is expedient to use historical data. The term
«historical» data is used for describes the results of

calibration or testing of the same type sensors in the
similar operating conditions.

0 1 2 3 n-1 n n+1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Calibration points

Se
ns

or
 d

rif
t,

co
nv

er
tio

na
l v

al
ue

s

t

x(t)

x

•

•
•

•
•

q

q

q

q
q

Fig. 1. Graphic Interpretation of Additional
Approximation Neural Network Method

Let us consider the historical data of sensor drift as

curves xnx ...1 (Fig. 2), which are equal to xcixbixai ,, ,
ni ,1= into calibration points cba ,, . The ni ,1= is the

quantity of calibrated sensors in previous moments of
time. The first calibration of the new −k sensor allows
correcting initial sensor error at the moment 0. The second
calibration of the new sensor allows receiving the first
real value xak of sensor drift in calibration point a . The
main idea of the method is prediction of xbk point on the
basis of xak and xai , ni ,1= , the next point xck on the
basis of xbk and xbi , ni ,1= , etc. Thus the points xak
and xai , ni ,1= will be considered below as “window”
of historical data. The number of available historical
curves n of sensor drift determines structure of IHDNN's
input layer.

0 a b c

x1

xi

xi+1

xn

...

xa1
xb1

xc1

∙
∙

∙

xak
xbk

xck

∙
∙

∙

xai

xbi
xci

∙

∙
∙ xai+1

xbi+1

xci+1

∙

∙

∙ xan

xbn

xcn

∙

∙

∙

Calibration points

Se
ns

or
 d

rif
t

Fig. 2. "Historical" Data about Drift of Similar Sensors

t

x

It is necessary to generate the IHDNN’s training set by
the following algorithm:
1. One curve of sensor drift xi is considered as real

data and all other curves xj , 1,1 −= ij , nij ,1+=
are considered as historical data. Thus, the real sensor
drift xai is obtained in point a and xbi value is
obtained in point b ;

2. To calculate an absolute deviations xajxaiij −=∆
of point xai from all other points xaj , where

ni ,1= , 1,1 −= ij , nij ,1+= ;
3. To sort all absolute deviations, calculated in the

previous step, in decreasing order; to calculate
maximum ijij ∆=∆ maxmax and minimum

ijij ∆=∆ minmin values of absolute deviations;
4. To generate each training vector as set of values xbi ,

xai , xaj , where xaj , 1,1 −= ij , nij ,1+= values
are necessary to put into training vector according to
sorted (in decreasing order) values of absolute
deviations xaj from value xai (Table 1);

5. To repeat steps 1-4 above for ni ,1= .

Table 1. Internal Structure of Training Vector of
IHDNN

Max.
value

Interm.
values

Min.
value

Drift
in a

Drift
in b

xaj ,
max

ijij ∆=∆
. . . xaj ,

min
ijij ∆=∆

xai xbi

The multiplayer perceptron with logistic activation

function of hidden neurons and one linear output neuron
is used as IHDNN [6]. The output value of perceptron is











−





−⋅= ∑ ∑

= =

M

j
O

N

i
hjijihjOOO TTwxFwFy

1 1

, (1)

where)(xFO and)(xFh are the activation functions of
output and hidden neurons respectively; jOw are the
weight coefficients of output neurons; ix are the input
data of neural network; ijw are the weights coefficients of
the hidden layer neurons; hjT are the thresholds of the
hidden layer neurons; OT is threshold of output neuron.
The logistic activation function is used for neurons of the
hidden layer

() 11()(−−+= x
h exF . (2)

The back propagation algorithm [13] is used for

IHDNN training with calculation of adaptive learning rate
on each training step [14]

()










−

−
×

+
=

∑

∑

=

=

M

j

p
j

p
j

p
j

M

j

p
j

p
j

p
j

p
i ththt

ththt

x
t

1

222

1

2

2

))(1())(())((

))(1)(())((

)(1
4)(

γ

γ
α , (3)

where ∑
=

−=
M

j

p
j

p
jj

pp
j ththtwtt

1
00))(1)(()()()(γγ is the error

of j -neuron of the hidden layer with logistic activation

function,)(th p
i is the output value of j -neuron of the

hidden layer in the moment t for training vector p .
After IHDNN training the vector xakxaxaixai ,1,,1+

of data integration is formed (according to Table 1), the
value xbk should be the result of integration. Then
"window" of historical data is moved to the right for one
calibration point, and for the next iteration we will receive
xck value and so on. Therefore the number of IHDNNs
equals to quantity of calibration points. After obtaining of
all integration results xckxbk, and so on these data are
passed to ANN input, which approximates them and
forms training sample of PNN. Method of historical data
integration sequentially uses three NN with different
properties (IHDNN, ANN and PNN).

The experimental researches of proposed method of
sensor drift prediction were executed by simulation
modeling using mathematical models of sensor drift “with
saturation" and “with acceleration" [15]. The analysis of
computational complexity and training time of used
neural networks has shown [11], that IHDNN training has
the largest computational complexity. Therefore let us
consider this experiment in details. It is necessary to have
some sensor drift curves for fulfillment of the experiment.
Let us take the input data for experiment: 10 curves of
historical data and 5 calibration points. As it is shown
above, one historical curve is considered as real curve
during forming of the training set of IHDNN. So the
IHDNN’s training sample is formed from 9 curves.
Therefore quantity of input neurons of IHDNN is equal 9.
The separate training sample of IHDNN is formed for
each investigated curve. Therefore, the quantity of used
IHDNNs is equal 10 for one calibration point. The total
number of IHDNNs is equal 50.

The experimental researches were executed using
uniprocessor computer P-III/600 MHz/128 Mb RAM with
Linux operating system. The 98% of CPU time was free
before the beginning of experiments. The IHDNN’s
model of three-level perceptron, namely the 9 neurons of
input layer, the 9 neurons of hidden layer with logistic
activation function and one output linear neuron
(described by the formulas 1-3) are used for the
experiments. The researches are fulfilled for the fourth
scenarios (Table 2) of iteration number (IT) and sum
squared errors (SSE), where time of fifty IHDNNs is
shown in column 4.

The percentage error of historical data integration did
not exceed 16% for sensor drift "with saturation" and 12%
for sensor drift "with acceleration" in calibration points

for the fourth scenario. The percentage error of PNN
prediction did not exceed 30% for both sensor drifts on
increased in 12 times intercalibration interval for the
fourth scenario. This prediction result allows increasing
the accuracy of sensor data processing in 3 times.
However such large time of training (column 4, Table 2)
only for one data acquisition channel is unacceptable for
real-time systems. Therefore let us consider the
approaches of parallel IHDNNs training on the
multiprocessor computer below.

Table 2. Training Time of 50 IHDNNs on the

Uniprocessor Computer
Scenario IT SSE Time,

min
1 40000 0,00001 39,8
2 80000 0,00001 76,2
3 200000 0,000001 138,9
4 500000 0,0000001 206,2

3. THE WAYS OF PARALLEL TRAINING
OF INTEGRATING HISTORICAL DATA
NEURAL NETWORK

The preliminary analysis of routine structure, which

implements historical data integration has shown, that two
schemes of paralleling are possible on the multiprocessor
computer:

A. Parallel Calculation of Weighed Sum and
Multiplication Cycles

The back propagation algorithm for IHDNN training
contains about 24 operators of calculation of the weighed
sum and multiplication cycles:

∑
=

−=
N

i
ii Txwy

1

, (4)

where iw are the weight coefficient of neuron’s inputs,

ix are the input data, T is the neuron’s threshold. The
relations between ix and iw in all cases are absent
between corresponding pairs. The quantity of executed
operations of the weighted sum depends on quantity of
neurons in each neural network layer. For example, for
three-level perceptron with 9 neurons of input layer and 9
neurons of the hidden layer the quantity of executed
operations is equal 663. Therefore, it is expedient to
execute M multiplications on M available processors of
the multi-processor computer (Fig. 3). The quantity of
neurons in neural network layers must be large enough
and also the calculation time must be larger than
communication time between processors with the purpose
of reduction of temporary losses at parallel calculation.

∑
=

−=
N

i
ii Txwy

1

Processor 1
11xw

Sum of the partial multiplications

Fig. 3. General algorithm of parallel weighted sum
calculation

Begin

End

Processor 2
22 xw

Processor M
mm xw •••• •••• ••••

B. Parallel training of each separate IHDNN

Let is present N IHDNN implementations and M
processors of the multiprocessor computer. It is
obviously, that the second way of paralleling can be
presented as parallel calculation of all IHDNNs on M
processors. Thus the parallel program is necessary to
implement as two-level cycle structure (Fig. 4). All
implementations of IHDNNs do not depend from each
other. They will use identical algorithm for formation of
training set using another calibration points.

Processor 1
Forming

training set

Save the result of whole algorithm

Fig. 4. General algorithm of parallel training of IHDNNs

Begin

End

•••• •••• ••••

Yes i+M<N

No

i=1

Processor 2
Forming

training set

Processor M
Forming

training set

Training of
1st NN

Saving result
of integration

Training of
2nd NN

Saving result
of integration

Training of
M NN

Saving result
of integration

4. EXPERIMENTAL RESEARCHES

The parallel computer Origin2000 is used for the
experiments, which placed in Parallel Computing
Laboratory, University of Calabria, Italy
(origin.parcolab.unical.it). Computer Origin2000 contains
8 RISC-processors MIPS R10000 with clock rate
250MHz and 512 MB of the RAM. Each processor has 4
MB cache memory. Origin2000 has operating system
UNIX (IRIX). All parallel routines are developed using
MPI technology.

A. Parallel Calculation of Weighed Sum and
Multiplication Cycles

The researches of this paralleling scheme were

conducted using the test parallel routine, which executes
5⋅106 operations of weighed sum (4). It is used floating
point operands of multiplying operation in (4). The
execution time of the routine increases with increasing of
quantity of used processors (Fig. 5). Therefore this
paralleling scheme is not effective for this task. Because
the maximum quantity of weighed sum operations in the
IHDNN training routine equals 663 (see section 3А), that
it is much less than in the test routine. This paralleling
scheme is possible to use for the tasks, which have much
greater number of multiplying operations. In another case
it is possible to use a smaller quantity of processors, for
example 2 or 4. In any case, it is necessary to research this
task in future on the lower level of the Origin2000
parallelisation.

 2 4 6 8
0

50

100

150

200

250

300

350

Number of processors of Origin2000

Ti
m

e
of

 5
⋅ 1

06 w
ei

gh
te

d
su

m
s

ca
lc

ul
at

io
n,

 s
ec

Fig. 5. Time of parallel calculation of weighted sum on
Origin2000

B. Parallel training of each separate IHDNN

The same model of three-level perceptron (9-9-1) is

used for the experiments on parallel training of 50
IHDNNs. The time of parallel training of all 50 IHDNNs
has considerably decreased with increasing of quantity of
used processors (Fig. 6). The time of training has
decreased from 83 to 40 times for first - fourth scenarios
at usage of eight Origin2000 processors (Fig. 7) in
comparison with uniprocessor computer P-III/600
MHz/128 Mb RAM. The obtained results confirm the
efficiency of the second paralleling scheme. The speed of
IHDNNs training increases in 2-3 times with increasing of
quantity of used processors.

5. CONCLUSION

The proposed method of sensors drift prediction
allows providing error reduction of physical quantity

measurement in intelligent systems by self-adaptation.
The self-adaptation is provided by interaction of three
neural networks with various properties. The proposed
method allows successfully to predict various kinds of
sensor drift and to reduce sensor errors in 3-5 times on
early stage of sensor exploitation. This method is used
into the prototype of Intelligent Sensing Instrumentation
Structure, where training of all neural networks (IHDNN,
ANN and PNN) is performed on a higher system level,
i.e. on the personal computer. Usage high-performance
computer Origin2000 on the higher level (even with
access through the Internet) allows to increase the speed
of neural networks training in 40-83 times.

2 4 8
0

5

10

15

20

25

30

35

Number of processors of Origin2000

Ti
m

e
of

 5
0

IH
D

N
N

s
tra

in
in

g,
 m

in

4: IT=500000, SSE=0,0000001
3: IT=200000, SSE=0,000001
2: IT=80000, SSE=0,00001
1: IT=40000, SSE=0,00001

Fig. 6. Time of parallel calculation of each separate
IHDNN on Origin2000

������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

����
����
����

�������
�������
�������

��������
����
����
����
����

�������
�������
�������
�������

��������

����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������

�����
�����
�����

��������
��������
��������

���������
�����
�����
�����
�����

��������
��������
��������
��������

���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������

���������

���
���

�����
�����
�������

��
��
��

�����
�����
�����

������

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

������

����
����

������
������
�����������

���
������
������
�������

���
���
���
���
���

������
������
������
������
������

�������

0
10
20
30
40
50
60
70
80
90

Sp
ee

d-
up

1 2 3 4
Scenarios

�������
������� 2 Proc.�������
������� 4 Proc.
�������

8 Proc.

Fig. 7. Speed-ups in comparison with
Pentium-III/600/128RAM

ACKNOWLEDGEMENT

The authors would like to thank European
organization INTAS, grant reference number INTAS-
OPEN-97-0606. The authors also would like to thank Dr.
M. Manсini for the help during fulfillment of the
experimental researches.

REFERENCES

[1] A.Sachenko, V.Kochan, V.Turchenko, Intelligent

Distributed Sensor Network, Proceedings of 15th
IEEE Instrumentation and Measurement Technology
Conference IMTC/98, St. Paul, USA, 1998, 60-66.

[2] A. Sachenko, V. Kochan, R. Kochan, V. Turchenko,
K. Tsahouridis, Th. Laopoulos, Error Compensation
in an Intelligent Sensing Instrumentation System,
18th IEEE Instrument. and Meas. Tech. Conference
IMTC/2001, Budapest, Hungary, 2001, 869-874.

[3] Brignell J., Digital compensation of sensors,
Scientific Instruments, 20(9), 1987, 1097-1102

[4] C.Alippi, A.Ferrero, V.Piuri, Artificial Intelligence
for Instruments & Applications, IEEE I&M
Magazine, Jun’98, 9-17.

[5] P. Daponte, D. Grimaldi, Artificial Neural Networks
in Measurements, Measurement, 23, 1998, 93-115.

[6] A.Sachenko, V.Kochan, V.Turchenko, V.Golovko,
Y.Savitsky, A.Dunets, T. Laopoulos, Sensor Errors
Prediction Using Neural Networks, Proceedings of
the IEEE-INNS-ENNS International Joint
Conference on Neural Networks IJCNN'2000,
Como, Italy, 2000, vol. IV, 441-446.

[7] http://www.fluke.com/products/home.asp?SID=7&
AGID=6&PID=5308

[8] K. B. Lee, IEEE 1451: A Standard in Support of
Smart Transducer Networking, Proceedings 17th
IEEE Instrument. and Measur. Tech. Conference
IMTC/2000, Baltimore, USA, 2000, 525-528.

[9] http://content.honeywell.com/sensing/prodinfo/sds/
[10] A.Sachenko, V.Kochan, V.Turchenko, T.Laopoulos,

V.Golovko, L.Grandinetti, Features of Intelligent
Distributed Sensor Network Higher Level
Development, Proceedings of the 17th IEEE
Instrum. and Measurement Technology Conference
IMTC/2000, Baltimore, USA, 2000, 335-340.

[11] V. Turchenko, V. Kochan, A. Sachenko, Estimation
of Computational Complexity of Sensor Accuracy
Improvement Algorithm Based on NN, Lecture
Notes in Computing Science, 2130, 2001, 743-748.

[12] A.Sachenko, V.Kochan, V.Turchenko, Sensor Drift
Prediction Using Neural Networks, Proceedings of
the Intern. Workshop on Virt. and Intellig. Measur.
Syst. VIMS'2000, Annapolis, USA, 2000, 88-92.

[13] Rumelhart D., Hinton G., Williams R, Learning
Represent. by Back propagation Errors”, Nature,
1986, 323, 533-536.

[14] V.Golovko, Y.Savitsky, T.Laopoulos, A.Sachenko,
L.Grandinetti, Technique of Learning Rate
Estimation for Efficient Training of MLP,
Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks IJCNN'2000,
Como, Italy, 2000, vol. I, 323-328.

[15] V.Turchenko, V.Kochan, A.Sachenko, Neural-
Based Data Processing in Intelligent Distributed
Sensor Network, Proceedings of the Intern. Conf. on
Neural Networks and Artificial Intelligence
ICNNAI'2001, Minsk, Belarus, 2001, 193-198.

